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The use of a stratified psychiatry approach that combines electronic health records (EHR) data with machine learning (ML) is one
potentially fruitful path toward rapidly improving precision treatment in clinical practice. This strategy, however, requires
confronting pervasive methodological flaws as well as deficiencies in transparency and reporting in the current conduct of ML-
based studies for treatment prediction. EHR data shares many of the same data quality issues as other types of data used in ML
prediction, plus some unique challenges. To fully leverage EHR data’s power for patient stratification, increased attention to data
quality and collection of patient-reported outcome data is needed.

Neuropsychopharmacology (2024) 49:285-290; https://doi.org/10.1038/s41386-023-01724-y

INTRODUCTION

Precision psychiatry proposes to tailor the diagnosis and treat-
ment of psychiatric disorders to an individual’s unique profile of
observable traits and biomarkers. In the decade since the National
Institutes of Mental Health introduced the Research Domain
operational Criteria framework [1], empirical evidence has
demonstrated that disorders defined by DSM or ICD’s categorical
criteria are heterogenous in underlying etiology, presenting
symptoms, and response to treatment. By matching patients to
the interventions with the highest likelihood of response based on
their individual characteristics, the precision approach aims to
transition clinical practice away from its one-size-fits-all strategy,
whereby first-choice interventions are determined by mean
treatment effects for categorically defined disorders.

Machine learning (ML) has generated considerable excitement
for its potential to advance biomarker discovery and improve
treatment outcomes. ML algorithms can adapt flexibly to large,
high-dimensional, and noisy data. Compared to classical statistical
methods, ML is more effective at handling non-linearities and
interactions among many variables. To date, hundreds of proof-of-
concept studies attest to the theoretical promise of ML for
treatment prediction across a wide spectrum of biomarkers and
interventions [2]. This considerable promise is overshadowed by a
stark reality: no ML prediction tools have successful transitioned
from research into widespread clinical practice. In fact, as reviewed
here, validation of prediction models in independent data—the
critical next step toward implementation—rarely occurs [3-5].

Data available for treatment prediction vary widely in quantity
and quality. Clinical trial and other research data are meticulously
curated, highly granular, but often modest in sample size. Data
collected passively for other purposes, such as EHR and insurance
claims, are copious but noisy. To date, most published prediction
models repurpose clinical trial data (~70% in one estimate) with
sample sizes inappropriate for data-hungry ML algorithms [3]. Few

studies employ EHR data for treatment prediction, despite
representing a wealth of real-world, continuously updated, long-
itudinal data on treatment trajectories for millions of patients [2].

STRATIFIED PSYCHIATRY

One conception of precision psychiatry is individual-level treatment
prediction using biomarkers to match each person to a specific
intervention (from all available options) in a disorder-agnostic
fashion (Fig. 1). Stratified psychiatry seeks to subgroup patients
using their shared characteristics to increase likelihood of response
to existing, approved treatments for a given disorder [6, 7]. The
method leverages all markers that capture any significant inter-
individual variation in response to different treatments—within and
between modalities—including partial, non-response, and adverse
reactions. Eliminating treatments likely to lead to no or adverse
response for a subgroup increases the overall chance for response in
selecting from the remaining options. Furthermore, by restricting
predictions to established options with comparable efficacy for a
disorder, harm from incorrect predictions may be lessened.

To illustrate, Arns et al. identified EEG biomarkers predicting
response and non-response among patients randomized to
receive escitalopram, sertraline, or venlafaxine for depression in
the International Study to Predict Optimized Treatment (iSPOT-D)
[8, 9]. No significant differences were observed for group-level
clinical efficacy. Right frontal alpha asymmetry (FAA), however,
predicted response and remission to escitalopram and sertraline
but not venlafaxine for females only. Simulation suggested that
stratifying the iSPOT-D patients to the three antidepressants using
FAA could yield a 7-14% higher remission rate [9].

Reliable and reproducible biomarkers have proven elusive with
data collection that is often slow, costly, and limited in size and
scope. EHR data is rich with routinely collected qualitative and
quantitative data for use in stratified psychiatry. Supervised and
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Fig. 1 One-size-fits-all vs. precision vs. stratified psychiatry. In one size-fits-all psychiatry (top panel), patients are assigned to categorical
disorders (e.g., DSM, ICD) by clinical evaluation and patient-reported symptoms. The evidence base (e.g., clinical trial data) largely determines
first-choice treatment. A variable range of responses are observed (e.g., positive (green), no response (gray), or adverse response/effects (red)).
In precision psychiatry (middle panel), the individual’s unique profile of biomarkers is matched to the exact treatment predicted for maximal
response. In stratified psychiatry (bottom panel), machine learning may be employed using electronic health record (EHR) data or biomarker
data to identify signatures associated with response to established interventions for a disorder. New patients may then be stratified to the
treatment with high predicted response for their subgroup signature. Additionally, patients may be stratified by their shared EHR markers or
biomarkers and prospectively treated to determine response, either to validate a response signature or establish association between
signatures for a new or existing treatment. Figure created with BioRender.com.

SPRINGER NATURE Neuropsychopharmacology (2024) 49:285 - 290



unsupervised learning can be used retrospectively to identify
shared predictors (multi-dimensional signatures) of treatment
response for a wide array of interventions at an unparalleled scale.
These signatures can then be validated prospectively or by
simulation. Patients with a shared signature are anticipated to
possess common underlying biology and increased homogeneity
of clinical outcomes. For example, Fabbri et al. found that
treatment-resistant depression subgroups derived from EHR data
strongly overlapped polygenic risk scores for major depressive
disorder [10]. New patients may be classified and treated
according to the similarity of their signature to established
signatures [6]. Additionally, phenotypes derived from unsuper-
vised learning of EHR data can be used prospectively to stratify
patients for large-scale, pragmatic clinical trials of new or existing
interventions to increase available response data.

INTERROGATING THE TRANSLATIONAL GAP

Development of an ML prediction model involves a multi-step
process [11]. Briefly, labeled data are partitioned into training and test
subsets. The data subsets undergo preprocessing to minimize the
impact of dataset anomalies (e.g.,, missing values, outliers, redundant
features) on the algorithm'’s learning process. The algorithm is applied
to the training data, learning the relationship between the features
and predictive target. Performance is typically evaluated via cross-
validation to estimate the model’s performance on new observations
(internal validation). However, this only approximates a model’s ability
to generalize to unseen data. Prediction models must demonstrate
the ability to generalize to independent datasets (external validation)
[12]. Ideally, external validation should occur in a separate study by a
different analytic team [13]. Clinical validation involves assessing a
model’s generalization to real world data as well as potential clinical
utility and impact. Randomized cluster trials, for instance, evaluate
groups of patients randomly assigned to receive care based on a
model’s prediction versus care-as-usual.

Few examples exist of predictive ML models advancing to clinical
validation in psychiatry, indicative of a sizeable translational gap.
Delgadillo et al. compared the efficacy and cost of stratified care
compared to stepped care for a psychological intervention for
depression (n =951 patients) in a cluster randomized trial [14]. The
investigators previously developed a ML prediction model to classify
patients as standard or complex cases using self-reported measures
and sociodemographic information extracted from clinical records
(n = 1512 patients) [15]. In the prospective trial, complex cases were
matched to high-intensity treatment and standard cases to low-
intensity treatment. Stratified care was associated with a 7% increase
in the probability of improvement in depressive symptoms at a
modest ~$140 increase in cost per patient [14].

Methodological flaws

What is driving this translational gap? Much of it may relate to
challenges in generalizing models beyond their initial training
data. There are no silver bullets in the development of ML
prediction models and many potential pitfalls. The most common
are overfitting and over-optimism due to insufficient training data,
excess complexity improper (or lack of) cross-validation, and/or
data leakage [16-18].

Most published ML studies in psychiatry suffer these methodo-
logical flaws [3-5]. Tornero-Costa et al. reviewed 153 ML applica-
tions in mental health and found only one study to be at low risk
of bias by the Prediction model Risk Of Bias ASsessment Tool
(PROBAST) criteria [3]. Approximately 37.3% of studies used a
sample size of 150 or less to train models. Details on preproces-
sing were completely absent in 36.6% of studies and 47.7% lacked
a description of data missingness. Only 13.7% of studies
attempted external validation. Flaws in the analysis domain (e.g.,
attempts to control overfitting and optimism) contributed
significantly to bias risk in most applications (90.8%). Furthermore,
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in 82.3% of the studies, data and developed model were not
publicly accessible. Two other systematic reviews also found
overall high risk of bias (>90%) among ML prediction studies,
including poor reporting of preprocessing steps as well as low
rates of internal and external validation [4, 5]. Meehan et al.
additionally reported that only 22.7% of studies (of those meeting
statistical standards) appropriately embedded feature selection
within cross-validation to avoid data leakage [5].

The precise degree to which published ML prediction models
overestimate their ability to generalize is difficult to estimate. In the
area of prognosis prediction, Rosen et al. assessed 22 published
prediction models of transition to psychosis in individuals at
clinical high-risk [19]. Models were assessed for external validation
from a multisite, naturalistic study. Only two models demonstrated
“good” (AUC > = 0.7) performance and 9 models failed to achieve
better than chance (AUC=0.5) prediction. None of the models
outperformed the clinician raters (AUC = 0.75) [19].

The model development process is vulnerable to human
inductive biases, which can inflate model performance estimates
due to unintentional errors or deliberate “gaming” for publication
[17, 20]. Performance scores have become inappropriately
prioritized in peer review due to erroneous higher = better
assumptions. Most studies employ a single algorithm without
justifying its selection or compare multiple algorithms’ perfor-
mance on the same dataset, then select the best performing one
(multiple testing issue) [17, 21]. Software packages like PyCaret
(Python) offer the ability to “screen” the performance of a dozen
or more algorithms on a dataset in a single step. This analytic
flexibility creates risk, because even random data can be tuned to
significance solely through manipulation of hyperparameters [17].

Low quality or biased training data
Methodological shortcomings offer only partial explanation for the
observed translational gap. As the saying goes, “garbage in,
garbage out.” Low quality, small, or biased training data can
generate unreliable models with poor generalization to new
observations or worse, make unfair predictions that adversely
impact patients. Ideal ML training data is large, representative of
the population of interest, complete (low missingness), balanced,
and possesses accurate and consistent feature and predictive
target labels or values (low noise). Per the systematic reviews
above, these data quality criteria have been often neglected [3-5].

EHR data share many of the same quality issues impacting data
collected explicitly for research, as well as some unique challenges
that have deterred its use for ML in the past [22-24]. EHR data are
highly heterogenous, encompassing both structured and unstruc-
tured elements. Structured data is collected through predefined
fields (e.g, demographics, diagnoses, lab results, medications,
sensor readings). Unstructured data is effectively everything else,
including imaging and text. Extracting meaningful features from
unstructured EHR data is non-trivial and often requires supervised
and unsupervised ML techniques.

The quality of EHR data can vary by physician and clinical site.
Quality challenges with EHR data that can adversely impact ML
models for stratified psychiatry include:

Selection bias. EHR populations are non-random samples, which
may create differences between the training data population and
the target population [25]. Patients with more severe symptoms or
treatment resistance may be frequently referred. Factors other
than need for treatment (e.g., insurance status, referral, specialty
clinics) can lead to systematic overrepresentation or under-
representation of certain groups or disorders in the data.
Marginalized populations, such as racial and ethnic minorities,
for example, face barriers to accessing care and may be absent in
the data [26]. When an algorithm trains on data that is not diverse,
the certainty of the model’s predictions is questionable for
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unrepresented groups (high epistemic uncertainty) [27]. This may
lead to unfair predictions (algorithmic bias) [28].

Missingness. Missing data are common in EHRs. The impacts of
missing data on model performance can be severe, especially when
the data are missing not at random or missing at random but with a
high proportion of missing values [29]. Furthermore, the frequency
of records can vary substantially by patient. One individual may have
multiple records in a period, others may have none [30]. Does
absence of a diagnosis indicate true lack of a disorder or simply
reflect that the patient received care elsewhere during a given
interval? Structured self-reported patient outcome measures (e.g.,
psychometric measures) are often missing or incomplete [31].

Inaccurate features and targets. Feature and target labels or values
provide the ground truth for learning. Inaccuracies and missingness
generate noise, which can hinder effective learning. The lineage of a
given data element is important in considering its reliability and
validity. For example, a patient’s diagnoses may be extracted from
clinical notes, encounter/billing data, or problem lists (often not
dated or updated) [32]. In some cases, the evaluating practitioner
enters the encounter-associated diagnostic codes; in other instances,
these are abstracted by a medical billing agent, creating uncertainty.

Inconsistency. Imaging and sensor-based data may be collected
using different acquisition parameters and equipment, leading to
variability in measurements across EHRs and over time [33]. Data
may be collected using different coding systems (e.g., DSM, ICD),
the criteria for which also change over time. These issues can
hinder external validation as well as contribute to data drift with
the potential for deterioration in model performance [34].

Imbalanced data. When data are imbalanced, ML classification
models may be more likely to predict the majority class, resulting in a
high accuracy but low sensitivity or specificity for the minority class
[35]. The consequences of data imbalance can be severe, particularly
when the minority class is the most clinically relevant (e.g., patients
with suicidal ideation who go on to attempt, adverse drug reactions).

Temporal dynamics. Patient records represent a sequence of events
over time [36]. Diagnostic clarification may create conflicts (e.g.,
depression later revealed to be bipolar disorder), depending on the
forward and lookback windows used to create a dataset. Failure to
appropriately account for the longitudinal nature of a patient’s clinical
course can contribute to data leakage. Temporal data leakage occurs
when future information is inadvertently used to make predictions for
past events (e.g., including a future co-morbidity when predicting
response to past treatment). Feature leakage occurs when variables
expose information about the prediction target.

Empirical evidence indicates that preprocessing techniques can just
as easily mitigate as exacerbate underlying data quality and bias
issues. For example, missing data may be handled by complete case
analysis (i.e, removal of observations with missing features) or
imputation [37]. If data are not missing completely at random,
deletion may eliminate key individuals [29]. Fernando et al. found that
records containing missing data tended to be “fairer” than complete
records and that their removal could contribute to algorithmic bias
[38]. In the case of imputation, if the estimated values do not
accurately represent the true underlying data, replacing “missing”
values may inject error (e.g., imputing scores for psychometric scale
items absent due to skip logic) and impact feature selection [39].

EHR data often require the creation of proxy features and
outcomes to capture concepts (e.g., continuous prescription refills
as an indicator of treatment effectiveness) or to reduce feature and
label noise [40, 41]. No standards currently exist to guide such
decisions or their reporting, creating high risk for bias. For example, if
attempting to determine cannabis use when a patient was treated
with a given antidepressant, one could check for a DSM/ICD diagnosis
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in their encounters or problem list, mine clinical notes to see whether
use was endorsed/denied, or examine urine toxicology for positive/
negative results. Each choice carries a different degree of uncertainty.
Absence of evidence does not indicate evidence of absence [42],
although studies often make that assumption.

CALL FOR IMPROVEMENTS

Coupling EHR data with a stratified approach is a promising step
toward precision psychiatry with the potential to improve treatment
outcomes without development of new treatments or collecting new
data. This path, however, requires a commitment to improving EHR
data quality and addressing known challenges. In ML, data is often
treated as a “fixed” entity with quantity assumed paramount over
quality [43]. In model-centric ML, noise is iteratively “tuned” out
through hyperparameter adjustment and increasing the complexity
of the model architecture. A data-centric approach contends that
high-quality training data best improves model performance and
generalization. The model is “fixed,” and the data is iteratively
optimized through thoughtful preprocessing [44].

Advancement requires that researchers, funders, and journals
prioritize the assessment and reporting of data quality and
preprocessing methodology for EHR data and derived markers as
highly as they do for biological and imaging biomarkers [45].
Automated assessment tools and reporting guidelines and
instruments are needed [46], especially given the push toward
federated learning that would see models but not data exchanged
for external validation to address pressing privacy concerns [47].
Exciting developments in the use of autoencoders and natural
language processing techniques for the automated extraction of
features from all types of EHR data at scale can help increase
standardization, but these also require validation [48, 49]. Finally,
no strategy can optimize data that is simply missing en masse.
Proxy treatment response measures are a poor substitute for
patient-reported outcomes. There is an urgent need for increased
implementation of patient-reported outcome measures in EHRs,
which is often impeded by concerns regarding workflow
disruption, thresholds for action, logistical/technical barriers, and
lack of incentives for practitioners or patients [50].

CONCLUSIONS

The hype surrounding ML is substantial, but its potential to harness
the power of big data in the service of precision psychiatry cannot
be ignored. Stratified psychiatry, underpinned by the wealth of
existing information within EHRs, can propel the field forward.
However, we can no longer ignore methodological and data
quality issues and expect to close the translational gap. Laxity in
methodological rigor, reporting standards, and external validation
must be addressed. As precision psychiatry continues to evolve,
the integration of ML and EHRs will be instrumental in translating
the promise of personalized care into a tangible clinical reality.
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