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Graphical Model Theory for Wireless Sensor Networks 
 

William B. Davis 
 

Lawrence Berkeley National Laboratory, MS 46A-1123B, One Cyclotron Road, Berkeley CA 94720. 
WBDavis@lbl.gov 

 
 

Abstract.  Information processing in sensor networks, with many small processors, demands a theory of 
computation that allows the minimization of processing effort, and the distribution of this effort 
throughout the network.  Graphical model theory provides a probabilistic theory of computation that 
explicitly addresses complexity and decentralization for optimizing network computation.  The junction 
tree algorithm, for decentralized inference on graphical probability models, can be instantiated in a 
variety of applications useful for wireless sensor networks, including:  sensor validation and fusion; data 
compression and channel coding; expert systems, with decentralized data structures, and efficient local 
queries; pattern classification, and machine learning.  Graphical models for these applications are 
sketched, and a model of dynamic sensor validation and fusion is presented in more depth, to illustrate 
the junction tree algorithm. 

 
 

1 A Model of Network Computation 
Graphical model theory is a marriage of probability and graph theory that uses network graphs (with nodes 
and edges) to represent probability models.  Probabilistic propositions are at least as expressive as logical 
propositions (containing them as extremal cases); the language of probability therefore includes the 
languages of all Turing computers, with probabilistic conditioning inclusive of logical implication.  While 
Boolean propositions may only be true or false, probabilistic propositions may also assume any 
intermediate value.  A probabilistic theory of analog computation may be more expressive than the Turing 
model. 

Representing probability models as graphs has several advantages for wireless sensor networks.  
Inference, the essential probabilistic operation, is described as an algorithm directly on the probability 
graph, or on a graph derived from it.  The probability graph contains the network hardware graph, so a 
graphical description of the algorithm facilitates its hardware implementation.  Furthermore, the algorithm 
for exact inference on network graphs, the junction tree algorithm, has the following properties:  it is 
minimum complexity; it is maximally decentralized (requiring only “local” information, in a well-defined 
sense); and it explicitly provides a communications protocol that specifies the information flows between 
pairs of nodes, and the order in which these information flows must occur.  These properties are useful in 
network implementations. 

Broadly, there are three steps to using a graphical model:  (1) defining the model; (2) constructing the 
inference engine; and, (3) using the inference engine.  The first step entails:  specifying the random 
variables, as nodes in the graphical model, and assigning probability distributions to these nodes; and, 
specifying the dependencies between the variables, as edges in the graphical model.  This step is described 
in section 2, with a static sensor fusion example. 

The second and third steps, constructing and using an inference engine, are accomplished by the 
junction tree algorithm.  The junction tree algorithm performs decentralized, efficient, exact Bayesian 
inference on any graphical model.  Furthermore, the junction tree algorithm can be utilized as a subroutine 
for higher-order inference – for estimating probability distributions, and for determining structure in 
graphical models, when these are not known.  The junction tree algorithm therefore provides a good 
introduction to graphical model theory, and is described in section 3 [3, 7-8, 10]. 

The claim that graphical models provide an expressive theory of network computation is given 
substantial support in section 4, which provides a variety of graphical models for wireless sensor networks.  
The suite of applications described is diverse and comprehensive, including:  sensor validation and fusion; 
data compression and channel coding; distributed expert systems; pattern classification, and machine 
learning [4]. 
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Section 5 develops the examples of graphical models for sensor fusion and validation in greater depth, 
with the objectives of illustrating the desirable properties of the junction tree algorithm, and describing 
decentralized network implementations. 

Despite the computational advantages of the junction tree algorithm, exact inference can still be 
intractable for many models.  Section 6 introduces faster algorithms for approximate inference, and 
extensions of graphical models and the junction tree algorithm to decision and game networks. 

2 Graphical Models Represent How Joint Probability Distributions Factor 
Constructing a graphical model G = (X, E) entails assigning nodes X to random variables, with a joint 
probability distribution function p(X), and including edges E to represent probabilistic dependencies 
between the nodes.  If the edges are directed (and the graph has no cycles), the graphical model is known as 
a Bayesian network.1  In this type of graphical model, the joint pdf can be factored 
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into a product of conditional distributions, where each node is conditioned on its parent nodes π (X).  
Equivalently, the edges embody conditional independence assumptions on the local conditional probability 
distributions, namely that in Bayes nets, each node is conditionally independent2 of all others, given its 
parents. 

Consider the following sensor fusion example.  The directed graph in figure 1 represents M sensors Sm 
observing the same object O. 

O

S2 SMS1

...

 
 
Fig. 2.1.  Static sensor fusion directed graph 
 
The sensors are conditionally independent given the object state, .  The joint pdf can therefore 
be factored according to eq. (1). 
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A probability distribution may also be represented by an undirected graph, known as a Markov 
network.  In this case, the joint pdf can be represented 
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as a product of clique potentials ψ  on the cliques3 C of G, divided by the product of separator potentials 
φ  on the separators4 S of those cliques.  In Markov nets, graph separation is equivalent to conditional 
independence, i.e., |X Y Z⊥  iff Z graph separates5 X from Y. 

                                                           
1 aka causal network or belief network. 
2 A random variable X is conditionally independent of Y given Z, |X Y Z⊥ , iff ( ) ( ) ( ), | | |X Y Z p X Z p Y Z=p  
wh , i.e., iff the joint pdf factors.  An equivalent condition is enever ( ) 0p z > ( ) ( )| , |p X Y Z p X Z=  whenever 

. ( )y zp , 0>
3 Two nodes are connected if there exists an edge between them.  A set of nodes is complete if it is fully connected 
(where each node is connected to every other node).  A clique is a maximal complete set of nodes – the largest 

 



Continuing with the sensor fusion example, the undirected graph in figure 2 again represents M sensors 
Sm observing object O. 

O

S2 SMS1

...

 
 
Fig. 2.2.  Static sensor fusion undirected graph 
 
The sensors are graph separated from one another by O, and are therefore conditionally independent given 
the object state, , ∀ ≠ .  The cliques in this graph are {S|m nS S⊥ O m n 1, O}, {S2, O},…,{SM, O}, and the 
separator for these cliques is always {O}.  The joint pdf can therefore be factored according to eq. (2), 
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One example of potentials that satisfy this equation are marginal probabilities. 
Missing edges in both directed and undirected graphical models represent conditional independence 

assumptions, and therefore describe how the joint probability distributions factor.  The junction tree 
algorithm manipulates the joint pdf to perform exact inference.  The algorithm utilizes the factorizations 
described in eqs. (1) and (2) to make these computations efficient, and can distribute the computational 
effort over nodes in the graph. 

3 Exact Inference on Graphical Models:  The Junction Tree Algorithm 
Inference is a probabilistic operation wherein marginal and conditional probabilities are calculated from the 
joint pdf, possibly conditioning on the knowledge of the states of some observed nodes.  Exact inference in 
Bayesian and Markov networks is accomplished via the Junction Tree Algorithm (JUNCTIONTREE).  This 
can be described as a process of first constructing and then utilizing an inference engine, which makes 
these probabilistic calculations.  The inference engine that JUNCTIONTREE constructs has several 
advantages for decentralized implementation in small, low-power, wireless sensor networks.  
JUNCTIONTREE exploits those conditional independencies that do exist to make the calculations as efficient 
and decentralized as possible, given the dependency structure of the sensor network.  In addition to 
describing the calculations necessary at each node in the network, JUNCTIONTREE also specifies a message-
passing protocol, which describes the timing and content of the information flow between nodes.  
JUNCTIONTREE is minimum complexity, maximally decentralized, and specifies the necessary message 
passing throughout the network.  These properties will be demonstrated by example, after the algorithm is 
described.  Because an inference engine can be used repeatedly once constructed (for example every time 
new sensor readings are obtained), and also because it is the inference engine itself, and its use, not its 
construction, that is efficient and decentralized, more detailed description and theoretical justification is 
provided for using than constructing the inference engine.  The subroutines that comprise using the 
inference engine are also those whose implementation is discussed in the context of the sensor fusion and 
validation example in section 5. 

                                                                                                                                                                             
complete set containing those nodes; strictly contained by no other complete set; i.e., there exist no additional nodes 
connected to every node in the set. 
4 A separator S of cliques C1 and C2 is those nodes they share in common, S = C1 ∩ C2. 
5 Z graph separates X from Y iff all paths from X to Y intersect Z. 

 



3.1 Overview of the Junction Tree Algorithm 
JUNCTIONTREE performs exact inference in probability models, and operates on the graphical 
representation of a joint pdf.  Following is an overview of this algorithm, which consists of five main 
subroutines.  The MORALIZE, TRIANGULATE, and CONSTRUCTJT subroutines are graph-theoretic operations 
that construct the inference engine (the junction tree), while the INTRODUCEEVIDENCE and 
PROPAGATEPOTENTIALS subroutines use the junction tree to answer probabilistic queries. 
 
JUNCTIONTREE 
  Input graph G with nodes X and edges E; Distributions p(X); Evidence XE = xE 

MORALIZE (only if G is directed) 
  Input G; Output moral graph GM 
TRIANGULATE 
  Input moral graph GM; Output triangulated graph GT 
CONSTRUCTJT 
  Input cliques C and separator cardinalities S  of GT; 
  Output JT a junction tree of cliques of GT 
INTRODUCEEVIDENCE 
  Initialize clique potentials ψ , separator potentials ( )C ( )Sφ  on GT 
  Input XE = xE; Output posterior clique potentials ψ  on cliques of G( )C T 
PROPAGATEPOTENTIALS 
  Start at root clique 

COLLECTEVIDENCE 
  For each child of clique, 
    UPDATEPOTENTIALS 
      Input clique, COLLECTEVIDENCE(child) 
      Output updated clique potentials * ( )CXψ  
DISTRIBUTEEVIDENCE 
  For each parent of clique, 
    UPDATEPOTENTIALS 
      Input clique, DISTRIBUTEEVIDENCE(parent) 
      Output updated clique potentials **( )CXψ  

  Output p(XF | XE) 
 
This algorithm constructs an inference engine, in the form of a junction tree of clique potentials, then 

performs inference by achieving local consistency between adjoining clique potentials in the junction tree.  
Because of properties of the junction tree, when this algorithm terminates, the clique potentials equal pdfs 
conditioned on the evidence, from which inferential queries can be answered locally. 

PROPAGATEPOTENTIALS adjusts the clique potentials to achieve this mutual consistency.  
PROPAGATEPOTENTIALS also describes the message-passing necessary between cliques in the junction tree.  
The calls to COLLECTEVIDENCE and DISTRIBUTEEVIDENCE are recursive – these subroutines repeatedly call 
themselves so long as a clique in the junction tree has children or a parent.  The recursive calls ensure that 
all cliques send a message to parents only after they have received messages from all children.  Messages 
are passed once “inward” from the leaves to the root, then once “outward” from the root to the leaves (there 
exist shorter sequences of message passing that yield the same result). 

The MORALIZE, TRIANGULATE, and CONSTRUCTJT subroutines are graph-theoretic operations that 
guarantee that local consistency will result in global consistency, i.e., that PROPAGATEPOTENTIALS will 
result in all the potentials proportional to the local marginal probabilities, as desired.  These subroutines are 
described directly in graph-theoretic terms – adjacency matrices afford a more efficient representation of 
graphs in implementation. 

Constructing the Inference Engine:  Moralization 
MORALIZE converts a directed graphical representation to an undirected graphical representation (that 

encodes no more conditional independence assumptions, and possibly fewer).  This step is therefore only 
necessary if G is directed. 

 

 



MORALIZE 
  Input directed graph G with nodes X and directed edges E 
  For Each node X ∈ X  
    If ( ),P X ∈ E  

( )X ←π      Then P
∈
 

    For Each node  ( ) P Xπ
(∈ π      For Each node Q s.t. Q P)X ≠  

,Q P ∉ E        If ( ),P Q ∉ E  And ( )  
( ),P QE E          Then  ← ∪

( ),X Y ∈ E  For Each edge  
( ),Y X     ← ∪E E

  Output moral graph GM 
 

To MORALIZE a directed graph, fully connect all parent sets, and convert directed to undirected edges.  
Adding edges makes the family of probability distributions represented by the graph larger (with fewer 
conditional independence assumptions).  Inference on the moral graph GM includes inference on the 
original graph G. 

Constructing the Inference Engine:  Triangulation 
A graph is triangulated iff all cycles of length four or more have a chord.6  There exist a number of 

algorithms for triangulating a graph.  All involve adding edges to the moral graph, when necessary to 
eliminate chordless cycles.  There often exist, however, several triangulations of the same moral graph.  
Furthermore, the resulting triangulation is important in determining the complexity of 
PROPAGATEPOTENTIALS, which is exponential in the cardinality of the largest clique in the junction tree.  
Finding an efficient graph triangulation algorithm is still an open research question. 

 
TRIANGULATE 
  Input moral graph ( ),MG = X E  
  T ←E E  
  For Each node X ∈ X  
     ( )Ne X ← ∅
    For Each node Y ∈ X  
      If ( ),X Y ∈ E  Then ( ) ( )Ne NeX X Y← ∪  
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  While X is not a clique 
    ( )arg minA E X← ∆

Ne
 

X ∈    For Each node ( )A  
Ne≠ ∈      For Each node ( )AY X  
← ∪E E        If ( ),X Y ∉ E  Then ( ),X Y  And ( ),T T X Y← ∪E E  

( )Ne← ∪    C A  i A
X ∈    For Each node ( )Ne A

( )
 

X      \ ,A←E E
\

 
A←X X     

     1i i← +
  Output triangulated graph ( ),TG = X ET

                                                          

 (and its cliques C) 
 

 
6 In an UG, two nodes are connected if there exists an edge between them.  A cycle in an UG is a sequence of nodes 
each connected to the next, starting and finishing at the same node.  A chord of a cycle is a connected pair of nodes not 
consecutive in the cycle. 

 



The triangulation algorithm provided realizes good performance in applications, adding fewer edges 
than most alternatives.  It is a simple greedy algorithm, that successively selects nodes in order of the 
smallest number of necessary edges to fully connect all neighbors of that node, adds the edges between 
neighbors, then absorbs the node and its edges (the edges absorbed are not the edges added).  Let the 
absorbing node now represent a Cartesian product of itself with the absorbed node (nodes can represent 
vector as well as scalar random variables).  Because its neighbors are fully connected, the absorbed node 
can not be factored from its clique.  Factorization is represented by missing edges, and since none is 
possible, no missing edges from this node need be represented by the graph, and the node may be absorbed 
onto one of its neighbors without changing the conditional independence relations represented by the graph.  
When all nodes have been absorbed into one clique, the edges added during this process are added to the 
moral graph, resulting in a triangulated graph. 

Constructing the Inference Engine:  the Junction Tree 
The junction tree is a tree of cliques of the triangulated graph GT.  Furthermore, a junction tree is a 

maximal spanning tree, where the edge weights are the cardinalities of the separator sets.  With some initial 
machinery to determine the cliques and separators of GT, any of a number of algorithms for finding a 
maximal spanning tree can be applied to construct a junction tree [2]. 

 
CONSTRUCTJT 
  Input triangulated graph ( ),T T= X EG  
   JT ← ∅E
  For i= 1 to C -1 
    For j = i + 1 to C

jC
 

      S C  ij i← ∩

  For k= 1 to C -1 
    ( ) { }

,
, arg max ij

i j
x y S←

(
 

)JT JT ∪    ,x yC C←E E  
JT =  Output junction tree ( ), JTC E  

 

Using the Inference Engine:  Introduction of Evidence 
In sensor fusion and validation applications, evidence is sensor readings.  In this case 

INTRODUCEEVIDENCE constrains the estimate of the state of the object being sensed to be consistent with 
the sensor readings. 

 
INTRODUCEEVIDENCE 
  Input XE = xE 
  For each clique  C ∈C
    ψ  ( ) 1←C
  For each separator S ∈ S  
    ( ) 1Sφ ←  

X  For each EX∈
( )x≠ ←

 
     0E Ep X

≠ ∅X  While  
    For each X ∈ X  
      For some  C X⊂
        ψ  ( )( ) ( ) |p X C←C ψ C

\ X←X X       
  Output initial clique potentials ψ  on cliques of G( )C T 

 
This subroutine first initializes clique and separator potentials to one, and sets all conditional probabilities 
not consistent with the evidence to zero.  Then it multiplies all conditional probabilities of each node into 
the potential of some clique containing that node. 
 

 



Using the Inference Engine:  Propagation of Potentials 
To illustrate how PROPAGATEPOTENTIALS proceeds, consider the simplest of junction trees, with two 

cliques and one separator (Figure 3.1.1).  Designate C1 as the root, and C2 as the leaf.  With each clique and 
separator is associated a potential. 
  (ψ   (1)C )Sφ   ( )ψ  2C

C1 C2S
 

 
Fig. 3.1.1.  Graph of the simplest junction tree 
 
PROPAGATEPOTENTIALS proceeds recursively, with an inward pass from the leaves to the root, then an 
outward pass from the root to the leaves.  In the above two-clique junction tree (with C1 designated as the 
root), the JTA updates  based on , with an inward pass, then  on (the updated) 

 with an outward pass of messages through the junction tree. 
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PROPAGATEPOTENTIALS has several properties worth elucidating.  Both the inward and outward passes 
leave the joint probability distribution, in the form of eq. (2), unchanged.  After both passes the clique 
potentials are consistent with respect to their shared marginals.  In particular, clique potentials (and thus 
separator potentials as well) are equal to marginal probabilities.  Each of these properties is explained 
below. 

PROPAGATEPOTENTIALS leaves the joint distribution in the graphical model unchanged.  Recalling 
from eq. (2) that the joint distribution in an undirected graphical model is represented as the product of 
clique potentials divided by the product of separator potentials, after the inward pass, 
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and after the outward pass, 
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as claimed. 
After the updates,  and  are consistent with respect to their intersection S, 1* ( )Cψ 2* ( )Cψ

1 2 2 2
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C∑ . 

That is, summing out all nodes not in S results in the same marginal potentials for S regardless of whether 
the sum is performed on  or on .  Thus local “consistency” or “agreement” between clique 
potentials is achieved by PROPAGATEPOTENTIALS. 

1* ( )Cψ 2*( )Cψ

Finally, it remains to be demonstrated that after running PROPAGATEPOTENTIALS, the potentials 
necessarily have the desired probabilistic interpretation.  That this is at least possible is guaranteed by the 
conditional independence assumptions encoded in the graphical representation – C1 ┴ C2 | S, 
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p S p S p S
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p p p p 2 . 

Because of the conditional independence assumptions encoded in the graphical model, the joint probability 
distribution can be represented as a product of clique marginals, divided by the (product of) separator 
marginals. 

Furthermore, the potentials necessarily have this probabilistic interpretation after running 
PROPAGATEPOTENTIALS subroutine.  After the inward pass, 
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the first updated clique potential is the same as the marginal probability of that clique.  After the outward 
pass, 
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and the second updated clique potential is the same as the marginal probability of that clique.  With these 
two potentials equal to their marginal probabilities, the (twice updated) separator potential must also be 
equal to its marginal probability, because 

( ) ( ) ( )
( ) ( )

1 2 1 2* ( ) * ( )
**( )

C C C C
p S S

ψ ψ
φ= = =

p p

p X p X
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The above algebra only describes PROPAGATEPOTENTIALS on the simplest of junction trees, with two 
cliques, as depicted in Figure 2.  To generalize this algorithm to more complex junction trees, care must be 
taken so that local consistency between a clique and one of its neighbors is not defeated by subsequent 
updates between that clique and its other neighbors.  If a clique sends a message (distributes evidence) only 
after it has received messages (collected evidence) from all of its neighbors, then local consistency will be 
maintained.  The recursive calls to COLLECTEVIDENCE and DISTRIBUTEEVIDENCE in 
PROPAGATEPOTENTIALS guarantee that this message-passing protocol is satisfied. 

To demonstrate that PROPAGATEPOTENTIALS results in the desired clique-marginals for larger junction 
trees, first note that we can now write COLLECTEVIDENCE and DISTRIBUTEEVIDENCE in terms of clique and 
separator marginal probabilities as follows: 
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The case 2=C  has already been demonstrated.  To complete the induction, assume that 
PROPAGATEPOTENTIALS on a junction tree with N=C  cliques results in potentials equal to marginal 
probabilities, then demonstrate that this implies the same for a junction tree with 1N= +C  cliques.  
Because any tree can be built up by successively adding leaves, we can assume that the added clique is a 

 



leaf, and still span the set of all trees.  The induction hypothesis then allows us to describe 
PROPAGATEPOTENTIALS in a manner similar to the 2=C  case.  Now the leaf is clique C, while the “root” 
is the junction tree with N=C  cliques, and with nodes X.  The induction hypothesis provides 

. ( ) ( )=ψ X p X

φ

  p( )X   ( )Sφ    ( )Cψ  

X CS
 

 
Fig. 3.1.2.  Graph of a general junction tree 
 
To complete the proof we need only describe PROPAGATEPOTENTIALS for clique C, and demonstrate that it 
results in ( ) ( )S p S=  and ( ) ( )C p Cψ =  as desired.  Because it is already assumed that 
PROPAGATEPOTENTIALS returns the correct marginals on X, 
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X X
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Because DISTRIBUTEEVIDENCE leaves the joint probability distribution unchanged, 
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as desired.  Each time INTRODUCEEVIDENCE and PROPAGATEPOTENTIALS are run, the result is a set of 
clique and separator potentials equal to marginal probabilities, which form a distributed database useful for 
answering probabilistic queries. 

4 Applications to Wireless Sensor Networks 
JUNCTIONTREE has many potential applications in wireless sensor networks.  In the following subsections 
are graphical models for:  dynamic sensor validation and fusion; data compression and channel coding; 
pattern classification and machine learning.  This overview is necessarily brief, providing:  the graphs for 
the different applications; the factored probability distribution functions they represent; examples of 
inferential queries of interest that JUNCTIONTREE can perform, which are also applications of Bayes’ 
theorem; and, references for readers interested more specifics of a particular application.  All graphs are 
directed; therefore, their pdfs factor according to equation (1).  The graphs presented are the simple 
building blocks from which more complex models can be developed. 

4.1 Graphical Models for Sensor Validation and Fusion 
Sensor validation and fusion are among the more fundamental functions a wireless sensor network should 
perform.  Graphical models are especially efficient for dynamic models. 
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Fig. 4.1.1.  One sensor, many time periods 

 



Note how dynamic Bayesian networks encode the Markov property, that each node is conditionally 
independent of all earlier nodes given its immediate predecessor.  This is evident in how the joint 
probability distribution factors, which is given by eq. (1), 
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The conditional object distribution can be found by an application of Bayes’ theorem, 
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and can also be calculated with JUNCTIONTREE. 
The graphs for the models of dynamic sensor fusion and validation are similarly layered. 
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Fig. 4.1.2.  Dynamic sensor fusion 
 
The joint probability distribution is again given by eq. (1), 
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The conditional object distribution can be found by a more complex application of Bayes’ theorem, 
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Fig. 4.1.3.  Dynamic sensor fusion with validation 

 



Again the joint probability distribution is given by eq. (1), 
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Inference on this graphical model now includes a validation equation: 

( ) ( )
( )

,
|

,
O

p
p

p
=

∑
O S

O S
O S

;  ( )
( )

( )
1 2

1 2 3

,

,
, |

,
O

O

p
p

p
=

∑
∑ ∑

S S

O S
S S S

O S
. 

These graphical models are developed in greater detail in section 5. 

4.2 Graphical Models for Data Compression and Channel Coding 
Digital communication can be partitioned into two stages:  data compression, and channel coding. 
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Fig. 4.2.1.  Digital communications supergraph 
 
A source coder accepts a pattern x, and compresses the source at a rate R ∈ (0, 1).  Noiseless source coding, 
or lossless data compression, encodes the source pattern s.t. the expected codeword length |w| is as short as 
possible.  A channel coder maps a codeword w to a signal s, adding redundancy to protect against noise.  
After s is transmitted through a noisy channel, y is the signal received, and the channel coder reconstructs 
an estimate of the original codeword, then the source coder reconstructs an estimate of the decompressed 
source. 

Graphical models are useful for representing algorithms for data compression and channel coding. 
(Insert data compression directed graph) 

 
Fig. 4.2.2.  Data compression directed graph 
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Fig. 4.2.3.  Recursive convolutional coding directed graph 
 
Figure 4.2.3. is a Bayesian network that describes an efficient channel code.  To fully describe the 
probability model, the conditional distributions are specified.  For details, see [4].  The JTA performs 
channel decoding, inferring p (w | y), and then 

(MAPˆ arg max |p=
w

w )w y  or w w[ ] ( )B |ˆ E |p d= = ∫w y w w y w . 

 



4.3 Graphical Models as Distributed Expert Systems 
An expert system can be defined as a database with an inference engine [3].  We have already described the 
inference engine of graphical models.  For the sensor fusion example, the data are the prior sensor and 
object distributions, and the sensor readings.  As a result of INTRODUCEEVIDENCE, the data are represented 
as clique potentials in the junction tree.  As a result of PROPOGATEPOTENTIALS, the set of all separator and 
clique potentials are a database in the form of marginal probabilities, which are useful in this form for 
inferential queries.  Multiple simultaneous queries local to particular sensors can be answered in parallel. 

4.4 Graphical Models for Pattern Classification and Machine Learning 
One of the most active areas of research in graphical model theory is for pattern classification and machine 
learning [7-9].  For supervised pattern classification, both the pattern vector x and the class label c are 
observed as evidence.  Generative classification involves fitting a classifier to data, then generating a class 
label prediction for new patterns. 
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Fig. 4.4.1.  Pattern classification and pattern classification with latent variables directed graphs 
 
Note the similarity with figure 2.1.  Sensor fusion is pattern classification, and this discipline can be applied 
to the problem of sensor fusion.  For example, latent variable models for sensor fusion can be developed. 

The joint pdf for the graphical models in figure 4.4.1 can again be factored according to eq. (1), 
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The conditional class distributions are found by Bayes’ theorem, 
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In unsupervised learning, only the pattern vector x is observed, and is presumed generated by a set of 

latent variables, which may be layered, 
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Fig. 4.4.2.  Unsupervised learning and unsupervised learning with two hidden layers directed graphs 
 

The pdf for these models again factor according to eq. (1), 
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and the unconditional data distributions are, 
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5 Decentralized, Efficient, Bayesian Sensor Fusion  
This section uses the graphical models for sensor validation and fusion presented in section 4.1 as examples 
to illustrate the application of the junction tree algorithm.  For decentralization of PROPOGATEPOTENTIALS, 
it is assumed that with each sensor is associated a processor. 

Figure 2.2 is the moral graph of figure 2.1, the model of static sensor fusion.  MORALIZE adds no 
edges.  Figure 5.1.1 shows the moral graphs of figures 4.1.1 and 4.1.2, the output of MORALIZE.  Both 
graphs are already triangulated. 
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Fig. 5.1.1.  Dynamic sensor and sensor fusion moral graphs 
 
TRIANGULATE may add more edges than necessary.  Unnecessary edges are not included in figures 

5.1.1 and 5.1.2.  It is not until so complex an example as that of dynamic sensor validation and fusion that it 
becomes necessary for edges to be added for the moral graph to be triangulated.  Following are the moral 
and triangulate graphs of figure 4.1.3, for dynamic sensor validation and fusion.  Without the added edges, 
there exist chordless 4-cycles in the moral graph. 
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Fig. 5.1.2.  Dynamic sensor validation and fusion moral and triangulated graphs 
 
A final step is necessary to complete the inference engine, CONSTRUCTJT.  This subroutine requires the 

separator cardinalities, which in turn requires the cliques of the triangulated graphs.  These are the same as 
the elimination cliques provided by the TRIANGULATE subroutine, and are listed in table 5.1 for the models 
of dynamic sensor validation and fusion. 

 
 

 



Table 5.1.  Cliques and separator matrices of triangulated graphs in figures 5.1.1 and 5.1.2 
 

Cliques   Separator matrices 

 {O1, S1, O2} Sji | C1 C2  
 {S1, O2, S2}   = C2 | {S1, O2} 
 {O2, S2, O3}   = C3 | {O2} {O2, S2} 
 {S2, O2, S3}   = C4 | {S2} 
 
 {O1, S1

1, O2} Sji | C1 C2 C3  
 {S1

1, S1
2, O2}   = C2 | {S1

1, O2} 
 {S2

1, S2
2, O2}   = C3 | {O2} {O2} 

 {O2, S1
2, O3}   = C4 | {O2} {O2, S1

2}{O2} 
 {S1

2, S1
3, O3}   = C5 | {S1

2} 
 
 {O1, S1

1, S2
1, O2}  Sji |C1 C2  C3 C4   

 {S1
1, S2

1, S3
1, O2, S1

2}   = C2 | {S1
1, S2

1, O2} 
 {S2

1, S3
1, S1

2, S2
2}    = C3 | {S2

1} {S2
1, S3

1, S1
2} 

 {S3
1, O2, S1

2, S2
2, S3

2}   = C4 | {O2} {S3
1, O2, S1

2} {S3
1, S1

2, S2
2} 

 {O2, S1
2, S2

2, O3}    = C5 | {O2} {O2, S1
2}            {S1

2, S2
2} {O2, S1

2, S2
2} 

 {S1
2, S2

2, S3
2, O3, S1

3}   = C6 | {S1
2}             {S1

2, S2
2} {S1

2, S2
2, S3

2} 
 {S2

2, S3
2, S1

3, S2
3}    = C7 |   {S2

2} {S2
2, S3

2} 
 
 

The cliques and separators of the triangulated graphs are formed into junction trees so that the separators 
have maximum cardinality.  Junction trees for the sensor models are presented in figure 5.1.3. 
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Fig. 5.1.3.  Dynamic sensor, sensor fusion, and sensor validation junction trees 
 

These junction trees are graphical inference engines, which perform sensor fusion and validation.  With 
each clique and separator is associated a potential, which is initialized, and then made consistent with the 
sensor evidence.  After the PROPAGATEPOTENTIALS subroutine achieves consistency between neighboring 

 



potentials in the junction tree, the potentials form a distributed database for querying the object being 
sensed. 

For a given time period, the junction trees in figure 5.1.3 have two, three, and four cliques respectively.  
If a processor is associated with each sensor, then this is one more clique than sensor.  Assigning the 
computational responsibility for maintaining, processing, and communicating clique potentials to 
processors contained in those cliques requires that one sensor be responsible for two cliques. 
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Fig. 5.1.4.  Dynamic sensor, sensor fusion, and sensor validation distribution of computational effort 

 
The cliques in the largest graph contain four and five elements (the separators contain three), while the 
cliques in the smaller graphs are all cliques with three elements (with separators with two elements).  As 
these graphs suggest, if queries are only required for the current object state, then per-state computation and 
message passing can be reduced to an operation on the per-state subtrees in figure 5.1.4.  Sensor 
asynchrony can also be handled with loops. 

6 Summary and Extensions 
The JUNCTIONTREE algorithm provides an efficient, decentralized algorithm for probabilistic inference on 
graphical probability models, useful for sensor fusion and validation, data compression and channel coding, 
pattern recognition and machine learning, among other applications in wireless sensor networks.  The 
ability of graphical model theory to address issues of computational complexity and decentralization, and 
the fact that JUNCTIONTREE provides message passing protocols required for distributed computation, 
makes it useful in these applications.  This paper has introduced graphical models and the JUNCTIONTREE 
algorithm, with applications to wireless sensor networks.  The efficiency advantages of the JUNCTIONTREE 
algorithm are especially large for dynamic Markov models such as for sensor validation and fusion. 

Still there exist complex graphical models (with few factorizations) for which JUNCTIONTREE is 
intractable.  Researchers are developing related techniques based on graphical models for approximate 
inference, including sampling [12] and variational [9] methods. 

With a little additional machinery, and slight modification, the JTA can perform (dynamic) expected 
utility maximization on decision graphs known as influence diagrams [6].  Game-theoretic extensions 
(multi-agent influence diagrams) are explored in [11]. 

These extensions can be hybridized to develop approximate decision- and game-theoretic solution 
concepts, which are of interest as computational and economic models of bounded rationality. 
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