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INVESTIGATION

Spatial Localization of Recent Ancestors for
Admixed Individuals
Wen-Yun Yang,* Alexander Platt,† Charleston Wen-Kai Chiang,† Eleazar Eskin,*,‡,§ John Novembre,**
and Bogdan Pasaniuc‡,§,††,1

*Department of Computer Science, †Department of Ecology and Evolutionary Biology, ‡Interdepartmental Program in
Bioinformatics, and §Department of Human Genetics, University of California, Los Angeles, California 90095,
**Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, and ††Department of Pathology and
Laboratory Medicine, Geffen School of Medicine at University of California, Los Angeles, California 90095

ABSTRACT Ancestry analysis from genetic data plays a critical role in studies of human disease and
evolution. Recent work has introduced explicit models for the geographic distribution of genetic variation
and has shown that such explicit models yield superior accuracy in ancestry inference over nonmodel-based
methods. Here we extend such work to introduce a method that models admixture between ancestors from
multiple sources across a geographic continuum. We devise efficient algorithms based on hidden Markov
models to localize on a map the recent ancestors (e.g., grandparents) of admixed individuals, joint with
assigning ancestry at each locus in the genome. We validate our methods by using empirical data from
individuals with mixed European ancestry from the Population Reference Sample study and show that our
approach is able to localize their recent ancestors within an average of 470 km of the reported locations of
their grandparents. Furthermore, simulations from real Population Reference Sample genotype data show
that our method attains high accuracy in localizing recent ancestors of admixed individuals in Europe (an
average of 550 km from their true location for localization of two ancestries in Europe, four generations ago).
We explore the limits of ancestry localization under our approach and find that performance decreases as
the number of distinct ancestries and generations since admixture increases. Finally, we build a map of
expected localization accuracy across admixed individuals according to the location of origin within Europe
of their ancestors.
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Inference of ancestry from genetic data is a critical aspect of genetic
studies, with applications ranging from controlling stratification in
disease mapping to the inference of population history (Rosenberg
et al. 2003; Novembre et al. 2008; Drineas et al. 2010; Price et al. 2010;
Rosenberg et al. 2010; Seldin et al. 2011). Although many initial large-
scale genetic association studies have focused primarily on homoge-

neous populations, increasingly studies are addressing samples in
which individuals have more complex backgrounds, including ad-
mixed ancestry (i.e., emerging from the mixing of genetically diverged
ancestors; Bryc et al. 2010; Hinch et al. 2011; N’diaye et al. 2011;
Wegmann et al. 2011; Jarvis et al. 2012; Perera et al. 2013). Such
studies depend crucially on accurate and unbiased ancestry inference
both at a genome-wide level as well as at each locus in the genome
(Seldin et al. 2011; Pasaniuc et al. 2013).

Traditional ancestry inference from genetic data has been focused
on modeling populations as discrete units. As a result, traditional
genome-wide ancestry inference estimates the proportion of sites in
the genome coming from a set of source populations (continental or
subcontinental), and locus-specific inference aims to assign each allele
in the genome to one of the considered populations [Pritchard et al.
2000; Falush et al. 2003; Alexander et al. 2009; Price et al. 2009;
Shringarpure and Xing, 2009; Baran et al. 2012; Pasaniuc et al.
2013). More recently, alternative approaches model population struc-
ture in a geographic continuum, capitalizing on the correlation of
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genetics and geography expected in isolation by distance models
(Price et al. 2006; Wasser et al. 2007; Yang et al. 2012; Baran et al.,
2013; Elhaik et al. 2014) and observed in many organisms (Guillot
et al. 2009; Storfer et al. 2010). Spatial assignment offers three (related)
advantages beyond simple population assignment. First, it appropri-
ately acknowledges that nature rarely provides neat boundaries be-
tween distinct populations of exchangeable individuals. Second, it
allows for model-based inference to exploit the geographic structure
of allele frequencies for increased power, and third allows for the
accurate assignment of ancestors in otherwise un-sampled or under-
sampled regions.

Spatial analysis of genetic data often are performed through
principal components analysis (PCA) (Price et al. 2006; Seldin
et al. 2006; Paschou et al. 2007; Wasser et al. 2007; Novembre
et al. 2008; Paschou et al. 2008; McVean 2009; Zakharia et al.
2009; Brisbin et al. 2012), a general procedure for reducing the
dimensionality of the data, whereas alternative approaches focus
on explicit modeling of the relationship between patterns of genetic
variation and geography (Wasser et al. 2004; Yang et al. 2012;
Baran et al. 2013). These approaches typically assume that an
individual’s genotype is drawn from the genetic variation present
at a single geographic location, or (as in Brisbin et al. 2012) assume
that ancestral locations are specified a priori and then assign in-
dividual loci accordingly. These assumptions are clearly violated
when individuals have ancestors from multiple unknown geo-
graphic regions, as occurs with recently admixed populations in
the Americas (such as African-Americans) and more generally,
individuals who have ancestry from multiple regions within the
same continent (e.g., individuals with recent ancestors from mul-
tiple regions of Europe). Recent works have circumvented this issue
by first inferring segments of different continental ancestry (i.e.,
locus-specific) followed by independent application of PCA only
on segments of specific continental ancestry (e.g., European seg-
ments; Johnson et al. 2011; Moreno-Estrada et al. 2013). A critical
component of such an approach is the performance of locus-
specific ancestry inference, which has been shown to attain high ac-
curacy for continental ancestries but to be less accurate in inferring
subcontinental ancestry (e.g., country of origin; Price et al. 2009;
Baran et al. 2012; Maples et al. 2013). Other approaches to address
admixed individuals have only considered the limited case of
a first-generation admixed individual (i.e., one parent from each
of two locations), in which case local ancestry need not be inferred
as individuals are heterozygous at all loci for both ancestries
(Wasser et al. 2004; Yang et al. 2012).

In this work, we introduce models of admixture across varying
number of generations and ancestries in a geographic continuum.
We model admixed genomes as having recent ancestors from
several locations on a genetic-geographical map. We perform
ancestry inference by simultaneously localizing on the map the
recent ancestors of an admixed individual and partitioning the
admixed genome into segments inherited from the same ancestor
(i.e., locus-specific ancestry). Assigning a small number of ances-
tors helps maintain computationally tractability and is biologi-
cally meaningful for various important use cases. Where admixture
in the recent past is suspected, there will be a particular genomic
signature of repeated observations of the same ancestral locations
across many unlinked portions of the genome. Modeled this way,
we both uncover the nature of the admixture events as well as
combine the signal from each of these loci for increased accuracy
of the locations of each contributing lineage. We also take advan-
tage of the simple observation that if one allele is inherited from

a specific ancestor, then most likely the neighboring alleles are
also inherited from the same ancestor. Specifically, we use a model-
based framework for genetic variation in the geographical con-
tinuum (Yang et al. 2012) and use hidden Markov modeling
(HMM) of the admixture process (Patterson et al. 2004; Gravel,
2012). We develop efficient optimization algorithms that allow
us to accurately predict the geographic location of the recent
ancestors of an admixed individual in conjunction with locus-
specific ancestry inference. The results allow the localization
on a geographical map of each allele in recently admixed
individuals.

We use empirical genotype data from the Population Reference
Sample (POPRES) project (Nelson et al. 2008) to validate our ap-
proach. The POPRES project has genotyped more than 3000 individ-
uals with ancestry distributed throughout Europe and has recorded
the self-reported ancestry (typically at the level of country) for both
individuals and their parents/grandparents. We use 1385 POPRES
individuals with homogeneous ancestry (i.e., all reported grandparents
having the same ancestry) to infer patterns of variation across geog-
raphy in Europe (Yang et al. 2012) and use our method to localize the
recent ancestors of individuals with self-reported admixed ancestry
(i.e., grandparents with multiple ancestries in Europe). Our method
is able to localize the grandparents of the admixed individuals in
POPRES data within an average of 470 km of their reported ancestry.
The accuracy is dependent on the specific ancestries and ranges from
305 km for individuals with Swiss and French ancestry to 701 km for
those with Spanish and Portuguese ancestry. We use simulations from
the POPRES genotype data to show that the localization accuracy
within Europe decreases with increased number of ancestors and with
the number of generations since the admixture. We also show that
inference accuracy (at the genome-wide and locus-specific level) in-
creases as distance among ancestors increases. Finally, we provide an
analysis of ancestry localization error across all pairs of countries in
Europe as resource for the community interested in subcontinental
ancestry in Europe.

With the growing availability of high-quality reference panels for
nonhuman and nonmodel systems, we expect our proposed methods
to be broadly applicable to other organisms as well. Particularly, it
could be used to identify the contributing strains to novel hybridized
plants, to identify origins of recombinant human pathogens, to
identify colonization origins of invasive species, and to investigate
environmental refugia/dispersal sources in general source-sink dis-
persal systems. A software package implementing our methods is
freely available at http://bogdan.bioinformatics.ucla.edu/software/.

MATERIALS AND METHODS

Overview of spatial localization for admixed individuals
In this work, we consider models of ancestry for admixed
individuals in a geographical continuum. We view the mixed
ancestry genome as being generated from several geographical
locations on a map, corresponding to the locations of their recent
ancestors (see Figure 1). For example, consider the case of an
individual with one maternal grandparent from Italy and the
other one from Great Britain (see Figure 1A). The maternal copy
of its genome will be composed of segments originating from the
two locations in Europe (see Figure 1B). Each position in the
genome has its own function that describes the population allele
frequencies at that site as a function of geography. The approach
we take follows spatial ancestry analysis (SPA) (Yang et al. 2012)
and assumes these functions take on logistic gradient shapes.
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Some variants may have steep gradients (i.e., frequencies that
change drastically with location) whereas other variants may
not vary at all with geography (see Figure 1C). Although these
types of functions clearly do not explain all correlation between
genetics and geography, it has been previously shown that when
there are basic isolation-by-distance patterns, such simple functions
carry sufficient information to be very informative of ancestry status
across individuals (Yang et al. 2012; Baran et al. 2013) and lead to
likelihood functions that are simple to optimize. Other types of func-
tions such as linear functions (Baran et al. 2013) or more complex
functions could also be employed in our framework.

Having estimated gradient functions at each site in the genome, we
extend standard HMMs for admixture to incorporate variation at each
position on the map by allowing the emission probabilities to vary
according to these gradients (see Spatial modeling of allele frequency).
We perform inference in this model to find the ancestor locations on
the map that maximize the likelihood of the observed genome (Figure
1A). After finding the location of the recent ancestors, we assign each
allele in the mixed genome to one of the ancestor locations. This
provides a locus-specific ancestry call across the genome. Figure 1D

shows an output of our method (SPAMIX) with locations in the
admixed genome being labeled according to the inferred ancestral
location on the map.

Although we presented a simple example of our framework with
two ancestors on the map, the model flexibly handles diploid data
with arbitrary number of generations and ancestors localized on
the map (e.g., diploid genome with four ancestors localized on the
map two generations ago, diploid genome with eight ancestor loca-
tions three generations ago) (see Diploid data with admixed ances-
try). As the number of generations since admixture increases, the
total number of ancestors to localize increases dramatically, mak-
ing the inference problem very challenging. To account for this
effect we limit the number of different locations for the recent
ancestors for the maternal (paternal) haplotypes to a fixed constant
(e.g., M(N), see below) with varying amount of contributions to
ancestry (see below). We devise efficient algorithms to jointly op-
timize the locations of the ancestors as well as the proportion they
contribute to the genome of the admixed individual (see below).
For example, in the case of three generations ago, one ancestry
location may contribute 1/8th to the admixed genome if only

Figure 1 SPAMIX model for admixed individuals. (A) Example of haploid individual with two ancestry locations in Europe (circles denote the true
ancestry locations). (B) The admixture process induces segments of different ancestry backgrounds. (C) SPAMIX uses logistic gradients to describe
allele frequencies as a function of geographic map to instantiate an admixture hidden Markov modeling for each pair of locations on a map. Each
location on the map is associated to a particular allele frequency at all sites in the genome. (D) SPAMIX finds the location of ancestors on a map
(denoted by squares in A) and the locus-specific ancestry at each site in the genome by maximizing the likelihood of genotype data.

Volume 4 December 2014 | Spatial Localization for Admixed Individuals | 2507



one ancestor comes from that location and may contribute 1/2 to
the admixture process if half the ancestors come from that specific
location. Finally, we note that the diploid model is symmetric
making M and N interchangeable.

Spatial modeling of allele frequency
Although our base method for explicit modeling of genetic
variation as function of geography has been described elsewhere
(Yang et al. 2012; Baran et al. 2013), we briefly present here the
generative model. We view each of the alleles of an individual as
an independent Bernoulli draw from an allele frequency that
changes across the map and we parametrize the allele frequency
function through a logistic gradient as a function of position
ðx/¼ ðx1; x2ÞÞ in the map. Formally, the probability of observing
the reference allele in single-nucleotide polymorphism (SNP) j at
position x/ on the map fjðx/Þ, is defined as:

fj
�
x/
�
¼ 1

1þ exp
�
2 a!T

j x!2 bj
� (1)

where a!j and bj are parameters specific to SNP j. We estimate a!j

and bj from data containing individuals with known homogeneous
locations (Yang et al. 2012) and then use these coefficients in the
inference of ancestries of mixed individuals.

Although easy to manipulate mathematically, the logistic functions
we use here clearly do not capture all genetic variation (for example,
variants that have multiple modes or peaks in the allele frequency
surface as may be typical of rare variants). However, these functions
have been shown to capture general trends in common-variant
frequencies sufficiently well enough in isolation-by-distance samples
to produce highly accurate spatial assignment in individuals with
nonmixed ancestry (Yang et al. 2012). We hypothesize that such
simple-to-manipulate functions are sufficient for accurate localiza-
tion of recent ancestors in individuals with mixed subcontinental
ancestries.

Haploid data with admixed ancestry

Spatial model for admixed haploid data: For simplicity, we start by
introducing the model for haploid data and extend it to genotype data
in the next section. Denote by h = (h1, . . ., hL) the multisite haplotype
of an admixed haplotype, where L is the number of SNPs typed across
the genome and hi 2 {0, 1} encodes the number of reference alleles at
SNP i. Due to the admixture process, the haplotype can be viewed as
a mosaic of segments coming from ancestors from multiple locations
on the map. We define variables Z = (z1, . . ., zL) as indicators for an
allele coming from ancestry location j (zi = j if allele at locus i is from
j-th ancestry location) and write the likelihood of the haplotype data
as function of ancestry locations X. The likelihood for a given admixed
haplotype data having M ancestry locations X = (x1, . . ., xM) where
each ancestry contributes proportionally with P = (p1, . . ., pM) is
defined as:

Lðh;X;PÞ ¼
X
Z

PðZ;PÞ
YL
i¼1

Pðhijzi;XÞ (2)

The hidden variable Z encodes the mosaic structure of the admixed
haplotype (i.e., inheritance within the past generations for recent
admixture, admixture-linkage disequilibrium [LD]) and can be
modeled using a Markov chain as follows:

PðZ;PÞ ¼ Pðz1;PÞQL21
i¼1

Pðziþ1jzi;PÞPðz1 ¼ j;PÞ ¼ pj

Pðziþ1 ¼ jjzi;PÞ ¼
� ð12 tiÞ þ tipj ziþ1 ¼ zi
tipj ziþ1 6¼ zi

where the parameters t = {t1, . . ., tL21} stand for the recombination
probability (within the past g generations) between each two neigh-
bor loci. The alleles present at a site i on a haplotype is modeled as
a Bernoulli variable with a success probability given by the allele
frequency fiðxziÞ as follows:

Pðhijzi;XÞ ¼
 

1

1þ exp
�
2aTi xzi2bi

�
!hi 

1

1þ exp
�
aTi xzi þ bi

�
!ð12hiÞ

where the parameters a and b are estimated beforehand. Thus, they
should be regarded as fixed parameters in this article. An illustration
of the model is given in Figure 1. We note that our model makes the
assumptions of independence of alleles conditional on local ancestry
(no modeling of background LD or deviations from Hardy-Weinberg
proportions).

Spatial ancestry inference for haploid data: Under the generative
model shown previously, spatial ancestry inference is reduced to
inferring the M ancestral locations given data for an admixed
haplotype, followed by posterior decoding in the HMM to obtain
locus-specific predictions. This can be achieved by maximizing the
likelihood function (2) with respect to X. By treating X as param-
eters and Z, P as hidden variables, this maximization falls within
the procedure of the standard expectation-maximization (EM) algo-
rithm (Dempster et al. 1977):

E step: The expectation step is similar to the forward-backward
algorithm for HMM, which calculates the posterior probability of
hidden variables Z given current estimation of ancestral locations X(t)

and ancestral proportion P(t):

P
�
zi ¼ jjh;XðtÞ;PðtÞ

�
¼ aið jÞbið jÞP

jaLð jÞ

where a/b are standard forward/backward HMM functions and can
be efficiently calculated (see Supplementary Note).

M step: The maximization step alternatively optimizes the Q
functions in X and in P (Dempster et al. 1977). In detail, it first
optimizes the Q function in X by fixing P. Second, it optimizes the
Q function in P by fixing X. These two steps are performed alterna-
tively until the maximization converges. The Q function in X in the
first step can be derived as

Q
�
X;XðtÞ;PðtÞ

�
¼
X
Z

P
�
Zjh;XðtÞ;PðtÞ

�
ln

�
PðZ;PÞQ

i
Pðhijzi;XÞ

�
}
X
i;j

Cijqi
�
xj
�

where Cij denotes the posterior P(zi = j|h, X(t), P(t)) from the E step,
and the shorthand qi(xj) is defined as:

qi
�
xj
� ¼ � 2 ln

�
1þ exp

�
aTi xj þ bi

��
hi ¼ 0

2 ln
�
1þ exp

�
2 aTi xj 2 bi

��
hi ¼ 1

The Q function in P in the second step can be derived as follows
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Q
�
P;XðtÞ;PðtÞ

�
¼
X
Z

P
�
Z
			h;XðtÞ;PðtÞ

�
ln

�
PðZ;PÞQ

i
Pðhijzi;XÞ

�
}
X
i;j

Dij lnpj þ Eij ln
�
12 ti

�
12pj

��

where Dij and Eij denote constants calculated from the posterior
P(zi = j|h, X(t), P(t)) in the E step.

We perform the maximization by taking advantage of the convex
properties of the equation and using analytical forms for the Hessian
of the function. The complete derivations are given in Supporting
Information, File S1.

To give an overview of the whole EM algorithm, an illustration of
the aforementioned EM algorithm is given in Figure 2.

Locus-specific spatial ancestral inference for haploid data: Having
obtained the maximum likelihood geographical locations X�, we com-
pute the posterior probability for Z, which leads to a locus specific
assignment of ancestry at each allele in the genome. The most prob-
able local ancestral locations are found by maximizing

argmax
Z

PðZjh;X�Þ ¼ argmax
Z

PðhjZ;X�ÞPðZÞ

which can be efficiently solved by the Viterbi algorithm (Viterbi
2006). To compute a posterior probability of each locus-specific
ancestry, we use the forward-backward algorithm (see File S1).

Diploid data with admixed ancestry

Spatial model for admixed diploid data:We next extend the haploid
model to genotypes by considering M paternal ancestry locations X =
(x1, . . ., xM) with proportions P = (p1, . . ., pM) and N maternal
ancestry locations Y = (y1, . . ., yN) with proportions V = (v1, . . .,
vN). Denote by g = (g1, . . ., gL) the multisite genotype of an admixed
genotype, where L is the number of SNPs typed across the genome
and gi 2 {0, 1, 2} encodes the number of reference alleles at SNP i.
Then the likelihood becomes:

Lðg;X;Y ;P;VÞ ¼
X
Z

PðZ;P;VÞ
YL
i¼1

P
�
gi
		z pi ; zmi ;X;Y� (3)

The variables Zp and Zm now encode the ancestry status of the
paternal (maternal) alleles (z pi ¼ j denotes that the paternal allele
at locus i is from j-th paternal ancestry) and can be modeled through
the same Markovian process as:

PðZ;P;VÞ ¼
�
P
�
Zp
1 ;P

� QL21
i¼1

P
�
z piþ1

		z pi ;P�
��

P
�
zm1 ;V

� QL21
i¼1

P
�
zmiþ1

		zmi ;V�
�

P
�
z p1 ¼ j;P

� ¼ pj

P
�
zm1 ¼ k;V

� ¼ vk

P
�
z piþ1 ¼ j

		z pi ;P� ¼
(
ð12 tiÞ þ tipj z piþ1 ¼ z pi
tipj z piþ1 6¼ z pi

P
�
zmiþ1 ¼ kjzmi ;V

� ¼ � ð12 tiÞ þ tivk zmiþ1 ¼ zmi
tivk zmiþ1 6¼ zmi

Given the origin of alleles, the likelihood of the admixed individual
genotype is modeled as two Bernoulli draws:

P
�
gi
		z pi ; zmi ;X;Y� ¼

8>>><
>>>:

�
12 fi

�
xz p

i

���
12 fi

�
yz m

i

��
gi ¼ 0�

12 fi
�
xz p

i

��
fi
�
yz m

i

�
þ fi
�
xz p

i

��
12 fi

�
yzmi

��
gi ¼ 1

fi
�
xz p

i

�
fi
�
yzmi

�
gi ¼ 2

The function fi is the allele frequency function in logistic form (1).
The probability P(Z) models the recombination events in paternal
and maternal ancestries, and the probability Pðgi

		zpi ; zmi ;X;YÞ mod-
els the probability of generating the genotype from two ancestral
geographical locations.

Spatial ancestry inference for diploid data: We would like to infer
M + N ancestral locations for a given mixed individual genotype. This
can be achieved by maximizing the likelihood function (3) with re-
spect to X and Y, which, analogous to the haploid case, can be per-
formed using the EM algorithm (Dempster et al. 1977).

E step: In short, the expectation step is similar with forward-
backward algorithm in HMM, which calculates the posterior probability
of hidden variables Z given current estimation of ancestral loca-
tions X(t) and Y(t).

P
�
zpi ¼ j; zmi ¼ kjg;XðtÞ;YðtÞ;PðtÞ;VðtÞ

�
¼ aið j; kÞbið j; kÞX

j;k
aLð j; kÞ

where a and b can be calculated recursively using a procedure sim-
ilar to the forward-backward algorithm for HMMs.

M step: The maximization step alternatively optimizes the Q
functions in X, Y P and V. In detail, it first optimizes the Q function
in X and Y by fixing P and V. Second, it optimizes the Q function in
P by fixing X and Y andV. Third, it optimizes the Q function inV by
fixing X, Y and P. These two steps are performed alternatively until
the maximization converges. The Q function in X and Y in the first
step can be derived as follows

Q
�
X;Y ;XðtÞ;YðtÞ;PðtÞ;VðtÞ

�
¼
X
Zp;Zm

P
�
Zp;Zmjg;XðtÞ;YðtÞ;PðtÞ;VðtÞ

�
ln

3

�
PðZp;PÞPðZm;VÞQ

i
P
�
gi
		z pi ; zmi ;X;Y�

�
}
X
i;j;k

Cijkqi
�
xj; yk

�
Figure 2 An illustration of the expectation-maximization (EM) algo-
rithm for spatial ancestry inference for haploid data. The E-step and M-
step are performed alternatively until the EM algorithm converges.
The last M ancestral locations are used as the output of EM algorithm.
SNPs, single-nucleotide polymorphisms.
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where Cijk denotes the posterior P
�
z pi ¼ j; zmi ¼ kjg;XðtÞ;YðtÞ

�
computed from E step, and the shorthand qi(xj, yk) is defined as:

qiðx; yÞ ¼

8>>>>>>>>>><
>>>>>>>>>>:

2 ln
�
1þ exp

�
aTi x þ bi

��
2 ln

�
1þ exp

�
aTi y þ bi

��
gi ¼ 0

ln

0
BBBB@

1�
1þ exp

�
aTi x þ bi

���
1þ exp

�
2 aTi y2 bi

��
þ 1�

1þ exp
�
2 aTi x2 bi

���
1þ exp

�
aTi y þ bi

��

1
CCCCA gi ¼ 1

2 ln
�
1þ exp

�
2 aTi x2 bi

��
2 ln

�
1þ exp

�
2 aTi y2 bi

��
gi ¼ 2

The Q function in P in the second step can be derived as

Q
�
P;XðtÞ;YðtÞ;PðtÞ;VðtÞ

�
¼
X
Zp;Zm

P
�
Zp;Zmjg;XðtÞ;YðtÞ;PðtÞ;VðtÞ

�

3 ln

�
PðZp;PÞPðZm;VÞQ

i
P
�
gi
		z pi ; zmi ;X;Y�

�
}
X
i;j

Dij lnpj þ Eij ln
�
12 ti

�
12pj

��

where Dij and Eij denote constants calculated from the posterior
Pðz pi ¼ j; zmi ¼ kjg;XðtÞ;YðtÞÞ in the E step. We omit the Q function
in V in the third step here as it is very similar with the aforemen-
tioned function.

As in the haploid case, we leverage the convexity of the function
and analytical forms for the Hessian to efficiently optimize the Q
function. The complete derivations and optimization details are given
in File S1. As noted in File S1, the Q function Q(X, Y; X(t), Y(t), P(t),
V(t)) in the first step is not concave in general. However, we can still
use convex optimization techniques to get a local optimal solution. In
practice, we observe that the function is concave almost all the time.

Locus-specific spatial ancestral inference for diploid data: Having
obtained the maximum likelihood geographical locations X� and Y� for
each ancestry, we can compute the posterior probability for Zp and
Zm, which leads to the spatial local ancestry inference. The most
probable local ancestral states are obtained by maximizing

argmax
Z

PðZjg;X�;Y�Þ ¼ argmax
Z

PðgjZ;X�;Y�ÞPðZÞ

which can be efficiently solved by the Viterbi algorithm (Viterbi,
2006). The posterior of local ancestries for each allele can be
obtained using a forward-backward algorithm following the E step
in the algorithm (see Supplementary Note).

Homogeneous paternal and maternal ancestries: In the aforemen-
tioned notations we derived the general solution that allows for paternal
and maternal ancestries to be different from each other, which is
suitable for applications of inference of parental locations or grandparent
locations. A simplifying case is when maternal and paternal ancestries
are homogeneous, i.e., the paternal haplotype and maternal haplotype
are from the same set of ancestral populations. We allow for this case by
setting M = N and enforce a constraint xj = yj in the M step.

POPRES data set
We applied our methods to a data set collected from European
populations, which was assembled and genotyped as part of the larger
POPRES project (Nelson et al. 2008) and accessed via dbGAP acces-
sion number phs000145.v4.p2. A total of 3192 European individuals
were genotyped at 500,568 loci using the Affymetrix 500K SNP chip.

The same stringency criteria as in Novembre et al. (2008) were applied
to create the training data. We removed SNPs with low confidence
scores and low call-rate (Nelson et al. 2008; Novembre et al. 2008).
We filtered individuals to avoid sampling individuals from outside of
Europe, to create more even sample sizes across Europe, and to remove
individuals whose self-reported data have grandparents with different
origins. We note that this is the same sample set used in Novembre
et al. (2008) and Baran et al. (2013). For the remaining individuals who
have reported grandparental data, we use that origin for the individual.
Otherwise, we use the individual-level self-reported country of birth.
From these data, we infer logistic gradients starting from genotype data
from 447,245 autosomal loci in 1385 individuals from 36 populations. A
total of 77.4% of SNPs are common SNPs (allele frequency. 0.05), and
the remaining 22.6% have low frequencies (, 0.05). As in Novembre
et al. (2008), we use country geographical center as the geographical
locations for all the individuals from that country population. For test-
ing, we identified an additional 470 individuals from the POPRES data
that have self-reported grandparental ancestry from two or more coun-
tries in Europe. A summary of homogeneous ancestry individuals used
in estimating logistic gradients (1385) and with subcontinental Euro-
pean admixed ancestry (470) are given in Table 1.

Background LD
Although our approach models admixture LD, it assumes that markers
are independent conditional on local ancestry (no background LD).
Preliminary results (not shown) that used transition rates based on the
assumed number of generations and recombination rate (i.e., similar to
simulations, (g 2 1)f(di+1 2 di) where di9s are the locations of each
SNPs, g denotes the number of generations, and f is the probability of
one recombination per generation per base-pair (Pasxaniuc et al. 2009)
resulted in an increased number of inferred short ancestry windows
which led to decreased accuracy. This effect is likely due to lack of
modeling of background LD in the model. To remove short ancestry
windows (likely spurious, induced by residual LD) we first performed
LD pruning at a level of r2 , 0.2 (72,418 SNPs retained) followed by
adjustment of the transition rates in our model by a factor of 1022. This
adjustment factor is used to regularize the recombination rate, such that
the number of inferred short ancestry windows is appropriate for the
number of generations and distinct ancestries and will vary with these
parameters. Results at different LD pruning levels and the correspond-
ing adjustment factors are reported in Table S1 and Table S2.

Simulation setup
We use BEAGLE to phase the POPRES data then simulate offspring
admixed individuals by modeling recombinations within the last
couple of generations. The recombination probability between each
SNPs is approximated as (g 2 1)f(di+1 2 di) where di9s are the loca-
tions of each SNP in base pair, g denotes the number of generations, and

n Table 1 Self-reported grandparental ancestry (location of
origin) of the POPRES data individuals (1906 in total)

Number of Different Ancestries

2

1 (2/2) (3/1) Total 3 4

Number of individuals 1385 261 153 414 54 2
Percentage of total 74.7% 14.1% 8.2% 22.3% 2.9% 0.1%

For individuals with grandparental ancestry from 2 different countries, we also
report the number of individuals with two grandparents from one location and
two from the other (2/2) vs. individuals with three grandparents from one country
(3/1). POPRES, Population Reference Sample.
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f is the probability of one recombination per generation per base pair
(Pasxaniuc et al. 2009). For the recombination map, we assumed a flat
recombination rate of f = 1028 per base pair. For given number of M
paternal ancestries and N maternal ancestries, we randomly select from
the POPRES data a set of M + N individuals, each of which has four
grandparents from the same location and randomly select one haplotype
from each individual. We simulate the admixed haplotypes indepen-
dently for the maternal and paternal haplotypes using the standard
Poission process of admixture block distribution (Price et al. 2009). If
specified as homogeneous paternal and maternal ancestries, we pick M
instead of M + N ancestries and use the same M ancestries for both
paternal and maternal haplotype simulation.

For the SPAMIX haploid model, the simulated haplotypes are used
as input directly. Also, we always use the correct number of ancestries
M or N as input. For the SPAMIX diploid model, the combined
genotype from two simulated paternal and maternal haplotypes are
used as input. To avoid testing bias, we estimate the allele frequency
logistic gradients each time using the POPRES individuals with the
M + N simulation ancestors excluded from the training set. We do not
optimize over the ancestry proportions but provide them as input to
SPAMIX. The ancestry proportions are fixed as uniformly distributed
among all ancestors.

We use several metrics to assess performance of SPAMIX in
simulations and real data. For the ancestral location prediction, we
evaluate the results by computing the average geographical distance
between predicted locations and true locations in simulations (prediction
error). To account for the distance among ancestries, we also compute
the relative prediction error, defined as the ancestral location prediction
error divided by the distance between the true ancestry locations used in
simulations. Note that we use as the “true” ancestral locations for the
admixed individual the set of country centers from theM + N ancestries.

For locus-specific inference, we propose two different metrics. The
first one is the local ancestry prediction error, which is the average
distance between predicted location and true location at each locus.
The second metric we use is the local ancestry prediction accuracy,
defined as the percentage of loci across the genome with correct
assignment of ancestry. To account for the ambiguity in matching
the true to inferred ancestries, we permute the inferred ancestries to
find the closest match in terms of inferred location to true location.

RESULTS

Performance of continuous ancestry inference
in simulations
We investigated the performance of our model through simulations
from the POPRES data (Nelson et al. 2008). The POPRES data measures
genome-wide genetic variation in a large number of individuals with
ancestries across Europe (with a larger proportion of individuals with
ancestry from the Central and Western Europe). For each individual, the

self-reported ancestry (typically at the level of country) of parents and
grandparents was tabulated. To produce a large number of admixed
individuals on which to test the data, we first randomly selected indi-
viduals with homogenous ancestry (i.e., all four grandparents from the
same country of origin) from various areas in Europe to serve as “an-
cestor” genomes. We used them to simulate an admixed individual and
attempted to recover the original ancestral locations using the simulated
genome and a set of logistic gradients inferred from the remaining un-
used individuals (see the section Materials and Methods). SPAMIX
attains an ancestry localization accuracy (i.e., average distance between
true and inferred locations of the recent ancestors) for individuals with
two recent ancestors in Europe of 550 km (see Table 2). There is a large
variance (334 km) across different sets of ancestral pairs, showing the
high variability in performance across subjects. Contributing to this effect
is the variable sampling density of the POPRES data (which is denser
toward the center of Europe) and variability of goodness-of-fit of the
logistic gradients across the map (e.g., poorer fit at range boundaries).

To test how much is gained by explicit modeling of correlations
among SNPs induced by segments of recent shared ancestry
(admixture LD), we also inferred the recent ancestry location using
a naïve model that assumes all SNPs to be independent (as in Yang
et al. 2012). It can also be understood as SPAMIX with completely
random transition probability, which is equivalent to independent
SNP assumption. We observe a significant increase in the average
distance between true and inferred locations in this naïve model
(880 km) vs. the 550 km for SPAMIX, thus showing that modeling
admixture LD significantly increases performance. We also quantified
the effect of correlations among markers conditional on local ancestry
(background LD) in our approach. Eliminating loci found in strong
disequilibrium with each other (LD pruning) was observed to increase
accuracy even though the model had less data to use (see Table S1 and
Table S2); therefore, all results in the main text are obtained after LD
pruning (r2 , 0.2, see the section Materials and Methods).

It is increasingly often the case that access to pedigree data allows
haplotypes to be determined with high accuracy. Therefore, we
quantified the gain in ancestry localization accuracy arising from
having access to phased haplotype data (i.e., haploid data) compared
with unphased diploid data. Table 2 shows that accurate phasing
significantly increases localization accuracy. For example, having ac-
cess to perfect phasing allows for the inference of the four ancestral
locations (two ancestors for each haplotype) within 557 km of the
simulated location where the diploid model for four ancestral loca-
tions attains an average of 639 km of its simulated locations.

An important parameter of our model is the number of gen-
erations since admixture; with more generations, more recombi-
nation events have the opportunity to shuffle ancestry across the
genome thus reducing the average length of the ancestry segments.
We observe a slight decrease in performance from two to eight
generations (548 to 562 km), which we expect to continue as the

n Table 2 Average distance between inferred and true ancestry locations in simulated admixed individuals from POPRES data

No. Ancestries 1 2 3 4

Naive model 443 6 4 (265) 880 6 5 (491) 898 6 10 (530) 880 6 9 (578)
SPAMIX haploid model 458 6 4 (273) 557 6 4 (334) 620 6 7 (392) 665 6 7 (449)
SPAMIX diploid model 443 6 4 (265) 550 6 4 (326) 591 6 7 (367) 639 6 7 (423)
SPAMIX (logistic) 75 6 1 (41) 236 6 5 (131) 363 6 6 (215) 419 6 6 (247)

The inferred locations are global for the admixed individuals, which marginalizes over all possible uncertainty on the local genome blocks assignment. Simulations
assume four generations in the mixture process. Naive model denotes the extension of SPA that ignores admixture-LD. SPAMIX (logistic) represents simulation results
starting from haplotypes generated at a location on a map using a Bernoulli sampling from the logistic gradients (see the sectionMaterials and Methods). Parentheses
denote the SD, whereas SEM is computed as SD divided by square of number of simulations in each category. POPRES, Population Reference Sample; SPA, spatial
ancestry analysis; LD, linkage disequilibrium.
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number of generations increases (in the limit of extremely large
number of generations, our model is equivalent to the naïve model
that does not model admixture-LD; see Table 3), since the recom-
bination rate will be large enough to produce random switches.

Our framework models genetic variation as function of geography
by assuming a logistic gradient for the spatial distribution of genetic
variations (see the section Materials and Methods). That is, the fre-
quency of a given variant is allowed to change in a given direction on
a map only according to a parametrized logistic function. Although
this approach has been shown to provide a good approximation of
common variation that leads to accurate ancestry inference, we hy-
pothesize that the error in fitting logistic gradients to real data limits
the method’s accuracy. To assess this scenario, instead of using real
individual’s haplotype data, we simulated admixed haplotypes directly
from the logistic gradients we inferred from POPRES data (see the
section Materials and Methods). We observe a large increase in accu-
racy in this idealized scenario as compared to simulations from real
haplotype data (e.g., 236 vs. 550 km for two ancestries four generations
ago, Table 2), thus indicating that logistic gradients do not account for
all the correlation between geography and genetic variation. This
suggests that further work on functions linking geography to genetics
within our framework may yield additional improvements (see the
section Discussion).

We investigated the performance of our approach as we increase
the number of ancestral locations (M/N, see the sectionMaterials and
Methods) to estimate for a given admixed individual. For a fixed
number of generations (four), we varied the number of ancestry loca-
tions to estimate. The parental inference is different from two ancestry
inference, as the parental inference assumes that one haplotype is
from paternal ancestry and one from maternal ancestry. However,
the two-ancestry inference assumes that both of the haplotypes are

mosaic of two ancestries (M = N = 2). As expected, we observe
decreases in performance as the number of ancestral locations
increases. For example, the average prediction error increases from
550 for two ancestries to 639 km for four ancestral locations (Table 2).

Increased distance between ancestral locations
improves performance
It is well known that accuracy of ancestry inference correlates with
genetic distance between ancestral populations. Discrete local
ancestry can be inferred with very high degree of accuracy in
mixtures of highly diverged populations (e.g., African Americans)
compared with closely related ones (e.g., subcontinental mixtures)
(Basu et al. 2008; Pasxaniuc et al. 2009; Price et al. 2009; Maples
et al. 2013). Because geography correlates with genetic distance, we
hypothesized that the accuracy of continuous ancestry inference in
recently admixed individuals also correlates with distance among
ancestries on the map. Indeed, we observe that the relative pre-
diction error (i.e., the difference between predicted and true loca-
tions normalized by the distance between the true ancestry
locations, see the section Materials and Methods) decreases with
the distance between ancestries in Europe (Figure 3A). For exam-
ple, if the ancestries are 500 km apart, we observe a relative pre-
diction error of 0.75 compared with 0.50 when the ancestries are
located 2000 km apart. Interestingly, when not normalizing for the
distance between ancestries (Figure 3B), we observe that prediction
error increases with increased distance. This shows that although
the task of separating the ancestry locations becomes simpler, the
localization accuracy becomes poorer (e.g., two ancestors located
500 km apart are localized within 450 km of their true locations,
whereas two ancestors located 3000 km apart are localized within
1000 km of their true locations). This effect is presumably due to

n Table 3 Average distance between inferred and true ancestry locations in simulated admixed individuals from POPRES data as function
of number of generations in the mixture process

No. Generation 2 4 6 8

Naive model 899 6 17 (487) 880 6 5 (491) 864 6 10 (466) 927 6 11 (491)
SPAMIX 548 6 12 (329) 550 6 4 (326) 541 6 7 (295) 562 6 8 (336)

The inferred locations are global for the admixed individuals, which marginalizes over all possible uncertainty on the local genome blocks assignment. Two ancestral
locations were assumed for this simulation. Parenthesis denote the SD, whereas SEM is computed as SD divided by square of number of simulations in each category.
POPRES, Population Reference Sample.

Figure 3 Ancestral location prediction error as a function of distance between ancestral locations in simulations over Population Reference
Sample data. Left, the prediction error normalized by the distance between the ancestral locations used in simulations; right, plot of the prediction
error. Simulations use the haploid model with two generations in the mixture.
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assignment errors in the local ancestry that have a much bigger
impact if the ancestral locations are further apart. Although fewer
local ancestry errors are being made with increased distance (see
Locus-specific inference), these errors have a stronger impact on the
ancestral localization due to their higher distance to the true
location.

Inference of number of ancestors
In the aforementioned simulations, we have assumed that the true
number of different ancestry locations is known. We investigated
whether our approach can also be used to predict the number of
distinct ancestries on the map for a given genome. We used the
standard Akaike information criterion (AIC; Bozdogan 1987) that
balances the goodness of fit with the number of parameters in the
model (more ancestries to infer increases the number of param-
eters in our method). Starting from POPRES individuals with
homogeneous ancestry we simulated admixed individuals with
up to 4 ancestry locations 4 generations ago under the constraint
that the ancestries are at least 600 kilometers apart. For each

simulated admixed individual, we ran our method SPAMIX using
N = 1, 2, 3, 4 ancestry locations and used the AIC to infer the
number of ancestors. Figure 4 shows that this procedure will on
average estimate the number of ancestries correctly, but the error
rate is expected to be high for any single case of inference.

Locus-specific inference
An advantage of our framework is that in addition to identifying the
most likely locations of the recent ancestry of admixed individuals, it
can also provide an assignment of each allele in the genome to each
ancestry location. We observe that local ancestry prediction accuracy
(i.e., the proportion of alleles assigned to the correct ancestry, see the
section Materials and Methods) increases with the distance between
ancestral locations (Figure 5) from 55% of loci assigned accurately for
very closely related ancestries (less than 500 km apart) to more than
70% for ancestries 2500 km apart (Figure S1). Similar to the ancestor
localization, we observe that although the total number of assignment
errors is reduced with increased distance, these errors have a bigger
impact when averaging across all sites to compute the average allele

Figure 4 Inference of number of distinct ancestries using the Akaike information criterion (AIC). We simulated 1000 admixed individuals with up
to four distinct ancestry sources in Europe and used the AIC within the SPAMIX model to infer the number of ancestries. (A2D) Proportion of
inferred number of ancestries (y-axis) as function of number of simulated ancestries (x-axis). Although we observed a large variance in the number
of predicted ancestries, we note that the histogram is centered on the correct simulated number of ancestries, thus suggesting that AIC could be
used to infer the number of distinct ancestors.
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localization error. Therefore, we observe that the average local ances-
try prediction error is increased as distance between ancestral loca-
tions is increased.

Map of accuracy across Europe
We also investigated the variance in performance according to the
ancestor’s labeled origin (i.e., typically to level of country). Figure 6
shows the prediction error for admixed individuals with ancestry from
pairs of origins in Europe. In general, we observe decreased perfor-
mance for populations at the boundary of the European map (e.g.,
Portugal, Spain, Italy), and increased performance for subcontinental
admixtures from populations located geographically in the center of
Europe (e.g., France, Switzerland) (Figure S2 and Figure S3). This can
be an effect of biased sampling in the POPRES data, that sampled
more individuals from European center, but also can be an effect of
having more information to localize individuals in SPAMIX. In gen-
eral, we observe a prediction accuracy ranging from 411 km for
admixtures from Spain and Italy to 641 km for individuals with recent
ancestors from Spain and the United Kingdom.

Analysis of real admixed individuals from POPRES data
Finally, we investigated whether high accuracies observed in simu-
lations also can be attained in real data. Using SPAMIX, we localized
the recent ancestry of all admixed European individuals from
POPRES (see the section Materials and Methods). A total of 470
admixed individuals were analyzed using SPAMIX (see Table 1 and
Figure 7). As “ground truth” ancestral locations, we used the center of
the self-reported grandparent country of origin. Therefore, we assume
the mixed individuals from POPRES have two to four ancestry loca-
tions to infer. Across all 470 individuals, we observe an average pre-
diction error distance of 470 km which decreases to 426 if outlier
individuals defined as those with prediction errors greater than 1000
km are removed (all such outlier individuals are reported in Table S3).
The error distance is lower than simulated experiments likely due to
the large proportion of the admixed individuals of French and Swiss
ancestries, which can be accurately localized (average of 305 km). As
discussed previously, we note that SPAMIX ancestor localization per-
formance varies greatly across Europe with ancestors from pairs of
countries localized at the boundary of European map being harder to
localize (e.g., an average of 701 km for ancestor localization for
Spanish/Italian mixed individuals).

DISCUSSION
We have introduced new models for predicting the geographical
origins of multiple recent ancestors for individuals with recent mixed
ancestry. Existing methods for local ancestry inference in admixed
populations either focus on discrete ancestry assignment or use locus-
specific ancestry inference followed by PCA on subsets of the data.
We introduce models that leverage the spatial structure of genetic
variation using HMMs for the admixture process to achieve high
accuracy in localizing the recent ancestry of a given individual on a
geographical map. Our proposed model can be viewed as a general-
ization of the parental localization model proposed in Yang et al.
(2012) to account for admixture-LD while allowing for multiple gen-
erations and ancestries. Our algorithm is very efficient. For the scale of
100,000 SNPs and four ancestral locations, computation is typically
10 min and uses less than 100 Mb of memory.

Although in our framework we use standard logistic gradient
functions that were previously used to link geography and genetic
variation, it is worth mentioning that such functions do not capture
the whole variability observed in empirical data. To that extent,
introducing more flexibility in these functions within the framework
for admixture we described here is more likely to provide considerable
improvements in accuracy with a tradeoff of computational time. We
view this as a promising direction for future study. This is especially
important for handling sequencing data, as rare variants rarely are fit
well by the gradient functions (results not shown). For example, we
are working on using a logistic quadratic function to model the spatial
genetic structure, which is a generalization of the original SPA model.
It will further enhance the admixed ancestor inference.

Another area for further developments is extending the framework
to model background LD (correlations among variants on the same
ancestral backgrounds). We found it necessary to modify the transition
rates used in our inference by a multiplicative factor based on the level
of LD pruning applied to the SNP list (Table S2). Such LD adjustments
have proved fruitful in improving localization accuracy for unadmixed
individuals (Baran et al. 2013) and are likely to improve inference for
admixed individuals as well. Although we leave this for future work,
one potential approach would be to perform inference within short
windows (to account for the local structure of LD) and merge the
information within each window into the overall likelihood.

We also note that we used a simplified model of ancestry switching
along chromosomes that approximates the pedigree structure. In

Figure 5 SPAMIX locus-specific ancestry prediction accuracy as function of distance between ancestral locations. Left, local ancestry prediction
accuracy, defined as the percentage of all loci with correct assignment of ancestry. Right, average distance to true locations for each allele in the
genome (local ancestry prediction error). Simulations use the haploid model with two generations in the mixture.
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effect, our approach assumes a fixed effective time-scale of admixture,
and ignores the structured transition matrices that are expected due to
a fixed pedigree. Future work that explicitly considers the pedigree

structure could allow one to address questions regarding the specific
timing and configuration of admixed ancestries. For example, for
a mixed individual with one Italian and three British grandparents, we

Figure 6 Ancestral location prediction error in simulations of European individuals with ancestry from two locations in Europe, stratified by the
country of origin of each location (the country of origin is displayed in different colors). The assumed true locations are displayed by shaded
circles. Results in parenthesis denote the average ancestral location prediction error across all simulations. In each simulation the reference data
(used to estimate logistic gradients) is disjoint from data used to simulate admixed genomes (see the section Materials and Methods). The
admixed genome is simulated as four generations ago, and SPAMIX diploid model is used for the inference. The number of simulated pairs can
be found in Figure S3.
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could incorporate the specific inheritance pattern in the HMM
transition rates. The question of whether the ancestors themselves
were admixed could be investigated by assigning local ancestry followed
by analyzing the length distribution of the ancestry blocks, and we leave
this as future work.

For most of the results presented, we assumed that the number
of ancestral locations is known. In practice, such information will
often not be available. To address this we developed a procedure for
inferring the number of ancestries using AIC. In Figure 4 we showed
that although on average the correct number of ancestries will be
inferred, in a high proportion of cases the inferred number of ances-
tries will be mistaken. This type of model selection problem is akin to
estimating K in the admixture model of STRUCTURE/admixture
(Falush et al. 2003; Alexander et al. 2009) and is typically challenging.
In future work, pedigree-based models should lead to constraints on
the possible observations that make the number of ancestors more
straightforward to infer.

In this work, we focus on the prediction of ancestral locations
using an EM algorithm, which is a deterministic method to produce
point estimates of the parameters of interest (geographic origins of

ancestors) and missing data (the local ancestry of each allele copy).
Alternative inference approaches can be taken, for example, the
likelihoods we define in Equations (2) and (3) could be used in a
Bayesian Markov Chain Monte Carlo approach method to sample
from the posterior distribution of the spatial prediction (Wasser et al.
2007). In such an approach, an efficient starting point would be from
the point estimate obtained via the EM algorithm, which could sig-
nificantly expedite the convergence of the Markov Chain Monte Carlo
approach.

Our work provides a framework of predicting ancestral locations
for admixed individuals which can be further improved. For example,
due to the continuous nature of the approach, ancestral locations can
be predicted to be outside of standard geographic boundaries (e.g.,
ocean). Future work could improve on our framework by providing
constraints to the optimization procedure or by a postoptimization
adjustment (selecting the closest location that fits geographical bound-
aries). In addition, the underlying SPA approach works best in the
simple isolation-by-distance settings and is not expected to work well
in for complex scenarios with barriers or irregular geometries. We
leave a full investigation of such modifications of our framework as

Figure 7 Ancestral location prediction error in real POPRES admixed individuals, stratified by the country of origin of each location. Letters are
the inferred locations, and the shaded circles are the assumed true locations.
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ongoing work and recommend the use of cross-validation approaches
with individuals of known ancestry to assess the suitability of the
model prior to application.

A direct benefit of the proposed model is that it leads to efficient
optimization procedures for tackling inference problems such as
localization of ancestors in the genetic-geographic map. In this work
we have presented such an algorithm based on the well-known EM
procedure, which leverages the HMM of the admixture process joint
with the gradient representation of genetic variation as function of
geography.
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