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Abstract

The central hypothesis of this paper is that physics
students learn to understand equations in terms of a number
of conceptual elements that are referred to as “symbolic
forms." Each symbolic form associates a simple conceptual
schema with a pattern of symbols in an equation. Taken
together, the set of symbolic forms constitutes a
vocabulary of elements out of which novel expressions can
be constructed, and in terms of which expressions can be
understood. The work described here is based on an
extensive analysis of a corpus of videotapes of moderately
advanced university students solving physics problems.

Introduction

Research on physics problem solving has made significant
strides in describing how students and experts solve textbook
problems. A few different perspectives have each, working
in their own way, helped to fill in different portions of the
physics problem solving puzzle. Furthermore, this work has
contributed to our understanding of the nature of problem
solving, considered more generally.

What have been most successful — or, at least, most
strongly predictive — are models that attempt to account for
the sequence of steps in a solution. These models trace the
equations that are written, the sequence in which they are
written, and the steps by which they are manipulated to get
to a solution. In the most basic of these models, equations
are selected from what is essentially a remembered database,
based simply on the quantities that appear in the problem.
The solver selects equations which have variables that
correspond to the quantities given or the quantities desired
(e.g., Bhaskar & Simon, 1977; Larkin et al., 1980). In
addition, there have been attempts to build models in which
the solution is driven by more sophisticated varieties of
understanding. For example, Larkin (1983) describes a model
in which expert problem solvers possess schemata, each of
which 1s roughly associated with a fundamental physical
principle, that guide the steps in a solution.

However, there is one piece of the puzzle that has not
been well described by these existing analyses. In all of
these models, there is only a limited sense in which the
solver understands the equations; the equations are simply
written from memory or constructed according to a limited
set of rules. Thus, the issue to be addressed in this paper is
whether there is a more fundamental level of equation
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understanding. Can physicists and physics students read an
equation and understand what it *says?” If so, in what terms
do they understand it?

The issue of how equations — and symbolic expressions
generally — are meaningful to people is an important
question with a rich history (e.g., Goodman, 1976; Kaput,
1987; Kieran, 1992). In this paper, I will present one
particular viewpoint: I will argue that physics students leamn
to understand equations in terms of a relatively idiosyncratic
vocabulary of overlapping elements that I call “symbolic
forms™ or just “forms,” for short. Each symbolic form
associates a simple conceptual schema with a pattern of
symbols in an equation.

The Data Corpus and Its Analysis

The work described here is based on an extensive analysis of
a corpus of videotapes of 5 pairs of students solving physics
problems. The subjects in this study were UC Berkeley
students enrolled in “Physics 7C," the third course in the
introductory sequence intended primarily for engineering
students.

All of the experimental sessions were conducted in a
laboratory setting. Students worked with their partner at a
blackboard to solve a pre-specified set of problems. Most of
these problems were fairly traditional textbook problems,
but a few more unusual tasks were also included.

A total of 27 hours of videotape were collected. A subset
of this data, corresponding to student work on the tasks
shown in Table 1, was selected for more focused analysis.
This subset of the corpus, which totaled approximately 11.5
hours of videotape, was carefully transcribed and analyzed.

The analysis of the corpus was primarily qualitative in
character. In Sherin (1996) an argument for the view
presented here is made using numerous examples of both
brief and extended episodes. However, although the argument
leans heavily on detailed analysis of cases, steps were also
taken to systematize the qualitative analysis and to ensure
that the examples selected were representative of the corpus
as a whole.

The first phase of the systematic analysis included two
components, an utterance-centered analysis and an equation-
centered analysis, The purpose of the utterance-centered
analysis was to locate interpretation events; every student
utterance was examined and utterances identified in which a
student interpreted an equation. Here, “interpretation” was



defined very broadly to be any statement in which a student
referred to a written equation. For example, a student might
have pointed to an expression as they made a statement, or
they might have mentioned a portion of an expression in an
utterance.

1. A person gives a block a shove so that it slides across a table
and then comes to rest. Talk about the forces and what's
happening. How does the situation differ if the block is
heavier?

2. (a) Suppose a pitcher throws a baseball straight up at 100
mph. Ignoring air resistance, how high does it go? (b) How
long does it take to reach that height?

3. Imagine that two objects are dropped from a great height.
These two objects are identical in size and shape, but one object
has twice the mass of the other object. Because of air resistance,
both objects eventually reach terminal velocity,

(a) Compare the terminal velocities of the two objects. Are their
terminal velocities the same?

(b) Suppose that there was a wind blowing straight up when the
objects were dropped, how would your answer differ? What if the
wind was blowing straight down?

4. A mass hangs from a spring attached to the ceiling. How does
the equilibrium position of the mass depend upon the spring
constant, k, and the mass, m?

5. Peggy Fleming (a one-time famous figure skater) is stuck on
a patch of frictionless ice. Cleverly, she takes off one of her ice
skates and throws it as hard as she can. (a) Roughly, how far
does she travel? (b) Roughly, how fast does she travel?

6. An ice cube, with edges of length L, is placed in a large
container of water. How far below the surface does the cube
sink?

7 Suppose that you need to cross the street during a steady
downpour and you don’t have an umbrella. Is it better to walk or
run across the street? Make a simple computation, assuming
that you're shaped like a tall rectangular crate. Also, you can
assume that the rain is falling straight down. Would it affect
your result if the rain was falli ng at an angle'?

Table 1. Tasks included in the focused analysis.

The purpose of the equation-centered analysis was to
locate events in which an equation was constructed from
some conceptual content to be expressed, rather than from
memory or through symbolic manipulation. These events
were identified by first coding every equation in the focal
corpus as either written from memory, derived through
manipulation, or constructed. Constructed expressions were,
at least in part, invented by students.

Overall, the goal of this first stage of the systematic
analysis was to identify events in which equations were
interpreted or constructed by students. The presumption is
that these events require the sort of deep equation
understanding that 1s the concern of this work.

The utterance-centered analysis identified a total of 144
interpretation events, and the equation-centered analysis,
looking at 547 separate equations, identified 75 construction
events. This immediately suggests that the type of
phenomena under consideration here are not entirely rare, Of
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the 547 expressions that students wrote, 14% were
constructed in  some manner. Furthermore, the 144
interpretive utterances were applied to 93 separate equations.
Thus, there were interpretive utlerances associated with 17%
ol all the expressions written.

In the next phase of the analysis, the goal was to identify
the set of symbolic forms that could account for the 219
interpretation and construction events. To accomplish this,
these events were iteratively coded and recoded in terms of
symbolic forms, with the set of symbolic forms refined
between each coding. A number of principles were employed
to evaluate the adequacy of the coding. These included:

Coverage. The full set of forms must cover all instances
of interpretation and construction.

Consistency with statements. Statements made by
students must suggest or be consistent with the focus
implied in the symbolic form.

Harmony. The full set of forms should fall at
approximately the same level of abstraction and should
constitute a roughly complete set.

The iterative coding process, the principles employed, as
well as the rest of the analysis procedure and more extended
examples, are described in detail in Sherin (1996).

Symbolic Forms

The central hypothesis of this work is that physics students
learn to express a vocabulary of simple ideas in equations,
and to read these same ideas out of equations. Corresponding
to the components of this vocabulary are knowledge
elements that I call “symbolic forms.” A symbolic form has
two components:

1. Conceptual Schema. Each symbolic form includes a
conceptual schema. The particular schemata associated
with forms turn out to be relatively simple structures,
involving only a few entities and a small number of
simple relations among these entities. These schemata are
similar to diSessa's (1993) “p-prims” and Johnson's
(1987) “image schemata,” which are also presumed to
have relatively simple structures.

2.Symbol Template. Each form is associated with a specific
template for a symbolic expressions.

Stated simply, the schema is the “idea” to be expressed in
the equation and the symbol template is the specification of
how that “idea” is written in symbols.

The nature of symbolic forms is best illustrated with a
brief example episode from the data corpus. In this episode,
two students were working on the first task listed in Table
1, which concerns blocks sliding along a surface with
friction.

The pair of students, Mike and Karl, were unhappy with
the solution that they obtained to this task, and they decided
that their difficulties might stem from some assumptions
that are typically made in physics courses. Usually, the
coefficient of friction, L, is treated as a constant that depends
only on the properties of the two materials that are rubbed
together. For various reasons, Mike and Karl decided that it
might be more accurate to have an expression for the
coefficient of friction that depends on the mass of the block:



M = (some function of mass)

More specifically, these students thought that p should
decrease with increasing mass.

Karl 1 guess what we're saying is that the larger the
weight, the less the coefficient of friction would be.

During a span of approximately 10 minutes, Mike and Karl
gradually refined their specification for an expression for 1.
The following is an excerpt from their discussion:

Karl Well, yeah, maybe you could consider the frictional
force as having two components. One that goes to
zero and the other one that's constant. So that one
component would be dependent on the weight. And
the other component would be independent of the
weight.

Mike So, do you mean the sliding friction would be

dependent on the weight?

Karl Well I'm talking about the sliding friction would
have two components. One component would be
fixed based on whatever it's made out of. The other
component would be a function of the normal force.
The larger the normal force, the smaller that

component.

Finally, the students undertook to write an expression.
After a few minutes and some false starts, they settled on the
following equation:

H=H +ckz
m

Here, m is the mass, and [1,, C, and |1, are constants. There
are some difficulties with this expression; most notably, B
tends to infinity as the mass becomes small. Nonetheless,
this equation captures much of what the students intended.

So, Mike and Karl have constructed a novel expression.
Clearly, this expression was not simply written out from
memory (you will not find it in any textbook) and it was
not derived by manipulating other equations. Thus, the
question is: How did Mike and Karl write this equation? For
example, how did they know to write a ‘+’ instead of a "X’
between the two terms? And how did they know to put the
m in the denominator?

I hypothesize that a number of symbolic forms underlie
the construction of this expression. The first of these
symbolic forms is suggested by Karl's statement that “the
sliding friction would have two components.” I call this
form parts-of-a-whole.

PARTS-0F-A-WHOLE

Schema Symbol Template

The point here is that, because the parts-of-a-whole form
associates a conceptual schema with a template for an
expression, this dictates — at a certain degree of specificity -
what the students must write. In this case, the form dictates
that the students should write two or more terms separated
by plus signs. In fact, the students initially began with
marks that played the role of placeholders for each term,
gradually filling in details.

The second symbolic form involved here goes with Karl's
statement that: “The other component would be a function
of the normal force. The larger the normal force, the smaller
that component.” This is the proportionality minus or
prop- form. The idea of the prop- form is that, if you want a
term to decrease as some quantity increases, then the
quantity must appear in the denominator of the term.

PROP-

One quantity varies inversely
with another.

A,

A whole is composed of two 1 &7 &
Or more parts. -

Finally, I will just briefly mention two other symbolic
forms that played a role in Mike and Karl's construction of
their expression for . First, the coefficient form permitted
the writing of the ‘C’ that multiplies the second term.
Lastly, the identity form permitted the writing of the “p="
with which the expression begins.

To be sure, Mike and Karl's construction of a novel
expression for the coefficient of friction was a somewhat
unusual event; it is rare that the solving of a textbook
physics problem requires the construction of novel
equations. If symbolic forms were only implicated in these
unusual construction events, then their existence might not
be very important. However, there are many places that
knowledge of this sort is useful in more typical problem
solving. As they work, students can, for example:

e Judge the reasonableness of an expression.
e  Reconstruct partly remembered expressions.
e  Justify expressions in intuitive terms.

Limited space prevents me from illustrating these various
roles of symbolic forms.

The Six Clusters of Symbolic Forms

Altogether, the analysis of the data corpus identified 21
symbolic forms. These are listed in Table 2, arranged into 6
groups that are referred to as “clusters.” Within a given
cluster, the various schemata involve entities of the same or
similar ontological type. In addition, the forms in a cluster
tend to parse an expression at the same level of detail. While
I believe that the list in Table 2 represents a reasonable
portrait of the vocabulary of symbolic forms that are
involved in understanding physics expressions, it should be
kept in mind that the content of this list is at least partly
specific to the data corpus on which this work was based. A
brief description of each cluster follows.

Competing Terms. One way that a physics equation
may be understood is as an arrangement of ferms that
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Competing Terms Cluster Terms are Amounts Cluster Dependence Cluster
competing terms | — £ £ _ ... parts-of-a-whole + ] +... dependence | ...x...
opposition | _ — _ base t change | | £ A no dependence
balancing | _ = _ whole - part | || - L sole dependence | ...x...
canceling | 0= - _ same amount | L] =[]

Multiplication Cluster Coefficient Cluster Other
intensivesextensive | X X y coefficient | ¢ [J identity | x= ..
extensivevextensive | X X y scaling | n [ dying away | ¢™**

Proportionality Cluster
prop+ e i ratio o P
? i W
prop- ? canceling(b) | .. X...
e o iR

Table 2. The full set of symbolic forms identified in the analysis.

conflict and support, and that oppose and balance. The
Competing Terms Cluster contains the forms related to
seeing equations in this manner, as terms associated with
influences in competition. An example from this cluster, the
balancing form, is discussed later in this paper,

Dependence. The forms in this cluster have to do with
the simple fact of whether a specific individual symbol
appears in an expression does or does not appear in an
expression. Most basic of these forms is no dependence,
whose symbol pattern involves the absence, rather than the
presence of symbols. In contrast, the dependence form
specifies only that a given symbol appears in an expression.

Proportionality. When a physics student looks at an
equation, the line that divides the top from the bottom of a
ratio — the numerator from the denominator — is a major
landmark. Forms in the Proportionality Cluster involve the
seeing of individual symbols as either above or below this
important landmark. The prop- form, discussed above, is an
element of this cluster.

Terms are Amounts. Like the forms in the
Competing Terms Cluster, these forms address expressions
at the level of terms. However, rather than describing a
battle between competing influences, these expressions
concern the collecting of a generic substance, putting some
in and taking some away. Thus, while ‘+’ and ‘-’ signs in
Competing Terms expressions are commonly associated
with directions in physical space, signs in this cluster
generally signal adding on or taking away.

Coefficient. In the coefficient forms, a product of
factors is seen as broken into two parts. One part is the
coefficient itself, which often involves only a single symbol
and is usually written on the left.

Multiplication. The forms in this cluster also break
down products of factors into parts. In this case, the parts are
intensive or extensive quantities. Stated roughly, an
intensive quantity specifies an amount of something per unit
of something else, while an extensive quantity is a number
of units.
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Forms and Problem Solving Schemata

In stating that physics equations are understood in terms of
symbolic forms, I am making a very particular hypothesis
about the way equations are understood; I am claiming that
equations are understood in terms of certain type of
abstraction with a specific level of generality. In the
remaining sections of this paper, I will attempt to
simultaneously accomplish two jobs: I will try to clarify
exactly what this level of generality is, and I will argue for
the importance of abstractions of this sort.

To start, I will contrast my view with one alternative.
Note that it is possible that people write and understand
physics expressions only at the level of whole equations
associated with formal principles. In other words, students
and physicists might only know that a given equation is an
expression of a particular formal physics principle. In
contrast, I am arguing that equations have meaningful sub-
structure, and, because of this, that they “say something” to
the student that knows the vocabulary. To further examine
this contrast, I will refer to a model of physics problem
solving proposed by Larkin (1983).

In Larkin’s model, physics problem solving is guided by a
set of schemata, such as what Larkin calls the “Forces
Schema” and the “Work-Energy Schema.” These schemata
are quite closely related to physical principles, as these
principles would be presented in a physics textbook. For
example, Larkin says that the Forces Schema “‘corresponds
to the physical principle that the total force on a system
(along a particular direction) is equal to the system's mass
times its acceleration (along that direction).” This is
essentially Newton's Second Law, F=ma. The schema
includes rules that correspond to “force laws,” which are the
laws that allow a physicist to compute the forces on an
object given the arrangement of objects in a physical
system. Stated simply, this adds up to the following image
of problem solving: The construction rules allow the



problem solver to find each of the forces acting on an object,
then these forces are totaled and substituted into F,, = ma.

The Forces Schema could easily be used to solve some of
the tasks in Table 1. For example, it is applicable to Task 4
in which a mass hangs at rest from a spring, and Task 6 in
which an ice cube floats in a glass of water. In both cases,
there is a force acting upward on the object and a force acting
downward. Following the Forces Schema, the solution
would proceed by first finding each of these forces, then
substituting into F,,,= ma to write:

Fyp + Fgown =ma

Since in both of these tasks the object is not moving, the
acceleration is zero and we can write F =-F,,. Once this
equation is written, it is possible to solve for the desired
quantities. For example, in the floating ice cube problem,
the upward force is the buoyant force of water, and the
downward force is the force of gravity.

Significantly, none of the five pairs of students solved the
ice cube problem in precisely this manner. Instead, all of the
pairs jumped directly to equating the upward and downward
forces as in the following expression, dealing with sign
issues in a “hand-waving” manner, if at all.

F up = Faown

Student justifications for this expression included
assertions that this equation must be true “at equilibrium”
and that the forces must “balance:”

Alan At gquilibrium, they're equal.

Jack Um, so we know the force down is M G and that has
to be balanced by the force of the water

I explain this by hypothesizing that the behavior is being
driven by a symbolic form, the balancing form. In
balancing, two competing influences are seen as precisely
equal and opposite, and this schematization is bound to a
symbol template in which two expressions are separated by
an equal sign.

BAIANCING

Two influence are precisely e ~
in balance. ==

How does this account differ from Larkin’s? In arguing
that a symbolic form is driving the equating of the up and
down forces, I am asserting that students are working
directly from a more basic and general schematization of the
physical situation. They see balancing in the situation, and
this directly dictates the form of the expression to be
written.

To further clarify the distinction, note that the balancing
form is more general than any schemata that pertain only to
forces. Because it is not specific to forces, balancing can be
applied to explain student work on some tasks that are not
usually solved with forces, such as Task 5. In this task, an

ice skater who is stranded on frictionless ice throws an ice
skate. When this is done, the skater recoils in the opposite
direction. In some cases, the students in this study solved
this problem by immediately equating the momenta of the
skate and the skater just after the collision.

Miiate Vskate = Mskater V skater

In contrast, a more formal solution would begin with a
statement of the conservation of momentum. This would
involve equating the momenta before and after the collision,
rather than the momenta of the skate and skater. Again, I
explain the students’ behavior by appeal to the balancing
form. As in the case of the spring and ice cube problems,
balancing directly drives the writing of an expression. But,
in this case, balancing is applied to momenta rather than
forces. This property of symbolic forms - that they cut
across physical principles — is one of the important
characteristics of the abstractions embodied in forms.

[ have not tried to provide strong evidence for symbolic
forms over models like Larkin’s. The simple fact that
students appear to skip steps that would appear in a more
rigorous solution does not constitute conclusive evidence.
For example, the students could just be leaving out steps
that they feel are obvious, or they could be applying special
purpose schemata for the cases of balanced forces and
balanced momenta. For a full comparison and discussion of
the relevant evidence, see Sherin (1996).

Forms and Intuitive Understanding

Additional support for the type of abstractions associated
with symbolic forms can be found in studies of intuitive
physics. It turns out some researchers have argued that, prior
to any formal physics instruction, students understand the
physical world in terms of abstractions that are very similar
to those embodied in forms. Such results add plausibility to
the existence of forms, since they suggest possible origins
for this knowledge.

First, diSessa (1993) describes a portion of intuitive
physics knowledge that he calls the “sense-of-mechanism.”
According to diSessa, elements of the sense-of-mechanism —
which he calls “phenomenological primitives” or “p-prims”
— constitute the base level of our intuitive explanations of
physical phenomena. P-prims appear to live at a level of
abstraction that is very similar to symbolic forms. For
example, diSessa lists p-prims that he calls “balancing” and
“dying away,” both of which have direct correlates in the
forms vocabulary.

A second relevant body of research concerns what the
researchers involved have called “qualitative reasoning about
physical systems” (deKleer & Brown, 1984; Forbus, 1984).
This research gives a prominent role to proportionality
relations, such as the prop- form discussed above, in
reasoning about physical systems. If we accept that these
relations are a central part of how we understand physical
systems, this adds to the plausibility that proportionality
relations should be elements in the vocabulary that we can
read and write in equations.

Finally, T want to very briefly mention some related
research that pertains to how students solve elementary
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mathematics problems such as the following: John has five
apples and Mary gives him three more, how many does he
have? The research in question is a collection of papers that
identify what Greeno (1987) has called “patterns™ 1n
arithmetic word problems. (See, for example, Carpenter &
Moser, 1983; Riley, Greeno, & Heller, 1983). To cite an
instance, Riley and colleagues list four categories of
arithmetic word problems: “change,” ‘“equalization,”
“combine,” and “compare.” In a change problem, for
example, some amount is added on to an original quantity,
increasing the size of that original quantity. In contrast, in
combine problems, two quantities are combined to produce
a new third quantity.

Clearly, these patterns live at a similar level of abstraction
to symbolic forms. For example, the parts-of-a-whole form
and combine pattern seem to involve similar
schematizations. Because schematizations of this sort are
important to how young students understand the quantitative
relations in problem situations, it is plausible that similar
schematizations continue to be important in later, more
advanced work with equations. This is supported by the
work of Izsak (1997), who has attempted to trace the origin
and development of some symbolic forms.

Conclusion

In this paper, I have attempted to suggest that a full
description of physics problem solving should include some
account of a deep level of equation understanding. In
particular, I have argued that even moderately advanced
students learn a vocabulary of “symbolic forms,” in terms of
which they can construct and understand expressions. The
existence of this knowledge is important for elaborating our
models of problem solving and building theories of equation
meaning, as well as ultimately for improving instruction.

Generally, the attitude of this work is that symbolic forms
and other sorts of knowledge, such as knowledge tied to
physical principles, are complementary; we will need both
to explain physics problem solving. Thus, I do not want to
argue for symbolic forms as a strict alternative to existing
models of physics problem solving; I only maintain that
there are gaps in what these models can explain, and that
symbolic forms can fill some of these gaps.

Most importantly, we would like to be able to model
more flexible and generative varieties of knowledge.
Traditional models of problem solving involve schemata
that contain, within their structure, an outline for the
solution of a problem. Alternatively, we would like to be
able to describe the way in which a “deep understanding of
physics” can drive problem solving in a flexible manner,
adapting on-the-fly, and generating new and creative
solutions. In hypothesizing symbolic forms, I am filling in
part of the story of how intuitive understanding can play a
role in problem solving. Because they can understand the
content of expressions, students can depart from more formal
solutions, judge the reasonableness of expressions, and
construct new expressions for new content.
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