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ABSTRACT OF THE THESIS

Frozen mode in an asymmetric serpentine optical waveguide

By

Albert Herrero-Parareda

Master of science in Electrical Engineering and Computer Science

University of California, Irvine, 2023

Professor Filippo Capolino, Chair

In this study, we present numerical evidence of a frozen mode in a periodic serpentine waveg-

uide with broken longitudinal symmetry. This frozen mode is linked to a stationary inflection

point (SIP) in the Bloch dispersion relation, where three Bloch eigenmodes coincide due to

an exceptional point of order three. The frozen mode regime is characterized by a station-

ary group velocity and intensified field amplitude, making it highly appealing for diverse

applications such as dispersion engineering, lasers, and delay lines. We have developed con-

cise design equations that enable the realization of the frozen mode by adjusting a few key

parameters. Our findings reveal distinct trends in group delay and quality factor with waveg-

uide length specific to the frozen mode. Additionally, we explore the symmetry conditions

necessary for the existence of exceptional points of degeneracy associated with the frozen

mode.
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Chapter 1

Introduction

The confinement and slowing down of light in photonic structures has gained interest in the

past two decades due to its growing feasibility and possible applications. One method to

achieve slow light in optical waveguides involves engineering its dispersion relation to exhibit

exceptional points of degeneracy (EPDs). An EPD is a point in the parameter space of a

system where the solutions of the system become degenerate. Relevant literature includes

Refs. [1, 2, 3, 4, 5, 6], as well as Ref. [7] by Figotin and Vitebskiy, where they refer to

EPDs as stationary points, offering in-depth mathematical and physical insights without

explicitly employing the term EPD. In periodic optical waveguides, an EPD refers to the

specific combination of parameter values that results in the coalescing of two or more modes,

which exhibit the same wavenumber k and angular frequency ω. The number of modes that

coalesce is referred to as the order of the EPD. In lossless and gainless waveguides, second,

third, and fourth-order exceptional degeneracies of Floquet-Bloch eigenmodes are associated

with a regular band edge (RBE), a stationary inflection point (SIP), and a degenerate band

edge (DBE), respectively, in the frequency-wavenumber dispersion relation of the waveguide

modes [8]. Of particular interest is the excitation of the frozen mode regime [9], where the

wave transmitted inside a waveguide or in a supporting medium exhibits both a vanishing
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group velocity and an enhanced amplitude [7]. The frozen mode regime facilitates the de-

velopment of photonic delay lines. Increasing the delay while maintaining a small footprint

and minimal signal dispersion is of supreme importance for all-optical routers in fiber com-

munication systems. Moreover, the combination of the group delay and the field amplitude

enhancement characteristic of the frozen mode also provides significant improvements in las-

ing applications, as recently reported in Ref. [10]. This improvement occurs because the

frozen mode enhances the local interactions between the guided waves and the surrounding

medium. Therefore, the frozen mode regime may also be used to enhance the efficiency of

optical frequency converters. Another exceptional feature of EPDs is their ability to grant

devices operating nearby an EPD heightened sensitivity to parameter perturbations [7]. A

small alteration in the value of any geometric parameter of the system causes the EPD to

evolve into multiple eigenvalues with closely matching values instead of perfectly coalescing

eigenvalues. Leveraging this exceptional sensitivity presents an opportunity for the develop-

ment of highly responsive hypersensitive sensors.

In this work, we focus on the frozen mode regime that is associated with an SIP at k = ks

and ω = ωs, where the group velocity

vg =
∂ω

∂k
= 0, (1.1)

and the group velocity dispersion (GVD)

GVD =
∂2ω

∂k2
= 0. (1.2)
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Beyond the aforementioned applications, SIPs also hold the potential for loss-induced trans-

parency, unidirectional invisibility, lasing mode selection, lasing revivals and suppression,

directional lasing, etc [11]. The SIP scenario is also interesting and attractive because the

frozen mode regime can be observed over a wide frequency range, ranging from RF [12, 13],

to optical frequencies [8, 14, 15]. Moreover, third-order EPDs have been found in a diverse

range of structures: loss-gain balanced coupled mode structures, such as PT-symmetric sys-

tems with glide symmetry [16, 17], in periodic lossless and gainless coupled mode structures

[8, 18], periodic lossless and gainless gratings [19], and photonic crystals [7]. Furthermore,

SIPs have been found in nonreciprocal structures, as shown in [20, 21], where the system

becomes unidirectional near the SIP frequency.

In this study, our focus is on inducing an SIP in a periodic waveguide that is lossless, gainless,

and reciprocal. This objective is achieved by engineering the dispersion diagram of the

infinite structure by optimizing the value of the waveguide parameters within the framework

of Floquet-Bloch periodic structure theory. Achieving an EPD requires the simultaneous

coalescence of both the eigenvalues and eigenmodes of the waveguide. To quantify the

required triple eigenmode degeneracy for the dispersion relation to exhibit an SIP at ωs, we

use a crucial metric called the coalescence parameter, as introduced by Abdelshafy et al. in

Ref. [22].

One fundamental feature of the SIP-related frozen mode is that it corresponds to a particular

third-order EPD, where three Bloch eigenmodes, one propagating and two evanescent, coa-

lesce at the SIP frequency. For this to happen, all three Bloch eigenmodes collapsing on each

other at the EPD must belong to the same one-dimensional irreducible representation of the

symmetry group Gk of the Bloch wavevector k [23]. This requirement is quite different from

the condition for the common symmetry-related degeneracy, where the degenerate eigen-

modes must belong to the same multidimensional irreducible representation of Gk. Since at

any given frequency, we have just a limited number of Bloch eigenmodes, the easiest way to
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automatically satisfy the above condition for the SIP existence is to have the symmetry of

the waveguide as low as possible. We will apply this guiding principle when choosing the

waveguide geometry. In a reciprocal periodic waveguide, there will be a pair of reciprocal

SIPs with equal and opposite Bloch wavenumbers k. Therefore, the existence of an SIP in a

reciprocal waveguide requires at least six Bloch eigenmodes with the same symmetry – three

coalescing Bloch eigenmodes in either direction. Here, we consider a specific example of an

asymmetric serpentine optical waveguide (ASOW) by applying symmetry-breaking distor-

tion to the symmetric optical waveguide (SOW) in [24]. We employ coupled-mode theory

and the transfer matrix method to analyze the ASOW, similar to the methodologies used

in Refs. [8, 24]. This approach enables the determination of modes in the infinite periodic

ASOW and facilitates the engineering of dispersion to form an SIP at angular frequency

ωs. With appropriate boundary conditions, we evaluate ASOWs comprising a finite number

of unit cells operating near ωs. These structures exhibit a group delay and quality factor

scaling in proportion to the cube of the waveguide length.

This paper is organized as follows: In Section 2, we describe the ASOW. In Section 3, we

develop a transfer matrix formalism that facilitates obtaining the ASOW eigenmodes. In

Section 4 we study the conditions for SIP existence. In Section 5 we analyze the scattering

problem for a finite ASOW supporting a pair of reciprocal SIPs. In Section 6 we summarize

the results.
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Chapter 2

Geometry of the Asymmetric

Serpentine Optical Waveguide

A SOW related to the one shown in this paper was analyzed in [24]. It was shown that that

structure supported slow-light mode at regular band edges (RBE), where the group velocity

vanishes. Instead, here we focus on a modification of that SOW structure, where the applied

deformation and the lack of symmetry in each unit cell enables the occurrence of an SIP. As

traditionally assumed [25, 26] and as in [24], we define the coupling as point-like and lossless,

i.e.,

κ2 + τ 2 = 1, (2.1)

where κ and τ represent the field coupling and transmission coefficients respectively. Both

coefficients are constrained to κ, τ ∈ [0, 1].

The ASOW shown in Fig. 2.1 is a lossless periodic structure in which the adjacent loops are
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coupled to one another, allowing the formation of resonating optical paths. The waveguide

in each unit cell is divided into three segments: A, B & B’. Segment A is a quarter of a circle

with radius R. In every unit cell, there are two A segments at the top part, marked blue in

Figure 2.2, and an additional two A segments that form half of a circle at the bottom (also

marked blue). Segment B is the left-side waveguide connecting the upper and bottom loops

and depends directly on the radius R and α, marked in green. Segment B’ on the right side

of the unit cell is similar to segment B but it differs in that it depends on α′, as shown in

orange in Figure 2.2. The local slope at the transition between to top and bottom loops in

Fig. 2 is continuous because the intersection is between two arcs with the same radius R

interconnecting at the same angle, either α or α′, therefore there is no slope discontinuity.

The phase accumulation associated with each segment is given by

ϕa = k0nwπR/2,

ϕb = k0nw2αR,

ϕ′
b = k0nw2α

′R,

(2.2)

where k0 = ω/c is the wavenumber in vacuum, ω is the angular frequency, c is the speed

of light in vacuum, R is the radius of the loops, and nw is the effective refractive index of

the waveguide’s mode. α is the angle between the line that crosses the center of the top left

and bottom loops and the horizontal axis. α′ is the angle between the line that connects

the centers of the bottom and top right loops and the horizontal axis. In this ideal design

concept, we ignore the gaps between the waveguides in adjacent loops (gaps of the order of

50− 100 nm) on the basis that they are significantly smaller than the radius of the loops (of

the order of 10 µm). The precise gap size is decided based on the design of a realistic coupler,

however, in this paper for simplicity, each coupler is considered as ”point-like”, satisfying

Eq. (2.1). As such, the length of the unit cell is given by the diameter of the loops of the

6



ASOW, d = 2R.

Figure 2.1: Periodic ASOW. The silicon waveguide follows a serpentine path. A unit cell
of length d is defined within the two oblique dashed lines. These lines are defined from the
apex of the top loops and at an angle β = α − α′ from the vertical. The lengths d1 and
d2 are defined as the distance (at the bottom of the cell) between the dashed oblique lines
and the vertical (non-oblique) orange line that goes from the center to the lowest point of
the bottom loop. As α ̸= α′, then d1 ̸= d2. The field amplitudes are defined to the right
of the boundaries of the unit cell, with the sign of E+

i , E
−
i corresponding to the sign of the

projection of the direction of propagation of that wave with the z-axis in the vicinity of the
i-th port.

The key modification of the ASOW in this paper with respect to the SOW in [24] is the

difference between ϕb and ϕ′
b, which breaks the left-right (i.e., longitudinal) symmetry of

the unit cell in terms of effective propagation length (akin to the misaligned anisotropic

layers studied in [9]) and enables the formation of an SIP. The broken symmetry can be

understood as a shear deformation since it is realized by imposing α ̸= α′. The angle

difference β = α− α′ assumed in this paper to obtain an SIP is very small, so the difference

in the lengths of segments B and B’ is barely noticeable in Figure 2.2. In Figure 2.1, β is

the angle between the dashed oblique line that defines the boundary at the right side of the

unit cell and the vertical orange line crossing the center of the bottom loop and its lowest

point.
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Figure 2.2: The n-th unit cell of the ASOW, with its boundaries represented by the two
oblique dashed lines from the apex top of the upper loops at an angle β = α − α′ (the
segment A of each top loop in the unit cell is exactly one quarter of a circle). The unit cell
waveguide is formed by three different segments: A, B, and B’. Segments A are quarters of
a loop, marked in blue; Segment B is the waveguide that connects the upper loop with the
bottom loop on the left, marked in green, and its length depends on the angle α; Segment
B’ is the waveguide that connects the bottom loop with the upper one, on the right, marked
in orange and its length depends on α′. The dashed region on the top encloses the lumped,
lossless, coupling point z0, which represents the point where the adjacent loops are the
closest. Coupling exists also between the bottom loop and the two adjacent unit cells on the
left and right (not depicted here).
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Chapter 3

Transfer Matrix Formalism

We model the electromagnetic guided fields in terms of forward E+
i and backward waves E−

i ,

with i = 1, 2, 3; where the superscripts denote the sign of the projection of the direction of

propagation of the wave on the z-axis. The time convention ejωt is implicitly assumed.

The unit cell has six ports, with E+
1 , E

+
2 and E+

3 propagating towards the right and E−
1 ,

E−
2 and E−

3 propagating towards the left (at or in the vicinity of the ports). The fields are

defined at the right of the boundaries. We assume the coupling between adjacent loops to

be lumped and lossless. The scattering matrix relating the incoming and outcoming fields

at the coupling point z0 is defined in Appendix A and shown in Figure 2.2.

We define a state vector with all six electric field wave amplitudes as

ψ(n) =

(
E+

1 , E
−
1 , E

+
2 , E

−
2 , E

+
3 , E

−
3

)T

(3.1)

where n denotes the unit cell number, as seen in Figures 2.1 and 2.2. The six field terms
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are calculated at the right side of the same cell, and T denotes the transpose operator. Note

that this definition has terms arranged differently from those used in [8], and it is the same

used in [24], albeit with a different notation. The state vector on the right side of the n-th

unit cell is ψ(n). Its ”evolution” along the periodic ASOW is described by

ψ(n) = Tuψ(n− 1) (3.2)

where Tu is the 6x6 transfer matrix of the unit cell of the ASOW. As the ASOW is reciprocal,

the determinant of the transfer matrix satisfies

det(Tu) = 1, (3.3)

which causes the eigenvalues of this matrix to come in three reciprocal pairs. This causes the

dispersion diagram to show the symmetry that if k(ω) is a solution of (3.7), then also −k(ω)

is. Hence, the dispersion diagram is symmetric with respect to the center of the Brillouin

Zone (BZ), defined here with Re(k) from −π/d to π/d. The transfer matrix of the unit cell

is given by
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Tu =



0 −j τ
κ

j e
j(ϕa+ϕb)

κ
0 0 0

j τ
κ

0 0 −j e−j(ϕa+ϕb)

κ
0 0

0 − τe−j(ϕa+ϕ′b)

κ2
τ2ej(ϕb−ϕ′b)

κ2 0 j e
j2ϕa

κ
0

− τej(ϕa+ϕ′b)

κ2 0 0 τ2e−j(ϕb−ϕ′b)

κ2 0 −j e−j2ϕa

κ

− e−j(ϕa+ϕ′b)

κ2 0 0 τe−j(ϕb−ϕ′b)

κ2 0 −j τe−j2ϕa

κ

0 − e−j(ϕa+ϕ′b)

κ2
τej(ϕb−ϕ′b)

κ2 0 j τe
j2ϕa

κ
0


. (3.4)

Its calculation is shown in Appendix A. Note that if ϕb = ϕ′
b, this transfer matrix reduces to

that of the SOW in [24], where the lossless coupling relation shown in Eq. (2.1) was defined

in units of power instead of units of field amplitude used in this paper.

From the Bloch theorem [27], which states that the field at each unit cell is determined by

the field at the adjacent one and a unit cell phase shift, we obtain

ψ(n) = e−jkdψ(n− 1) (3.5)

where k is the Bloch wavenumber of a guided eigenmode and d is the length of the unit cell.

By using (3.2) and (3.5), we write the eigenvalue problem

Tuψ(n− 1) = ζψ(n− 1) (3.6)

where ζ = e−jkd. Solving it gives us the eigenvalues and the eigenvectors of the system. When

three of these eigenmodes coalesce to a degenerate one with ℜ(k) ̸= 0, the SIP is formed,
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which is an EPD of order three. The eigenvalue solutions are found from the characteristic

equation,

D(k, ω) ≡ det (Tu − ζI) = 0 (3.7)

After some algebraic manipulation, we arrive at the following characteristic polynomial

D(k, ω) = ζ6 − ζ5
(
2
τ 2

κ2
cos(ϕb − ϕ′

b)

)
+ ζ4

(
−2

τ 2

κ2
+
τ 4

κ4

)
− ζ3

(
2 cos(4ϕa + ϕb + ϕ′

b)

κ4
+

4(τ 2 − τ 4) cos(ϕb − ϕ′
b)

κ4

)
− ζ2

(
−τ

4

κ4
+ 2

τ 6 − 2τ 4 + τ 2

κ6

)
− ζ

(
2
τ 6 − 2τ 4 + τ 2

κ6
cos(ϕb − ϕ′

b)

)
+
τ 8 − 4τ 6 + 6τ 4 − 4τ 2 + 1

κ8

(3.8)

The difference between ϕb and ϕ
′
b is manifested only inside the cosine function, which is an

even function. As such, interchanging the values of ϕb and ϕ
′
b does not change the spectral

properties of the ASOW. Notice that due to the reciprocity of the ASOW, the solutions come

in reciprocal pairs: k1 & −k1, k2 & −k2, and k3 & −k3. In other words, if ζ is an eigenvalue,

1/ζ is an eigenvalue as well. In the following, we represent the wavenumbers in the first BZ,

defined here with its center at Re(k) = 0. Because of periodicity, a solution −ki has Floquet

harmonics of the form −ki + 2πm/d, where m is any integer number. The transfer matrix

of the unit cell is similar to the diagonal matrix,

Tu = V Λ V−1 (3.9)
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where V = ψ1|ψ2|ψ3|ψ4|ψ5|ψ6] is the similarity matrix transformation with eigenvectors ψi

as columns, and

Λ =



e−jk1d 0 0 0 0 0

0 e−jk2d 0 0 0 0

0 0 e−jk3d 0 0 0

0 0 0 ejk1d 0 0

0 0 0 0 ejk2d 0

0 0 0 0 0 ejk3d


(3.10)

is the diagonal matrix with the eigenvalues ζi, with i = 1, ..., 6.
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Chapter 4

Exceptional Points of Degeneracy

EPDs are defined as the points where the eigenmode orthogonality collapses, which means

that the algebraic multiplicity of an eigenvalue (the number of identical roots of the char-

acteristic polynomial) is higher than the geometric multiplicity (the number of independent

eigenvectors associated with that eigenvalue). This dissonance causes the matrix to not be

diagonalizable and it is similar to a matrix containing at least a nontrivial Jordan block.

The number of coalesced eigenvectors gives the order of the EPD, with the SIP being an

EPD of third order.

Given the reciprocity of the ASOW, which is seen as a three-way waveguide (analogously

to those in [8, 12, 14, 28]), this waveguide supports at any given frequency three pairs

of reciprocal Bloch eigenmodes, which allow only degeneracies of order 2, 3, 4 and 6 to

form. For the ASOW to exhibit an SIP at a generic point, that is, away from the center or

the boundaries of the BZ, all three Bloch eigenmodes with the same sign of Re(k) should

coalesce. In the case of the undistorted SOW, the symmetry of a generic point of the BZ has

a single nontrivial operation - the glide mirror plane normal to the x-direction. Any Bloch

eigenmode, propagating or evanescent, of the undistorted structure is either even or odd

14



with respect to the above symmetry operation. Normally, two of the three eigenmodes have

the same parity, while the third one has the opposite parity. The states with the opposite

parity do not usually coalesce and, thus, are less likely to participate in SIP formation. On

the other hand, the two eigenmodes with the same parity can coalesce and form a regular

band edge (RBE) [24]. To facilitate the coalescence of all three eigenmodes of Re(k) with

the same sign, we break the glide plane symmetry by applying the shear distortion described

in Figure 2.1 on the undistorted SOW.

In this paper, we focus on finding SIPs, which are found as inflection points at (ks, ωs) in

the dispersion diagram, locally approximated as

ω − ωs ∝ (k − ks)
3 . (4.1)

The existence of an SIP indicates that the structure (ASOW in our case) possesses a frozen

mode regime, exhibiting huge diverging amplitudes and low group velocity [9]. At frequencies

in the vicinity of the SIP, the guided field is a superposition of a propagating and two

evanescent Bloch modes, which develop a strong singularity close to the SIP frequency while

remaining nearly equal and opposite in sign at the boundary of the structure, satisfying

boundary conditions.

The advantage of the SIP compared to EPDs of even order such as RBE and degenerate

band edge, or DBE (order 2 and 4, respectively), is that it can exhibit a good coupling

efficiency [29], with a significant fraction of the incident light coupling into the waveguide.

The high coupling efficiency allows SIP-exhibiting structures to interact effectively with

external devices. This is in contrast to structures exhibiting RBEs and DBEs where the

impedance mismatch is substantially larger [30].
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An SIP is defined as a third-order EPD, which means that (3.9) does not hold anymore,

and that Tu is degenerate with two reciprocal eigenvalues of algebraic multiplicity 3 and

geometric multiplicity 1 (i.e., there are only two eigenvalues ζs = e−jksd and ζ−1
s = ejksd,

repeated three times each, and two eigenvectors associated to those eigenvalues).

4.1 Analytic Dispersion Relation for an SIP

We derive analytically the system of equations that constrain the values of the ASOW

parameters κ, R, α, and α′ such that the ASOW exhibits an SIP. At the SIP angular

frequency ωs the characteristic equation of the system, found in (3.7), can be cast in a simple

way because it has two degenerate Floquet-Bloch eigenwaves. Hence, the characteristic

equation evaluated at ωs must have the form

D (k, ωs) = (ζ − ζs)
3 (ζ − ζ−1

s

)3
= 0 (4.2)

By equating the coefficients of this polynomial with those of the dispersion relation in Equa-

tion (3.8) evaluated at ωs, we derive the following five necessary conditions:

2
τ 2

κ2
cos (ϕb − ϕ′

b) = 3
(
ζs + ζ−1

s

)
,

2 cos (4ϕa + ϕb + ϕ′
b) + 4 (τ 2 − τ 4) cos (ϕb − ϕ′

b)

κ4
=

(
ζ3s + ζ−3

s

)
+ 9

(
ζs + ζ−1

s

)
,

2
(τ 6 − 2τ 4 + τ 2) cos (ϕb − ϕ′

b)

κ6
= 3

(
ζs + ζ−1

s

)
,

τ 4

κ4
− 2

τ 6 − 2τ 4 + τ 2

κ6
= 3

(
ζ2s + ζ−2

s

)
+ 9,

τ 8 − 4τ 6 + 6τ 4 − 4τ 2 + 1

κ8
= 1

(4.3)
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Equations (4.3) must be satisfied for the ASOW to exhibit an SIP at ωs. The last equation is

automatically verified when the coupling and transmission coefficients satisfy Eq. (2.1), i.e.,

when each coupling is lossless. The fourth equation does not depend on ϕa, ϕb, and ϕ
′
b, and

the choice of the coupling and transmission coefficients determines the value of ζs, hence the

wavenumber ks of the SIP. The first and the third, are not independent: after equating their

right-hand sides, we get an equation in τ and κ only, which is verified assuming the coupling

and transmission satisfy Eq. (2.1). Therefore, either the first or the third equation is useful

to determine the phase difference ϕb−ϕ′
b once the coupling and transmission coefficients have

been determined. The second equation is useful to determine the phase term 4ϕa + ϕb + ϕ′
b,

which is the total phase accumulated in a unit cell when we do not consider coupling effects.

This shows that there are various combinations of the lengths of the segments A, B, and B’

that lead to an SIP.

In order to quantify the coalescence of the eigenvectors, we use the concept of ”coalescence

parameter” introduced in [22] for the DBE and in [12] for the SIP. Here, we use a coalescence

parameter σ defined similarly to that in [12], as

σ =
√
σ′2 + σ′′2,

σ′ =

√√√√ 3∑
m=1,n=2,n>m

|θmn|2,

σ′′ =

√√√√ 6∑
m=4,n=5,n>m

|θmn|2,

cos(θmn) =
| < ψm|ψn > |

,
∥ψm∥∥ψn∥.

(4.4)

The coalescence parameter is calculated by organizing the eigenvectors ψi in two sets of

three vectors, associated with ζi, and 1/ζi, respectively, with i = 1, 2, 3. Then, we calculate

the Euclidean distance of the angles between all the combinations in the set with respect

to the origin. Here, θmn is the angle between two 6-dimensional complex vectors ψm, ψn,
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which is defined as stated in Equation (4.4) using the inner product

< ψi|ψj >= ψ
†
iψj, (4.5)

with the dagger symbol † representing the complex conjugate transpose operation and ∥ψm∥

denotes the norm of ψm [12]. In this paper, we calculate the coalescence parameter using

the norm based on the Euclidean distance between the parameters θmn, ∀m,n, and zero [31],

instead of using the arithmetic average used in [12, 22]. The reason for this change is that

the optimization algorithm converges faster using the Euclidean distance than the arithmetic

average, as long as the algorithm does not generate a lot of points far from the optimization

goal (known as outliers) [32]. The coalescence parameter is always positive and smaller than

1, with σ = 0 (the origin) indicating perfect coalescence of each set of three eigenvectors.

This point constitutes an SIP.

4.2 ASOW with SIP

In this section, we show that the proposed ASOW exhibits an SIP through the proper tuning

of the various structure parameters. For practical purposes, the SIP wavelength is set at 1550

nm; the waveguide consists of a silicon-on-insulator structure (SOI), and the Si waveguide is

assumed to have a height of 230 nm and a width of 430 nm. At this wavelength, the lowest

TE-like mode has an effective refractive index of nw = 2.362, as can be seen in [24]. In [33] it

is also seen that the variation of the refractive index is negligibly small in the frequency range

of interest. In order for the assumption that the structure is lossless at optical frequencies

to be reasonable, we restrict ourselves to ASOWs comprising loops with radius R ≥ 10µm

[34] to minimize radiation losses.
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Figure 3 depicts the dispersion diagram of the eigenmodes of the ASOW unit cell shown in

Figure 2.1. It exhibits an SIP that can be seen by the coalescing of the three branches in

both the real and imaginary parts.

In addition to the SIP, we also find an RBE not far from the SIP. The distance between the

RBE and the SIP most likely decreases with an increasing loop radius. The reasoning behind

it is that a larger radius causes the structure to support multiple resonances and reduces its

free spectral range, although more work has to be done to investigate how to design RBEs

far from the SIP. The fact that both RBEs and SIPs are found in a small frequency range

could be problematic when realizing lasers. Therefore, learning how to optimize the size of

the loops in order to balance between bending (radiation) losses and the formation of RBEs

near the SIP frequency is important for exploiting the potential of an SIP.
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(a) (b)

(c) (d)

Figure 4.1: Modal dispersion diagram showing the formation of an SIP, using structure
parameters: R = 10µm, α = 66.02◦, α′ = 56.18◦ and κ = 0.49. (a) The real part of
the wavenumber versus angular frequency in the fundamental BZ. Solid black: mode with
purely real k; dashed colors: modes with complex k (overlapping dashed colors imply two
overlapping branches). It is clear that three curves meet at an inflection point, with reciprocal
k and −k positions. (b) The imaginary part of k versus angular frequency. At the SIP,
Im(k) = 0. (c) Alternative representation of the dispersion diagram in the complex k space.
The coalescing of the three branches is clearer in this figure, with arrows pointing in the
direction of increasing frequency. (d) Coalescence parameter σ versus angular frequency,
with σ vanishing at the SIP frequency.
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Chapter 5

Analysis of a finite-length structure

We analyze an ASOW with a finite-length L = dN , where d is the period of the unit cell

and N is the number of unit cells. This finite-length structure is shown in Fig. 5.1.

5.1 Field amplitudes along the ASOW

The evolution of the field amplitudes from one unit cell to the next is given by Equation

(3.2). To find the field amplitudes at each unit cell of the structure shown in Fig. 5.1, we

need to find the field amplitudes (i.e., the state vector) at either end of the structure.
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Figure 5.1: Schematic of a finite-length ASOW consisting of N unit cells most of which
are described by the transfer matrix TN−1

u and a last unit cell without the second coupling,
which connects the ports 2 and 3 as defined in Figure 2.2. This last unit cell is described by
the transfer matrix Taux and has a length d, as we neglect the gap between adjacent loops.
All the unit cells are defined within parallel oblique dashed lines as described in Section 2.

We consider the state vector at the left boundary of the first unit cell of the structure,

ψ0 = ψ(n = 0). The state vector at the end of the ASOW made of N cascaded unit cells is

given by

ψ(N) = Tψ0 (5.1)

Dividing the ASOW in unit cells as shown in Figure 5.1, we find that
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T = Taux TN−1
u = Taux V ΛN−1 V−1 (5.2)

where Taux is the transfer matrix of a unit cell without the second coupling point and it is

given in Appendix A. The diagonal matrix Λ is defined as in Equation (3.9). At an SIP, the

transfer matrix is non-diagonalizable and similar to a matrix containing two Jordan blocks

[8].

We assume the ASOW is excited by an incoming wave E+
1 (0) = Einc from the left, and the

right end is terminated on a dielectric waveguide with the same shape and characteristic

impedance of the waveguide used to form the ASOW. Considering the definitions in Fig.

5.1, the fields defining the Boundary Conditions (BC) of the waveguide are

E+
1 (0) = Einc

E−
1 (N) = 0

E+
2 (0) = E−

3 (0)

E+
3 (0) = E−

2 (0)

E−
2 (N) = E+

3 (N)

E−
3 (N) = E+

2 (N)

(5.3)

Applying these BC to the state vector ”evolution” described in Eq. (5.1) gives the field

amplitudes at either side of the boundary. By applying Equation (3.2), we obtain the field

amplitudes at each unit cell from those at n = 0. The results for |E+
1 (n)|, |E−

1 (n)| and |E1(n)|

over n ∈ [0, N ] are shown in Figure 5.2 where N = 32. The frozen mode regime, which is

characteristic of light traveling with null group velocity followed by a dramatic enhancement
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of the field amplitudes [7], is in full display. The amplitudes of the fields in the middle of the

finite-length structure are substantially larger than those located at its edges, where the BC

shown in Equation (5.3) are satisfied. This frozen mode regime is visible in the magnitude

of both the forward and backward waves, as seen in Fig. 5.2, where |E+
1 (n)|, |E−

1 (n)| and

their sum |E1(n)| = |E−
1 (n) +E+

1 (n)| peak around the center of the finite-length waveguide.
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(a)

(b)

Figure 5.3: Magnitude of the transfer function (in dB) of the finite-length structure near the
SIP frequency for (a) even and (b) odd number of unit cells N .
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5.2 Transfer function

Besides the spatial evolution of the field amplitudes along the finite-length structure, we are

interested in finding the proportion of light that makes it through the waveguide and the

proportion of light that is reflected from it. We define the transfer function

Tf =
Eout

Einc

=
E+

1 (N)

E+
1 (0)

(5.4)

as the ratio between the forward field amplitude at the output of the ASOW and the incident

one. We also define the reflection function

Rf =
Erefl

Einc

=
E−

1 (0)

E+
1 (0)

(5.5)

as the ratio between the backward field amplitude at the input of the ASOW and the incident

one. The transfer function is equivalent to the s-parameter S21 and Rf is equivalent to S11.
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(a)

(b)

Figure 5.4: Magnitude of the reflection function (in dB) of the finite-length structure near
the SIP frequency for (a) even and (b) odd number of unit cells N .

Figures 5.3 and 5.4 respectively show the magnitude of the transfer and the reflection func-

tions (in dB) of an ASOW comprising N cascaded unit cells, for several values of N . The

parameters of the structure are chosen to satisfy the conditions from Equation (4.3) to exhibit

the SIP shown in Figure 3.

The transmission curves reach their maximum in the vicinity of the SIP frequency, where

the reflection curves reach their minimal level. The resonance closest to the SIP frequency

is denoted hereon as SIP resonance. The distance between peaks in each curve shrinks as

N increases. Notice that the peaks in Figs. 5.3(a) for even N are more bundled together
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around the SIP frequency ωs than for odd N .

5.3 Group delay and quality factor

The quality factor (Q) of a cavity is a measure of the energy lost per cycle versus the energy

stored in the cavity. Very large Q factors in the vicinity of SIPs originate from the combina-

tion of the frozen mode regime and the common slow-wave resonance [9]. Nevertheless, at

EPDs other than the SIP (i.e., the DBE), systems can be highly mismatched to the termina-

tion impedance of most loads. This phenomenon stems from the Floquet-Bloch impedance

[30] in a multi TL, and causes an EPD-exhibiting structure to act as an isolated cavity. This

is especially true for the case of DBEs [35]. The ASOW does not behave as a very high-Q

resonator at the SIP frequency as the frozen mode regime is not a cavity resonance [9, 18].
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(a)

(b)

Figure 5.5: Normalized group delay versus normalized frequency for different number of unit
cells N for (a) even number of unit cells N and (b) odd number of unit cells.

The Q factor, however, does depend on the particular design of the SIP and its Bloch

impedance. In the following, we calculate the quality factor as

29



Q =
ωresτg
2

(5.6)

that provides a very good approximation for high quality factors [8]. Here ωres is the SIP

resonance (the angular frequency corresponding to the closest peak to the SIP frequency)

and τg is the group delay at that frequency. As the range of frequencies we operate in is

small, the resonant frequency ωres is approximately the same for all the group delay peaks

in Fig. 5.5. The group delay is calculated as the negative of the derivative of the phase of

the transfer function with respect to the angular frequency, i.e.,

τg = −∂
̸ Tf
∂ω

. (5.7)

Figure 5.5 shows the group delay versus angular frequency for structures with different

number of unit cells, N .
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(a)

(b)

Figure 5.6: Quality factor versus number of unit cells N of the finite-length structure for (a)
even-number N , where Q evolves as beN

3, and (b) odd-number N , where Q evolves as boN
3,

with be ̸= bo.

It is normalized by the baseline delay

τ0 = N
nw

c
(2πR + 2(α′ + α)R) = Nτ ′0 (5.8)
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that occurs in a finite-length structure with the same length as the ASOW, without consid-

ering the couplings (i.e., without frozen mode). For the SIP-exhibiting ASOW from Section

4, which had R = 10µm, α = 66.02◦, α′ = 56.18◦ , we have τ ′0 = 0.83 ps. In Figure 5.5 we

can see the normalized group delay. As expected, for frequencies below the SIP frequency,

τg approximates τ0, although it does not quite reach that low value because τ0 does not

take into account the resonant paths enabled by the existence of the coupling points. For

frequencies above the RBE frequency, which is the frequency at which the ASOW exhibits

an RBE, τg → 0, as there is no propagation through the waveguide and the field experiences

an exponential decay while propagating inside the waveguide because of the bandgap in the

dispersion diagram in Fig. 3.

In Figure 5.6 we plot the quality factor Q versus the number of unit cells N of the ASOW

in Fig. 5.1. The two plots are for even (a) and odd (b) numbers N . In both cases, Q

grows with the number of unit cells following the trend Q ∝ be,oN
3 for large N [9]. The

proportionality constants be and bo for the even and odd N cases are different from each

other, with be = 128.9 and bo = 99.8. The fitting curve shown in figure 5.6 is

Q = 128.9 N3 − 5354, (5.9)

for an even number of unit cells. For ASOWs with an odd number of unit cells,

Q = 99.8 N3 + 3.2× 104 N − 3.4× 105. (5.10)
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Both fittings are done with N ∈ [20, 50]. The high quality factors in the figures in Fig. 5.6

occur because the model of the ASOW does not take into account radiation or scattering

losses.

Despite the growing trend of Q with N , the frequency at which the Q is maximum does not

necessarily get monotonically closer to the SIP frequency, as shown in Figure 5.5 looking at

the group delay peaks. Moreover, for a relatively small number of unit cells, withN ∈ [10, 20],

ASOWs with an even number of unit cells have a higher Q than ASOWs with odd N of

comparable length, suggesting a stronger cavity-like behavior for ASOWs with even N . This

is seen in Fig. 5.6. For larger N , this difference disappears.

Figure 5.5 shows the normalized group delay peaks in the vicinity of the SIP frequency and

near the RBE frequency, indicating that Q is higher near EPD frequencies. As mentioned

before, the Q around the SIP frequency grows as: QSIP = bSIPN
3. Note that also for

the resonances near the RBE, we have the asymptotic trend QRBE = bRBEN
3 as discussed

in [9, 35]. For the ASOW considered here, the Q in the vicinity of the SIP frequency is

comparable to the Q in the vicinity of the RBE. This occurs even though the SIP displays

a frozen mode regime and has a higher degeneracy order than the RBE.

As the SIP exhibits high transmittance, it allows a balance between the dramatic enhance-

ment of the field amplitudes associated with an exceptional point and the low coupling

to external waveguides due to mismatch. A high level of mismatch is typically found in

DBEs, which have a higher quality factor scaling law [8]. In [29], it is shown that SIP-

exhibiting structures have a high coupling coefficient, with a significant part of the incident

light being transmitted into the frozen mode regime. This feature reduces the Q factor of

the structure and the cavity-like properties that, instead, band edges usually exhibit. As

such, SIP-exhibiting structures can be devised to realize unidirectional lasers [20] that are

otherwise not suitable with waveguides with an even-order EPD, such as an RBE or a DBE

[36], which are used to form high Q cavities with low transmittance.

33



(a) (b)

(c)

Figure 5.2: Magnitude of the forward and backward fields throughout the SIP-exhibiting
finite-length structure against the position of the unit cell, with n ∈ [0, N ] for N = 32 at
the SIP frequency ωs. Notice that the BC from Equation (5.3) are satisfied. (a) Magnitude
of E+

1 (n) for n ∈ [0, N ]. (b) Magnitude of E−
1 (n) for n ∈ [0, N ]. (c) Magnitude of E1(n) =

E−
1 (n) + E+

1 (n) for n ∈ [0, N ].
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Chapter 6

Conclusion

We have demonstrated that a lossless asymmetric serpentine optical waveguide (ASOW)

can support a pair of reciprocal SIPs associated with the frozen mode regime. The SIP has

been obtained using the extra degree of freedom by applying a shear distortion that breaks

the glide symmetry of the original symmetric SOW. Our formulation explicitly reveals that

the SIP is an exceptional point of third order in a lossless/gainless waveguide. To show

that, we resort to the concept of ”coalescence parameter” whose vanishing value reveals the

coalescence of three eigenvectors, explicitly demonstrating that the SIP is indeed a third-

order exceptional point of degeneracy. The study of finite-length waveguides shows the field

enhancement and a large group delay at Fabry-Perot resonances near the SIP frequency. We

have also studied the evolution of the transfer and reflection functions in the vicinity of the

SIP, varying the length of the waveguide cavity, and revealing the cubic-length scaling of

the quality factor. High transmission is observed, shown by a transfer function nearing 0 dB

close to the SIP frequency, with a reasonably high quality factor, allowing for matching the

SIP-exhibiting structure to external devices. Periodic waveguides supporting the SIP-related

frozen mode regime can be used for cavity-less light amplification and lasing, optical sensors,

microwave and optical modulators, and switches.
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Appendix A

Calculation of the transfer matrix of

the unit cell

In this appendix we show how to obtain the transfer matrix of the unit cell of the ASOW Tu

and the auxiliary matrix Taux, which is akin to Tu without modeling the second coupling

point. The state vector is given in Equation (3.1).

As the unit cell of the structure has different resonant paths, the transfer matrix for the unit

cell cannot be calculated in one step. Instead, we break the unit cell into several segments

shown in Figure A.1.

We call T1c and T2c the transfer matrices that model the relations between field amplitudes

on either side of the infinitesimal segments (in z) that include the coupling points. The

transfer matrices T1p and T2p account for the phase accumulation in the segments of the

unit cell.

The matrices T1p & T2p are trivial:
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T1p =



ejϕa 0 0 0 0 0

0 e−jϕa 0 0 0 0

0 0 ejϕb 0 0 0

0 0 0 e−jϕb 0 0

0 0 0 0 ejϕa 0

0 0 0 0 0 e−jϕa


(A.1)

Figure A.1: Unit cell of the ASOW divided into subcells, which are the waveguide segments
within the parallel dashed oblique lines. The subscells are modeled by the transfer matrices:
T1p, T1c, T2p and T2c. The transfer matrices Tip, with i = 1, 2 describe segments of the
waveguide where the waves travel in three uncoupled waveguides, whereas Tic, with i = 1, 2,
describe the coupling points, assumed to have zero thickness.
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and

T2p =



ejϕa 0 0 0 0 0

0 e−jϕa 0 0 0 0

0 0 ejϕ
′
b 0 0 0

0 0 0 e−jϕ′
b 0 0

0 0 0 0 ejϕa 0

0 0 0 0 0 e−jϕa


(A.2)

but the matrices T1c & T2c demand a more careful consideration. They are:

T1c =



0 −j τ
κ

j
κ

0 0 0

j τ
κ

0 0 − j
κ

0 0

j
κ

0 0 −j τ
κ

0 0

0 − j
κ

j τ
κ

0 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(A.3)

and
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T2c =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 −j τ
κ

j
κ

0

0 0 j τ
κ

0 0 − j
κ

0 0 j
κ

0 0 −j τ
κ

0 0 0 − j
κ

j τ
κ

0


. (A.4)

In the following, we show how to obtain the transfer matrix T1c, with T2c being analogously

derived. The transfer matrix T1c represents the infinitesimally thin (in z) segment with the

top coupling point. As seen in Figure A.1, there is no phase accumulation at the bottom

ports (identified by the field amplitudes E±
3 ). This explains the 2x2 identity matrix at the

bottom right of T1c.

To model the change in the field amplitudes before and after the coupling point we use a 4x4

scattering matrix, which gives the outputs in terms of the inputs. For the coupling point

modeled in T1c, zc, we have the following scattering matrix,



E−
1 (z

−
c )

E−
2 (z

−
c )

E+
1 (z

+
c )

E+
2 (z

+
c )


=



0 τ 0 −jκ

τ 0 −jκ 0

0 −jκ 0 τ

−jκ 0 τ 0





E+
1 (z

−
c )

E+
2 (z

−
c )

E−
1 (z

+
c )

E−
2 (z

+
c )


. (A.5)

This 4x4 scattering matrix is transformed into the 4x4 transfer matrix embedded at the top

left of the 6x6 T1c. The transformations are [8]
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T11 = S21 − S22 S−1
12 S11,

T21 = −S−1
12 S11,

T12 = S22 S−1
12 ,

T22 = S−1
12

(A.6)

where each component, Sij and Tij, with i, j = 1, 2, is a 2x2 matrix that forms the 4x4

scattering and transfer matrices, respectively. The transfer matrix, which relates the field

amplitudes at the left of the coupling point (z−c ) with the field amplitudes at the right of the

coupling point (z+c ), is shown below:



E+
1 (z

+
c )

E−
1 (z

+
c )

E+
2 (z

+
c )

E−
2 (z

+
c )


=



0 −j τ
κ

j
κ

0

j τ
κ

0 0 − j
κ

j
κ

0 0 −j τ
κ

0 − j
κ

j τ
κ

0





E+
1 (z

−
c )

E−
1 (z

−
c )

E+
2 (z

−
c )

E−
2 (z

−
c ).


(A.7)

Embedding this 4x4 transfer matrix on the top left of the 6x6 transfer matrix T1c we obtain

a full model of the infinitesimal segment with the top coupling point.

For the transfer matrix T2c, the coupling occurs for the field amplitudes E±
2 and E±

3 , so the

4x4 transfer matrix modeling the coupling point is embedded in the bottom right part of the

6x6 T2c. As there is no change in E±
1 (due to the aforementioned infinitesimal thickness of

the modeled segment), a 2x2 identity matrix goes at the top left. The rest of the matrix is

filled with zeros.

The last step to obtain the transfer matrix is to right-multiply the transfer matrix of each
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segment:

Tu = T2c T2p T1c T1p. (A.8)

The full expression of Tu is shown in Eq. (3.4). The 6x6 transfer matrix Taux, which

describes a modified unit cell without the bottom coupling to be used as a last cell, containing

the outport port, is similar to the transfer matrix Tu but without right-multiplying the

matrix T2c, as

Taux = T2p T1c T1p (A.9)

yielding

Taux =



0 −j τ
κ

j e
j(ϕa+ϕb)

κ
0 0 0

jτ
κ

0 0 −j e−j(ϕa+ϕb)

κ
0 0

j e
j(ϕa+ϕ′b)

κ
0 0 −j τe

−j(ϕb−ϕ′b)

κ
0 0

0 −j e
−j(ϕa+ϕ′b)

κ
j τe

j(ϕb−ϕ′b)

κ
0 0 0

0 0 0 0 ej2ϕa 0

0 0 0 0 0 e−j2ϕa


(A.10)
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