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Article
Modeling transcriptional regulation of the cell cycle
using a novel cybernetic-inspired approach
Rubesh Raja,1 Sana Khanum,1 Lina Aboulmouna,2 Mano R. Maurya,2 Shakti Gupta,2 Shankar Subramaniam,2,3,*

and Doraiswami Ramkrishna1,*
1The Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana; 2Department of Bioengineering, University of
California San Diego, La Jolla, California; and 3Departments of Computer Science and Engineering, Cellular and Molecular Medicine, San
Diego Supercomputer Center, and the Graduate Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla,
California
ABSTRACT Quantitative understanding of cellular processes, such as cell cycle and differentiation, is impeded by various
forms of complexity ranging from myriad molecular players and their multilevel regulatory interactions, cellular evolution with
multiple intermediate stages, lack of elucidation of cause-effect relationships among the many system players, and the compu-
tational complexity associated with the profusion of variables and parameters. In this paper, we present a modeling framework
based on the cybernetic concept that biological regulation is inspired by objectives embedding rational strategies for dimension
reduction, process stage specification through the system dynamics, and innovative causal association of regulatory events with
the ability to predict the evolution of the dynamical system. The elementary step of the modeling strategy involves stage-specific
objective functions that are computationally determined from experiments, augmented with dynamical network computations
involving endpoint objective functions, mutual information, change-point detection, and maximal clique centrality. We demon-
strate the power of the method through application to the mammalian cell cycle, which involves thousands of biomolecules
engaged in signaling, transcription, and regulation. Starting with a fine-grained transcriptional description obtained from RNA
sequencing measurements, we develop an initial model, which is then dynamically modeled using the cybernetic-inspired
method, based on the strategies described above. The cybernetic-inspired method is able to distill the most significant interac-
tions from a multitude of possibilities. In addition to capturing the complexity of regulatory processes in a mechanistically causal
and stage-specific manner, we identify the functional network modules, including novel cell cycle stages. Our model is able to
predict future cell cycles consistent with experimental measurements. We posit that this innovative framework has the promise
to extend to the dynamics of other biological processes, with a potential to provide novel mechanistic insights.
SIGNIFICANCE Cellular processes such as cell cycle are complex, involving multiple players interacting at multiple
levels, and explicit modeling of such systems is challenging. The availability of longitudinal measurements provides an
opportunity to reverse engineer for novel regulatory models. We develop a novel framework, inspired by using a goal-
oriented cybernetic approach, to implicitly model transcriptional regulation by constraining the system to inferred temporal
goals. A preliminary causal network based on information theory is used as a starting point, and our framework is used to
distill the network to temporally based networks containing essential molecular players. The strength of this approach is its
ability to dynamically model the RNA temporal measurements. The approach developed paves the way for inferring
regulatory processes in many complex cellular processes.
INTRODUCTION

Cellular processes involve a complex network of molecular in-
teractions associated with response to external stimuli, signal
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transduction, chromatin modifications, transcriptional regula-
tion, and a host of regulatory mechanisms. Painstaking
biochemical analyses of these complex regulatory processes
have provided some insights but are largely incomplete.
Further, there are few data on the kinetics of regulatory pro-
cesses even at a coarse-grained level, making quantitative
modeling of the cellular processes difficult (1–3). The ability
to infer all the regulatory players and processes is out of the
scope of currently available experiment methods and it is
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essential to decipher an approach thatwill be able to account for
the regulatory processes in an implicit manner. Longitudinal
time-series data from high-throughput measurements provide
details about potential regulation but incorporating such vast
data into mathematical models has proved to be a challenge.
Previously established modeling approaches, including
steady-state stoichiometric models (4), kinetic models
(1,5,6), dynamic flux balance analysis models (7), and discrete
Boolean models (8), have faced these challenges. Constraint-
based approaches such as flux balance analysis (4) and network
decomposition approaches such as elementary modes (9) can
aid in modeling regulatory mechanisms. Most of these repre-
sent static or steady-state situations and some with pseudo-
steady-state perspectives that are very useful for reactions
with disparate rates. However, the dynamic complexity of eu-
karyotic cell behavior makes pseudo-steady-state assumptions
inapplicable.

The cybernetic method (10), which inherits its name from
optimizing models with goals, where regulatory processes
are inferred implicitly through parameters, has been success-
ful in dynamically modeling bacterial metabolism where the
objective is cell growth optimality (10–13). Recently, we
extended this approach to modeling macrophage lipid meta-
bolism with the goal of maximal expression and activation
of inflammatory cytokine tumor necrosis factor alpha
(14,15). With this single objective function, we were able to
incorporate regulatory mechanisms involved in prostaglandin
metabolism. In all these examples, only one stagewith a single
well-defined objective function is assumed,making it difficult
to extend it to multi-stage processes with a distinct objective
function associated with each stage.

The mammalian cell cycle is an exemplary cellular process
(16) where cells replicate through a complex set of events
across multiple stages and it illustrates the complexity associ-
ated with such biological processes, namely stage-specific
regulation, and stage-specific phenotype endpoints, i.e., bio-
logical objectives, for each stage. It is important to understand
that the stagesmentioned here represent periods of timewithin
which the cell is expected to have a distinct objective based on
their phenotypic endpoints. Although stages are not the same
as cell cycle phases, they can coincidewith eachother. The cell
cycle goes through different experimentally defined phases
(G1, S, G2, and M), where, during the G1 phase, the cell in-
creases its cellular contents andgrows, followedby theSphase
where the chromosomes are duplicated,with growth and prep-
aration for the mitosis in the G2 phase followed by mitosis
(cell division) in theM phase before returning to the G1 phase
(3,17,18). Extant dynamical modeling approaches are not
capable of addressing multiple stages using distinct and mul-
tiple objective functions (18–20).

We report in this manuscript a novel framework featuring a
cybernetic-inspired method (CIM) that accounts for stage-
specific modeling with distinct objectives for each stage
constituting an implicit representation of regulatory processes
during that stage. In the cell cyclemodeling using a set of fine-
222 Biophysical Journal 123, 221–234, January 16, 2024
grained time-series transcriptomic measurements (3), we
develop stage-specific models with specific objectives and
model their dynamical behavior controlled by explicitly un-
specified regulatory processes. It is appropriate that wemodel
the transcriptomic data as the stages in the cell cycle are tran-
scriptionally driven. The biological objective of such a system
can be stated as the optimization of cell cyclewhere the objec-
tive is different at each stage depending on the specific func-
tional differences across each stage. During each stage,
the objective is mathematically represented to maximize the
weighted production rates of all the transcripts where the
weights are expected to implicitly depend on the functional
importance of the genes during that stage. The difference in
objective is contained in the different weights that are used
in different stages. The weights are chosen to fit experimental
data, a strategy that remains true to the cybernetic mechanism
representing regulatory processes during that stage.

For most biological systems such as the cell cycle, there is
limited availability of information relating to the numerous in-
teractions among the myriad components and the amount of
data needed to estimate the model parameters (21,22). The
longitudinal RNA sequencing (RNA-seq) data in the form of
time series is a great resource for developing and validating
our CIM framework for dynamical modeling. The temporal
molecular data have significant correlations both at the same
timepoint and at distinct time points reflecting cause-effect re-
lationships. To infer this notion of correlation and crosstalk be-
tween different RNA transcripts, we explored the power of
information-theoretic approaches (23) by relating the compo-
nents that have a higher degree ofmutual information.Mutual
information, an information-theoretic approach, detects
nonlinear correlations between datasets and can be used to
formulate the causal interactions (24,25). Moreover, causality
is fundamental to the cybernetic approach in order that the sys-
tem tweaks the relevant variables to realize objectives. Specif-
ically, we used the time-delayed mutual information (TDMI)
method to identify the causal relations and temporal correla-
tions between any two RNA transcripts within the network,
and, by setting a threshold, we selected a preliminary network
to model with our CIM framework (Fig. 1). Mutual informa-
tion thus plays a very key enabling role in the success of the
model framework.

Further, the stages with distinct objective functions during
cell cycle are not pre-defined. Although it is natural to match
the stages with experimentally derived temporal regimes
such as cell cycle phases, each of these phases may subsume
other undefined stages. To correctly identify stages, we used
the CIM to simultaneously work as change-point detector
while fitting theRNA-seq data.This approach providedkey de-
scriptions of regulatory interactions, especially in identifying
the key stage-specific genes. Since matching observations of
system variables with their model counterparts is the manner
in which the weights (and other model parameters) are deter-
mined, they represent the system choice arising from the
built-in biological objectives.



FIGURE 1 Schematic for CIM. Using the selected subset of RNA-seq measurements, a preliminary RNA crosstalk network is developed using the time-

delayed mutual information (TDMI). The stage-specific cybernetic model is then applied on the data and the TDMI network. By optimizing the parameters,

the data are fitted and the key species and regulatory interactions are identified. This approach also identifies the stage durations. Further network simpli-

fication is carried out using the maximal clique centrality (MCC) and the maximal RNA expression rate (MRER) (all data and networks shown in this figure

are for representation and not real).

Dynamic transcriptional regulatory model
MATERIALS AND METHODS

Identification of causal interactions using TDMI

The advantages of working with information-theoretic approaches (26) are

that they facilitate quantifying the interactions between datasets and avoid

assuming a functional form of their relationship (27). Specifically, we em-

ployed mutual information (MI), an information-theoretic approach that

quantifies the linear and nonlinear interactions between the variables (28–

31).

The MI IðX;YÞ for random variables X and Y, given random samples

fx1;.; xSg and fy1;.; ySg (S denotes the number of samples), with joint

probability function pðxi; yjÞ and marginal probability functions pxðxiÞ and
pyðyjÞ, is

IðX; YÞ ¼
XS
j ¼ 1

XS
i ¼ 1

p
�
xi; yj

�
log
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�
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�
pxðxiÞpy

�
yj
�
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�
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�
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�
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! (1)
where < : > denotes the average operator. IðX;YÞ is the average of the dif-
ference between the log likelihood of two variables log pðxi; yjÞ and single

variable log pxðxiÞ, log pyðyjÞ with respect to joint probability density pðxi;
yjÞ.

In our approach, the series Xt and Yt represent RNA time-series data. The

goal was to calculate mutual information IðXt ;YtÞ for different combina-

tions of RNA time-series measurements; e.g., IðRNA1;RNA2Þ. The above

MI definition assumes that the samples xi are sampled independently; i.e.,

fx1; :::; xng belongs to an independent set (the same is true for yj samples

as well). However, for time-series data, the assumption of independence

will be invalid due to temporal correlations between data points at various

times.

Galka et al. developed the innovation approach to MI for temporally

correlated time series (32). Although the authors derived an IðXt ;YtÞ for-
mula for a Gaussian distributed innovation set that forms an independent

and identically distributed (iid) sequence, here, we developed an approach

valid for all distributions. For time series, lðxi; yjÞ in Eq. 1 was redefined by
pairing the time points as

lðXt;YtÞ ¼ log pððx1; y1Þ; ::; ðxNt; yNtÞÞ
� log pxðx1; ::; xNtÞ � log pyðy1; ::; yNtÞ (2)
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Eq. 2 had high-dimensional joint distributions with complicated struc-

ture. To simplify the structure of these distributions, we described these cor-

relations by the corresponding optimal predictors of Xt and Yt using a time-

series prediction model: auto-regression (AR) or vector auto-regression

(VAR). The ‘‘lag’’ hyperparameters for the AR and VAR models were

selected based on minimization of Akaike information criterion (AIC).

The calculated residuals (et) based on the expected model (E) are called

innovations.

etðxjxÞ ¼ xt � ðEARðxtjxt� 1; xt� 2;.Þ Þ
etðyjyÞ ¼ yt � ðEARðytjyt� 1; yt� 2;.Þ Þ

ðetðxjx; yÞ; etðyjx; yÞ Þy ¼ ðxt; ytÞy � ðEVAR

ððxt; ytÞyjðxt� 1; yt� 1Þy; ðxt� 2; yt� 2Þy.; Þ Þ (3)

Since the probabilities of original series are same as the probabilities of

their innovations (32), Eq. 2 becomes

lðXt; YtÞ ¼ log½pððe1ðxjx; yÞ; e1ðyjx; yÞ Þ;.;

ðeNtðxjx; yÞ; eNtðyjx; yÞ Þ Þ � � log½pxðe1ðxjxÞ;.; eNtðxjxÞ Þ �
� log

�
pyðe1ðyjyÞ;.; eNtðyjyÞ Þ

�
(4)

For optimal predictors of time series, the innovations are white noise, and

they are independent. Moreover, if the time points are assumed to form an

independent and identically distributed sequence, the joint probability of

the innovation time series deciphers as the product of marginal probability

densities. Eq. 4 became

lðXt; YtÞ ¼
XNt
t ¼ 1

log

(
pðetðxjx; yÞ; etðyjx; yÞÞ
pxðetðxjxÞÞpyðetðyjyÞÞ

)

¼ Nt log

(
pðeðxjx; yÞ; eðyjx; yÞÞ
pxðeðxjxÞÞpyðeðyjyÞÞ

)
(5)

The MI per time point was then calculated using Eqs. 1 and 5 as follows:

IðXt; YtÞ ¼ 1

Nt

X
x;y

pðeðxjx; yÞ; eðyjx; yÞÞlðXt; YtÞ

¼
X
x;y

pðeðxjx; yÞ; eðyjx; yÞÞlog
(
pðeðxjx; yÞ; eðyjx; yÞÞ
pxðeðxjxÞÞpyðeðyjyÞÞ

)

(6)

The probabilities in the above equation were estimated using kernel

density estimators (KDEs) after finding the innovations using AR and

VAR models (33). We then normalized the MI value by dividing it with

the average of the entropies: InormðXt ;YtÞ ¼ 2IðXt ;YtÞ=ðHðxtÞþHðytÞÞ.
To identify the causal interactions between any two species within the

network, we used the TDMI. For calculating TDMI, a relative time delay

(t) was introduced between the series Xt and Yt, and then the MI formula

was applied to this t-shifted time series; i.e., Xt and Yt� t . Thus, the

TDMI calculation entails evaluating MI as a function of t. Further, at the

maximumMI value ðTDMImaxÞ, the sign of t can be used to infer the direc-
tion of causality between Xt and Yt processes from the information transfer

perspective (34,35).
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TDMIðXt; Yt; tÞ ¼
8<
:

InormðXtþt; YtÞ for t > 0;
InormðXt; YtÞ for t ¼ 0;
InormðXt; YtþtÞ for t < 0;

(7)

CIM for transcription regulation

Cybernetic models in the past have been predominantly used in modeling

metabolic regulation where two sets of control variables for enzyme acti-

vation and synthesis control the dynamics based on a system objective.

Here, we specifically modeled RNA expression levels where the underly-

ing regulation is implicitly incorporated in the cybernetic model using

the new control variables u and v, which are different from the past

and will be defined below. The transcriptional regulation can be affected

by the expression of RNAs, histones, transcription factors, or chromatin

modifications and topological constraints associated with the state. To

incorporate the effect of crosstalk or interactions across RNA players

due to these multilevel intermediates, we defined a lumped species g

called the regulator of gene expression. Thus, in our formulation, the

RNA expression depends on the species g and g depends on the indirect

interactions (proxied through other RNAs). Here are the model

equations:

dRNAj

dt
¼ vjk

r
j gj � gjRNAj (8)

 X !

dgj
dt

¼ aþ uj max
i

kgi;jRNAi; 0 � bgj (9)

In Eq. 8, the parameter krj is the RNAj expression rate constant and gj is the

RNAj degradation rate. In Eq. 9, the three parameters denote the basal prim-
ing rate a, the interaction parameter for RNAj by RNAi k
g
i;j, and the decrease

of priming level by the rate constant b. The interaction parameter was set to

be nonzero only for possible interactions pre-determined using a priori

knowledge or a data-driven approach. They are either activating (þ) or re-

pressing (�) rate constants allowing the term
P

ik
g
i;jRNAi in Eq. 9 to become

negative for some conditions. We allowed a basal gj level ða =bÞ even when
the above term becomes negative. We implemented this constraint by

using maxðPik
g
i;jRNAi; 0Þ in Eq. 9. The control variables u and v are regu-

lating the level and strength of priming for the RNA transcription, respec-

tively, and are defined based on the cybernetic objective that is either

intuitively described or phenotypically described from the experimental

data.

We defined the objective of this system to be to maximize
Pn

j¼ 1ðwjk
r
j gjÞ,

that is, to maximize the sum of weighted production rates of the RNAs. This

objective form is similar to those used in the original cybernetic models and

means that the RNA production is optimized based on the functional

requirement decided by the weights. The control variables, vj and uj, are

computed by solving the optimal control problem resulting in the propor-

tional and matching laws (10), respectively, as follows:

vj ¼ wjk
r
j gj

max
i ¼ 1;2;.;n

�
wikri gi

�; uj ¼ wjk
r
j gjPn

i ¼ 1

�
wikri gi

� (10)

The expressions for the control variables, although appearing simplistic,

cause the Ordinary Differential Equation (ODE) system (Eqs. 8 and 9) to be

nonlinear.

In this formulation, we attached time/age to the cell transition. If the

values t1; t2; t3; t4; t5; and t6 represent the times at which the cell’s objective

changes for G1/S1; S1/S2; S2/S3; S3/G2; and G2/M transitions

and cell division, respectively, then the weights are as follows:



wj ¼

8>>>>>><
>>>>>>:

wG1;jð0< t% t1Þ
wS1;jðt1 % t < t2Þ
wS2;jðt2 % t < t3Þ
wS3;jðt3 % t < t4Þ
wG2;jðt4 % t < t5Þ
wM;jðt5 % t < t6Þ

(11)

Dynamic transcriptional regulatory model
The fits are attained based on the global minimization of the sum of the

squares of normalized fit errors (SSEs) where the RNA-specific fit errors are

normalized by dividing it with their maximum value. To obtain only the key

regulatory interactions, we enforce the parameter kgi;j to become zero if its

absolute value falls below 0.1 during the global minimization, whereas

the maximal absolute value is set as 100. These thresholds provide us

with sparse matrix for kgi;j to highlight important edges of the network.

SSE ¼
X
j

�
RNAj � dataðRNAj

�
max

�
dataðRNAj

�� �2

(12)

Application of CIM framework to mouse cell cycle
measurements

Transcriptomic time-series measurements for synchronized cell cycle of

Cf-1 mouse embryonic fibroblast primary cells (E13 embryos) were avail-

able from our prior work (3). To synchronize the cell cycle, cells were incu-

bated in a starvation medium (0.5% fetal calf serum) for 36 h and then

serum was added to reach 20% to re-initiate the cell cycle (3). RNA-seq

data were measured at 96 different time points with 0.5- or 1-h intervals

covering more than one full cell cycle (3). Of the 4248 genes differentially

expressed (more than twofold up or down as compared to t ¼ 0) at one or

more time points, we selected 63 canonical cell cycle genes and 23 more

transcription factor genes (a total of 86) based on our prior model (3).
RESULTS

Modeling transcriptomic regulation during the
cell cycle

We illustrate theversatility of ourCIM frameworkby applying
it tomodel transcriptional regulationduring cell cycle progres-
sion in amammalian cell. Although our CIM approach has the
ability to infer the regulatory interactions on unbiased choice
of molecules, it is important to start with a model network
based on a priori knowledge or by time-series analysis tech-
niques to avoid model overparameterization (Fig. 1) (36,37).
This will also enable the approach to relate to known biology.
Using the initial set of 86 RNA transcripts as nodes (see sec-
tion ‘‘materials and methods’’ for selection criteria), we
evolved the network by introducing mechanistic causality us-
ing our longitudinal measurements and MI.
Causal interaction network development using
TDMI

We refined our preliminary network model using the TDMI
(see section ‘‘materials and methods’’). Our approach was
applied to the time-series data of the 86 selected genes to
calculate the TDMI for the range of delays (t) between
�20 and 20 h. In Fig. 2, we show a sample calculation for
TDMI between the two nodes (genes) in the network,
Tgfb1 and Ets1 (Fig. 2 A and B). We used the innovation
approach (32) for TDMI calculation in which the residuals
were calculated usingAR andVARmodels (see section ‘‘ma-
terials and methods’’). Then, we estimated the probability
functions based on mono-variate and bi-variate KDEmodels
(Fig. 2C–E) (33). The TDMIwere estimated across different
t values (see section ‘‘materials and methods’’; Fig. 2 F). We
can see that the TDMI peaks at a positive lag value of 4 h
(Fig. 2 F), implying that Ets1 is the cause and Tgfb1 the ef-
fect. This calculation was repeated for every pair of the
selected genes where we estimated the maximum value of
TDMI both for positive and negative t values as TDMImaxþ
and TDMImax� , respectively. We selected the top 10 percentile
of the interactions from the maximal value of TDMI (com-
bined set of TDMImaxþ and TDMImax� ) (Figs. 2 G and S1).
Therefore, if TDMImaxþ and TDMImax� between two species
are within the top 10 percentile, then they have bidirectional
interaction. The interaction is similarly bidirectional if the
TDMI peak occurs at t ¼ 0 (TDMImaxþ ¼ TDMImax� ) and
the value is within the top 10 percentile. These interactions
among the RNA transcripts (nodes) are visualized as net-
works using Cytoscape (Fig. 2 G). Although these selected
interactions are highly possible, this TDMI-based approach
does not provide anymechanistic proof for these interactions.
So, we need a mechanistic model such as the CIM approach
to further validate the network.
Stage-specific CIM for transcriptional regulation

We developed a CIM framework to model transcriptional
regulation incorporating stage-varying and multifactorial
regulation (see section ‘‘materials and methods’’). During
cell cycle, the objective or goal of the system depends on
the current phenotype of the cell and needs to be redefined
each time the cell undergoes a major transition (stage
change) owing to transcriptional remodeling. Although a
single multi-weighted objective function describes regula-
tion for short periods within a single stage, for modeling
long-time-series measurements, we had to incorporate
stage-specific objective functions. We mathematically
defined that the objective for each stage is to maximize
Biophysical Journal 123, 221–234, January 16, 2024 225



Trp53

Crebbp

Anapc1

Mcm3

Cdkn2a

Sox2

Mad1l1

Cdkn1a

Batf3

Rbl1

Cdh1

Stag1

Nfkb1

Cdc14b

Abl1

Prkdc
Cdc45

Hdac2

Cdc25b

Espl1

Cdc25a

Dbf4

Cdc20

Chek1

Ccnh

Cdkn2d

Rela

Wee1

Ccne1

Plk1

Ccnd1

E2f1

Nfatc1

Brca1

Foxo1

Cdk4

Skp2

Cdk2 Pttg1

Zbtb17

Cdc7

Gadd45a

Smad4

Runx1

Cdkn2b

Cdkn1b

Rfx1

Ccnb2

Vdr

Notch1

Cdk1

Relb

Lef1

Bub3

Cebpb

Klf4

Cdc6

Rb1

Gabpb1

Bub1b

Rorb

Arntl

Tgfb1

Foxm1

Tfdp1

Myc

Cux1

Smc3

Mad2l1

Ttk

Smc1a

Bub1

Sfn

Smad2

Prdm1

Rad21

Pkmyt1

Ets1

Pcna

Mdm2

Gsk3b

Orc1

E2f4

Atm

G1/S

G2/M

G1/S 
and 

G2/M

Transcription 
factors

Cell cycle 
genes

A

B

C

D

E

F

G

Trp53

Crebb

Anapc1

Mcm3

Cdkn2a

Sox2xx

Mad1lll1111

Cdkn1a

Batf3

Rbl1

Cdh1

Stag1

Nfkbb11

Cdc14b

Abl1

Prkdc
Cdc45cc

HdaH c2cc

Cdc25b

EspspspE pll11

Cdc25a

Dbf4ff

CdCCdc20

CheCCC k1

Cdkn2d

Relaa

Weeee

cne

EEEEEEEEEE
11111111 PlPPP k11

1

N
E2f1

NfatfN cc1111

Brca1

1111
FoxFFF o1

Cdk4kk

Skp2

k2 Pttg11

Zbtb177

Cdc7

GGGGadd45aa

Smad4

Runx1xx

Cdkn2b

Cdkn1b

Rfxff 1

Ccnb2bb

Vdr

Notch1

Cdk1

Relb

Lef1

Bub3

Cebpb

Klf4ff

Cdc6

Rb1

Gabpb1p

WWWWWWWWW1111111111111111 uBB b1b

Rorb

Arntltl

Tgfb1

Foxm11

Tfdp1

Myc

FCux1xx

1l111111
SmS c3

Mad2l1

Ttk

Smc1a

TgTg
BuBubbbb1111

Sfn

e1
BmaSm11 dd2

Prdm1

1111111

PPPPPPPPPPPPPP
RaRaRadddd2121112222121122222

myt1

Ets1

C
c3

PcnaPc aPP

Mdm2

ppp
Gskkkkkk333333bbbbbbbb

Orc1

E2f4

Atm

FIGURE 2 Estimating TDMI using the innovation approach and using it to generate a causal interaction network. (A and B) Time-series RNA transcrip-

tomics measurements for Tgfb1 and Ets1. (C and D) Mono-variate KDE for probability densities of residuals. (E) Bi-variate KDE for probability density of

residuals. (F) TDMI calculated between time series of Tgfb1 and Ets1 for different lags. (G) Interaction network development for the cell cycle model using

TDMI. Network construction is based on TDMI threshold of top 10 percentile. The boxed sections are color coded based on category mentioned.

Raja et al.
the sum of weighted production rates of the RNAs where the
weights are computationally fitted (see section ‘‘materials
and methods’’). The importance of an RNA during a partic-
ular stage can be inferred based on its weight for the stage.
The higher the weight for RNA, the higher the functional ne-
226 Biophysical Journal 123, 221–234, January 16, 2024
cessity for it during a particular stage and vice versa, and
thus this approach connects the mathematical objective to
biological objective. During cell cycle, we incorporated
the changes in the objective functions by fitting for different
weights for each stage. Each stage was modeled with its own
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wj represented by wk;j, where k ¼ fG1; S1; S2; S3;G2;Mg
represents the sequential objective-changing stages of the
cell. It is important to note that, although most cell cycle
phases (experimentally defined) can be modeled using a
specific single objective (e.g., G1; G2; M), some stages
will require special modifications based on the biological
process. Here, during S phase, there is competition between
transcription events and DNA replication, and there is a
global anti-correlation between replication and transcription
timing making it impossible to model using a single objec-
tive (38). This observation is an important part of the model
development here, which necessitates a stage-specific objec-
tive approach and thus a significant departure from cyber-
netic modeling of microbial metabolism. Therefore, S
phase can have multiple stages and here we used three
stages to model S phase (represented as S1; S2; S3), with
each stage having its own objective (Fig. 3).
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Weapplied our CIM to the selected 86 genes. Sincewe already
identified the most likely interactions based on TDMI-based
time-series analysis, we can prevent the overparameterization
problem in our approach by allowing only those interactions to
have a nonzero interaction parameter (kgi;j) value.We had time-
series measurements for 67 h covering the period exceeding
one cell cycle. After the first cell division, we assume that
some cells of fraction fG0 could transit toG0 phase or cell cycle
arrest (Fig. 3 A and B), whereas the remaining cells of fraction
(1 � fG0Þ continued to the second cell cycle with objective-
changing time points to be t7; t8; etc. (Fig. 3 A and B). We
used the following strategy to validate our model. For the first
cell cycle period, we fitted for all the intrinsic RNAparameters
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wS3;j, wG2;j, wM;j), and the respective time points for objective
change (t1, t2, t3, t4 , t5, t6).We solved themodel to attain global
minimization of the sum of the squares of normalized fit
errors using the MATLAB ODE function ‘‘ode15s’’ and opti-
mization functions ‘‘lsqnonlin’’ and ‘‘patternsearch’’ starting
with 100 different initial conditions. For the time period after
the cell division, we modeled the two fractions of cells repre-
senting G0 stage and remaining cells in their second
cell cycle separately and added them based on their
respective fractions. Here, we assumed that the G1 and G0
stages have the same objectives and therefore equal weights
(wG0;j ¼ wG1;j). While fitting the period after cell division,
we used the same RNA intrinsic parameters and weights
and fitted only for the fG0 and the transition times (t7; t8)
(Fig. 3). Fig. 3 C shows the overall fits for the full duration
of 67 h. Tables S1 and S2 show the overall fittedmodel param-
eters. Themodel described the first cell cycle andwas also able
to fit the time period after cell division using the same param-
time (hr)
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eters, thereby providing a biologically feasible solution using
our approach (this partially validates the computational
model).
Network reconstruction using CIM

We reconstructed the network based on the interaction param-
eter kgi;j (sparcematrix) by creating edges only between the no-
des with a nonzero k

g
i;j value. This resulted in only 153

interactions within this network of 86 nodes (Figs. 4 A and
S2). This is far less than what was predicted using the TDMI
approach (731 interactions). The positive k

g
i;j represents activa-

tion and negative kgi;j represents repression. The absolute value
of kgi;j represents the strength of interaction. These interactions
are identified based on a mechanistic model that is nonlinear
and multifactorial, thereby making these interactions highly
probable. Comparing this network with a canonical protein-
protein interaction network including second neighbor
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genes FIGURE 4 The reconstructed network based on

CIM and the identification of the key regulators.

(A) The activating interactions are shown as arrows

and repressing interactions are shown as dashes. The

thickness of the interaction lines depends on the ab-

solute value of the interaction parameter, kgi;j. The
boxed sections are color coded based on category

mentioned. The dynamics of regulator of gene

expression g (B) and control variables u (C) and v

(D) for the key genes. The black dashed lines repre-

sent the change points. Each region is color coded

based on its respective stage.
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interactions shows that 90% of these interactions are observed
in the literature (Fig. S3).
Novel interactions not present on string database

The cell cycle is an extensively studied system, but a lot
is still unknown. We identified several interactions not
previously identified in Sting database using our CIM
model (Figs. 5 and S3): Cdk1 / Batf3, Batf3 / Ccnb2,
Gabpb1 / Pttg1, Ccnh / Batf3, Prkdc / Batf3,
Klf4 / Rorb, Nfatc1 / Rorb, Gabpb1 / Tgfb1,
Rorb / Stag1, Stag1 / Trp53, Gabpb1 / Cdc6,
Rorb / Pttg1, Abl1 / Batf3, and Cdc14b / Tgfb1.
The validity of these interactions should be experimentally
tested in the future.
Distinct stages across cell cycle and their
durations

Since our approach involves changing from one stage to the
next stage, it implies the involvement of change points in our
biological process and inourmodeling strategy.Wecanuse ap-
proaches such as change-point detection (CPD) algorithms
well known in the signal processing community to decipher
the change points (39). We can then validate these using bio-
logical intermediate endpoints such as the those in each phase
of the cell cycle. Previously, for the cell cycle system, amodel-
free CPD algorithm based on singular spectral analysis was
used to detect changes in the time series of cell cycle genes
(3). They calculated the time of phase change for the cell cycle
phases as the time at which they identify significant individual
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time-series change points detected out of 63 cell cycle genes
(3). Based on this criterion, the durations for G1, S, and G2/
M phases of the cell cycle were estimated to be 14.5, 10, and
4 h, respectively (3). These CPD algorithms are only based
on time series and lack any mechanistic insights. Here, we
used the CIM to identify these change points by determining
the times at which the objective needs change. The time points
for objective change are simultaneously fitted alongwith other
parameters. Ourmodel predicted the duration for each of these
stages fG1; S1; S2; S3;G2;Mg during first cell cycle (Table 1).
For the time after cell division, our model predicted duration
for the second cycle {G1; S1g to be {9:62;1:78} respectively.
The plots of g, u, and v of specific key regulators are shown in
Fig. 4 B–D. The key regulators are selected based on the crite-
rion that at least at one time point the value of v peaks to 1 for
them. For understanding the importance of each RNA tran-
script, we define a new estimate called maximal RNA expres-
sion rate (MRER; Max(vjk

r
j gj)). This is the maximum value

among the RNA expression rates.
Network simplification and analysis

We analyze the reduced network to identify the key central
molecules whose regulations are the most important for the
cell cycle. We had grouped the RNA transcripts into groups
such as with transcription factor genes, checkpoint genes
(G1/S and G2/M), and other canonical cell cycle genes
(Figs. 2 G and 4 A). For identifying key central nodes, we
used the following two properties. One is a network prop-
erty called maximal clique centrality (MCC), which ana-
lyzes and identifies the key nodes giving importance to
25b

orb

tk

ox2

1

ux1

tag1

Transcription 
factors

Cell cycle 
genes

FIGURE 5 Development of simplified network

based on MCC and MRER. The activating interac-

tions are shown as arrows and repressing interac-

tions are shown as dashes. The thickness of the

interaction lines depends on the absolute value of

the interaction parameter, kgi;j. The boxed sections

are color coded based on category mentioned. The

network shown here is for a union of nodes with

MCC R 7 and MRER > 1. The boxed sections

are color coded based on the category mentioned.
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TABLE 1 Predicted phase durations across the first and

second cell cycles

Phase duration Cell cycle 1 (h) Cell cycle 2 (h)

G1 9.25 9.62

S1 5.18 1.78

S2 3.14 >15.38

S3 6.14 NA

G2 8.72 NA

M 7.77 NA

NA, not applicable.

Raja et al.
number and extent of interactions (40). The top nodes based
on MCC were Stag1, Tgfb1, and Pttg1. Another property
from the CIM is called MRER (see previous section), which
helps identify key nodes in a specific-rate manner. Using
thresholds for these properties, we were able to eliminate
the nodes in the network while retaining the important no-
des. We illustrate a simplified network based on the
threshold MCC R 7 W MRER > 1 (Fig. 5). This approach
reduced the nodes to 66 (from 86) and interactions to 126
(from 153). This reduced network highlights the key nodes
and their interactions based on MCC and MRER combined
and could be used to understand the major regulatory fea-
tures of the cell cycle.
DISCUSSION

Cybernetic methods were originally developed to address
unknown regulatory events in a single-stage cellular process
with a defined goal. However, several biological systems
such as the mammalian cell cycle involve multiple stages
with one or more distinct objective functions at each stage.
The traditional cybernetic approach is not designed to cap-
ture this complexity. Here, we develop a novel strategy for
capturing this complexity, and we call it a CIM. To account
for each stage and how the stage proceeds in terms of a
causal evolution, we introduced TDMI, which uses temporal
correlation to provide insights into the causality of regulato-
ry events. The preliminary regulatory network from TDMI
is then used as a starting point in the CIM to obtain biolog-
ically realistic models. Such pre-processing techniques have
greater importance when solving inverse biological prob-
lems. The CIM approach significantly reduced the number
of interactions to describe the system (compare Figs. 2 G
and 4 A). Although TDMI is one way to identify causality
and determine concomitant interactions, we could have
used other techniques for time-series analysis, such as
Granger causality, to identify these interactions. Knowledge
embedded in databases such as Kyoto Encyclopedia of
Genes and Genomes pathways (41), Reactome pathway
database (42), and ConsensusPathDB (43) can be used for
a comprehensive list of legacy pathways to ensure the valid-
ity of the initial network. Although extracting an initial
network directly from such databases is possible, our
approach using TDMI (or other time-series analysis tech-
230 Biophysical Journal 123, 221–234, January 16, 2024
niques) can better formulate this initial network incorpo-
rating causal connections when large longitudinal data are
available. In our case, we utilized a TDMI threshold of
the top 10 percentile. This resulted in a network that had a
90% overlap with StringDB and was considered good. If
there are many false positives, a more stringent threshold,
such as the top five percentile, may be considered. Alterna-
tively, if too few connections are inferred, a less stringent
threshold, such as the top 20 percentile, may be considered.

Since we are introducing objective functions at distinct
stages, we can use stages as defined by experimental mea-
surements if available. However, given the dynamical nature
of the system, we may have changes of state that are distinct
from the experimentally determined stages. This motivated
us to use CIM for CPD, which provides insights into stages
of the system, in addition to providing an opportunity to
introduce novel objective functions at each of these interme-
diate stages. We have already shown that the S phase shows
differential regulation because of the balance between tran-
scription and replication events and requires multiple stage
changes to model them. Since we are modeling regulation
within the transcription process, our stage changes are ex-
pected to occur before we phenotypically observe them,
and this time delay can be attributed to lag between RNA
expression and protein production. The dynamical evolution
for the stages provides insights into the regulatory mecha-
nisms associated with the causality leading to the global
endpoint of the biological system (in this case, cell cycle).

We observe that the stage durations during the second cell
cycle are not same as the first. In fact, during the second cell
cycle, we did not identify any change point after 51:61 hours
(representing S2 stage), implying that the cell cycle has
slowed down or stopped. The reason for cell cycle arrest
could be multifaceted, with one of them being attributed to
Cdc6. Cdc6, a gene involved in initiating DNA replication,
is low during the second cell cycle compared with the first
cell cycle, and this could contribute to stopping the cell cycle.
For a cell cycle model, our approach should have an ability to
show a cyclic behavior if the objectives are repeated. Toward
testing whether the model will yield cyclic solutions for the
cell cycle, we repeated the pattern of objectives based on
the first cell cycle and this resulted in a cyclic behavior
(Fig. S4). Each of these stage objectives are represented by
their weights (wG1;j, wS1;j;wS2;j, wS3;j, wG2;j, wM;j; Fig. S5).
When comparing for weight difference across adjacent stages
(Fig. S6), we observed that the stages S2; S3; and G2 had
highly similar objectives. It is during these stages that the
cell proceeds to division, and having similar objectives is
interesting and warrants further studies.

The CIM approach has several quantitative aspects that can
be used to infer key regulators in multiple ways. One way is
by using the stage-specific weights that provided us with the
quantitative relevance of key players within each stage. From
the estimated weights (Fig. S5), Cdc20 is important during
the S2; S3; and G2 stages as its protein is required for nuclear



Dynamic transcriptional regulatory model
movement before anaphase and chromosome separation. We
can also identify key regulators from the regulator of gene
expression and the control variables (Fig. 4 B–D). For G1
phase, Tgfb1, Nfatc1, Myc, Ets1, Rorb and Prdm1 are key
regulators (Fig. 4 B–D). Tgfb1 protein is a multifunctional
protein that controls proliferation, differentiation, and other
functions in many cell types and is known to participate in
regulation of the G1/S checkpoint. For S1 phase, Cdc6 is a
key regulator as its protein is known to be involved in the
initiation of DNA replication and also participates in check-
point controls that ensure DNA replication is completed
before mitosis is initiated (Fig. 4 B–D). During S2; S3, and
M phases,Mdm2 is a key regulator since its protein is known
to inhibit p53/TP53- and p73/TP73-mediated cell cycle arrest
and thereby prevent cell cycle arrest. Here, Cdc20 is a key
regulator for S3 and G2 phases. For understanding the
phase-specific importance for each RNA transcript, we
used MRER (Fig. S7).

We further simplified the network based on a combination
of network and dynamical property (MCCandMRER, respec-
tively). Fig. 6 shows the part of simplified network involving
only canonical cell cycle genes without the checkpoint genes.
This network provides us with the genes/proteins required for
the cell cycle. Tgfb1, Stag1, and Pttg1 are key regulators with
high degrees. Tgfb1 has high MRER during G1 phase repre-
senting its key participation in the regulation of G1/S check-
point. Stag1 has high MRER during M phase as it is
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required in the cohesion of sister chromatids after DNA repli-
cation.Pttg1 has highMRER during S3 andM phases because
of its central role in chromosome stability, p53/TP53 pathway,
and DNA repair.Gadd45a, known to stimulate DNA excision
repair invitro and inhibit entry of cells into S phase, negatively
regulatesMyc,which activates transcription of growth-related
proteins. Most of these RNAs have high MRER during the
later stages of cell cycle since multiple players are required
during cell division. Fig. 7 shows the nodes of the simplified
network of transcription factor genes and checkpoint genes.
Unlike canonical cell cycle genes, most of the transcription
factor genes have high MRER during the G1 phase, possibly
because of high requirement of transcription factors after
cell division for cellular growth. Other transcription factor
genes have some role in the cell cycle, as shown in Fig. 7 A.
Vdr, a nuclear receptor for vitamin D3, also supports the
cellular growth (44). Batf3 can also support the cell cycle
based on protein-protein interaction with CDK6, CCND2,
CDK2, and TP53. The checkpoint genes show high variability
based on phase-specific MRER values (Fig. 7 B–D), showing
that they are expressed at various time points but can act as
phase-specific checkpoints.

Our approach provides a highly adaptable solution
compared to dynamical models that rely on steady and oscil-
latory states with key species to elucidate the progression of
the cell cycle (19,45). These models necessitate parameters
extracted from existing literature, rendering them challenging
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to employ in systems lacking well-understood kinetic models
and parameters. In contrast, our approach can be implemented
in any system, provided that temporal data are available.
Although we have evaluated our approach using the cell cycle
system, it is not restricted to this system alone.

Although there were several attempts to develop transcrip-
tional regulatory networks (25,46–50), these approaches
were not extended to dynamically model longitudinal mea-
surements. Our approach differs from ARACNE (25), Scribe
(48), and LEAP (49) as we use CIM to construct our model
network, which is not comparable to the information theory
techniques used by these approaches. However, our intermedi-
ate network based on the TDMI threshold can be compared to
those obtained from the above-mentioned methods. There are
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also other approaches for network inference, such as those
based on statistical significance of the edge coefficients
(51–53).

These eukaryotic systems show complex regulatory pat-
terns that simple linear models cannot capture. The ability
of the cybernetic approach to address this regulatory
complexity lies in the nonlinearity enforced by the cyber-
netic control variables as well as the segregation of the sys-
tem into multiple stages with varying control objectives. In
our approach, we have used ‘‘time’’ to characterize all tran-
sitions (stage change) because of its inherent simplicity.
However, we recognize that such transitions may be related
more deeply to intracellular variables, a potential that can
only be realized when sufficient understanding of the system
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becomes available. Genetic perturbation experiments, such
as gene silencing, have the potential to affect the durations
of different stages. If we can determine the stage durations
based on the current species states, our approach can be
expanded to predict outcomes for these experiments. As
we have modeled a synchronous cell cycle here, all cells
may be assumed to behave similarly. On the other hand,
most biological experiments are asynchronous, necessi-
tating some form of averaging to be superimposed on the
model where we can model cell behavior based on aver-
aging weights over the stage-specific number density of
cells.

The complexity within cellular processes due to the
multitude of regulatory interactions is often difficult to
infer using previous mathematical models. The cybernetic
approach of mapping the cellular regulation to objectives
that can be mathematically formulated can overcome this
difficulty. Based on the observation that the cellular pro-
cesses are multi-staged, we developed a novel approach
that incorporates the stage-specific objectives. The impli-
cations of our proposed approach go beyond modeling the
mammalian cell cycle processes. We can formulate com-
plex cellular processes, where only sparse measurements
are available, albeit with knowledge of intermediate end-
points, in terms of the CIM, enabling us to infer multiple
unknown regulatory processes. For instance, we can
consider a developmental process of lineage specification
of a specialized tissue from pluripotent stem cells, where
targeted measurements are available across stages of
development (pseudo-time) as an exemplary problem for
this approach. Although such investigations are in prog-
ress, it must be evident that the cybernetic approach by
comprehensive addition of regulatory intervention has a
higher potential to discover new biological phenomena.
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