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Abstract

For a fluid mixture containing very many components, the usual discrete compo-
sition variables {e.g. mole fractions) can be replaced by a continuous distribution
function. When that distribution function is introduced into an equation of state, an
expression for the chemical potential is obtained. Phase-equilibrium calculations are
often straightforward when a simple algebraic form is used for the distribution func-
tion. However, when phase-equilibrium calculations are combined with material bal-
ances, as in flash calculations, it is not always possible to obtain a completely self-
consistent result because if a simple algebraic form is used for the feed-stream distri-
bution function, it does not follow that this form also holds for the two effiuent-stream
distribution functions.

This work describes two procedures for performing flash calculations using con-
tinuous thermodynamics. The first procedure, called the method of moments, pro-
vides only an approximation because it does not strictly satisfy all material balances;
however, in some cases this approximation can be very good. A second procedure,
called the quadrature method, uses efficient Gaussian integration; it does not use an
algebraic form for the distribution function but provides exact solutions to the flash
problem at selected values of the distribution variable. Both procedures are illus-
trated with realistic examples, including fluid mixtures where a selected component
(e.g. COp) is considered as a discrete component while all others are considered as
continuous components; this is the semi-continuous case. Calculations are also given
for fluid mixtures containing several homologous series {or ensembles) as found, for
example, in petroleum mixtures where the ensembles may be paraffinic, naphthenic
and aromatic hydrocarbons.

Compared to conventional pseudo-component methods, flash calculations using
continuous thermodynamics have an important advantage because they require no
arbitrary identification of pseudo-components.

Calculated results using the quadrature method are compared to experimental

data for phase equilibria in a natural-gas mixture. Agreement is very good for compo-
sitions of coexisting phases and for liquid yield during retrograde condensation.




Introduction

Many of the fluid mixtures found in nature and in the chemical industry are ill-
defined in the sense that the mixture contains far too many components for standard
chemical analysis toward identifying the components and their concentrations; com-
mon examples are petroleum, coal-derived liquids and vegelable oils. Such mixtures
can, however, be characterized upon separation of fractions (e.g. by fractional distilla-
tion, extraction or crystallization) and subsequent physical measurements for each
fraction (e.g. molecular weight, boiling point and density). Phase equilibria for such
mixtures are usually computed using standard thermodynamic procedures wherein
each fraction is considered to be some equivalent pure component; such computations

are said to use the pseudo-component method.

An alternate procedgre for calculating phase equilibria in ill-defined mixtures is
based on the view that the mixture contains not a finite number of pseudo-
components but instead, an infinite number of true components. The composition of
such a mixture is not described through conventional discrete concentrations (such
as mole fractions) for each component but instead, through a continuous distribution
function whose independent variable is some appropriate characterizing quantity
such as boiling point or molecular weight. The equilibrium properties of a continuous
mixture are described upon extension of well-known ther.modynamic methods for

discrete mixtures. That extension is often called continuous thermodynamics.

Based on earlier work by Ratzsch and Kehlen(1980), Salacuse and Stell(1982) and
Gualtieri, Kincaid and Morrison(1982), Cotterman, Bender and Prausnitz(1984)
presented a general procedure for calculating phase equilibria using continuous ther-
modynarmies. In particular, it was shown how an equation of state of the van der Waals
form can be used to perform such calculations for continuous or semi-continuous
mixtures; the latler are those where the concentrations of some components (usually

those present in excess) are given by discrete values while those of other components



are given by a distribution function.

To apply phase-equilibrium thermodynamics to engineering design, it is necessary
to establish procedures for performing flash calculations. This work presents two
such procedures within the framework of continuous thermodynamics and then
discusses their advantages relative to one another and relative to the pseudo-
component method. Comparisons between calculated and experimental results are

presented for a gas-condensate mixture.

Flash-Calculation Procedures

For mixtures with a finite number of components, many numerical procedures
have been suggested to solve the set of isothermal flash equations (see e.g., King,lSSO;
Michelsen,1982; Nghiem, Aziz and Li, 1983). However, for é mixture with a continuous
distribution of com_poneznts. these procedures require extensive modifications, as dis-

cussed below.

Flash-calculation procedures for continuous mixtures have been reported for
petroleum distillations (e.g., Bowman, 1949; Eoffman, 1968; Taylor and Edmister, 1971).
However, these procedures are restricted to simple models, such as Raoult's Law, cou-
pled with numerical integration methods or approximation functions to solve the
material-balance equations. Fractionation calculations for polymer systems use simi-
lar methods for liquid-liquid separations (e.g., Scott, 1945; Koningsveld and Staverman,
1968; Huggins and Okamota, 1967) based on dividing a polymer distribution into a
large number of discrete fractions, suitable for numerical integration. An analytical
procedure has been presented by Gualtieri, Kincaid and Morrison(1982) for approxi-
mate flash calculations in dilute semi-continuous mixtures. Recent work by Rétzsch
and Kehlen (1983) gives a formal mathematical analysis of phase equilibrium in con-
tinuous systems with approximations for flash calculations based on Raoult’s Law with

compositions described by Caussian (normal) distributions.
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We present first a general formulation of the governing equations for isothermal
flash calculations in continuous or semi-continuous systems. We then discuss two
techniques for solving these equations.

To fix ideas, Figure 1 shows schematically an isothermal vapor-liquid flash for a
continuous system. Temperature, pressure and feed composition are specified; the
compositions and relative amounts of the outlet streams are to be calculated. The
feed and outlet streams are related through material balances; the two outlet streams
are assumed to be in thermodynamic equilibrium.

For a mixture with a continuous distribution of components, the composition is
described by a molar distribution function F whose independent. variable [/ is some
characterizing property such as molecular weight. This function, F(/), is normalized

such that

JF(Dar =1 (1)
I . .

over the pertinent range of 1.

Semi-contin.uous mixtures are those where the concentrations of some com-
ponents are assigned discrete values while the concentrations of other_s are described
by ~a distribution function. The continuous fraction is weighted with a mole fraction,
7. and each discrete component © is weighted with mole fractions, designated by, say,

z;. For n discrete components, the normalization is

Sz + 0 [F()Al =1 (1a)
t I

The feed stream is related to the outlet streams through a set of material bal-
ances. We define the fraction vaporized, £, as the ratio of moles of vapor to moles of

feed. For every discrete component, 1, the material balance is
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zy = Ly + (1-8)z, | ' - (2)

where z;, y; and z; are feed, vapor and liquid mole fractions for component i, respec-
tively.

For the continuous fraction, we introduce a distribution function, F(J/), and a

mole fraction, 7, for each phase. For all], '
nFFE(I) = ¢nVFY(1) + (1=&)nt FL(1) (3)

where superscripts F, V, and L designate feed, vapor and liquid, respectively.

Since the two eflluent streams are at equilibrium, we require first, for every com-

ponent i
pd = ud (4)
and second, for all ]

w1 = pk (1) . )

where pu is the chemical potential.
The essence of the ﬁash-problerﬁ is to solve simultaneously material balances

[Equations (2) and (3)] and phase equilibria [Equations (4) and (5)].

Phase Fquilibria from an FKquation of State

As discussed previously (Cotterman, et.al, 1984), chemical potentials in continu-
ous (or semi-continuous) fluid mixtures can be found from an equation of state. For

the vapor phase,

7 5P RT P VY
Yin= f{—2 - gy - RTIn ——2——— + RT + u°(T./ 6
tu' ( ) f 6ncF(1+) T‘VJ’:] V nn L # ( ) ( )

where F(/) is the molar distribution function, n, is the number of moles of continuous

v
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components, V is the total volume, P is the system pressure, P? is the ideal-gas refer-
ence pressure (taken to be 1 bar) and u? is the chemical potential of a species at [ in
a continuous mixture that is an ideal gas at temperature T and 1 bar. A similar rela-
tion holds for uf (/).

To illustrate, we use an equation of state similar to Soave's (1372) modification of

the Redlich-Kwong equation of state. For a pure component,

RT a(7) '
v-b  v(v+d) (7)

P =

where b is a molecular size parameter and energy parameter a{T) is a function of
temperature.

Parameters a(T) and b were fit th pure-component vapor-pressure data. For a
homologous series of hydrocarbon components, a*¥(7) and bv'a‘re liﬁear functions of
molecular weight. To extend this equation of state to mixtures, we use standard mix-b

ing rules as discussed previously. Appendix I gives details of the equation of state. _

It was shown earlier (Cotterman, et.al,, 1984) that, when Equation (7) is used, the
distribution functions for two equilibrated phases can be related to one another. For
example, if a gamma distribution describes the composition in one phase, that of the
other phase is also described by a gamma distribution. The gar.nma distribution is

= U=yt =)
F(1) = [la)pe zp ( 3 ) (8)

where [" is the gamma function and where a and 8 are adjustable parameters. The
mean is given by af + y and the variance by ag% Shift parameter y indicates the ori-
gin of F(/); that parameter is the same for both phases.

Relations can then be developed between parameters a and g8 for the vapor phase
and those for the liquid phase, so as to give a ‘set of non-linear equations; solution of

these equations gives the dew point or bubble point in a continuous or semi-
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continuous mixture. If the composition of one phase is sbeciﬁed, the composition of
the other can be found without approximations. | |

When extended to flash calcﬁlations, however, t.he materi;l balances must also be
sa{isﬁed. Unfortunately, the material balances introduce a third distributionb func-
tion, viz. that of the feed. For the general caée, there is no universal distribution
function, applied to all three streams, for which phase equilibria and material bal-
ances can be satisfied for all values of index /. Therefore, the flash calculatibn for a
continuous or semi-continuous mixture can only be éolvéd approximately. We now

present two approximate procedures which give good results while maintaining low

computer-time requirements.

The Method of Moments

The method of moments is a direct extension of our previous work on dew-point
and bubble-point calculations. We assume that, to within a well-defined approxima-.
tion, for all three streams, the composition of the continuous fractioﬁ of each stream
" of the flash calculation is described by a gamma distribution function. Using Equa-
tions (3) and (5), we can relate approximately the parameters which characterize each
of all three garruna distributions. .

Since it is not possible to relate the distfibution-function parameters exactly, we
use Equation {3) to guide u.s in developing an approximate solution. By multiplying
each term of Eéuation (3) by index I, and integrating over the pertinent range of /, we
generate a relation between the first moments (or means) of the distribution func-
tions, F(/). We can repeat this procedure with other integral_powers of ] to generate a

set of moment equations of the form:
nf Ml = ¢nV i) + (1-¢)nt M} (9)

where A, is the 7" statistical moment about the origin of the distribution F(J). #, is



defined by

M, = [I"F(D)dr (10)
I

where, more generally, / must be replaced by (/ — ).

To salisfy the material balance exactly, all moment equations {r=1,2,...») for the
continuous fraction must be satisfied. The gamma distribution function contains only’
two parameters, a and B8; therefore, only two moment equations can be considered.
The zeroth moment is necessarily satisfied thvrough the overall material balance.
Therefore, we choose the first and second moment eqguations to relate our
distribution-function parameters; we neglect higher moments. Some error is thereby
introduced into the material balance. By choosing to satisfy only the lower rﬁoment
relations, we fail to satisfy higher moment relations. For many cases, however, this

error is not significant. Details of the method of moments are gi\-ren in Appendix IL

Figure 2 shows results of a flash calculation for a semi-continuous mixture using
the method of moments; the molar distributions of the continuous fractions in each
stream are shown as a function of molecular weight. The area under each curve

represents the number of moles based on a total feed stream of one mole.

The feed contains 40 mol % carbon dioxide while the remainder is a continuous
distribution of paraffins with 2 mean molecular weight of 100 and a variance of 800.
We use binary interaction parameter k,,=0.12 for carbon dioxide(1)-paraffin(2)
interactions [see Appendix 1]. Calculations are shown at two pressures, 10 and 50 bar,
at temperatures where the moles of the continuous fraction are evenly split between
the vapor and the liquid; this is where the error in the material balance is largest.
Table 1 presents additional results for this flash calculation.

In the example shown at the top of Figure 2 at 50 bar, the feed is flashed to form
a vapor and a liquid whose continuous distributions are similar. The specified feed is

shown as a solid line; the sum of the vapor and liquid curves is shown as a dotted line.
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The difference between these two curves represents the error in the material balance.
At .50 bar, the material balance is satisfied very well over thé molecular weight range.

The relative error in the maximum of the feed Eiistributibn functions is 1.5%."

At 10 bar, the shapes of the vapor and liquid distributions are rﬁuch different and
the material balance error is larger--the relative error_'m the maximum of the feed
distribution is 3.57.

These comparisons represent worst-case results; they' suggesﬁ that the error in

the material balance is negligible in rhany cases.

The Quadrature Method

The second procedure for solving flash-calculation equations in continuous or
semi-continubus_ systems intf’oduces numerical integration by Gaussian quadrature
into integral-algebraic Equations (3) and (5).

Gaussian quadrature‘ provides an efficient method of integrating a function by
summing a finite number of weighted function evaluations at specified values of t"he
integratipn variable called quadrature points. For each of these points, phase equili-

bria and material balances are satisfied exacfly. For s quadrature points, -

-]

,[f(l)au: SN w(lp)f () (11)

p=1

where w(/;) is the weighting function and f (/) is the function to be integrated at the
quadrature point, [,. Details describing quadrature integration may be found in texts
on numerical methods (e.g..Lapidus, 1962 or Hamming, 1973).

The quadrature points and weighting factors are not arbitrary. They are roots of

a class of orthogonal polynomials which effectively approximate an integral by a poly-

nomial of degree {(2p —1). For tabulated values, see Abramowitz and Stegun (1972).

<
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’ Appcndik 111 describes the implementation of quadrature integration into the
flash-calculation equations. In this procedure, the composition distribution of the
continuous fraction of each stream. is described by a collection of quadrature points,
rather than by a continuous distribution function. Equations (3) and (5) are replaced

by s sets of the following equations:
0" F (L) = en"FY (L) + (1-n" FH (1) (12)
W) = ph () (13)

The continuous functional relations [Equations (3) and (5)] are replar.:ed by a finite set
of algebraic equation.s (12) and (13).

The quadrature method is analogous to the well-known pseudo-component pro-
' ce_dure. However, in the quadrature procedure, the deﬁnition of the quadrature
points is not arbitrary. Usually, six to ten points are sufficient to characterize a dis-

tribution for phase-equilibrium calculations.

Unlike the method of moments, the quadrature method may be used with an arbi-
trary feed distribution function, FF(J), analytical or not. Similarily, there are no res-

trictions on the molecular-thermodynamic model.

Flash calculations using the quadrature method give values for the outlet
streams' distribution functions, FY(J) and F%(/), at each feed quadrature point. ThL.IS,
while the method of moments gives an approximate but complete representation of
composition for the outlet streams, the quadrature method gives these functions only

al discrete points, but it does so exactly.

Figure 3 shows results for a flash calculation for a semi-continuous mixture using
the quadrature method. The feed contains 40 mol % CO, while the remainder is a con-
tinuous distribution of paraflins. At 510 K and 50 bar, the fraction vaporized is 0.640.

The calculated vapor stream is rich in CO, {52.1 mol %) while the liquid contains only
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18.6 mol Z CO,. For th»e CO,{(1)-paraffin(2) interaction, we again use k;»=0.12.

Calculated results for the liquid and vapor distributions are shown as solid points.
The dashed curves are interpolations using cubic spline fits. Figure 4 shows additiénal
results for the same mixture. |

On the left side of Figure 4, we compare computer-time requiremeﬁts for flash
calculations. The method of mom.er‘)ts re.quires 1.50 CPUvseconds while the quadra-
ture method requirement varies between 1.13 and 2.53 CPU seconds depending on the
number_ of quadrature points éhosen_. |

The diagram on the right in Figure 4 shows the sensitivity of the calculated frac-.
tion vapori.zed to the number of quadrature points. For more than 4 points, the frac-
tion vaporized does not change significantly. From the results shown in Figure 4, we
conclude that, for this simple system, six quadrature points are sufficient to fnaintain_

both high accuracy and low computer-time requirements.

Extension to More Complex Mixtures

In the discussion above, we have considered simple, unimodal distribution func-
tions for mixtures composed primarily of paréfﬁns. We can extend our procedures to
more compiicated distributions as required for more complex mixtures.

Cottermaﬁ, et.al.(1984) showed that de»-\'-pointv and bubble-point calculations
could be performed for mixtures described not by one distribution function but by a
sum of gamma distributions. For such mixtures, flash calculations can also be pef-
formed using the method of moments; details are given in Appendix Il. |

The quadrature method accepts an arbitrary distribution for describiﬁg composi-

tion. Therefore, there are no restrictions on the shape or modality of the feed distri-

bution. However, the more complex the distribution, the more quadrature points are

required to represent integral properties accurately.
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We are not restricted to systems containing only one homologous series. An
elegant method to characterize more complicated systems (avoiding multivariate dis-
tribution functions) is to consider the mixture compose.d of various ensembles, as also
proposed by Kehlen and Ratzsch (1983). An ensemble is a collection of chemically;
similar components. For example, a hydrocarbon mixture may contain three homolo-
gous series: paraflins, aromatics and naphthenes; each of these forms an ensémble
described by é particular distribution function.

Figure’ 9 illustrates the ensemble concept. Within each phase of a semi-
continuous mixture, there is a distribution function for each continuous ensemble,
weighted by a mole fraction, 7. Each ensemble is consiaered as a separate com-
ponent. Since the mole fractions in each vphase must be normalized, for m ensembles

and n discrete components, we write for the liquid phase,
n m '
Yz + Yot [FNdI =1 (14)
1 k I

We have similar normalization conditions for the vapor phase and for the feed.

We write a phase-equilibrium criterion for each ensemble k:

pd(1) = pk() (15)

The material balance for the flash is, for each ensemble k,
nfF{T) = g0 R + (1=-EnkFHD) (18)

The chemical potential for each ensemble is calculated using the same equation
of stalte; however, we use a different set of parameters for each ensemble. Multiple
ensembles may be incorporated into both the method of moments and the quadrature

method. The discussions in Appendices 1] and 11l include multiple ensembles.
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Figure 6 presents results for a flash calculation using the'quadr’atﬁre method for
a semi-continuous mixture bcontaining distributions of aromatics and paraffins at 570
K and 50 bar. Table 2 gives mole fractions of compo.nents in each phase (all kiJ-QO).
Ten quadrature points are used to describe the composition of _éach continuous
ensemble; these points'need noi be the same for all ensembles. Calculated results for
the liquid and for the vapor are shown as points. The dashed curves represent inter-

polations. The heavy, solid curve shows the sum of the individual ensembles.

Comparison of the Quadrature Mcthod to the Pseudo-Component Method

In the next examples, phase-equiiibrium calculations using the quadrature
method are compared to those using the pseudo-cbmponent method first, for a fnix- _
ture of paraffins at 5 bar and second, for a mixture of C0,(1) and paraffins(2) at 20 bar

where the interaction parameter, k3, is a function of molecular weight.

For the first example, Figure 7 shows the composition of a'24—componeﬁt feed
mixture of normal paraffins. Using all 24 components, Table 3 shows the bubble-point
and dew-point temperatures as well aé a flash result at 480K. All ki are set to zero.
These calculations were repeated using first, a six-point quadrature method and then,
‘using the pseudo-component method with three different lumping criteria for defining
pseudocomponents. Calculated bubble points agree within 10 K for all methods but
calculated dew points, where the characterization of the high-rﬁolecular-weight tail is
important, show a large range. Results from the quadrature method are very close to
those from the exact 24-component result. By contrast, results using the pseudo-
component method depend on how the pséudocomponents are chosen. The quadra-

ture method eliminates the arbitrariness required in defining pseudocomponents.

For the flash calculation, all methods give a similar fraction vaporized because
that fraction is not sensitive to details in the composition distributions. Using similar

programming schemes, computer-time requirements are reported. The exact
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calculation, using all 24 components, requires 1.2 CPU seconds while the six-point

quadrature method and the six pseudo-component methods require 0.45 CPU seconds.

For the second example, the paraffin distribution shown in Figure 7 is mixed with
CO, to produce a feed with 40 mol % €O, Binary interaction parameters between
CO,{1) and paraffins(2) were fit to binary vapor-liquid equilibrium data to obtain a k3

as a function of molecular weight, I:
k,2 = 0.100 + 0.109ezp (—0.007874 J) (17)

Equation {17) gives an adequate representation of binary COg-parafﬁnv equilibria for
normal paraffins between butane and eicosane. Table 4 gives results of bubble-point,
dew-point and flash calculations at 20 bar. As in ‘the previous. exafnple, bubble-point
temperature and fraction vaporized are not sensitive to the calculation method. How-

ever, dew-point temperatures depend strongly on how the "heavies” are characterized.

In both of the previous examples, flash-calculation computer-time requirements
for the quadrature method and for the grouping schemes are a factor of 3 less than
those for the 24-component calculation. A B-component quadrature method calcula-
tion requires approximately the same computer time as a lumped 6-pseudocomponent
method. By introducing interaction parameters for all binary pairs containing 0,
computer times double' for all schemes.

These simple examples illustrate the advantages of the quadrature method éver
conventional lumped-pseudocomponent methods for flash calculations. For engineer-
ing applications, the quadrature method may be incorporated without significant
modification into existing numerical algorithms for flash calculations and for design of

staged separation operations.



-14 -

Comparison of Calculated and Experimental Results for Natural-Gas Condensation

To illustrate the application of the quadrature method to real mixtﬁres, flash-
calculation results are. compared wiﬁh experiment for a gas-condensate system.
Hoffmann, Crump and Hocott(1953) report dew-point and‘ﬂash results in the retro-
grade region for a reservoir-gas sample at 367 K.. These authors givbe quantitative ana-
lyses for light hydrocarbons to (g and for distillation cuts such that each c.ut
corresponds to a to normal paraffin in the range C, to Céz. In addition, liquid densities

and liquid-vapor ratios are tabulated.

In our calculatipns, the reservoir-gas mixture is considered to be a semi-
continuous mixture of discrete light hydrocarbons (C;—C,;) and a continuous
"heavies" fraction. Using the quadrature method, nine quadraturé points are chosen
to represent tﬁe heavies distribution. The composition datva of Hoflmann et.al. are
converted to molar distributions by dividing the molé fraction of each distillation c':urt
by the ;vidth of the molec'ular—weight range covered (i‘n this case, 14). Ta_ble 5 gives
compositions'and the top portion of Figure 8 shows the heavies distribution i.n the feed
with the specified quadrature points. The molar distribution at each quadrature point

is obtained by interpolating between the midpoints of the cuts.

We use once again the equation of state discuséed earlier. To describe the
heavies, we use equation-of-state constants fit to vapor pressures of-normal alkanes.
Binary interaction parameters, kij, are set equal t.o. zero for all pair;s except the
methane-heavies pair where we use 0.085, obtained by matching the calculated dew-
point pressure at 367 K to the experimental value, 264.66 bar. Table 5 shows calcu-

lated and experimental liquid compositions at the dew point.

Hoflmann et.al. report flash results at six pressures between 35.5 and 200.9 bar in
the retrograde region. Upon specifying the feed composition, the compositions and
relative amounts of the vapor and liquid streams are calculated at each pressure. Cal-

~culated and experimental results are in good agreement; Table 6 gives typical results
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at an intermediate pressure.

Figure 8 shows the distributions of heavies in tﬁ.e equilibrium phases. The bars
represent experimental distributions; the érﬁooth curve is an interpolation between
calculated values of the molar distribution at quadrature points. The lower portion of
Figure B shows a predicted bimodal distribution in the liquid phase, barely evident in

the feed distribution. Calculations at other pressures give similar results.

Figure 9 presents calculated and experimental equilibrium ratios [K; = y;/ z;] for
each component as a function of pressure at 367 K.

As a ﬁnal example, Figure 10 shows the liquid yield, or liquid-vapér ratio, as a
function of pressure at 387 K. Since experimental results are pre‘sented as volume
ratios, our calculated molar ratios are converted to volumetric units. Vapor volumes
are corrected to standard conditions of 15.5 °C (60 O_F) and 1.013 bar using the ideal-
gas law7 Experimental liquid densities are tabulated at systerh T and P. Table 7 com-
pares calc‘ulated‘ and experimental results.

At constant temperature, a reduction of pressure through the retrograde region
produces two dew pdir_lts. Figure 10 shows the measured dew poiﬁt at 264.66 bar.
Assuming that no solid phases are formed, a second dew point is encountered at 0.015.
bar. In between thesut; two dew ‘points, there is an observed maximum in the liquid-

vapor ratio, correctly predicted by the flash calculations.

Similar comparisons between calculated and experimental results have been
reported using pseudo-component calculations (Starling, 1966; Katz and Firoozabadi,
1978).

Using our modified Redlich-Kwong-Soave equation of state, the quadrature
" method works well for natural-gas mixtures where the average molecular weight of the
heavies is below {(about) 400. F‘or. prediction of phase equilibria in higher-molecular-
weight systems, typical of crude oils, a better molecular model is needed. Toward that

end, current work is in progress to apply the perturbed-hard-chain theory (Donohue
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and Prausnitz, 1978) to semi-continuous mixtures for phase-equilibrium calculations.

Conclusions

Continuous thermodynamics provides a convenient procedure for calculating
phase equilibria for ill-defined mixtures where concentrations are not given by stan-
dard discrete variables but instead, by a continuous distribution function 6f some
characterizing continuous variable. Toward application of continuous thermodynam-
ics in process design, two procedures are here descr;ibed for pe;‘forming ﬁash célcula—
tions. The first procedure, using the-l;nethod of moments, is mathematically attractive
but may intreduce intolérable errors in the material bbalance. The second procedure,
using the quadvrature method, is less elegant but probably more useful for engineering
work. Both methods appear to have possibly important advantages over the tradi-
tional pseudo-component method because continuous thermodynamics avoids arbi-
trariness in the deﬁhition of pseudocomponents without an 'increase in computational
requirements. Continuous thermodynamics may be particularily useful for calculating
those thermodynamic properties {(for example, isobaric dew-point temper;ture) that

are often sensitive to the arbitrary definition of pseudocomponents.

For retrograde condensation in a gés—condensat.e system, there is good agree-
ment between calculated and experimental phase éompos.itions and liquid yields.
While the computatidnal procedures discussed here are general, application to
higher-molecular-weight systems will require a molecular-thermodynamic model which
is better than that used in this work. Efforts toward that end are in progress.

The procedures discussed here may be useful for computer-aided design of
separation operations and for simulation of reservoir behavior for enhanced oil
recovery. Computer programs for performing flash calculations using continuous

thermodynamics will be made available upon request.
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Nomenclature
Symbols
a Equation-of-state attractive-energy paraméter
b Equation-of-state molecular-size parameter
c,ct@ Functions derived from equation of state
F(!) Molar distribution function
1 Distributed variable (taken here as molecular weight)
K Equilibrium Ratio
k Binary interaction parameter
M Statistical moment of distribution function
m Number of continuous components
n Number of discrete components
P Absolute pressure
R Gas constant
s Number of Quadrature Points
T Absolute temperature
14 Total volume
v Molar volume
w Quadrature-point‘weighting factor
x Discrete-component mole fraction in liquid
Y Discrete-component mole fraction in vapor
z Discrete-component mole fraction in feed
Z Compressibility factor
Subscripts
i.J ' Discrete‘components
k.l Continuous components
P.g Quadrature points
T Statistical moments
Superscripts
- F Feed stream
L Liquid stream

vV Vapor stream
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Greek Symbols

By Gamma-distribution-function parameters
Gamma function
Chemical potential
Continuous-component mole fraction

Fugacity coefficient

v 8 3 r "1 R

Fraction of feed vaporized



-20-

Literature Cited

Abramowitz, M.; Stegun, l.A. "Handbook of Mathematical Functions" Dover Publications,
New York, 1972.

Bowman, J.R. lnd. Fng. Chem. 1949, 41 , 2004.

Cotterman, R.L.; Bender, R.; Prausnitz, JM. /nd. Eng. Chem., Proc. Des. Dev. 1984, in
press.

Donohue, M.D.; Prausnitz, JM. AJChRE J. 1978, 24 , B49.

Gualtieri, J.A.; Kincaid, J.M.; Morrison, G. J Chem. Phys. 1982, 77, 521.

Hamming, R.W. “"Numerical Methods for Scientists and Engineers"; Mc-Graw Hill, New
York, Second Edition, 1973.

Hoffman, E.J. Chem. Eng. Sci. 1968, 23 , 957.
Hoffmann, A.E.; Crump, J.5.; Hocott, C.R. Pet. Trans., AIMFE 1953, 198 , 1.

Huggins, M.L.; Okamota, H.; “Polymer Fractionation”, M.J.R. Cantow, Ed., Chapter A,
Academic Press, New York, 1967.

Katz,D.L.; Firoozabadi, A. J. Pet. Tech. 1978, Nov , 1649.

Kehlen, H.; Ratzsch, M.T. Proc. 6th Int. Conf. Thermodyn. Merseburg 1980, 41.

Kehlen, H.; Ratzsch, M.T. Fluid Phase Egquilibria 1983, submitted for publication.

King,C.J. "Separation Processes'; Mc-Graw Hill, New York, Second Edition, 1980.

Koningsveld, R.; Staverman, A.J. J. Poly. Sci. A-2 1968, 6 ,383. ‘ A

Lapidus, L. "Digital Computation for Chemical Engineers”; Mc-Graw Hill, New York,
1962.

Michelsen, M.L. Fluid Phase Equilibria 1982, 9, 1.

Nghiem, L.X; Aziz, K.; Li, Y.K. Soc. Pet. Fng. J. 1983, 23, 521.

Ratzsch, M.T.; Kehlen, H. Fluid Phase Fquilibria 1983, 14 , 225.

Salacuse, J.J.; Stell, G. J Chem. Phys. 1982, 77 ., 3714.

Scott, R.L. J. Chem. Phys. 1945, 13, 178.

Soave, G. Chem. Eng. Sci. 1972, 27, 1197.

Starling, K.E. Soc. Pet. Fng. J. 1968, Dec , 363.

Taylor, D.L.; Edmister, W.C. AICREJ. 1971, 17, 1324.

Zwolinski, B.J.; Wilhoit, R.C. "Handbook of Vapor Pressures and Heats of Vaporization of
Hydrocarbons and Related Compounds”; American Petroleum Research Project
44, Texas A&M University, College Station, Texas, 1971.



-21-

Table 1

Flash-Calculation Results Using the Method of Moments

P T ¢ Vapor Liquid
(bar) (K) Yco, Mean Variance | zgp, Mean Variance
10 422 0.688 | 58.5 B88.1 363 3.6 111.8 954
50 512 0.635 | 52.2 94.4 596 18.7 105.8 943
Table 2

Flash-Calculation Results for a Semi-Continuous, Multi-Ensemble

Mixture Using the Quadrature Method

Mole %
Component
Feed Vapor Liquid
C, 38.5 50.0 12.0
Cs 4.5 5.8 1.9
Cs 3.0 3.6 1.6
c, 20 22 1.7
paraffins 36.0 29.4 50.9
aromatics 16.0 9.3 31.9
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Table 3

Comparison of the Quadrature Method to the Pseudo-Component Method
- for a Paraffin Mixture at 5 bar '

Fiash Calculation

"Heavies"” Bubble Dew T=480 K
Point Point
Characterization
- (K) (K) ¢ CPU(sec)
All 24 components 436.3 539.2 0.559 1.25

8-Point Qu adraturé

437.0 540.3 0.557 0.45
Method

8 Pseudocomponents

445.2 535.9 0.566 0.45

(equal number)

8 Pseudocomponents

440.2 513.4 0.565 0.45

(equal molar) _

6 Pseudocomponents ‘

444.9 524.8 0.524 0.45

(equal mass)
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Table 4 .

Comparison of the Quadrature Method to the Pseudo-Component Method
for a CO;-Paraffin Mixture at 20 bar

Flash Calculation

"Heavies" Bubble Dew T=450 K
Point Point
Characterization
(K) . (K) £  CPU(sec)
All 24 components 267.7 569.8 0.498 2.30

8-Point Quadrature

287.7 570.0 0.500 0.75
Method
8 Pseudocomponents '
267.7 566.7 0.491 0.75
(equal number) '
6 Pseudocomponents
267.7 551.2 0.495 0.75
(equal moles)
6 Pseudocomponents
‘ 287.7 561.2 0.487 0.75

(equal mass)
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" Table 5

Dew-Point Results for a Natural-Gas Mixture at 367 K

(Calculated Dew Pressure = 264.66 bar)

Mole 7
| Component Vapor | Liquid
specifled | calculated experimental
c, 91.35 51.99 52.00
C, 4.03 4.53 3.81
Cs 1.53 | 2.47 2.37
Cs 0.82 1.90 1.72
Heavies 2.27 - 39.12 40.10
Table 6

Flash-Calculation Results at 367 K ahd 138.87 bar

Mole 7
Component ~ Feed Vapor Liquid
specified calculated experimental | calculated experimental
C, 91.35 92.17 92.18 35.72 34.19
C, 4.03 4.03 - 4.03 4.08 3.62
Cs 1.53 1.51 1.57 2.72 2.87
C, 0.82 0.80 0.78 2.52 2.57
Heavies 2.27 1.48 1.44 54.96 56.75
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Table 7

Liquid-Vapor Ratio for Retrograde Condensation
in a Natural-Gas Mixture at 367 K

Liquid-Vapor Ratio
Pressure
calculated experimental
(bar) (mol/ mol)x10® (m3/m3)x10% | (m3/ m3)x10°
0.0157 0.

35.48 11.04 88.61 84.69

69.94 13.65 94.98 - 95.14
104.41 14.50 96.02 '95.32
138.87 13.78 86.80 87.35
173.33 11.47 67.98 69.83
200.90 8.48 48.39 50.92
264.661 0. 0. 0.

T Dew point of gas mixture _ v
Vapor volumes corrected to standard conditions [15.5 °C (60 °F) and 1.013 bar]
'using ideal-gas law. For the liquid, conversion frorn molar to volumetric units is

based on experimental density data.
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vapor

moles

AN

. constant
feed .} 1 ap
I
liquid o
—— O
. © :
Must satisfy: | -

I
|. Material Balance

2 FRI) = € YFY(D) + (1- )9 FH(D)

F(I) = distribution function
I = distributed variable
(e.g., molecular weight)
n = mole fraction
§ = fraction vaporized

2. Phase Equilibria
pV(I) = (D) for all I

p(I) = chemical potential

FIGURE 1

FLASH CALCULATION FOR A CONTINUOUS MIXTURE
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Feed: 40% CO,, 60% paraffins (continuous).
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P =50 bar Feed:
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-«-- sum of liquid
0008 - and vapor —
- Vapor (calcd) i
0.004}- Liquid (calcd)
O + 1 T !
0.008
0.006}
0
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Molecular Weight

Error in material balance indicated by
shaded area.

FIGURE 2

FLASH CALCULATION RESULTS FOR A
SEMI-CONTINUOUS MIXTURE USING
METHOD OF MOMENTS
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Feed: 40% COp, 60% paraffins (continuous)
T=5I0K P=50bar ¢=0.639

0.0 l 2 . | ] T | T ' T
“% CO2 - @ quadrature point
- vapor 52.1 4
liquid 18.6 _
0.008} Feed (specified)
0.004}
O 1
0] 50 100 150 200

Molecular Weight

FIGURE 3

FLASH CALCULATION RESULTS FOR A SEMI-
CONTINUOUS MIXTURE USING THE
QUADRATURE METHOD
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For a mixture of paraffins, naphthenes and aromatics

pp (I) = pg (I)
py (D = py (D)
g (D) = pl (D
Three distributions for phase ',
PARAFFINS
H
-a
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a.
p
I
NAPHTHENES AROMATICS
g |
-«
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I I

We can then find the corresponding distributions for

phase ".

Material Balance for each phase

M ¥+ Mt

FIGURE 5

Na = !

FLUID-PHASE EQUILIBRIA FOR A SYSTEM

CONTAINING THREE ENSEMBLES
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FIGURE 6

QUADRATURE METHOD FOR MIXTURE
CONTAINING CONTINUOUS DISTRIBUTIONS
OF PARAFFINS AND AROMATICS
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Assumed feed composition for a 24-component
system: C4-Coop
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c |
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= - l" -
O v | T T
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Molecular Weight

FIGURE 7

COMPARISON OF THE QUADRATURE METHOD
TO PSEUDO-COMPONENT METHOD FOR
PHASE-EQUILIBRIUM CALCULATIONS AT 5 BAR
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CALCULATED AND EXPERIMENTAL DISTRIBUTION
OF HEAVIES FOR RETROGRADE CONDENSATION

IN A NATURAL-GAS MIXTURE AT 367 K AND
139 BAR '

(Data of Hoffmann, Crump, and Hocott)
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CALCULATED AND EXPERIMENTAL EQUILIBRIUM
RATIOS IN THE RETROGRADE REGION FOR A
NATURAL-GAS MIXTURE AT 367 K
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CALCULATED AND EXPERIMENTAL LIQUID-VAPOR
RATIO IN THE RETROGRADE REGION FOR A

NATURAL-GAS MIXTURE AT 367 K
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Appendix I

Equation of State for Semi-continuous Mixtures

To perform phase-equ'ﬂibrium cvalculétions. we use one equation of state to
describe both vapor and liquid properties. Equation (7) is applied to semi-continuous
mixtures via mixing rules for parameters ¢ and &. For a system with n discrete com-

ponents and m continuous components (or ensembles), we obtain for the liquid phase:

b = i:jzib(i) +$::77,¢L[F,,L(l)b(1)d] | | | (I-1)
a =3V zz;a(i5) + 25 D znd [ FDai.0)dl o
17 Tk I . |
+ Y80kt [ [EHDFKIMa (L) ddr (1-2)
k1 IBD :

where z; and nl are liquid-phase mole fractions for the discrete and continuous frac-

tions. Similar relations hold for the vapor phase.

Expressions for ¢ and b for pﬁre components were fit to vapor-pressure data
(Zwolinski and Wilhoit, 1971) for several homologous series {or ensembles) of hydro-
carbons. Table I-1 lists the homologous series considered. For our purposes here,
these series represent average properties of the paraffinic, aromatic and naphthenic

constituents of petroleum mixtures. For each ensemble, the following relations

represent the data:
b(I)=bg+ b,/ - (1-3)}
oK1 = ao(T) + ay(T)] | (-4)
where | is molecular we'xght.. The tempgrature dependence of ay(7T) and a ,(7T) is given
by:
ao(7) = af® + a7+ af? 72 (1-5)

a (7)) =af? +a{VT+af?) 12 (1-8)

where T is in kelvins. Table I-2 gives all constants for specified ranges of temperature
and molecular weight. For low-molecular-weight fluids, the Soave{1972) expressions -

are used to find parameters a and b.



-37_

The cross terms in the mixing rules are given by a geometric mean corrected with

a binary interaction parameter, &

a(i.j) = a¥{(i,i)a¥(j.j ) (1-ky) (I-7a)
a(i.f) = a¥(i,1)a¥ (7. 0)(1-ky) (1-7b)
a(r.1*) = a¥{ 1, Na¥(1*.1*)(1-k ) (1-7c)

For discrete-discrete cross terms, interaction pararﬁeter kij is set to a constant
value. For discrete-continuous interactions, k; is constant for the method of
moments (Appendix 1I) but, for the quadrature method (Appendix 111}, k;; may be
expressed as a function of molecular weight by fitting binary vapor-liquid equilibrium
data. Interactions between continuous components usually are adequately described

by the geometric mean approximation; in that event, k, is set equal to zero.
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Table I-1

Ensembles for Vapor-Pressure Correlation

Molecular-Weight | Temperature Average RMS
Ensemble % Deviation in
Range Range (K)
- Vapor Pressure
Paraffin 58-563 223-723 3.91
(n-alkanes)
Aromatic 78-303 298-673 1.99
(alkyl-benzenes)
Naphthene 84-309 298-673 4.48
{alkyl-cyclohexanes)
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Table 1-2

Constants for Equation-of-State ParametersT

(Equations 1-3,4,5 and 8)

b (cm3/mol)

Ensemble
b b,
Paraffins 1 -12.400 1.6000
Aromatics -30.848  1.4547

NapAhthenes -37.145 1.6013

ag (bar —cm®/ mol?)

Ensemble
af” ad? af?
Paraffins 194.83 -1.8659 5.5602x107%
Aromatics 933.28 -4.9850 9.0332x1073
Naphthenes | 434.99  -4.9395 10.0850x1078
a, (bar —cm?®/ mol?)
Ensemble
af® afv af?
Paraffins 100.850 -.112970 3.8208x107%
Aromatics 85.488 -.087780 6.9715x1077
Naphthenes | 91.903  -.078747  5.7932x107°

U Ranges of molecular weight and temperature are given in Table I-1.



-40- -

Appendix 11

Flash Calculations Using the Method of Moments

Phase-equilibrium criteria for semi-continuous mixtures may be rewritten in

terms of fugacity coefficients, ¢;. For each discrete component:
yipd = zi0f (11-1)
For each continuous component {or ensemble):
neFE(Deel1) = niFE()p i) (11-2)

where superscripts Vand Lrefer to vapor and liquid phases.

Fugacity coefficients are determined in a manner similar to that for chemical
potential. For each discrete component, the fugacity coefficient in each phase, for a

mixture containing n discrete components and m continuous components, is

_ v b(1) ab(i)[ v+b b
RTin g, —R’Iln-—-—v_b + RTv—b + X In - 7+

v+b
v

- RTinZ (11-3)

- %izja(i,j)-}-inkfpk(])a (i,[)d[}ln
3 k i

where v is the molar volume and Z is the compressibility factor. For each continuous

component,

RTtn gy (1) = RTin—Y— + pr2t)

v—b v—b b2

ab (/) [lnv:b _ ‘Uib

In l’i’i ~ RTinZ (11-4)

- %—[ixia(l.i)ﬁ“im [ RUMa(nrydr
i It

Applying Equation (II-4) to both phases V and L, the ratio of ¢,(/) in the two

phases may be expressed as an explicit function of molecular weight, /:

L
pi(l)
=cM+ s (11-5)
wi(1) * £

where Ckm and C‘k(z) are combinations of terms from Equation (1I-4) for each ensemble

In

k which are independent of the variable /

This result allows us to relate the distribution-function parameters in the vapor

and liquid phases to each other. If each ensernble in the liquid phase is described by a
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gamma distribution function (with parameters v£, of and BL). the vapor composition is

also described by gamma distribution functions with

y=F (11-6)
a!: af (H'?)
r
B = T—:az—)ﬁ_f (H-B)
n _ af B
;2— = ezp (G + ( 2)7,,)[ C("’)ﬂ ] (11-9)

Equations (II-6 to 9) permit an exact solution to the phase-equilibrium criterion

[Equation (1I-2)] for each continuous fraction.

The material balance for each discrete compohent is given by Equation (2) and
for each continuous component by Equation (16). We use Equation (16) to develop
relations between distribution-function parameters for the feed, vapor and liquid
streams using the first and second statistical moments of each distribution function

(here chosen to be gamma distribution functions).

The first moment, the mean, is written
M, = ]'JF(J)dJ =af + 7y
7
The second moment is
M = ]I"‘F(])dl = aB® + (af+7)?
7

These relations are substituted into the material balance, Equation (9), to obtain two
equations‘for each continuous fraction. After some simplification, we write
néafBE = tnlofBd + (1-8)nkalBé (11-10)
nEaf(af+1)8E° = ¢ndag(af+ 1) + (1-Onéag(af+ 188 (1-11)
The zeroth moment gives the overall balance
nE = fnd + (1-O)n} | (1-12)
Shift parameter y is the same in all streams

yE =y = o# (11-13)
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Selection of the first and second moments is arbitrary; other moments could have
been chosen. In addition, this formulation assumes that the composition distribution
in each stream is described by a two-parameter gamma distribution function or a sum

of gamma distributions.

While other distribution functions may be used to improve the material balance
through additional parameters, they will not allow an exact solution to the phase
equilibrium criteria as given by Equations (11-6 to 9). However, approximate relations
between distribution-function parameters in equilibrium phases can be derived by'
equating moménts of equilibrium Equation (1I-2), analogous to the procedure used for

the material balance equation.

13
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Appendix 111

Flash Calculations Using the Quadrature Method

The quadrature method is based upon approximating a continuous distribution
function by a sum over s guadrature points. For a semi-continuous mixture with n
discrete components and m continuous components {(or ensembles), the normaliza-

tion condition for the liquid stream is written
}fzd}fn;"i} w (L) FHL) =1 (111-1)
i k P

Similar equations apply to the feed and vapor streams. The quadrature points, I, and

the weighting factors, w, (};,), are the same in all streams; their selection is discussed
later.
The phase-equilibria criterion, Equation (15), must be satisfied at each quadra-
ture point p for each continuous component &:
wl(L,) = p(p) (111-2)
In terms of fugacity coeflicients, ¢,

MR LYo 1,) = nEFKIL Yo X1,) (111-3)

An expression for the fugacity coefficient, derived using Equation (7) , is given by

_ v b(lp) ab(-l[p) v+h (4
R’ﬂn:p,,(]p)—fm-n.v_b +RT 2+ —5 |l Py
2 AUR <TNR v+b
iy Yrzia(Li)+ymyw () FR(,)a (I‘.L)]ln - RNInZ (111-4)
< i L
where
n . m S
b =2xb (@) + Yme Ywe () Fe ()b (1) (111-5)
< k P .
and

a = igz‘-zja(i,j) + Ziszmkiwk(&,)Fk(!p)a(i,[p)
¢ P

1

+ ‘éimmi‘iwk(!p)Fk(!p)w;(!q)ﬂ(!q)a(g,.!q) (111-8)
P g
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Parameters b(/,) and d(lp.]p) are evaluated at the gquadrature points using constants
for the appropriate ensemble. Cross coefficients for equation-of-state constant a are
given by a geometric mean corrected with binary interaction parameteré. ky [see
Equations (7)].

Equations (111-4)-(111-8) are written for each equilibrium phase to relate Fkv(/p) to
F,f‘(]p ). Fugacity coefficient expressions for discrete components are derived by anal-
ogy to Equation (1I-3).

Finally, we write a material balance at each quadrature point for each 'ensembl_e
niFIL,) = ¥ FUL) + (A—6niFiL,) - (111-7)

To specify quadrature points and weighting factors, we select the type of Gaus-
sian quadrature (deterl;n'med by the range of the variable /) and the number of qua-
drature points. Using molecular weight as the distributed variable, we choose a semi-
infinite integration method, Laguerre-Gauss gquadrature, for which y</<«. This
integration method works well when the "tail" of the function to be integrated
decreases exponentially or faster. For smooth distribution functions with only one or
two modes, we find that six to ten quadrature points is usually sufficient for flash cal-

culations.

laguerre-Gauss quadrature requires that the quadrature points be scaled to
match the distributed variable. This is easily done by scaling the tabulated guadra-
ture points by a constant value. We choose this scale factor by plotting the logarithm
of FF(I) as a function of /. For many distribution functions, the tail of the distribution
produces a linear region on semi-log coordinates. The negative inverse slope of this
linear region is the quadrature-point scale factor. '

As an example, for a gamma distribution [Equation {8)] with mean 100, variance
800 and shift 50, the negative inverse slope of lnF([j plotted versus / is approximately
19. To represent adequately the maximum of this distribution‘function, we use a lower
value of 10 to scale quadrature points to the range of (/—7).

Results are not very sensitive to the value of the scale factor provided that factor
is of the correct order of magnitude. For multimodal distributions, the scale factor
should be chosen to produce quadrature points in the molecular-weight range where

the distribut'ion function has the most curvature.
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