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Do Neural Language Representations Learn Physical Commonsense?

Maxwell Forbes†, Ari Holtzman†‡, and Yejin Choi†‡
{mbforbes, ahai, yejin}@cs.washington.edu

†Paul G. Allen School of Computer Science and Engineering, University of Washington
‡Allen Institute for Artificial Intelligence

Abstract

Humans understand language based on the rich background
knowledge about how the physical world works, which in turn,
allows us to reason about the physical world through language.
In addition to the properties of objects (e.g., boats require fuel)
and their affordances, i.e., the actions that are applicable to
them (e.g., boats can be driven), we can also reason about if–
then inferences between what properties of objects imply the
kind of actions that are applicable to them (e.g., that if we can
drive something then it likely requires fuel).
In this paper, we investigate the extent to which state-of-the-
art neural language representations, trained on a vast amount of
natural language text, demonstrate physical commonsense rea-
soning. While recent advancements of neural language mod-
els have demonstrated strong performance on various types of
natural language inference tasks, our study based on a dataset
of over 200k newly collected annotations suggests that neural
language representations still only learn associations that are
explicitly written down.1

Keywords: physical commonsense, natural language, neural
networks, affordances

Introduction
Understanding everyday natural language communication re-
quires a rich spectrum of physical commonsense knowl-
edge. Consider the example dialog sketched in Figure 1.
A simple observation that, “The blender is broken again!”
triggers myriad pieces of implied understanding (e.g., that
something which requires electricity will only work with a
source of power). Such knowledge is rarely stated explicitly
(Van Durme, 2010), and instead can be inferred on-the-fly as
needed.

In this paper, we study physical commonsense knowledge
underlying natural language understanding, organized as in-
teractions among three distinct concepts: (i) objects, (ii) their
attributes (properties), and (iii) the actions that can be applied
to them (affordances) (Figure 1, bottom). The premise of our
study is that language models trained on a sufficiently large
amount of text can recover a great deal of physical common-
sense knowledge about each of these concepts. However, as-
pects of this knowledge may only be implicit in natural lan-
guage utterances. For example, answering a question from
the Winograd Schema Challenge (Levesque, Davis, & Mor-
genstern, 2012)—”The trophy would not fit in the brown suit-

1Visit https://mbforbes.github.io/physical-commonsense
for our data, code, and more project information.
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Figure 1: Natural language communication often requires
reasoning about the affordances of objects (i.e., what actions
are applicable to objects) from the properties of the objects
(e.g., what are the size, weights, material of the objects) and
vice versa. We study the extent to which neural networks
trained on a large amount of text can recover various aspects
of physical commonsense knowledge.

case because it was too big. What was too big?”—implicitly
requires the physical commonsense reasoning that “in order
to fit X in Y, X should be relatively smaller compared to Y”,
which essentially requires reasoning about the affordances of
objects (fit X in Y) from their attributes (relative size of X and
Y).

In this paper, we investigate the extent to which neural lan-
guage models trained on a massive amount of text demon-
strate various aspects of physical commonsense knowledge
and reasoning. Our analysis includes word embeddings such
as GloVe (Pennington, Socher, & Manning, 2014), as well as
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more recent contextualized representations like ELMo (Peters
et al., 2018) and BERT (Devlin, Chang, Lee, & Toutanova,
2018). Such models are trained without supervision by ex-
posing them to billions of words, and allowing them to ex-
tract patterns purely from token prediction tasks that can be
derived directly from raw text. These language representa-
tion models have established unprecedented performance on
a wide range of evaluations, including natural language infer-
ence and commonsense reasoning.

How much do these large, unsupervised models of lan-
guage learn about physical commonsense knowledge? Some
recent work has studied the capabilities of word embeddings
to predict an object’s properties (Rubinstein, Levi, Schwartz,
& Rappoport, 2015; Lucy & Gauthier, 2017). Motivated
by these efforts to understand language representations, we
present several contributions. We contribute two datasets: the
abstract dataset, a refreshed version of the McRate dataset
(McRae, Cree, Seidenberg, & McNorgan, 2005), pruned and
densely annotated to eliminate false negatives present in pre-
vious work; and the situated dataset, with annotations for ob-
jects’ properties and affordances in real-world images sam-
pled from the MS COCO dataset (Lin et al., 2014). As in
previous work, we consider the prediction task of linking ob-
jects and their properties (O←→P), but with our new situated
dataset, we are also able to study the connection between
objects and their affordances (O←→A), as well as between
affordances and properties (A←→P). We also study the lat-
est models from the natural language processing community
(ELMo, BERT) using in-context word representations, and
present results for all of our proposed datasets and tasks. Our
analysis suggests that current neural language representations
are proficient at guessing the affordances and properties of
objects, but lack the ability to reason about the relationship
between affordances and properties itself.

Characterizing Objects through
Properties and Affordances

Properties
We use the term properties to refer to the static characteristics
of objects. They encompass our commonsense understanding
of what something is like. For example, we might say that
an apple has the property of being edible, or that a plant is
stationary.

As with McRae et al. (2005), properties capture the general
perception of a thing. Exceptions naturally arise. For exam-
ple, specific instances can violate the general properties of an
object, such as the inediblilty of a rotten apple. Additionally,
subtypes can diverge from the exemplar of a category, as with
the Venus flytrap, a plant with the ability to move.

Affordances
We express an object’s actions with verbs. One way to fo-
cus on understanding the actions of objects is to focus on
their affordances. Coined by Gibson (1966), this term ini-
tially described animal-perceived uses for an object, but has

since come to mean the perceived uses of an object in a given
environment (Norman, 1988; Gaver, 1991).

Here, we take a simpler, human-centric definition. We con-
sider an object’s affordances to be, “what actions do humans
take with an object?” For example, boots commonly afford
wear, kick off, lace up, and put on.

Inference Between Affordances and Properties

Affordances and properties exhibit a surprising connection.
As humans, we are able to infer many of an object’s affor-
dances based on its properties (A←P). The same is also true
in the reverse (A→P).

Consider an exchange: “You think you could fit that boul-
der in your truck?” “No way! That thing was so big you
could go for a hike on it.” We might sketch out some of this
information as:

fit x into y =⇒ x <size y

hike(x) =⇒ x�size HUMAN

While the above information only concerns a property’s
relative value (comparative size), all kinds of information tra-
verse this edge implicitly:

She plugged in her robot.

plug-in(x) =⇒ uses-electricity(x)
He poured coffee into the cup

pour-into(x) =⇒ holds-liquid(x)
It shattered on the floor.

shatter(x) =⇒ rigid(x)

The implications ( =⇒ ) should be taken with a probabilis-
tic grain of salt. However, they capture our intuitions about
what we expect to be true. Wouldn’t it be surprising to shatter
something that isn’t rigid, or plug-in something that doesn’t
take power?

Humans use the link between affordances and properties
to recover information. Can machine learning models do the
same? It is is difficult to model these implications based on
text alone because there is no direct evidence for the implied
information. Any implication that can be trivially understood
by a person is precisely the kind of information left unsaid.
Who would write, “If I can walk inside my house, I know that
my house is bigger than I am?” Nevertheless, we naturally
understand that: x walk-inside y =⇒ x <size y.

Directly attacking the link between affordances and prop-
erties requires access to implications across the edges. With-
out such information, we can use objects as a proxy to un-
derstand how much modern neural networks know about this
edge. For example, taking an object like boots, and using
only its top affordances wear, kick off, and lace up, can we
predict its properties?
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Statistics

Total Statistics

Abstract
Objects 514 411 train / 103 test
Properties 50 obj/prop: 60 median (3 min, 302 max)

prop/obj: 8 median (1 min, 23 max)
Annotations 77,1000 3 anns/datum
Situated
Objects 1,024 80 unique, split: 64 train / 16 test
Properties 50
Affordances 3072 3 affordances / object (by design)
Annotations 156,672 3 anns/datum

Examples

Objects Properties Affordances

harmonica, van expensive, squishy pick up, remove
potato, shovel used as a tool for cooking pet, talk to
cat, bed decorative, fun cook, throw out

Table 1: Statistics and examples for the proposed abstract and
situated datasets (based on (McRae et al., 2005) and (Lin et
al., 2014)).

Experiments

Tasks

As shown at the bottom of Figure 1, our problem space nat-
urally defines three edges in a graph. A property prediction
task may attempt to produce the human-labeled set of proper-
ties given a new object (O→P) (Lucy & Gauthier, 2017). Pre-
dicting affordances can be done similarly: given a new object,
can its top affordances be distinguished from others (O→A)?
And finally, the troublesome but fertile edge between proper-
ties and affordances: can a model predict the set of properties
compatible with an affordance (A→P)?

We frame each scenario as a series of joint reasoning tasks.
Given two instances (e.g., an object and a property), a model
must make a binary decision as to whether they are compat-
ible. For example, predicting which properties out of a to-
tal of k are compatible with an object o will be set up as k
compatibility tasks (o, pi)→ {0,1}. We denote the tasks as
object-property (O←→P), object-affordance (O←→A), and
affordance-property (A←→P).

Data

To fuel experiments in these three tasks, we introduce two
new datasets. The first we call the abstract dataset, which is
a set of judgements elicited from only the name of the object
(e.g., wheelbarrow) and property (e.g., is an animal). The
second is the situated dataset, where properties and affor-
dances are annotated on objects in the context of real-world

pictures.2

Abstract Dataset Several lists of properties (McRae et al.,
2005), categorization schemes (Devereux, Tyler, Geertzen, &
Randall, 2014), and quantification layers (Herbelot & Vec-
chi, 2015) have been proposed. We take the set of objects and
properties from McRae et al. and perform filtering and pre-
processing similar to Lucy and Gauthier (2017). We also in-
clude the set of objects from the MS COCO dataset (Lin et al.,
2014), collapse similar objects (e.g., many bird species) and
add seven new properties (such as man-made and squishy).
We end up with a set of 514 objects and 50 properties. We
re-annotate all 25,700 object-property pairs to eliminate false
negatives from the original McRae data collection process
and provide labels for new entries. We annotate each pair
three times for a total of 77,100 annotations, and keep only
labels with ≥ 2/3 agreement.

Situated Dataset We also annotate instances of objects sit-
uated in photographs. Images have the great advantage of
resolving visual ambiguities of appearance, shape, and form.
For example, a bottle has different properties if it is a glass
beverage container or plastic shampoo tube. Only a few non-
visual properties (e.g., smelliness) must then be inferred from
the environment.

To build the an experimental situated testbed, we sample
images from the MS COCO dataset (Lin et al., 2014). We
constrain each image to have between three and seven objects
to avoid scenes that are too sparse (often portraits) or dense
(cluttered collections). We also ensure that we have at least
five samples of each of the 80 unique object categories in the
dataset. We end up with 1,024 objects across 220 images.
We then annotate all 50 properties (introduced in the abstract
dataset) for each object, annotating each three times for a total
of 153,600 labels. We filter using the same scheme (≥ 2/3
agreement).

In addition to the properties, we also collect annotations of
the affordances for all objects in the situated dataset. We al-
low annotators to choose from the 504 verbs from the imSitu
dataset (Yatskar, Zettlemoyer, & Farhadi, 2016). We provide
common variants of each verb that include particles, allowing
annotations such as pick up and throw out. Annotators select
the top three to five affordances that come to mind when they
see the selected object in the context of its photograph. We
again perform this annotation three times for each object, and
aggregate the verbs chosen to pick the top three most common
affordances for each object. We end up with a set of sparsely
labeled affordances for each situated object. We perform bal-
anced negative sampling by selecting k = 3 affordances for
each datum and setting their labels to zero.

Detailed statistics and examples for both datasets are
shown in Table 1.

2Annotations for both datasets are performed by workers on
Amazon Mechanical Turk.
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Abstract Situated

O←→ P O←→ P O←→ A A←→ P

obj prop µF1 sig obj prop µF1 sig obj aff µF1 sig aff prop µF1 sig

RANDOM 0.25 0.26 0.26 *** 0.24 0.25 0.22 *** 0.53 0.62 0.51 *** 0.24 0.26 0.23 ***
MAJORITY 0.34 0.11 0.31 *** 0.16 0.05 0.17 *** 0.82 0.68 0.82 *** 0.18 0.05 0.17 ***
GLOVE 0.63 0.47 0.63 * 0.55 0.39 0.57 ** 0.85 0.73 0.86 ← 0.27 0.13 0.29
DEP-EMBS 0.62 0.42 0.60 ** 0.54 0.36 0.54 0.84 0.67 0.84 0.26 0.12 0.28
BERT 0.62 0.48 0.60 *** 0.53 0.38 0.56 0.85 0.70 0.85 0.26 0.12 0.28 **
ELMO 0.67 0.55 0.67 ← 0.58 0.44 0.58 ← 0.84 0.71 0.85 0.31 0.17 0.34 ←

HUMAN 0.78 0.80 0.67 0.70 0.69 0.61 0.83 0.93 0.80 0.65 0.67 0.40

Table 2: Macro F1 scores per category (object, property, affordance) and micro F1 score (µF1) on both the abstract and situated
test sets. Highest model values are bolded. Statistical significance (sig) is calculated with McNemar’s test, comparing the
best-scoring model (by µF1, denoted ←) with each other model. Stratified p-values are shown, with * for p < 0.05, ** for
p < 0.01, and *** for p < 0.001. Human performance is estimated by 50 expert-annotated random samples from the test set
(no McNemar’s test).

Models
Word embeddings We consider four representations of the
words involved in the tasks. Two of the representations are
word embeddings. These map single words to vectors in
Rd . We use GloVe embeddings (Pennington et al., 2014)
as they have proven effective at object-property tasks in the
past (Lucy & Gauthier, 2017). We also use Dependency
Based Word Embeddings (Levy & Goldberg, 2014), as they
may more directly capture the relations between objects and
their affordances. In both cases, d = 300, and we use the
GloVe embedding variant with the largest amount of pretrain-
ing (840 billion words).

Contextualized representations The other two represen-
tations are ELMo (Peters et al., 2018) and BERT (Devlin et
al., 2018), which are contextualized. These require full sen-
tences (as opposed to single words) to compute a vector, but
in turn produce results more specific to words’ linguistic sur-
roundings. For example, ELMo and BERT produce different
representations for book in “I read the book” versus “Please
book the flight,” while word embeddings have only a single
representation.

To account for this, we generate sentences using the rele-
vant objects, properties, and affordances for the task at hand.
For example, to judge accordion and squishy, we would gen-
erate “An accordion is squishy.”

For ELMo, we then take the final layer representations for
the two compared words, each of which is a d = 1024 length
vector. For BERT, we take the overall sentence representation
and sum across the final four layers, which produces a single
d = 1024 vector.

Finetuning Given the word representations above, we fine-
tune each of the models by adding trainable multilayer per-
ceptron (MLP) after the input representations. This allows
models to learn interrelations between the two categories at

hand, essentially calibrating the unsupervised representations
into a compatibility function. We use a single hidden layer
in the MLP, and train using mean squared error loss with L2
regularization.

To summarize, for two words (wi,w j) which can be written
together in a sentence s = w1...wn, we have for a model m,

r(wi,w j) =


〈m(wi),m(w j)〉 if m ∈ {GL., D.E.}
m−1
{i, j}(s) if m = ELMO

∑`∈{−4...−1}m`(s) if m = BERT

ŷwi,w j ∝ σ(wT
2 a(wT

1 r(wi,w j)+b1)+b2)

L(wi,w j,y,θ,λ) = (y− ŷwi,w j)
2 +λ‖θ‖2

2

where m(·)`i is an embedding of the ith token in the layer `,
a is a nonlinear activation function, y ∈ {0,1} is the ground
truth label, θ = {w1,w2,b1,b2} are trainable parameters, and
λ is the regularization strength.

We optimize all models using gradient descent, and tune
all hyperparameters using k-fold cross validation with k = 5.

Baselines We compare performance for these models
against two simple approaches. The random baseline sim-
ply flips a coin for each compatibility decision. The majority
baseline uses the per-class majority label for the training set,
aggregating by property for the O←→ P and A←→ P tasks,
and by affordance for the O←→ A task.

Human performance Finally, we estimate human perfor-
mance on this task. We sample 50 samples at random from
the test set for each task, and have an expert annotate them.
For fairness to the models, we do not show the expert the pho-
tographs or exact instance from which the situated examples
are drawn.
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Property and Affordance F1 Scores by Class Property Accuracy by Category

(a) (b)
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Figure 2: Detailed results of top performing model (ELMo) on the affordance-property compatibility task (A←→P) in the
situated dataset. (a) F1 scores are plotted per property (left) and affordance (right). (b) Properties are divided into four categories
and plotted by accuracy. (c), (d) Both property and affordance F1 plotted against word frequency in natural language text.

Results
A summary of all model performances is shown in Table 2.
Consistent with prior work that has studied object and prop-
erty compatibility (Lucy & Gauthier, 2017), we find good but
not perfect performance (close to 0.70 F1 scores) on the ab-
stract dataset (task O←→ P). Models fare slightly worse on
the situated O←→ P task, with the best performance below
0.60 F1. This effect is consistent in the human expert scores
as well. Though this dataset is larger, the introduction of con-
text allows for greater variance in the properties of an object.

The object-affordance compatibility task (O←→ A) yields
significantly higher numbers. Not only is this task statisti-
cally easier (as demonstrated by the strong majority baseline),
but this edge is the only one directly observed in language.
All models pretrained on text have been exposed to many in-
stances of likely verbs for each object considered. In fact, all
pretrained models perform in the same range as human abil-
ity, and there is no statistically significant difference between
the models for this task.

However, all models struggle with the affordance-property
task (A←→ P). The highest F1 scores are in the 0.30s, with
the random baseline achieving the highest macro F1 score by
property. While this task is also the most difficult for humans,
their macro F1 scores for both affordances and properties are
more than double that of the best performing models. We
posit that the inference between affordances and properties
requires multi-hop inference that is simply not present in the
pretraining of large text-based models. We provide further
analysis in the following section.

Analysis
Models achieve reasonable performance predicting the com-
patibility of both properties and affordances with objects.
However, the task requiring inference between affordances
and properties (A←→P) confounds even the strongest mod-
els.

We explore this result through a detailed analysis of the

top performing model. Figure 2 presents a breakdown of
ELMo’s results on the affordances-property compatibility
task (A←→P) on the situated dataset. From the leftmost
graph (a), we observe that a per-property analysis shows a
largely bimodal split between properties that are fully pre-
dicted (1.0 F1), and went completely unmodeled (0.0 F1).
Affordances, on the other hand, lie more evenly across the F1
range. Because the task involved the compatibility between
properties and affordances, mass for correct predictions must
be shared between the two data groups. That so few proper-
ties achieved a high F1 score suggests that many affordances
rely on only a few properties for accurate prediction.

We perform further analysis to investigate which kinds of
properties yielded better affordance-property modeling. We
categorize each property into four coarse classes: functional
(e.g., is used for cooking), encyclopedic (e.g., is an animal),
commonsense (e.g., comes in pairs), and perceptual (e.g., is
smooth). Figure 2 (b) shows a breakdown of property per-
formance grouped by these four categories. (Here, we plot
accuracy instead of the sharper F1 metric to better illustrate
the spread of performance.) Functional properties exhibit the
highest performance. This makes intuitive since, because
functional capabilities are directly tied to an object’s affor-
dances. In contrast, perceptual properties exhibit generally
lower and inconsistent performance than other categories. We
suspect that perceptual observations observed in text are not
expressed with affordances, making this connection difficult
for models. Largely perceptual features can be written about
with simple verbs (hear, see, feel), giving them less implicit
evidence than more nuanced properties. Finally, encyclope-
dic and commonsense properties fall somewhere in the mid-
dle. These properties, which involve an object’s general char-
acteristics (like requires gasoline, lives in water, or has a
peel), correlate with a variety of verbs. But they may only
be directly expressed at a distance from a verb, making the
inference between them still challenging.

Our final analyses in Figure 2 (c) and (d) investigate
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whether there is a link between the predictive power of the
model and how often a word is used in text. We compute
the frequencies of all affordances and properties occurring
in natural language using the Google Web 1T corpus, an n-
gram corpus computed from approximately one trillion words
(Brants & Franz, 2006). Figure 2(c) plots the F1 score of
properties against how frequently they appear in natural lan-
guage; 2(d) plots the same for affordances. We include a best-
fit line along with confidence intervals shown as one standard
deviation of the data. We do not observe a statistical correla-
tion between how much affordances and properties are writ-
ten about, and how well neural models are able to connect
their effects; a single confidence interval spans both positive
and negative slopes. This lack of clear correlation is surpris-
ing, because large state-of-the-art neural textual models gen-
erally improve with repeated exposure to instances of words.
Except for the three most common words measured by prop-
erty F1 score, the rest of the data shows a strikingly uniform
distribution of F1 scores for any choice of frequency in nat-
ural language. This suggests that current neural models are
fundamentally limited in their capacity for physical reason-
ing, and that only new designs—not more data—can allow
them to acquire this skill.

Discussion
Despite being able to associate a considerable range of infor-
mation with the names of objects, neural models are not able
to capture the more subtle interplay between affordances and
properties. In some sense, this result is unsurprising. Col-
lecting information around an object can be informed largely
by the co-occurrence of words around that object’s various
mentions. Affordances that imply properties (and the reverse)
are rarely mentioned together; their mutual connotation nat-
urally renders joint expression redundant. Hence, priorless
models that learn from statistical associations falter. Given
the depth of the networks used in models such as ELMo and
BERT, complex inter-parameter structure arises, but the la-
tent semantic patterns that describe physical commonsense
are much weaker than more superficial patterns that arise due
to grammar or domain, making it difficult to capture.

This evidence feeds into theories of embodied cognition
(Gover, 1996; Wilson, 2002), which suggest that the nature
of human cognition depends strongly on the stimuli granted
by physical experience. If this is so, then how is information
encoded in our physical experience such that we can make
predictions? If we assume a form of mental simulation, then
what are the mental limits on its reliability? From an artificial
intelligence perspective, the more interesting proof is in the
principles of creating such a mental simulator. If we are to
simulate human capacity for thought, how actually must we
simulate elements of the physical world?

With the rise of physics engines, our ability to model
physical inferences grows (Wu, Yildirim, Lim, Freeman, &
Tenenbaum, 2015). However, while this may make us bet-
ter at anticipating human predictions about physical situa-

tions through perceptual stimuli (Gerstenberg, Zhou, Smith,
& Tenenbaum, 2017), there is still a long way to go before
we understand the inferences that are being made through
more symbolic stimuli, such as language. Exploring the
mechanisms underlying this communication using an implicit
shared world model will require us to either develop access
to such a world model, or expose algorithms to predictions
of that world model by directly querying humans. Bridging
the inductive biases learned from simulation (Battaglia, Ham-
rick, & Tenenbaum, 2013) and those discovered by scientists
(Lake, Linzen, & Baroni, 2019) to make inferences implicit
in text will lead to a more cohesive model of commonsense
physics. We expect such a model to bear great fruit in studies
of communication rich with physical implications.
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