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EPIGRAPH

I went to the librarian and asked for a book about stars... and the answer was stunning. It

was that the Sun was a star but really close. The stars were suns, but so far away they

were just little points of light. The scale of the universe suddenly opened up to me. It

was a kind of religious experience. There was a magnificence to it, a grandeur, a scale

which has never left me. Never ever left me.

Carl Sagan
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ABSTRACT OF THE THESIS

Learning from the Catalog of GWAS to Extract Population Characteristics

by

Kashyap Ravi Tumkur

Master of Science in Computer Science

University of California, San Diego, 2015

Professor Chun-Nan Hsu, Chair

The Genome-Wide Association Study (GWAS) Catalog is a manually curated,

literature-derived collection of all GWAS. This thesis describes a general approach to

using this curated data as training examples to extract the characteristics of population

samples in GWAS, i.e., the experimental stage, ethnicity groups of the individuals in the

populations involved, and the numeric sizes of the sample population pools. As using

curated data in Machine Learning for Natural Language Processing is challenging due to

the lack of annotations, we formulate the problem as cost-sensitive learning from noisy

labels, where the cost is estimated by a committee that considers both curated data and

xii



the text. We evaluate this approach on the two distinct problems of extracting sample

characteristics as relations of the form 〈stage, ethnicity〉 and 〈stage, ethnicity,

size〉. We obtain macro F1 scores greater than 0.8 and 0.7 for the two tasks respectively,

outperforming similar but cost-insensitive techniques.
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Introduction

0.1 Background

A genome-wide association study (GWAS) is an approach to detecting genetic

variations associated with particular diseases or traits by scanning markers across the

genomes of a large-scale sample of subjects in a high-throughput manner. In less than a

decade, GWAS studies have successfully produced the discovery (of an association in a

population) and replication (validation of the discovered association in an independent

cohort) of many new disease loci. Such discovered genetic associations have led to

development of better strategies to diagnose, treat and prevent diseases. As the number

of GWAS is growing rapidly, there is a need for a database that allows researchers to

easily query and search for previous results. A well-curated database also provides a

resource for overview investigations and summarization of associated genetic sites and

may help suggest pleiotropic genes (genes that are individually responsible for multiple,

seemingly unrelated phenotypic traits). Such a database has been created and maintained

online by the National Human Genome Research Institute (NHGRI), called A Catalog

of Published Genome-Wide Association Studies (Catalog of GWAS) [49]. The catalog

has led to interesting characterization of previous results in GWAS [20] and NHGRI has

been continuing to update and curate the catalog regularly by a team of expert curators,

who enter study-level data into specific fields in the database.

1
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Figure 1. Example of an entry in the Catalog of GWAS.

0.2 The Catalog of GWAS

The Catalog of GWAS was first released on November 25, 2008 with 5,120

entries available for search. Since then, a large number of new GWAS articles were

published and the catalog has been regularly updated by systematically selecting research

articles reporting large-scale GWAS. On a weekly basis, epidemiologists from NHGRI’s

Office of Population Genomics manually curate study-level fields of information from

published GWAS and add them to the catalog. As of May 21, 2015, the Catalog of

GWAS has been inserted with approximately 29,000 entries extracted from nearly 2,200

distinct articles.

Figure 1 shows an example entry in the Catalog of GWAS. Each entry represents

an observed association reported in an article, specifying that an association between a

genetic variant, given in the data field Strongest SNP, and a phenotype, given in the

Disease/Trait field, was observed from this study from an initial stage sample, given

in Initial Sample Size. The entry also specifies that the observation was validated

with a replication sample, given in Replication Sample Size. These latter two data

fields describe the characteristics of the population samples used in the GWAS, and are

the focus of this thesis. Other data fields also include information of where the genetic

variant resides in the genome and statistical strength of the observation.
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Figure 2. Example of curated data in the Catalog of GWAS entry matched to passages in
text of the source article [37].

0.3 The Problem

Our goal is to automate the curation of these study-level data fields from GWAS

articles, using a Machine Learning approach to Natural Language Processing. In this

thesis, we focus on the characteristics of the sample populations used in the experiments,

i.e., the experimental stage (“initial” or “replication”), the ethnicity groups of the individ-

uals involved, and the size of the sample population pool. Collaborative work has been

performed for extracting the other data fields towards the larger goal of extracting all the

information recorded by the Catalog of GWAS.

Note that the curated data from the catalog cannot readily be used as training

examples because it provides no annotations, i.e., information of where and how the data

were derived from the text. Instead, it is necessary to automatically match the curated

data to potentially corresponding segments of text, or mentions, and use these as training

instances for the machine learning approach.

Figure 2 shows the matched result of the entry in the Catalog of GWAS with the

actual passages in the text of the article for three data fields. This example illustrates

why curated data can be both useful and not useful as training examples. They are useful

because matching the data to the text will create training examples; they are not useful

because the matching is not trivial. As shown in Figure 2, matching between the data and
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text requires background knowledge. In fact, curated data rarely provide verbatim copies

of what mentioned in the source article. For the purpose of easy searching, categorization,

summarization, and data integration, curators usually adopt a standardized terminology

different from that used in the text. Also, humanly curated data inevitably contain typos

and inconsistencies in following standards. Even when an exact match with curated data

is found, the passage might be about a review of previous results but not the location from

where the data should be extracted. In summary, curated data are useful but imperfect.

0.4 Our Approach

This thesis presents and implements a general approach to using curated data

from existing biomedical databases as training examples for NLP. The key idea is to

estimate the reliability of the training examples from a committee of computer programs,

then use a cost-sensitive learning algorithm to learn from training examples weighted by

the estimated reliability. In Machine Learning, this is known as an approach to agnostic

learning from data with noisy labels [28, 36, 43, 12, 41, 23, 7] and has been intensively

studied but, to the best of our knowledge, never been applied to the problem of learning

from curated data.

We implement the approach and apply it to two problems of information extraction

from the biomedical literature. Task 1 is to extract pairs of stage (initial or replication)

and ethnicity background of the study samples from the GWAS articles using data from

the Catalog of GWAS as the training examples, and can perform as well as 0.83 in macro

F1 score for the extraction task. Task 2 is to extract triplets of the stage (“initial” or

“replication”), ethnicity background and sample size from the GWAS articles, also using

the curated data from the Catalog of GWAS as the training examples, and performs as

well as 0.73 in macro F1 score.



5

0.5 Applicability

The applicability of this approach is not limited to the Catalog of GWAS. A

large number of biomedical databases are available in the public domain, and many

contain data derived directly from published literature either through manual curation by

teams of experts or structured information submitted by authors or researchers. A survey

estimated that, in 2013, a total of 290 papers on biomedical databases were published that

also provided open URL links to access the data. Among these 290 databases, 77.59%

of them collected data from scientific literature and contained citations as supportive

information [25]. Text mining using these curated databases as training data has gained

interest in recent years, and we intend for our approach to be generalizable across these

databases as well.

0.6 Related Work

Natural Language Processing (NLP) and Text Mining from scientific literature has

been considered promising for creating and updating structured databases of biomedical

knowledge [31], and as such, there has been significant work in the field that is related

to our goal of developing a general approach applicable to different entity types and

tasks. The approach is related to learning from data with noisy labels and learning from

crowds [39, 43, 50], where crowd inputs are considered noisy, and to the general problem

of relation extraction, i.e., identifying relationships between entities that are mentioned

in the text, and work from which we have drawn inspiration and ideas are described in

the following subsections.
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0.6.1 Text Mining from Scientific Literature

Text mining from scientific literature has been considered promising for creating

and updating structured databases of biomedical knowledge [31], but it often falls

short and currently, manual curation by experts is still the standard practice for these

tasks [51, 11, 1, 18]. Some even argue that no text mining or Natural Language Processing

(NLP) is necessary when researchers report results following a standardized template [35].

Others argue that crowdsourcing may yield better performance than state-of-the-art NLP

solutions [9, 13, 45]. However, given that scientific publications are still written in free

text and their number is growing geometrically, a scalable and sustainable approach

still requires automatic or semi-automatic approaches [5]. Machine Learning (ML) has

exhibited its potential in NLP and been widely applied in commercial applications. ML

algorithms have also often achieved success in international challenges on biomedical text

mining [26, 55, 44, 54]. However, supervised statistical learning algorithms require large

sets of training examples, which may require an effort no less than creating a manually

curated database. In this thesis, we explore the idea of training cost-sensitive learners

to extract information from free text, by generating noisy labels through automatic and

weak annotation of the text from curated data.

0.6.2 Learning from Noisy Labels

In Machine Learning, the problem of agnostic learning from data with noisy

labels has been intensively studied [28, 36, 43, 12, 41, 23, 7]. Natarajan et al. [36]

provide guarantees for risk minimization under random label noise. Also, [7] deals with

weakly supervised models for learning from uncertain data, while [41, 23] apply boosting

to learn from noise data by relabeling. Liu et al. [28] propose a learning method to

deal with random classification noise by importance re-weighting, which assigns cost to

noisy-labeled training examples. Finally, Sheng et al. [43] propose a repeated-labeling
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strategies of increasing complexity.

However, none of the previously proposed methodologies have been applied to

the problem of automatic data curation. In this thesis, we focus on developing a novel

agonostic learning framework to specifically deal with the problem of automatic data

curation from the Catalog of GWAS.

0.6.3 Relation Extraction

The problem of relation extraction has received much focus in recent years,

with several methodologies arising for application to various problems [4]. Relation

extraction has been applied to biomedical literature, targeted to problems such as protein-

protein interactions using straightforward explorations of all possible relations in text,

grouping strategies and graph-based methods [27, 33]. However, real-world applications

of learning to extract entities and relations from curated databases share the problem of a

lack of annotations, leading to techniques for distant or minimal supervision from curated

databases [34, 8, 27, 40], as well as crowdsourced approaches to obtaining annotated

sets for learning [3]. The feature space for biomedical named entity extraction using

Conditional Random Fields (CRFs), as in our approach, has been explored in [42, 17],

and for that for relation extraction using Support Vector Machines (SVMs) has also been

explored in [16, 22, 47].

Our problem differs from the above applications in that the sample size (the

number of individuals in a population), as a numeric entity, cannot belong to a well-

defined vocabulary and, unlike text, is often found in a variety of contexts such as tables

and figures in the literature. Further, most approaches to relation extraction assume that

the entities exhibiting the relation are present in a single sentence; this is also often not

the case for our problem.
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0.7 Layout of Thesis

The remainder of this thesis is organized as follows: Chapter 1 presents the

general framework of the approach to using curated data as training examples. Chapter 2

describes the data preparation and preprocessing steps required to analyze the data, and

Chapters 3 and 4 report the implementations of the approach and the results for the two

information extraction problems described above. Finally, Chapter 5 summarizes the

results, describes the overall conclusions, and explores future work.

Material in part from the Introduction is currently being prepared for submission

for publication. The thesis author was the primary investigator and author of this material.



Chapter 1

Cost-Sensitive Learning

This chapter describes the general cost-sensitive learning approach used to learn

from the curated data. This general approach is developed in conjunction with collab-

orators and is commonly applied to the task of extracting fields from the Catalog of

GWAS.

In this thesis, this approach is implemented and evaluated on the two distinct

information extraction tasks of extracting the ethnicity groups of genome-wide association

studies’ populations, and of extracting relations between the ethnicity groups and the

size of the populations involved. Collaborative work not mentioned here include the

application of this approach to the tasks of extracting other fields from the Catalog of

GWAS, such as diseases and traits that correspond to each study. The combined work

leads up to the overarching goal of learning to extract all relevant fields from GWAS

articles.

The next section describes this common framework, and the following section

describes the extensions made to the framework for the problems described in this thesis.

1.1 Cost-Sensitive Learning Framework

Figure 1.1 shows the five components and the workflow of the overall learning

approach. The input is a large corpus of research articles for training. For each article,

9
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Figure 1.1. System architecture summarizing the steps in the machine learning process.

Step (A) identifies the passages that may contain the information to be extracted in the

text. The identification of passages should be inclusive in the sense that any candidate

passages will be extracted and no relevant passage is omitted.

Step (B) pairs each passage with a piece of matched curated data and creates a

feature vector for the pair as the input to the committee classifiers. For example, Passage

2 in Figure 2 is paired with data item "1683 Indonesian Individuals" from the

Catalog of GWAS, because Passage 2 is possibly the location from where the data item

was derived. Again, the matching should be inclusive to contain all such potential pairs.

Note that although the features are created from one passage, the feature creator may take

whatever context in the article where the passage is extracted to create the features. In

this way, we can provide the learner to learn from a wide variety of free-text expressions.

Step (C) then sends the feature vectors to a committee of classifiers (diamonds
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at the top of Figure 1.1). Each classifier classifies each pair as “positive” if the passage

is deemed to contain the information given in the curated data, or “negative” otherwise.

The classifiers can be as “weak” as simple decision rules, such as “whether the passage

contains a substring that exactly matches the curated data.” Therefore, each committee

member classifier provides noisy positive/negative labels of the passages extracted from

the text. Combining the classification results of all the committee members for all the

extracted passages creates a a large matrix of yes/no votes, where each element (i, j)

containing the vote from classifier i for candidate passage j.

Step (D) estimates from this matrix the probability that candidate passage j

is truly positive by a label estimator that applies an Expectation-Maximization (EM)

algorithm to compute maximum likelihood estimation of the probabilities, which can

then be treated as the weight, or the reliability of a candidate training example. A similar

approach was used in the BioCreative III gene normalization task [2] to create a silver

standard. The EM algorithm works as follows:

1. Input: matrix M of committees (columns)-passages (rows), where each element in

the matrix is either positive (= 1) or negative (= 0);

2. Let pi be the probability that the i-th passage should be positive, and e j be the error

rate of the j-th committee classifier; Let t = 0;

3. Initialize e j(0) = 0 for all j;

4. Update pi(t) =
∑(1−e j(t−1))Mi j+k

J+K , where J is the number of the committee, and

k/K the Laplace prior;

5. Update e j(t) =
∑ pi(t)Mi j+k′

I+K′ , where I is the number of the passages, and k′/K′ the

Laplace prior;

6. Set t = t +1 and repeat update steps until convergent;
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7. Output: p̂i and ê j, the final values.

With the estimated probability of each candidate passage, we can assign it a

cost, and train a cost-sensitive learner [52, 10, 29] using the candidate passages as the

cost-weighted training examples to learn to select correct passages that contain the

desired information as Step (E). The cost used here is derived according to Lemma 1

in [28], where the problem of classification with noisy labels is solved by importance

reweighting. They show that an error bound can be achieved if the misclassification

cost of a training example (x,y) is set to p(y|x)/pρ(y|x), where ρ denotes sampling

from a noise perturbed distribution. Though neither p(y|x) nor pρ(y|x) are known, we

can approximate pi(y =“+”|x) by p̂i and pρ(y =“+”|x) by p(p̂(y =“+”|x) > 0.5) for a

training example estimated as positive and analogously for a negative one. That is, let

yi = round(p̂i). If yi = 1 then ci =
p̂i

∑i yi/I , else ci =
1−p̂i

1−∑i yi/I .

We note that this cost-sensitive classifier may use a completely different set of

features to characterize a passage.

After all of the learning steps described above complete, to extract desired data

from a given new article, we apply the same Step (A) to extract passages and send them

to the cost-sensitive classifier to extract data from positive passages.

1.2 Extensions to the Framework

The framework described above targets the general problem of classifying in-

stances of entities and relations as positive or negative. However, this is not always

sufficient. In extracting ethnicity groups as entities or pairs of ethnicity groups and

sample sizes as relations, we would also like to know whether the entities and relations

belong to the “initial” or “replication” experimental stages of the GWAS.

This can be formulated as another instance of a classification problem, and the
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cost-sensitive learning approach can be extended to handle this in a straightforward

manner: Steps (C) through (E) are extended to be two similar cost-sensitive learning

stages, each following the general approach described above, with the output of one being

the input of the other. More precisely, Stage 1 classifies an input entity or relation as

positive or negative, and the instances labeled positive are then forward to the next stage.

Stage 2 then classifies these instances into either the initial or replication experimental

stages.

This extended framework is used in common for the two tasks described in the

following chapters.

Material in part from Chapter 1 is currently being prepared for submission for

publication. The thesis author was the primary investigator and author of this material.



Chapter 2

Data Preprocessing

To successfully extract the characteristics of the sample populations in an article,

it is necessary to obtain the text data of the article and prepare it for processing and

learning. This chapter describes the preprocessing required to extract text from XML,

the original format of the articles.

During preprocessing, it is also possible to remove elements of the text that would

degrade the performance of the system, and these are also described in the following

sections.

2.1 XML to Text Transcription

Articles are originally in XML format, obtained either as publicly-available

NXMLs from Pubmed Central, a free full-text archive of biomedical and life sciences

literature, or XMLs transcribed from PDFs through our in-house PDF transcription

engine.

The full text of the articles is obtained by traversing these XML files and append-

ing all the text elements within XML tags, thus removing all XML formatting while

retaining all text content.

14
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2.1.1 XML Tag-based Removal

When traversing the XML files, it is possible to remove the text within certain

tags entirely, when it is known that the content of these tags are irrelevant to the task

of extraction of population characteristics. These tags fall broadly into the following

categories:

• Article metadata: This includes tags that describe characteristics surrounding the

nature of publication of the study, and not the content itself, such as article-id,

journal-meta, copyright-statement, author-notes.

• Formatting tags: This includes various tags that are necessary for specifying the

design and formatting of the article, and are also irrelevant to the textual content,

such as fpage, lpage.

• Irrelevant tags: This includes tags that do specify content within the article, but

can be removed as they mark content that is not relevant to the task at hand, such

as ref-list, x-ref, graphic.

A total of 22 such tags are identified and used for removal. These tags are simply

ignored during the traversal when extracting text from the article.

2.2 Regular Expression-based Preprocessing

The text obtained from the XMLs can be further parsed to remove elements that

are not relevant to the task, and the remaining text can also be cleaned to make extraction

simpler. Regular expression-based preprocessing is primarily geared at removing irrele-

vant or extraneous numbers that might lead to false positives for sample sizes, as well

as normalizing the representations of numbers that may lead to false negatives, i.e., the
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correct values being missed. This is performed as such numbers are prolific in scientific

literature. Examples of these include:

• Removal of commas: Commas that mark the thousandth, etc. digits of a number

are removed. For example, “12,696” becomes “12696”.

• Mathematical or scientific notation: Numbers that can be inferred to be irrelevant

to sample size extraction based on the surrounding context are removed, such as

“p = 8.14×10(−05))”, “3 log10”.

• In-line references: References within the text to other publications or elements

within the same article are removed, such as “[10, 21]” and “Fig. 12”.

• Units and elements: Descriptions of units or known elements are removed from

the text, such as “1,020 SNPs”, “23 mg/L”.

A total of 23 such patterns are parsed and removed or rewritten using regular

expressions.

2.3 Tokenization

The text is first tokenized into sentences using NLTK’s [30] implementation of

the Punkt Sentence Tokenizer [24, 6]. Each sentence is then tokenized into words and

punctuation using NLTK’s implementation of the Treebank Word Tokenizer [6].

2.4 Part-of-Speech Tagging

The tokens obtained from the previous step are then marked with their part-of-

speech (POS) tag. We use the NLTK implementation of POS tagger [6], which is trained

on the Penn Treebank tag set [32]. A complete list of the POS tags is given in Appendix

A.



Chapter 3

Task 1: Identifying Stage and Ethnicity
Groups

A GWAS involves study samples drawn from one or more ethnicity groups. This

chapter is concerned with the problem of extracting these ethnicity groups that the experi-

ment pertains to. There are conventionally two stages in the study: initial and replication,

and each of these can be associated with several distinct sample populations. We therefore

represent this problem as that of extracting tuples of the form 〈stage, ethnicity〉

from the free text of a GWAS article, with the entities in the tuple corresponding to the

attributes of the study sample.

3.1 Data

The articles are selected from the Catalog of GWAS. We selected articles that

satisfy the following criteria:

• Curated data available: 2,185 PubMed articles were curated with the data avail-

able.

• NXMLs or PDFs available: We used NXML versions of the articles if they are

available through PubMed Central. These versions have high-quality text. Other-

wise, we transcribed PDF versions of the remaining articles to text.

17
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• No missing values: the characteristics of the samples are available for whichever

stage is mentioned in the article, and the curated data contain no blank entries.

• Ethnicity group not “NR”: When unable to find a conclusive ethnicity group for

the sample, the entries state “NR” (“not reported”).

• Ethnicity mentions in text: Terms that correspond to ethnicity groups must be

available in text (and not inferred from affiliations of authors, for example).

• Do not contain errors: The curated data was found to contain errors in the entries

for some articles. Those were excluded.

The final dataset consists of 1,311 articles, comprising 2,357 〈stage, ethnicity〉

tuples.

The curated data is normalized to remove spelling errors and inconsistent wording

primarily to ensure that there is only one top-level term for a given ethnicity entity. For

example, ethnicity group entries in the curated data stating “North African / Middle East”

or “Middle East / North African” are both considered to correspond to “Middle East /

North African”, with this choice of the eventual top-level entry being made arbitrarily.

The curation teams at NHGRI and the European Bioinformatics Institute (EBI)

provide us an “extraction guideline” (see [19]), which helps us in the design of the

selection criteria and data preparation steps.

3.2 Method

We apply the same pipeline given in Figure 1.1, but we employ two committees

to extract the tuples:

Step (A) Passage extraction: Mentions in the text corresponding to ethnicity

entities are tagged and their surrounding passages extracted. These instances are (weakly)



19

labeled according to curated data as positive or negative.

Step (B) Feature creator: The ethnicity instances are featurized and made suitable

for classification.

Step (C) Committee of positive/negative classifiers: A committee of weak learners

are exploited to generate noisy labels, for cost-sensitive learner to classify ethnicity

instances as positive or negative instances.

Committee of initial/replication classifiers: Ethnicity instances classified as pos-

itive are further classified into the initial and replication experimental stages of the

GWAS.

For both committees, we perform Step (D) Label estimator using the EM algo-

rithm, followed by Step (E) Cost-sensitive learner to predict the ethnicity and stage of

the mentions.

Post-processing: Instances of ethnicity classified into a particular stage are

grouped as 〈stage, ethnicity〉 and duplicates removed. The performance of this

method is evaluated upon this final set of results.

These steps are described in detail below.

Step (A): Passage Extractor. Mentions in text are generally not exact string

matches (or even exact synonyms) of ethnicity groups, necessitating a dictionary mapping

of mentions in text (e.g., “German”) to the top-level ethnicity entity (e.g., “European”).

Mentions in the text that correspond to a top-level ethnicity entity are mapped to their

corresponding entities and tagged with the help of a constructed dictionary as described

below, followed by passage extraction. Mentions corresponding to a stage are not tagged.

We construct the dictionary of ethnicity mappings as follows. A multitude of

terms can refer to the ethnicity of an individual, including the country of origin (e.g.,

“Germany”), the specific ethnicity group (e.g., “European”), an adjectival for the country

(e.g., “German”), a demonym for the country (e.g., “Germans”), and similar sets of terms
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for cities and other regions. We handle these terms through the conventions:

• Country/region name: Not every mention of a region, say, a country, maps to a

specific ethnicity term. The NHGRI curation guideline [19] stating that a given set

of individuals belong to an ethnicity group only if it is directly stated in the study,

or if at least 90% of the population of the region is known to belong to a single

ethnicity group, with this knowledge being based on the CIA World Factbook 1.

• Adjectivals and demonyms: An extensive list of the adjectivals and demonyms for

countries are obtained from Wikipedia 2, and a dictionary is constructed to map

the terms to their corresponding countries. These countries are then mapped to the

corresponding ethnicity group (or discarded if no mapping exists).

The final dictionary comprises 449 terms that map to 14 top-level ethnicity groups.

These terms cover a majority of the mentions in text, and we omit publications that do

not contain language that can be matched to this dictionary. A more comprehensive

dictionary may include lists of tribes and indigenous peoples of the world.

This dictionary is used to match mentions in text to ethnicity entities through

string matching. The tagged instances are extracted along with their corresponding

passages, which consist of the 10 words on either side of the entity in the sentence.

For training and testing, these instances are weakly labeled from curated data by

checking if, for a given article, the ethnicity group is present in either experimental stage,

initial or replication. If so, this is considered a positive instance, and negative otherwise.

Step (B): Feature Creator. The following types of features are generated for

each instance:

• Token-based features: A set of binary features each of which turn on for a specific

1http://www.cia.gov/library/publications/the-world-factbook/
2http://en.wikipedia.org/wiki/List of adjectival and demonymic forms for countries and nations
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ethnicity entity (e.g., a feature will be 1 for “East Asian”.)

• Context-based features: These include normalized term frequency-inverse docu-

ment frequency (TF-IDF) representations of unigrams and bigrams of 10 words in

either direction of the ethnicity mention, as long as the words are within the same

sentence. The words are stemmed using the Porter stemmer [38].

• Position-based features: These include features like section title (also in TF-IDF

form), the distance (normalized) of the ethnicity mention from the start of the

article, or from the start of the section.

• Additional features: These include features that do not fit into the above categories,

such as the number of times the ethnicity entity was observed (tagged) in the same

article.

This results in sparse feature vectors of approximately 80,000 dimensions.

Step (C): Committee of Positive/Negative Classifiers. We use the

cost-sensitive learning approach described in Chapter 1 to classify instances as positive

or negative. The committee members of weak labelers include:

• Binary classifier: A Logistic Regression binary classifier trained on the weak labels

from curated data. The predictions of this classifier on the training data is used as

the values for this committee member.

• Rule-based classifier: this classifier predicts a positive example if the features meet

any criteria, such as the presence of words that are commonly found in descriptions

of a sample (e.g., “stage”, “cohort”). 65 such terms are used in total. A simple

approach to this classifier is to simply predict a negative label when none of the

rules match. However, this introduces some error that we would like to minimize
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by imputing more accurate values for the instances where the rule-based classifier

cannot predict a positive label confidently. The problem of imputing values to

fill in for missing data for EM algorithms is well-studied [14, 48], with various

approaches available in the literature. The approach that works for us is to impute

the missing values with the output of the first committee member, i.e., the Logistic

Regression binary classifier, as in [15].

• Weak labels from curated data: the labels obtained by exact-matching the ethnicity

to the curated data.

The committee matrix obtained from concatenating the outputs of all the members

is used to estimate the cost to be assigned to each training instance, as in previous

sections. These costs are used to train a cost-sensitive, L2-regularized, linear support

vector machine classifier to classify instances as positive or negative instances.

Committee of Initial/Replication Classifiers. Training a cost-sensitive classi-

fier to classify positive instances of ethnicity entities into the corresponding stage of a

study is performed in a similar fashion to that for the ethnicity instance classifier.

In this case, the positive training instances are now relabeled “initial” or “replica-

tion”. The committee members are:

• Binary classifier: as above, but trained to distinguish “initial” from “replication”

instances.

• Rule-based classifier: the rule-based classifier is modified to use the presence of

stage-specific words to make its prediction (e.g., “discovery” for the initial stage,

or “follow-up” or “second stage” for replication). 8 such terms are used. As in the

first stage, the missing values are imputed from the corresponding predictions of

the binary Logistic Regression classifier.
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• Weak labels from curated data: as above, but containing classes “initial” and

“replication” instead.

The outputs of the members are used to construct the committee matrix and

estimate the cost assigned to each training instance, which is then used to train a cost-

sensitive, L2-regularized, linear SVM to classify the test data into the initial or replication

stages with the same set of features.

The output of this step is a classification of each positive ethnicity instance into a

specific stage (initial or replication).

Post-Processing. Either stage in a GWAS may have multiple ethnicity groups.

Hence, the extraction can possibly result in multiple tuples of the form

〈stage, ethnicity〉 for each study. We compile a list of such tuples for each article,

with duplicates being discarded.

3.3 Results

We evaluate the performance by comparing them with the 〈stage, ethnicity〉

tuples known to correspond for each GWAS article. Further, we also compare the results

with the following alternative approaches. The evaluation methodology and metrics are

described below.

1. Baseline: All ethnicity instances tagged by the dictionary in an article are assigned

to both experimental stages, and the results measured.

2. Cost-insensitive classification: the framework described above is used in a cost-

insensitive fashion by excluding the committees and directly training the classifiers

on the weak labels derived from curated data in Step (A). This provides a candidate

for comparison to the cost-sensitive approach for evaluating the performance of

cost-based learning. The classifiers for each stage in this method are chosen by
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grid-searching over various combinations of loss functions (log loss, or hinge loss),

regularization (L2 or elastic net), and regularization parameters, and choosing the

model with the best performance as evaluated by 3-fold cross validation over the

training data.

3. Cost-sensitive classification: the framework described above, including committee

classification, is used.

In each of the methods (excluding the baseline), five-fold article-based cross

validation (5-fold CV) is performed. The articles in the dataset are randomly shuffled,

and each fold of the 5-fold CV utilizes all 〈stage, ethnicity〉 tuples belonging to

80% of the articles in the dataset as training data, and the tuples in the remaining 20% of

articles as test data.

The results from each fold are then collected to obtain 〈stage, ethnicity〉

tuples for all the articles in the dataset. These results are compared against the curated

data and the F1 score calculated in the standard way:

• If a 〈stage, ethnicity〉 tuple in the result for a specific article is present in

curated data for that article, it is considered a true positive (TP); otherwise, it is

considered a false positive (FP).

• If a 〈stage, ethnicity〉 tuple in the curated data for a specific article does not

have a counterpart in the extracted results, it is considered a false negative (FN).

Using this, we calculate the precision, recall and the Macro F1 score for each method

on 1,311 articles comprising 2,357 〈stage, ethnicity〉 tuples from approximately

35,000 mentions of ethnicity-related terms. The resultant values are tabulated below.

Table 3.2 presents the macro precision, recall and the F1 score for the methods.

The precision and recall are calculated as above, but for each article individually, and
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then averaged to obtain the macro precision and recall. The harmonic means of these two

values for each method are the respective Macro F1 scores.

Table 3.1. Performance of Ethnicity Group Extraction (Micro).

Method Precision Recall Micro F1 Score

Baseline 0.4898 1.0000 0.6576
Cost-insensitive 0.6965 0.7077 0.7020
Cost-sensitive 0.7471 0.7711 0.7589

Table 3.2. Performance of Ethnicity Group Extraction (Macro).

Method Precision Recall Macro F1 Score

Baseline 0.5972 1.0000 0.7478
Cost-insensitive 0.7408 0.7943 0.7666
Cost-sensitive 0.7893 0.8757 0.8302

3.4 Discussion of Results

The results in Tables 3.1 and 3.2 indicate that the cost-sensitive approach is able

to significantly outperform the similar but cost-insensitive approach, which performs only

close to a brute-force baseline. Not only is the cost-sensitive approach able to achieve

a much higher degree of recall, but the improvement is accompanied by an increase in

overall precision as well.

As the recall gets closer to the limit, the results also indicate that further im-

provements to the method will be gained by focusing not on extracting relevant ethnicity

groups, but on eliminating the ones that are irrelevant to the article.

3.5 Challenges

The challenges faced in the task of extracting ethnicity groups of sample popula-

tions from the Catalog of GWAS are described below:
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• Entity normalization: There are various ways of representing the same entity,

and it is necessary to normalize these representations to a single representative

entity. However, there exist degrees of difficulty with respect to normalization; for

example, it is relatively easy to equate “African American” to “African-American”,

but much harder to equate the two represntations with “American citizen of African

origin”.

• Studies with several target entities to extract: Many GWAS in the U.S. use a

highly ethnically diversified study sample with, for example, “52% Caucasian,

24% Latino, 11% African, 9% Eastern Asian and 4% Indigenous Americans”, and

studies may also divide into more than two stages. How to flexibly identify and

deal with these situations is challenging.

• Varying concept granularity: Mentions of ethnicity terms might not be correctly

tagged in an article as the authors may report ethnicities in specific terms such

as names of tribes and indigenous people, etc., which may not map perfectly to

a top-level ethnicity group. This introduces ambiguity which can be an issue for

ethnicity background identification.

• Inadequate reporting of ethnicity data: Often, the importance of a study to a specific

population or application only becomes apparent after the article is published.

Hence, the text in the article may never refer to the specific ethnicity group that

their experimental sample was drawn from, but simply describe it in terms of the

city, state or region, or even the hospital that the population was recruited at. This

is doubly challenging as it requires an indefinite expansion of the dictionary of

ethnicity-related terms, and also a standardized mapping from each such term to a

top-level ethnicity group.
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Material in part from Chapter 3 is currently being prepared for submission for

publication. The thesis author was the primary investigator and author of this material.



Chapter 4

Task 2: Identifying Stage, Ethnicity
Groups and Sample Size

This chapter extends upon the information extraction task in the previous chapter

to also include the sample size in the extracted relations. We represent this problem as

that of extracting tuples of the form 〈stage, ethnicity, size〉 from the free text of

a GWAS article.

4.1 Data

Again, our articles are selected from the Catalog of GWAS. We selected articles

that satisfy the following criteria:

• Curated data available: 2,185 PubMed articles were curated with the data avail-

able.

• NXMLs or PDFs available: We used NXML versions of the articles if they are

available through PubMed Central. These versions have high-quality text. Other-

wise, we transcribed PDF versions of the remaining articles to text.

• No missing values: the characteristics of the samples are available for whichever

stage is mentioned in the article, and the curated data contain no blank entries.

28
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• Ethnicity group not “NR”: When unable to find a conclusive ethnicity group for

the sample, the entries state “NR” (“not reported”).

• Ethnicity mentions in text: Terms that correspond to ethnicity groups must be

available in text (and not inferred from affiliations of authors, for example).

• Sample size mentions in text: The sample size is present in text as a number (and not

inferred from the article’s supplementary material, the text as a sum of the number

of cases and controls, or families and couples, or multiple sample population pools,

or some other description in words.)

• Sample size mentions in context: Aside from the value of sample size being present

in text, it is also important for the value to be present in a textual context (as

opposed to being in a table composed of many numeric values). This is more

difficult to measure and described further in Step (A).

• Do not contain errors: The curated data was found to contain errors in the entries

for some articles, such as the size of the case or control groups being entered as

that of the entire pool. Such articles, when found, were excluded.

Of the dataset, only 409 articles, comprising 657 〈stage, ethnicity, size〉

tuples, meet the first 6 basic criteria of having complete data, and these are used for

training. The dataset for evaluation is further reduced to 92 articles and 166 tuples for

which contextual clues are present that enable the CRF to identify the mentions for

sample size, based on analysis of the output of the CRF tagger. This is described in

Section 4.2.

As before, the curated data is normalized to remove spelling errors and inconsis-

tent wording primarily to ensure that there is only one top-level term for a given ethnicity

entity.
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As in Task 1, the extraction guideline provided to us by the curation teams at

NHGRI and EBI was followed in designing the selection criteria and data preparation

steps.

4.2 Method

We apply the same pipeline given in Figure 1.1, again employing two committees.

The major differences between the extraction of 〈stage, ethnicity〉 tuples as in

Chapter 3 and the extraction of 〈stage, ethnicity, size〉 tuples lie in Step (A)

Passage extraction.

Step (A) Passage extraction: Mentions in the text potentially corresponding

either to ethnicity entities or a sample size are tagged and their surrounding passages

extracted. The instances of ethnicity entities are paired with instances of sample size and

then (weakly) labeled according to curated data as positive or negative.

Step (B) Feature creator: The 〈ethnicity, size〉 tuples are featurized and

made suitable for classification.

Step (C) Committee of positive/negative classifiers: A committee of weak learners

are exploited to generate noisy labels, for the cost-sensitive learner to classify ethnicity

instances as positive or negative instances.

Committee of initial/replication classifiers: 〈ethnicity, size〉 tuples classified

as positive are further classified into the initial and replication experimental stages of the

GWAS.

For both committees, we perform Step (D) Label estimator using the EM algo-

rithm, followed by Step (E) Cost-sensitive learner to predict the ethnicity, size and stage

of the mentions.

Post-processing: Tuples of the form 〈ethnicity, size〉 classified into a partic-

ular stage are grouped as 〈stage, ethnicity, size〉 and duplicates removed. The
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performance of this method is evaluated upon this final set of results.

These steps are described in detail below.

Step (A): Passage Extractor. For extracting candidate ethnicity entities, dictio-

nary tagging is performed as in Step (A) Passage Extractor in Chapter 3. The dictionary

comprising 449 ethnicity terms that map to 14 top-level ethnicity groups is also con-

structed in the same fashion.

The requirement of extracting arbitrarily-valued sample sizes renders the dictio-

nary tagging approach ineffective. A typical GWAS article may contain hundreds of

numeric values, and considering each instance of a numeric value a potential candidate

for sample size leads to a huge increase in the number of false positives. This indicates

the need to target potential sample sizes by syntactic and semantic features of the text,

i.e., by making use of clues from the surrounding textual context. We therefore use a

Conditional Random Field model to tag instances of numeric values in text that appear to

correspond an experimental sample.

Conditional Random Fields have been widely used in relational learning [46],

and for Named Entity Recognition (NER) in the Biomedical domain [21, 42, 17]. To

effectively make use of the textual context around a potential size entity, CRFs require a

rich feature set [47]. These features are described below:

• Orthographic features: These features seek to model specific syntactic character-

istics of the token under consideration, where token is a specific piece of text (a

word, for our purposes). This includes binary features such as whether the token is

alphanumeric, hyphenated, etc., numeric features such as word length, and textual

features such as prefixes and suffixes of the token of fixed character lengths and the

stemmed version of the token (eventually represented as binary features as whether

a feature value equals a known value).
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• Local knowledge: It is necessary to consider the surrounding context of a token to

correctly classify it as a size entity or not. Therefore, a set of features exist that

simply indicate the values for all other features for the immediately preceding and

following 2 tokens. Bigrams and Trigrams of the tokens are also included.

• External knowledge: To take advantage of the semantics of tokens, features must

be provided that are based upon some external knowledge of the text. This includes

features such as Part-of-Speech (POS) tagging the token, indicating if the token

is a known ethnicity term, if the word belongs to a lexicon of related words (e.g.,

“cohort”, “individuals”, “participants”, are all comparable in their semantics and

carry the same weight).

This results in a set of 412 feature functions that are used to featurize the tokens

for the CRF tagger, described in Appendix C.1. To avoid overfitting, only features that

are observed a minimum of 5 times in the training dataset are included. The output of

the CRF tagger is a set of tokens in text that are likely to correspond to the sizes of the

experimental samples in the GWAS.

The training data for the CRF model is obtained by marking all exact matches of

the true sample size (as known from curated data) for an article in the text of that article,

and labeling them as positive mentions. This results in over 75,000 lines containing

positive mentions over the entire dataset of 409 articles. The CRF model is evaluated on

this dataset using 5-fold cross validation.

The performance of the CRF model is shown in Table 4.1. The performance is

described using four criteria to handle the “Annotation vs. Curation” problem. This

problem refers to the fact that while curated data provides us with information on which

entities and relations are to be correctly extracted, it is not sufficient information in itself

to decide which mentions of the entities must be labeled as positive instances of that
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entity, or if the tagged mentions exhibit the relation at hand. While it is often sufficient to

weakly label the tagged mentions, this is a particularly insidious problem for extracting

numeric entities such as sample size, which often appear outside of any textual context in

lists, tables, etc. in the article, which leads to some mentions either never being tagged,

or leading to many false positives if the model is tuned for very high recall. This is also

discussed further in Section 4.4. The first two metrics used to evaluate the performance

of the tagger are:

• Micro (All): This is a measure of the precision, recall and F1 score over all the

candidate mentions of sample size in the dataset labeled as positive, as compared

with the weak labels derived from curated data.

• Macro (All): This is a measure of the precision and recall over the candidate

mentions in each of the articles in the dataset labeled as positive as compared with

the weak labels derived from curated data, which is then used to obtain the F1

score as a harmonic mean of the two figures.

These standard metrics prove to be a weak indicator of the performance of the

model as not only is it unlikely that a high score will be achieved on these metrics due

to the aforementioned reasons, but it is also unnecessary to attempt to tag all possible

mentions in an article. Instead, it is sufficient to check if the sample sizes as known from

curated data have been extracted from at least one corresponding mention in the article

that is tagged as positive. Thus, the set of distinct values of the mentions tagged in the

text of an article is compared with the set of distinct values of sample sizes expected

from curated data to calculate the following two metrics. However, it is important to note

that this assumes that the mentions tagged as positive with high probability are likely to

be the right mentions (in terms of context) and not, say, mentions that appear in a table.
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It is for this reason that features based on external knowledge are included in the CRF

model as described above.

The two metrics thus obtained are:

• Micro (Distinct): This is a measure of the precision, recall and F1 score over the

set of distinct values of the candidate mentions of sample size labeled as positive

in the entire dataset, as compared with the set of distinct values of sample sizes

expected from curated data (while ensuring that no distinct value occurs in multiple

articles).

• Macro (Distinct): This is a measure of the precision and recall over the set of

distinct values of the candidate mentions of sample size labeled as positive in each

of the articles in the dataset as compared with the set of distinct values of sample

sizes expected from curated data, which is then used to obtain the F1 score as a

harmonic mean of the two figures.

Table 4.1. Performance of CRF Model for Sample Size Extraction.

Method Precision Recall F1 Score

Micro (All) 0.6293 0.2879 0.3951
Macro (All) 0.4425 0.2958 0.3545
Micro (Distinct) 0.5263 0.5109 0.5185
Macro (Distinct) 0.4132 0.4634 0.4368

These metrics are used to tune the conditional random field. However, as observed

in Table 4.1, not all the values of sample size required are extracted (as measured by

recall). As we are primarily interested in high recall at the tagging stage, it is possible

to lower the probability threshold (generally 0.5) required for a mention to be tagged as

positive, with some loss of precision. Heuristics such as the following were explored to

achieve this:
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• Statically lowering threshold: The probability threshold is statically set to a lower

value (in the range (0.0, 0.5)) and all mentions with a probability of being positive

exceeding the threshold are labeled positive.

• Adaptively lowering threshold: If an article does not have at least k positive

mentions, with k being some fixed value (common to the entire dataset) in (1, 10),

then the probability threshold is set to the probability of the kth mention (ordered

by probability in descending order) in that article.

These techniques were found to increase recall, but were accompanied by a drastic

lowering in the precision of the mentions. This not only leads to a large increase in the

number of false positives, but also to a combinatorially larger increase in the number

of candidate relations as each mention of sample size is paired with each mention of

ethnicity group (as described below).

Investigating the causes of this led to numerous articles being found unusable

due to the sample size being mentioned in tables without sufficient context and some

instances of curated data containing an incorrect value such as the number of cases

or controls in the experiment. As this limits the performance of the entire system, we

chose 92 articles (comprising 166 relations) in which the true positives were consistently

tagged over multiple runs of the model as trained on different splits of the dataset, and

this is used to evaluate the relative performance of the cost-sensitive approach against

alternatives (which also share the same tagger).

Next, each ethnicity entity obtained from the dictionary tagger and size entity

extracted by the CRF tagger are then paired to obtain all possible pairs of the form

〈ethnicity, size〉, as in the standard method in relation extraction [53]. Each such

instance of a pair is labeled as described below and forms the basis for the rest of the

process.
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For training and testing, these instances are weakly labeled from curated data by

checking if, for a given article, the ethnicity group is present in either experimental stage,

initial or replication, and if the sample size is also present in the same stage. If so, this is

considered a positive instance, and negative otherwise.

Step (B): Feature Creator. The following types of features are generated for

each instance:

• Token-based features: A set of binary features each of which turn on for a specific

ethnicity entity (e.g., a feature will be 1 for “East Asian”.)

• Context-based features: These include normalized term frequency-inverse docu-

ment frequency (TF-IDF) representations of unigrams and bigrams of 10 words

in either direction of the ethnicity mention and the size mention, as long as the

words are within the same sentence. The words are stemmed using the Porter

stemmer [38].

• Position-based features: These include features like section titles (also in TF-

IDF form) of the mentions, the distance (normalized) of the ethnicity and size

mentions from the start of the article, or from the start of the section, and the width

(normalized) of the instance (i.e., number of words between the ethnicity mention

and size mention).

• Additional features: These include features that do not fit into the above categories,

such as the number of times the same pair of ethnicity and size mentions was

observed in the same article.

This results in sparse feature vectors of approximately 108,000 dimensions.

Step (C): Committee of Positive/Negative Classifiers. We use the

cost-sensitive learning approach described in Chapter 1 to classify instances as positive
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or negative. The committee members of weak labelers include:

• Binary classifier: A Logistic Regression binary classifier is trained on the weak

labels from curated data. The predictions of this classifier on the training data is

used as the values for this committee member.

• Rule-based classifier: this classifier predicts a positive label if the features meet

any criteria, such as the presence of words that are commonly found in descriptions

of a sample (e.g., “stage”, “cohort”). 65 such terms are used in total. As in the

first task, we again impute the missing values from the predictions of the binary

Logistic Regression classifier, as per the approach in [15].

• Weak labels from curated data: the labels obtained by exact-matching the ethnicity

to the curated data.

The committee matrix obtained from concatenating the outputs of all the members

is used to estimate the cost to be assigned to each training instance, as in previous

sections. These costs are used to train a cost-sensitive, L2-regularized, linear support

vector machine classifier to classify instances as positive or negative instances.

Committee of Initial/Replication Classifiers. Training a cost-sensitive classi-

fier to classify positive instances of ethnicity entities into the corresponding stage of a

study is performed in a similar fashion to that for the ethnicity instance classifier.

In this case, the positive training instances are now relabeled “initial” or “replica-

tion”. The committee members are:

• Binary classifier: as above, but trained to distinguish “initial” from “replication”

instances.

• Rule-based classifier: the rule-based classifier is modified to use the presence of

stage-specific words to make its prediction (e.g., “discovery” for the initial stage,
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or “follow-up” or “second stage” for replication). 8 such terms are used. As in the

rule-based classifier for the first committee, we also impute the remaining values

from the binary classifier.

• Weak labels from curated data: as above, but containing classes “initial” and

“replication” instead.

The outputs of the members are used to construct the committee matrix and

estimate the cost assigned to each training instance, which is then used to train a cost-

sensitive, L2-regularized, linear SVM to classify the test data into the initial or replication

stages with the same set of features.

The output of this step is a classification of each positive 〈ethnicity, size〉

instance into a specific stage (initial or replication).

Post-Processing. Either stage in a GWAS may have multiple ethnicity groups.

Hence, the extraction can possibly result in multiple tuples of the form

〈stage, ethnicity, size〉 for each study, and for a given value of size. We compile

a list of such tuples for each article, with duplicates being discarded.

4.3 Results

We evaluate the performance by comparing them with the 〈stage, ethnicity,

size〉 tuples known to correspond for each GWAS article. Further, we also compare

the results with the following alternative approaches. The evaluation methodology and

metrics are described below.

1. Baseline: All 〈ethnicity, size〉 instances tagged by the dictionary in an article

are assigned to both experimental stages, and the results measured. Note that as

the baseline also depends on the output of the CRF tagger (which may not tag all



39

positive mentions), the recall need not be 1.0. However, the recall for the baseline

does represent the recall limit for all the methods.

2. Cost-insensitive classification: the framework described above is used in a cost-

insensitive fashion by excluding the committees and directly training the classifiers

on the weak labels derived from curated data in Step (A). This provides a candidate

for comparison to the cost-sensitive approach for evaluating the performance of

cost-based learning. As in Task 1, the classifiers for each stage in this method are

chosen by grid-searching over various combinations of loss functions (log loss,

or hinge loss), regularization (L2 or elastic net), and regularization parameters,

and choosing the model with the best performance as evaluated by 3-fold cross

validation over the training data.

3. Cost-sensitive classification: the framework described above, including committee

classification, is used.

As before, in each of the methods (excluding the baseline), five-fold article-based

cross validation (5-fold CV) is performed over the entire dataset, and measured on the

evaluation set. The 409 articles in the dataset are randomly shuffled, and each fold of

the 5-fold CV utilizes all 〈stage, ethnicity, size〉 tuples belonging to 80% of the

articles in the dataset as training data, and the tuples in the remaining 20% of articles as

test data.

The results from each fold are then collected to obtain 〈stage, ethnicity,

size〉 tuples for all the articles in the dataset. The overall performance is observed on

the test results for the evaluation set of 92 articles. These results are compared against

the curated data and the F1 score calculated in the standard way:

• If a 〈stage, ethnicity, size〉 tuple in the result for a specific article is present
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in curated data for that article, it is considered a true positive (TP); otherwise, it is

considered a false positive (FP).

• If a 〈stage, ethnicity, size〉 tuple in the curated data for a specific article

does not have a counterpart in the extracted results, it is considered a false negative

(FN).

Using this, we calculate the precision, recall and the F1 score for each method over the

92 articles and 166 relations. The resultant values are tabulated in Table 4.2.

Table 4.3 presents the macro precision, recall and the F1 score for the methods.

The precision and recall are calculated as above, but for each article individually, and

then averaged to obtain the macro precision and recall. The harmonic means of these two

values for each method are the respective Macro F1 scores.

Table 4.2. Performance of Ethnicity Group and Sample Size Extraction (Micro).

Method Precision Recall Micro F1 Score

Baseline 0.1597 0.8795 0.2704
Cost-insensitive 0.5000 0.6928 0.5808
Cost-sensitive 0.5591 0.7410 0.6373

Table 4.3. Performance of Ethnicity Group and Sample Size Extraction (Macro).

Method Precision Recall Macro F1 Score

Baseline 0.2598 0.8913 0.4023
Cost-insensitive 0.6678 0.7283 0.6967
Cost-sensitive 0.6915 0.7736 0.7302

4.4 Discussion of Results

The results show that a cost-sensitive committee learning approach reliably

outperforms a similar, cost-insensitive approach. This holds true even when the additional
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committee members are simple classifiers that encode real-world domain knowledge and

patterns as rules, which can compensate to some extent for the lack of data, as it is not

presumable that all patterns are present in the data in significant quantity as to be learned

by a model.

This improvement is also reflected at the level of the entire dataset as well as

that of the individual article. The performance of the CRF model also indicates that

larger improvements can be made by focusing on the task of tagging sample sizes more

accurately.

4.5 Challenges

In addition to the challenges faced in extracting ethnicity groups as described in

Section 3.5, this task encounters new challenges in the extraction of sample size and the

task of relating the entities, as described below:

• Extraction of numeric entities: Extraction of numeric entities like sample size of

the experiment poses a challenge: exact-matching techniques cannot be used to

tag such entities, and there is no conceptual framework or hierarchy within which

these numbers exist, as for other classes of entities. Further, orthographic features

frequently used in taggers (e.g., token length, number of capital letters in token)

are also not effective.

• Disconnected entities: Unlike in conventional approaches [33] to extracting such

complex relations of the form 〈a, b, ..., z〉, it is not the case that the relation

between every pair of entities in the tuple is also clearly expressed in the text

(e.g., the ethnicity group may be alluded to in a different section of the article,

with the stage and sample size mentioned in a table), necessitating an approach

that can construct the complex relations from an incomplete set of pairs, and take



42

into account the features of each entity and the associations between them in the

classification tasks.

• Composite numeric entities: Genome-wide association studies often report sample

sizes in terms of the cases and controls, or in numbers of families or couples.

NHGRI curating guideline require a total, and the human curator is required to

infer the sizes of the components and report the sum. Automating this operation is

a non-trivial task.

• Minimal context: Characteristics of the experimental sample, and especially sample

sizes, are often reported in the supplementary material adjoining an article, or in

a table. This poses a challenge for relation extraction as there exists no explicit,

textual context for pinpointing a certain figure as the relevant sample size, or even

if so, the stage that it belongs to.

• Semantic considerations: A sample size can refer to the total size of multiple

ethnicity groups, e.g., “1638 individuals of East Asian and European origins” for

the initial stage. This requires that two tuples, 〈initial, East Asian, 1638〉

and 〈initial, European, 1638〉 be extracted to construct the information rep-

resented in the text of the article as 〈initial, (East Asian, European),

1638〉. If a tuple were to be missed or an extraneous one added with the same

sample size, the semantics of the whole are diluted. This is not captured by a

simple metric such as F1-score.

Material in part from Chapter 4 is currently being prepared for submission for

publication. The thesis author was the primary investigator and author of this material.
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Conclusions

The large number of curated biomedical databases available in the public domain

provides an unprecedented opportunity to train NLP systems to comprehend biomedical

publications. In this thesis, we describe an approach to two such information extraction

tasks for The Catalog of Genome-Wide Association Studies (GWAS): extraction of tu-

ples of the form 〈stage, ethnicity〉 and 〈stage, ethnicity, size〉, where stage

refers to the specific experimental stage of the GWAS, ethnicity to the ethnic groups of

populations involved, and size to the size of the population pool. Our approach applies

methods from learning from noisy-label and committee classifiers to assign costs to train

cost-sensitive classifiers to perform these extraction tasks.

5.1 Overall Conclusions

The results show that our approach is effective and outperforms alternative conven-

tional cost-insensitive approaches by reaching a F1 score greater than 0.8 for extracting

relations of the form 〈stage, ethnicity〉 and 0.7 for relations of the form 〈stage,

ethnicity, size〉. The generality of the approaches also leads us to conclude that they

can be used for a variety of applications and specifically to the automated curation of

biomedical databases.
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5.2 Future Work

• Extension to multi-class and multi-label classification: An entity or relation may

naturally fall into one of several classes, or even multiple classes (labels). It is nec-

essary to extend the model to handle such multi-class and multi-label classification

tasks.

• Complex models: Often, it is necessary to tune a model based on a metric that

is close to, but not exactly, the loss function that is used to train the model, as

in the case of the conditional random field model used. However, to incorporate

interrelations between different instances of the dataset, it may be useful to explore

refashioning the objective functions of the models, as well as more complex models

themselves.

• Extension to long tuple extraction: Given arbitrary tuples of the form 〈a, b, ...,

z〉, it is necessary to consider aspects of tagging, pairing (or otherwise combining)

the entities, and the ordering of stages required to extract such tuples from a curated

dataset.

• Using annotation quality: It would be beneficial to extend the technique to take

the estimated quality of annotations, or mentions, into account in the classification

tasks. For example, the probability score awarded by the CRF model to a candidate

mention for sample size could be linked to that of the overall relation, say, as

a simple feature of the relation instance. The problem could be approached by

contrasting the value of the contextual features of a mention against that of other

mentions in the same article, to weed out false positives and those mentions that are

unlikely to be true positives for a given article, taking other mentions into account

through means such as voting or ranking at the tagging stage.



Appendix A

List of Part-of-Speech Tags

Table A.1 enumerates the list of POS tags used to tag tokens, created by the Penn

Treebank Project [32] and used in the NLTK tagger implementation.
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Table A.1. List of Part-of-Speech tags.

Part-of-Speech Tag Description

1 C Coordinating conjunction
2 C Cardinal number
3 D Determiner
4 E Existential there
5 F Foreign word
6 I Preposition or subordinating conjunction
7 J Adjective
8 JJ Adjective, comparative
9 JJ Adjective, superlative

10 L List item marker
11 M Modal
12 N Noun, singular or mass
13 NN Noun, plural
14 NN Proper noun, singular
15 NNP Proper noun, plural
16 PD Predeterminer
17 PO Possessive ending
18 PR Personal pronoun
19 PRP$ Possessive pronoun
20 R Adverb
21 RB Adverb, comparative
22 RB Adverb, superlative
23 R Particle
24 SY Symbol
25 T to
26 U Interjection
27 V Verb, base form
28 VB Verb, past tense
29 VB Verb, gerund or present participle
30 VB Verb, past participle
31 VB Verb, non-3rd person singular present
32 VB Verb, 3rd person singular present
33 WD Wh-determiner
34 W Wh-pronoun
35 WP$ Possessive wh-pronoun
36 WR Wh-adverb



Appendix B

Feature Set for Ethnicity Group Ex-
traction

Table B.1 describes the feature set used in extracting ethnicity groups of the

population samples used in the Catalog of GWAS. The set consists of real-valued TF-IDF

vectors, integer-valued features, and Boolean features (represented as 0 or 1). This feature

set is common to both stages, and is represented as a sparse matrix of approximately

80,000 dimensions (or columns).

B.1 Feature Scaling

The features are normalized by removing the mean and scaling to unit variance

across the values of each feature, or dimension of feature vector.

B.2 Feature Selection

As the feature set is mostly composed of various TF-IDF vectors, truncated

Singular Value Decomposition (SVD), or Latent Semantic Analysis, was explored as a

feature selection technique to reduce the dimensionality of the feature vectors. However,

this did not affect the performance significantly (and in fact degraded performance

slightly) and hence the complete feature vectors were retained.
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Table B.1. Feature Set for Ethnicity Group Extraction.

Feature Type

1 Ethnicity mention token(s) TF-IDF
2 POS tag of mention TF-IDF
3 Section title of mention TF-IDF
4 Extracted passage for mention (windowed) TF-IDF
5 Extracted sentence for mention (full) TF-IDF
6 Number of similar mentions in article Integer
7 Position of mention in article Integer
8 Position of mention in section Integer
9 Length of sentence that mention appears in Integer

10 Section title of mention is unknown Boolean
11 Section title of mention is the beginning of article Boolean
12 Section title of mention is not the beginning of article Boolean
13 Institution words present (e.g., “Foundation”) Boolean
14 Institution phrases present (e.g., “National Health”) Boolean
15 Funding words present (e.g., “grant”) Boolean
16 Funding phrases present (e.g., “we thank”) Boolean
17 “Initial” words present (e.g., “meta-analyses”) Boolean
18 “Initial” phrases present (e.g., “discovery phase”) Boolean
19 “Replication” words present (e.g., “follow-up”) Boolean
20 “Replication” phrases present (e.g., “control checks”) Boolean
21 Persons words present (e.g., “individuals”) Boolean
22 Persons phrases present (e.g., “study participants”) Boolean
23 Ethnicity words present (e.g., “demographic”) Boolean
24 Address words present (e.g., “Telephone”) Boolean
25 Time period words present (e.g., “year”) Boolean



Appendix C

Feature Set of CRF Tagger for Sample
Size

Table C.1 describes a selection of feature functions from the feature set for the

Conditional Random Field tagger for extracting sample sizes from the free text of the

GWAS articles. This results in a final set of 412 feature functions.

C.1 Feature Selection

As the number of features generated by the feature functions can be orders of

magnitude larger than simply the number of feature functions, the model is prone to

overfitting. Therefore, we only include features that are observed at least k times in the

training dataset, where k is a fixed integer value. k = 5 was found to work best for our

purposes.
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Table C.1. Feature Set of CRF tagger for Sample Size.

Feature Example(s)

1 Stemmed token “Association“→ “Assoc”
2 Part-of-Speech tag “314“→ “CD”
3 Lemmatized token “Persons”→ “Person”
4 Suffix “Persons”→ {“ns”, “ons”, “sons”}
5 Prefix “Persons”→ {“Pr”, “Per”, “Pers”}
6 Initial capitalized “Persons”
7 End capitalized “PersonS”
8 All capitals “ACCA”
9 Lowercase “word”

10 Mixed-case “Robert”
11 Roman numerals “IV”
12 Hyphenated “named-entity”
13 Word length “Mediterranean”→ 13
14 Greek “Phi”
15 Units “mg/L”, “kg”
16 Institution “University”, “Agency”, “Council”
17 Funding “Fund”, “Grant”, “Thank”
18 Time periods “February”, “Years”
19 “Initial” stage “genotyped”, “Discovery”
20 “Replication” stage “follow-up”, “quality-control”
21 Persons “individual”, “adult”, “subjects”
22 Groups “couples”, “families”, “twins”
23 Ethnicity-related “self-reported”, “ancestry”, “descent”
24 Address “E-mail”, “Telephone”, “Box”



Appendix D

Feature Set for Ethnicity Group and
Sample Size Extraction

Table B.1 describes the feature set used in extracting instances of 〈stage,

ethnicity, size〉 from the articles. The set consists of real-valued TF-IDF vectors,

integer-valued features, Boolean features (represented as 0 or 1), and other real-valued

features. This feature set is common to both stages, and is represented as a real-valued

sparse matrix of approximately 108,000 dimensions (or columns).

D.1 Feature Scaling

The features are normalized by removing the mean and scaling to unit variance

across the values of each feature, or dimension of feature vector.

D.2 Feature Selection

As the feature set is mostly composed of various TF-IDF vectors, truncated SVD

was explored as a feature selection technique to reduce the dimensionality of the feature

vectors. However, this did not affect the performance significantly (and in fact degraded

performance slightly) and hence the complete feature vectors were retained.
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Table D.1. Feature Set for Ethnicity Group and Sample Size Extraction.

Feature Type

1 Ethnicity mention token(s) TF-IDF
2 Section title of ethnicity mention TF-IDF
3 Section title of size mention TF-IDF
4 Extracted passage for ethnicity mention (windowed) TF-IDF
5 Extracted passage for size mention (windowed) TF-IDF
6 Extracted sentence for ethnicity mention (full) TF-IDF
7 Extracted sentence for size mention (full) TF-IDF
8 Number of similar ethnicity mentions in article Integer
9 Number of similar size mentions in article Integer

10 Width of relation (in number of words) Integer
11 Width of relation (in number of sentences) Integer
12 Position of ethnicity mention in article Integer
13 Position of size mention in article Integer
14 Position of ethnicity mention in section Integer
15 Position of size mention in section Integer
16 Length of sentence that mention appears in Integer
17 Number of identical relations of same width in article Integer
18 Number of total identical relations in article Integer
19 Cosine similarity between sentences of mentions Real
20 Cosine similarity between passages of mentions Real
21 Both mentions are in the same section Boolean
22 Both mentions are not in the same section Boolean
23 Both mentions are in the same sentence Boolean
24 Both mentions are not in the same sentence Boolean
25 Width (in words) is less than 5 Boolean
26 Width (in words) is not less than 5 Boolean
27 Width (in words) is less than 10 Boolean
28 Width (in words) is not less than 10 Boolean
29 Width (in words) is less than 20 Boolean
30 Width (in words) is not less than 20 Boolean
31 Size mention appears after ethnicity mention Boolean
32 Size mention appears before ethnicity mention Boolean
33 Size sentence appears after ethnicity sentence Boolean
34 Size sentence appears before ethnicity sentence Boolean
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Table D.2. Feature Set for Ethnicity Group and Sample Size Extraction (contd.)

Feature Type

35 Section of ethnicity mention is beginning of article Boolean
36 Section of size mention is beginning of article Boolean
37 Section title of mention is not the beginning of article Boolean
38 Institution words present (e.g., “Foundation”) Boolean
39 Institution phrases present (e.g., “National Health”) Boolean
40 Funding words present (e.g., “grant”) Boolean
41 Funding phrases present (e.g., “we thank”) Boolean
42 “Initial” words present (e.g., “meta-analyses”) Boolean
43 “Initial” phrases present (e.g., “discovery phase”) Boolean
44 “Replication” words present (e.g., “follow-up”) Boolean
45 “Replication” phrases present (e.g., “control checks”) Boolean
46 Persons words present (e.g., “individuals”) Boolean
47 Persons phrases present (e.g., “study participants”) Boolean
48 Ethnicity words present (e.g., “demographic”) Boolean
49 Address words present (e.g., “Telephone”) Boolean
50 Time period words present (e.g., “year”) Boolean
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