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Summary. We present an algorithm for adaptively extracting and rendering iso-
surfaces of scalar-valued volume datasets represented by quadratic tetrahedra. Hier-
archical tetrahedral meshes created by longest-edge bisection are used to construct
a multiresolution C

0-continuous representation using quadratic basis functions. A
new algorithm allows us to contour higher-order volume elements efficiently.

1 Introduction

Isosurface extraction is a fundamental algorithm for visualizing volume datasets.
Most research concerning isosurface extraction has focused on improving the
performance and quality of the extracted isosurface. Hierarchical data struc-
tures, such as those presented in [22, 2, 10], can quickly determine which
regions of the dataset contain the isosurface, minimizing the number of cells
examined. These algorithms extract the isosurface from the highest resolution
mesh. Adaptive refinement algorithms [4, 7, 5] progressively extract isosurfaces
from lower resolution volumes, and control the quality of the isosurface using
user specified parameters.

An isosurface is typically represented as a piecewise linear surface. For
datasets that contain smooth, steep ramps, a large number of linear elements
is often needed to accurately reconstruct the dataset unless extra informa-
tion is known about the data. Recent research has addressed these problems
with linear elements by using higher-order methods that incorporate addi-
tional information into the isosurface extraction algorithm. In [9], an extended
marching cubes algorithm, based on gradient information, is used to extract
contours from distance volumes that contain sharp features. Cells that contain
features are contoured by inserting new vertices that minimize an error func-
tion. Higher-order distance fields are also described in [12]. This approach
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constructs a distance field representation where each voxel has a complete
description of all surface regions that contribute to the local distance field.
Using this representation, sharp features and discontinuities are accurately
represented as their exact locations are recorded. Ju et al. [11] describe a dual
contouring scheme for adaptively refined volumes represented with Hermite
data that does not have to test for sharp features. Their algorithm uses a new
representation for quadric error functions to quickly and accurately position
vertices within cells according to gradient information. Wiley et al. [19, 20]
use quadratic elements for hierarchical approximation and visualization of im-
age and volume data. They show that quadratic elements, instead of linear
elements, can be effectively used to approximate two and three dimensional
functions.

Higher-order elements, such as quadratic tetrahedra and quadratic hexa-
hedra, are used in finite element solutions to reduce the number of elements
and improve the quality of numerical solutions [18]. Since few algorithms di-
rectly visualize higher-order elements, they are usually tessellated by several
linear elements. Conventional visualization methods, such as contouring, ray
casting, and slicing, are applied to these linear elements. Using linear ele-
ments increases the number of primitives, i.e. triangles or voxels, that need
to be processed. Methods for visualizing higher-order elements directly are
desirable.

We use a tetrahedral mesh, constructed by longest-edge bisection as pre-
sented in [5], to create a multiresolution data representation. The linear tetra-
hedral elements used in previous methods are replaced with quadratic tetrahe-
dra. The resulting mesh defines a C0-continuous, piecewise quadratic approx-
imation of the original dataset. This quadratic representation is computed in
a preprocessing step by approximating the data values along each edge of a
tetrahedron with a quadratic function that interpolates the endpoint values.
A quadratic tetrahedron is constructed from the curves along its six edges.
At runtime, the hierarchical approximation is traversed to approximate the
original dataset to within a user defined error tolerance. The isosurface is
extracted directly from the quadratic tetrahedra.

The remainder of our paper is structured as follows: Section 2 reviews
related work. Section 3 describes what quadratic tetrahedra are, and Section
4 describes how they are used to build a multiresolution representation of a
volume dataset. Sections 5 describes how a quadratic tet is contoured. Our
results are shown in Section 6.

2 Previous Work

Tetrahedral meshes constructed by longest-edge bisection have been used
in many visualization applications due to their simple, elegant, and crack-
preventing adaptive refinement properties. In [5], fine-to-coarse and coarse-
to-fine mesh refinement is used to adaptively extract isosurfaces from volume
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datasets. Gerstner and Pajarola [7] present an algorithm for preserving the
topology of an extracted isosurface using a coarse-to-fine refinement scheme
assuming linear interpolation within a tetrahedron. Their algorithm can be
used to extract topology-preserving isosurfaces or to perform controlled topol-
ogy simplification. In [6], Gerstner shows how to render multiple transparent
isosurfaces using these tetrahedral meshes, and in [8], Gerstner and Rumpf
parallelize the isosurface extraction by assigning portions of the binary tree
created by the tetrahedral refinement to different processors. Roxborough and
Nielson [16] describe a method for adaptively modeling 3D ultrasound data.
They create a model of the volume that conforms to the local complexity of
the underlying data. A least-squares fitting algorithm is used to construct a
best piecewise linear approximation of the data.

Contouring quadratic functions defined over triangular domains is dis-
cussed in [1, 17, 14]. Worsey and Farin [14] use Bernstein-Bézier polynomials
which provide a higher degree of numerical stability compared to the mono-
mial basis used by Marlow and Powell [17]. Bloomquist [1] provides a founda-
tion for finding contours in quadratic elements.

In [19] and [20], quadratic functions are used for hierarchical approxi-
mation over triangular and tetrahedral domains. The approximation scheme
uses the normal-equations approach described in [3] and computes the best
least-squares approximation. A dataset is approximated with an initial set of
quadratic triangles or tetrahedra. The initial mesh is repeatedly subdivided in
regions of high error to improve the approximation. The quadratic elements
are visualized by subdividing them into linear elements.

Our technique for constructing a quadratic approximation differs from
[19] and [20] as we use univariate approximations along a tetrahedron’s edges
to define the coefficients for an approximating tetrahedron. We extract an
isosurface directly from a quadratic tetrahedron by creating a set of rational-
quadratic patches that approximates the isosurface. The technique we use for
isosurfacing quadratic tetrahedra is described in [21].

3 Quadratic Tetrahedra

A linear tetrahedron TL(u, v, w) having four coefficients fi at its vertices Vi

is defined as

TL(u, v, w) = f0u + f1v + f2w +

f3(1 − u − v − w). (1)

The quadratic tetrahedron TQ(u, v, w) (called TQ) that we use as our de-
composition element has linearly defined edges such that its domain is com-
pletely described by four vertices (the same as a conventional linear tetrahe-
dron). The function over TQ is defined by a quadratic polynomial. We call
this element a linear-edge quadratic tetrahedron or quadratic tetrahedron. The
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Fig. 1. Indexing of vertices and parameter space configuration for the ten control
points of a quadratic tetrahedron.

quadratic polynomial is defined, in Bernstein-Bézier form, by ten coefficients
cm, 0 ≤ m ≤ 9, as

TQ(u, v, w) =

1
∑

k=0

2−k
∑

j=0

2−k−j
∑

i=0

cijkB2

ijk(u, v, w) (2)

The Bernstein-Bézier basis functions B2

ijk(u, v, w) are

B2

ijk =
2!

(2 − i − j − k)!i!j!k!

(1 − u − v − w)2−i−j−kuivjwk (3)

The indexing of the coefficients is shown in Figure 1.

4 Constructing a Quadratic Representation

A quadratic tetrahedron TQ is constructed from a linear tetrahedron TL with
corner vertices V0, V1, V2, and V3, by fitting quadratic functions along the six
edges of TL. Since a quadratic function requires three coefficients, there is an
additional value associated with each edge.
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Fig. 2. Enumeration of edges for constructing quadratic approximation using
longest-edge bisection. Circles indicate original function values used to compute
approximating quadratic functions along each edge.

4.1 Fitting Quadratic Curves

Given a set of function values f0, f1 . . . fn at positions x0, x1 . . . xn, we create
a quadratic function that passes through the end points and approximates the
remaining data values.

The quadratic function C(t) we use to approximate the function values
along an edge is defined as

C(t) =
2

∑

i=0

ciB
2

i (t) (4)

The quadratic Bernstein polynomial B2

i (t) is defined as

B2

i (t) =
2!

(2 − i)!i!
(1 − u)2−iui (5)

First we parameterize the data by assigning parameter values t0, t1 . . . tn
in the interval [0, 1] to the positions x0, x1 . . . xn. Parameter values are defined
with a chord-length parameterization as

ti =
xi − x0

xn − x0

(6)

Next, we solve a least-squares approximation problem to determine the
coefficients ci of C(t). The resulting overdetermined system of linear equations
is











(1 − t0)
2 2(1 − t0)t0 t0

2

(1 − t1)
2 2(1 − t1)t1 t1

2

...
...

...
(1 − tn)2 2(1 − tn)tn tn

2















c0

c1

c2



 =











f0

f1

...
fn











. (7)

Constraining C(t), so that it interpolates the endpoint values, i.e. C(0) = f0

and C(1) = fn, leads to the system










2(1 − t1)t1
2(1 − t2)t2

...
2(1 − tn−1)tn−1











[c1] =
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









f1 − f0(1 − t1)
2 − fnt1

2

f2 − f0(1 − t2)
2 − fnt2

2

...
fn−1 − f0(1 − tn−1)

2 − fntn−1
2











(8)

for the one degree of freedom c1.

4.2 Approximating a Dataset

A quadratic approximation of a dataset is created by approximating the data
values along each edge in the tetrahedral mesh with a quadratic function as
described in Section 4.1. Each linear tetrahedron becomes a quadratic tetra-
hedron. The resulting approximation is C1-continuous within a tetrahedron
and C0-continuous on shared faces and edges. The approximation error ea for
a tetrahedron T is the maximum difference between the quadratic approxi-
mation over T and all original data values associated with points inside and
on T ′s boundary.

In tetrahedral meshes created by longest-edge bisection, each edge E in
the mesh, except for the edges at the finest level of the mesh, is the split
edge of a diamond D, see [5], and is associated with a split vertex SV . The
computed coefficient c1 for the edge E is stored with the split vertex SV . The
edges used for computing the quadratic representation can be enumerated
by recursively traversing the tetrahedral mesh and examining the refinement
edges. This process is illustrated for the 2D case in Figure 2. Since quadratic
tetrahedra have three coefficients along each edge, the leaf level of a mesh
with quadratic tetrahedra is one level higher in the mesh than the leaf level
for linear tetrahedra, see Figure 3.

Fig. 3. Top: leaf tetrahedra for a mesh with linear tetrahedra. Bottom: leaf tetra-
hedra for a mesh with quadratic tetrahedra.

In summary, we construct a quadratic approximation of a volume data set
as follows:

1. For each edge of the mesh hierarchy, approximate the data values along
the edge with a quadratic function that passes through the endpoints.
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2. For each tetrahedron in the hierarchy, construct a quadratic tetrahedron
from the six quadratic functions along its edges.

3. Compute the approximation error ea for each tetrahedron.

5 Contouring Quadratic Tetrahedra

We use the method described in [21] to extract and represent isosurfaces
of quadratic tetrahedra. We summarize the main aspects of the method
here. First, the intersection of the isosurface is computed with each face of
the quadratic tetrahedron forming face-intersection curves. Next, the face-
intersection curves are connected end-to-end to form groups of curves that
bound various portions of the isosurface inside the tetrahedron, see Fig-
ure 4. Finally, the face-intersection groups are “triangulated” with rational-
quadratic patches to represent the various portions of the isosurface inside the
quadratic tetrahedron.

Fig. 4. Isosurface bounded by six face-intersection curves. Dark dots indicate end-
points of the curves.

Since intersections are conic sections [14], the intersections between the iso-
surface and the faces produce rational-quadratic curves. We define a rational-
quadratic curve Q(t) with control points pi and weights wi, 0 ≤ i ≤ 2, as

Q(t) =

∑

2

i=0
wipiB

2

i (t)
∑

2

i=0
wiB

2

i (t)
(9)

By connecting the endpoints of the N face-intersection curves Qj(t), 0 ≤ j ≤

N − 1, we construct M rational-quadratic patches Qk(u, v), 0 ≤ k ≤ M − 1,
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to represent the surface. We define a rational-quadratic patch Q(u, v) with six
control points pij and six weights wij as

Q(u, v) =

∑

2

j=0

∑

2−j

i=0
wijpijB

2

ij(u, v)
∑

2

j=0

∑

2−j

i=0
wijB

2

ij(u, v)
(10)

A patch Q(u, v) is constructed from two or three face-intersection curves by
using the control points of the curves as the control points for Q(u, v). Four
or more face-intersection curves require the use of a “divide-and-conquer”
method that results in multiple patches, see [21].

Fig. 5. Left: Isosurface of quadratic patches extracted using quadratic tetrahedra.
Middle: Full resolution isosurface (1798644 triangles). Right: Isosurface of triangles
extracted from the same mesh used to show the resolution of the tetrahedral grid.
Isovalue = 184.4, Error = 0.7.

Fig. 6. Isosurfaces extracted using quadratic tetrahedra at different error bounds.
Top to Bottom: Error = 0.7, 1.2, and 2.0. Number of Quadratic Patches = 32662,
10922, 4609.

6 Results

We have applied our algorithm to various volume datasets. The datasets are
all byte-valued, and the quadratic coefficients along the edges are stored as
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Fig. 7. Isosurface through the Hydrogen Atom dataset. The isosurface rendered
using quadratic patches, and the tetrahedra from which the contours were extracted.
Isovalue = 9.4, Error = 1.23, Number of patches = 3644.

Fig. 8. Closeup view of hydrogen atom dataset rendered with quadratic
patches(left). As in Figure 5, the isosurface extracted using linear elements(right)
shows the resolution of the underlying tetrahedral grid. Isovalue = 9.4, Error =
0.566.

Dataset Size Error Tets Patches

Buckyball 2563 2.0 8560 4609
Buckyball 2563 1.3 23604 10922
Buckyball 2563 0.7 86690 32662
H-Atom 1283 1.23 8172 3644
H-Atom 1283 0.57 20767 7397

Table 1. Error values, number of quadratic tetrahedra used for approximation,
and number of quadratic patches extracted.

signed shorts. In all examples, the mesh is refined to approximate the original
dataset, according to the quadratic tetrahedra approximation, within a user
specified error bound eu. The resulting mesh consists of a set of quadratic
tetrahedra which approximates the dataset within eu. The isosurface, a set of
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Type Data Gradients Bézier Coeffs Error/Min/Max Total

Linear L 0 0 RL L(1 + R)
Linear L GL 0 RL L(1 + G + R)

Quadratic L

8
0 CL R

L

8
L

1+8C+R

8

Quadratic L

8
GL CL R

L

8
L

1+8G+8C+R

8

Table 2. Storage requirements(bytes) for linear and quadratic representations for
a dataset with 23n points. The linear representation consists of L = 23n diamonds,
and the quadratic representation consists of L

8
= 23(n−1) diamonds. R is the number

of bytes used to store the error, min, and max values of a diamond, G is the number
of bytes used to store a gradient, and C is the number of bytes used to store a
quadratic coefficient.

quadratic bezier patches, is extracted from this mesh. Table 1 summarizes the
results. It shows the error value, the number of quadratic tetrahedra needed
to approximate the dataset to within the specified error tolerance, and the
number of quadratic patches extracted from the mesh.

As discussed in Section 4.2, the error value indicates the maximum differ-
ence between the quadratic representation and the actual function values at
the data points. On the boundaries, our quadratic representation is C0 con-
tinuous with respect to the function value and discontinuous with respect to
the gradient; thus the gradients used for shading are discontinuous at patch
boundaries. This fact leads to the creases seen in the contours extracted from
the quadratic elements. The patches which define the contour are tessellated
and rendered as triangle face lists. A feature of the quadratic representation
is the ability to vary both the patch tessellation factor and the resolution of
the underlying tetrahedral grid. This gives an extra degree of freedom with
which to balance isosurface quality and rendering speed.

The storage requirements of the linear and quadratic representations are
summarized in Table 2. Storage costs of linear and quadratic representations
with and without precomputed gradients are shown. When gradients are pre-
computed for shading, a gradient must be computed at each data location
regardless of representation. When rendering linear surfaces, gradients are
often precomputed and quantized to avoid the cost of computing them at
runtime. For quadratic patches, gradients do not need to be precomputed
because they can be computed from the analytical definition of the surface.
However, if gradients are precomputed, they can be used directly.

The difference between the leaf levels of linear and quadratic representa-
tions, as described in Section 4.2, implies that there are eight times as many
diamonds in the linear representation than there are in the quadratic represen-
tation. We represent the quadratic coefficients with two bytes. The quadratic
coefficients for the Buckyball dataset shown in Figures 5 and 6 lie in the
range [-88,390]. The representation of error, min, and max values is the same
for both representations. They can be stored as raw values or compressed to
reduce storage costs. The quadratic representation essentially removes three
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levels from the binary tree of the tetrahedral mesh reducing the number of
error, min, and max values by a factor of eight compared with the linear
representation.

The first dataset is a Buckyball dataset made from Gaussian functions.
Figure 5 compares contours extracted using quadratic and linear tetrahedra
against the full resolution surface. The isosurfaces are extracted from the
same mesh which consists of 86690 tets; it yields 32662 quadratic patches.
Figure 6 shows three isosurfaces of the Buckyball from the same viewpoint
at different resolutions. The images are created by refining the mesh using
a view-dependent error bound. Thus, the middle image, for an error of 1.3
has more refinement in the region closer to the viewpoint and less refine-
ment in the regions further from the viewpoint. For the Buckyball dataset,
the patches are tessellated with 28 vertices and 36 triangles. These images
show how the quadratic representation can be effectively used to adaptively
approximate a dataset. The second dataset is the Hydrogen Atom dataset
obtained from www.volvis.org. The dataset is the result of a simulation of
the spatial probability distribution of the electron in a hydrogen atom, re-
siding in a strong magnetic field. Figure 7 shows the surfaces generated from
the quadratic tetrahedra and the coarse tetrahedral mesh from which the
contours are extracted. Figure 8 is a closeup view of the dataset’s interior. It
shows a thin “hourglass-like” feature emanating from the probability lobe vis-
ible on the right. For the Hydrogen Atom dataset, the patches are tessellated
with 15 vertices and 16 triangles. The isosurface extracted from the quadratic
representation is compared with the the linear isosurface to shown how the
quadratic representation accurately approximates the silhouette edges with a
small number of elements.

7 Conclusions

We have presented an algorithm for approximating and contouring datasets
with quadratic tetrahedra. Our algorithm uses hierarchically defined tetra-
hedral meshes to construct a multiresolution representation. This representa-
tion is used to approximate the dataset within a user specified error tolerance.
Quadratic tetrahedra are created from this multiresolution mesh by construct-
ing approximating quadratic functions along edges and using these functions
to form quadratic tetrahedra. We have improved previous methods for visu-
alizing quadratic elements by showing how to directly contour them without
splitting them into a large number of linear elements. Comparisons of the
storage costs of quadratic and linear representations show that quadratic ele-
ments can represent datasets with a smaller number of elements and without
a large storage overhead.
Future work is planned in these areas:

• Improving the quality and speed of the contour extraction and

comparing the quality of the surfaces to those generated from
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linear tetrahedra. Currently, our algorithm generates some small thin
surfaces that are undesirable for visualization. Additionally we are working
on arbitrary slicing and volume rendering of quadratic elements.

• Improving the computation of the quadratic representation. Our
current algorithm, while computationally efficient, fails to capture the be-
havior of the dataset within a tetrahedron, and yields discontinuous gra-
dients at the boundaries. It is desirable to have an approximation that is
overall C1-continuous or C1-continuous in most regions and C0 in regions
where discontinuities exist in the data. A C1-continuous approximation
might improve the overall approximation quality, allowing us to use fewer
elements, and would improve the visual quality of the extracted contours.
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