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ABSTRACT

Predicting in vivo pharmacokinetic parameters such as clearance
from in vitro data is a crucial part of the drug-development process.
There is a commonly cited trend that drugs that are highly protein-
bound and are substrates for hepatic uptake transporters often
yield the worst predictions. Given this information, 11 different data
sets using human microsomes and hepatocytes were evaluated to
search for trends in accuracy, extent of protein binding, and drug
classification based on the Biopharmaceutics Drug Disposition
Classification System (BDDCS), which makes predictions about
transporter effects. As previously reported, both in vitro systems
(microsomes and hepatocytes) gave a large number of inaccurate
results, defined as predictions falling more than 2-fold outside of

in vivo values. The weighted average of the percentage of
inaccuracy was 66.5%. BDDCS class 2 drugs, which are subject
to transporter effects in vivo unlike class 1 compounds, had a
higher percentage of inaccurate predictions and often had slightly
larger bias. However, since the weighted average of the percent-
age of inaccuracy was still high in both classes (81.9% for class
2 and 62.3% for class 1), it may be currently hard to use BDDCS
class to predict potential accuracy. The results of this study
emphasize the need for improved in vitro to in vivo extrapolation
experimental methods, as using physiologically based scaling is
still not accurate, and BDDCS cannot currently help predict
accurate results.

Introduction

The current drug-development process is expensive, time-consuming,
and inefficient due to compound attrition (Pammolli et al., 2011).
Although failures due to pharmacokinetic parameters have decreased in
recent years (Waring et al., 2015), continued improvement in pharma-
cokinetic predictions is crucial.
Metabolic stability studies are some of the earliest in vitro studies

conducted during drug development to determine the rate and extent to
which a molecule is metabolized, and can be useful for rank ordering
candidates. After measuring in vitro metabolic turnover, or intrinsic
clearance (CLint), in vivo hepatic clearance can be predicted using
in vitro–in vivo extrapolation (IVIVE) methods. A common approach is
to apply physiologically based scaling factors to the raw in vitro data,
such as hepatocellularity for studies using hepatocytes or a factor to
account for incomplete microsomal recovery for microsomes, and to
then apply a model of hepatic disposition, such as the well stirred model
(Houston, 1994). Although the results are often used in the drug-
development process, there is perhaps an overemphasis placed on their
reliability.
The first part of the present study examined the overall accuracy of

hepatic clearance predictions in the field at this time. Many groups have
attempted IVIVE, tried to create new models to improve predictions
from old in vitro values, or investigated different experimental setups. A
study published 10 years ago collected and examined results from

85 compounds, concluding there was a paucity of literature data (Nagilla
et al., 2006); however, much work has been done since then.
When examining the accuracy of these values, a prediction bias has

been found that is unresolved from human variability and experimental
uncertainty (Hallifax and Houston, 2009). There is also a commonly
cited trend that substrates for hepatic uptake transporters and highly
protein-bound compounds yield the poorest predictions (Soars et al.,
2007). The Biopharmaceutics Drug Disposition Classification System
(BDDCS), which categorizes transporter effects on drug disposition,
says class 1 compounds exhibit minimal clinically relevant transporter
effects, whereas class 2 compounds may be governed by transporter
effects in the gut and liver (Wu and Benet, 2005). BDDCS has become
an important part of early drug discovery for predicting routes of
elimination, food effects, and potential drug interactions (Wu and Benet,
2005). Given this trend, the main objective of this study was to
determine if BDDCS classification could be a determinant of accurate
IVIVE results.

Materials and Methods

A literature search was conducted for previously described compounds for
which both in vitro and in vivo clearance data were available. Studies using
human microsomes as well as human hepatocytes were considered, as both
systems are routinely used in the pharmaceutical industry. The terms used as
keywords to help in the search included “in vitro-in vivo extrapolation,” “intrinsic
clearance,” “microsomes,” “hepatocytes,” or a combination of these.

All of the studies considered here used the well stirred model in their
predictions, and predictions were made using physiologically based scaling
factors, not empirical or regression-based factors. The data sets were examined
separately, excluding re-examination of previously published data, as different
experimental setups (such as the inclusion of serum in incubations) and scaling
(such as the inclusion of fub and fuinc versus no binding terms) were used in each.

C.M.B. was supported by the National Science Foundation Graduate Research
Fellowship Program [Grant 1144247].

dx.doi.org/10.1124/dmd.116.071514.
s This article has supplemental material available at dmd.aspetjournals.org.

ABBREVIATIONS: AFE, average fold error; BDDCS, Biopharmaceutics Drug Disposition Classification System; CLint, intrinsic clearance; IVIVE, in
vitro to in vivo extrapolation; RMSE, root mean squared error.

1731

http://dx.doi.org/10.1124/dmd.116.071514
http://dx.doi.org/10.1124/dmd.116.071514
http://dmd.aspetjournals.org


Similarly, repeated drugs were not removed due to value differences among data
sets. Overall evaluations were also tabulated. The data evaluated can be found in
Supplemental Table 1.

The accuracy of predictions was determined based on whether the predictions
fell within 2-fold of the true in vivo values, as has been a standard cutoff in
previous studies (Zuegge et al., 2001; Blanchard et al., 2006; Fagerholm, 2007).

To measure bias, the average fold error (AFE) was calculated using the
following equation (Obach et al., 1997):

AFE ¼ 10
1
N+

 log
�
observed
predicted

�

AFE was recorded as the whole number reciprocal if less than 1.
The precision was also calculated with the root mean squared error (RMSE)

using the following (Sheiner and Beal, 1981):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
+ ðpredicted2 observedÞ2

r

To divide the compounds based on their BDDCS classification, two
publications categorizing over 900 drugs and over 175 drugs were consulted
(Benet et al., 2011; Hosey et al., 2016). Five compounds were also classified here
for the first time (class 1: amobarbital, bufuralol, levoprotiline, and triprolidine;
class 2: tenidap). Trends in the accuracy of predictions compared with class 1 and
class 2 drugs, where metabolism is the main route of elimination, were examined.
Protein binding was also considered if the values used in the prediction
calculations were available, as the interplay between protein binding, transporters,
and enzymes is known to be important (Benet, 2009). Drugs with high protein
binding were defined as having a free fraction less than or equal to 0.05.

Results

Seven different papers were examined that fit the criteria mentioned
earlier (Obach, 1999; McGinnity et al., 2004; Ito and Houston, 2005;
Riley et al., 2005; Brown et al., 2007; Hallifax et al., 2010; Sohlenius-
Sternbeck et al., 2010). Hallifax et al. (2010) compiled a large database
of predictions frommany of the papers also examined here; however, not
all drugs from the original papers were included, and different values of

CLin vivo were often compared, causing the same drugs to be accurately
or inaccurately predicted based on the value choices. Furthermore,
although it could be argued that the more recent Hallifax et al. (2010)
paper provides refined values from the original papers, looking at the
percentage of inaccuracy and AFE both overall and for class 1 and class
2 drugs reveals that the Hallifax et al. (2010) data often actually have
a comparable or higher percentage of inaccuracy and AFE values
compared with the original papers. All papers were therefore examined
to try to obtain a fuller picture of the relationship to BDDCS. Five human
microsome data sets, some with multiple scaling options, were included
in this evaluation for a total of 332 values, and six human hepatocyte data
sets were also included for a total of 332 values. The percentage of
inaccurate predictions (more than 2-fold difference) for each data set as
well as the AFE and RMSE are shown in Table 1. Every data set
examined has 41.0% or greater inaccuracy, and AFE values are as high
as 21.7. The paper by Sohlenius-Sternbeck et al. (2010) only provided
individual prediction values using a regressionmodel, so further analysis
could not be conducted. However, since it is the most recent paper
examined, the summary statistics using the well stirred model with
protein binding that were given were still included in the table for
comparison. The weighted average for the percentage of inaccurate
results for microsomes is 66.8%, for hepatocytes is 66.2%, and overall is
66.5%.
The same papers and data sets were used to examine BDDCS trends.

Class 1 and class 2 drugs were compiled from each set, and the
inaccuracy of the predictions, AFE, and RMSE for each class was
determined (Table 2). As expected, class 2 drugs have a higher
percentage of inaccurate predictions than class 1 drugs in every case
except one, where all predictions were inaccurate. The AFE was either
slightly higher or almost identical for class 2 drugs compared with class
1 drugs. Considering a total of 305 class 1 drug values, the weighted
average of the percentage of inaccurate predictions is 62.3%. For a total
of 155 class 2 drug values, the weighted average of the percentage of
inaccuracy is 81.9%. [The total number of class 1 and class 2 drugs is

TABLE 1

Percentage of inaccuracy, AFE, and RMSE of IVIVE predictions for 11 data sets

System
Number of Compounds

Evaluated
Number of Inaccurate

Predictions
AFE RMSE

(%)

Brown et al. (2007)
Hepatocytes 37 26 (70.3) 4.5 6460.2

Hallifax et al. (2010)
Microsomes 68 53 (77.9) 5.2 3708.6
Hepatocytes 89 60 (67.4) 3.9 3137.7

Ito and Houston, (2005)
Microsomes 52 45 (86.5) 7.9 1337.0

McGinnity et al. (2004)a

Hepatocytes 44 22 (50.0) 1.4 94.1
Obach (1999)

Microsomes (fub and fuinc) 29 13 (44.8) 2.3 4.9
Microsomes (fub) 29 22 (75.9) 4.3 6.8
Microsomes (no binding) 29 13 (44.8) 1.5 4.3

Riley et al. (2005)b

Microsomes 37 27 (73.0) 3.3 2314.2
Hepatocytes 56 38 (67.9) 3.1 1356.5
Hepatocytes (with serum) 14 14 (100.0) 21.7 2124.3

Sohlenius-Sternbeck et al. (2010)c

Microsomes (fub and fuinc) 44 70.0 3.8 5.8
Hepatocytes (fub and fuinc) 46 89.0 5.9 8.0
Microsomes (no binding) 44 41.0 0.5 6.1
Hepatocytes (no binding) 46 41.0 0.8 5.4

aCLint data were evaluated.
bCLint, ub, in vivo data were evaluated.
cIndividual values for predictions with well stirred model were not presented, only summary statistics.
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less than 644, since individual drugs are not enumerated in Sohlenius-
Sternbeck et al. (2010) and some unapproved proprietary compounds are
included in other data sets.] For class 1 drugs, studies done in micro-
somes have a weighted average of 63.3% inaccuracy, whereas studies in
hepatocytes are 66.2% inaccurate. For class 2 drugs, studies in micro-
somes have a weighted average of prediction inaccuracy of 85.6%,
whereas studies in hepatocytes have a 78.4% average.
Finally, given that substrates of transporters and highly bound drugs

often have the poorest clearance predictions (Soars et al., 2007), protein-
binding differences were examined between the two BDDCS classes.
First, the percentage of drugs with inaccurate predictions that are also
highly protein-bound in both classes was determined (Table 3). There
aremore inaccurate class 2 drugs that are highly protein-bound than class
1 drugs in every case examined. Theweighted average of inaccurate class
1 drugs with high protein binding is 19.8%, whereas the weighted
average for class 2 is 67.3%. Since class 2 drugs in general are often
highly protein-bound (Broccatelli et al., 2012), the numbers of highly
bound drugs in both classes that have inaccurate predictions were also
determined (Table 4). These results agree with several other conclusions
that highly protein-bound compounds are often poorly predicted. Class
1 highly protein-bound drugs were inaccurately predicted 81.3% of the
time, and class 2 highly bound drugs had an 85.7% average inaccuracy

rate. In four data sets, highly bound class 2 drugs had a higher percentage
of inaccuracy than class 1 drugs; in one data set, the opposite was true;
and in the last set, all highly bound drugs were inaccurate.
Looking at the bias between the high and low protein-binding drugs in

the two classes (Table 5), it is difficult to see trends between the two
classes; however, the bias is always higher for the high protein-binding
drugs, except in the case of the data from Obach (1999), using fub and
fuinc, and Brown et al. (2007), where there are only two class 1 high
protein-binding drugs and four class 2 low protein-binding drugs,
perhaps skewing the results.

Discussion

Being able to accurately predict pharmacokinetic parameters, espe-
cially clearance, early in the drug-development process is a key part of
lead optimization. However, although some studies have claimed to find
success in predicting in vivo clearance from in vitro data, others have
questioned the reliability (Masimirembwa et al., 2003). Underpredicting
in vivo clearance may result in inefficiency in the drug-discovery
pipeline or an ineffective therapeutic dosing regimen, whereas over-
predicting in vivo clearance may lead to missed opportunities that were
rejected early in the development process (Clarke and Jeffrey, 2001).

TABLE 2

Percentage of inaccuracy, AFE, and RMSE of IVIVE predictions for BDDCS class 1 and class 2 drugs

System
Number of

Class 1 Drugs
Number of Inaccurate
Class 1 Predictions

AFE RMSE
Number of

Class 2 Drugs
Number of Inaccurate
Class 2 Predictions

AFE RMSE

% (%)

Brown et al. (2007)
Hepatocytes 24 14 (58.3) 3.0 294.5 12 11 (91.7) 7.4 11,335.9

Hallifax et al. (2010)
Microsomes 42 30 (71.4) 5.2 4521.7 22 20 (91.0) 4.7 1834.4
Hepatocytes 55 36 (65.5) 4.0 3976.5 30 22 (73.3) 3.7 466.1

Ito and Houston (2005)
Microsomes 32 27 (84.4) 6.8 390.8 16 15 (93.8) 11.2 2312.3

McGinnity et al. (2004)
Hepatocytes 32 16 (50.0) 1.1 99.3 9 5 (55.6) 3.0 90.9

Obach (1999)
Microsomes (fub and fuinc) 20 7 (35.0) 1.9 4.6 9 6 (66.6) 3.2 5.4
Microsomes (fub) 20 13 (65.0) 3.7 6.9 9 9 (100.0) 6.0 6.7
Microsomes (no binding) 20 7 (35.0) 1.2 4.0 9 6 (66.7) 2.5 4.8

Riley et al. (2005)
Microsomes 24 16 (66.7) 2.7 2399.1 11 9 (81.8) 6.0 2298.5
Hepatocytes 28 16 (57.1) 2.4 175.7 22 18 (81.8) 3.8 2125.8
Hepatocytes (serum) 8 8 (100.0) 9.6 251.0 6 6 (100.0) 64.2 3232.0

TABLE 3

Percentage inaccuracy of BDDCS class 1 and class 2 drugs that are highly protein-bound

System
Number of Inaccurate
Class 1 Predictions

Number of Inaccurate Highly
Protein-Bound Class 1 Predictions

Number of Inaccurate
Class 2 Predictions

Number of Inaccurate Highly
Protein-Bound Class 2

Predictions

(%) (%)

Brown et al. (2007)
Hepatocytes 14 1 (7.1) 11 7 (63.6)

Hallifax et al. (2010)
Microsomes 30 6 (20.0) 20 9 (45.0)
Hepatocytes 36 9 (25.0) 22 15 (68.2)

Obach (1999)
Microsomes (fub and fuinc) 7 1 (14.3) 6 4 (66.6)
Microsomes (fub) 13 1 (7.7) 9 4 (44.4)
Microsomes (no binding) 7 2 (28.6) 6 4 (66.7)

Riley et al. (2005)
Hepatocytes 16 4 (25.0) 18 17 (94.4)
Hepatocytes (serum) 8 2 (25.0) 6 6 (100.0)
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The goal of this study was to compile data to examine the accuracy of
the prediction methods for in vivo clearance and relate this accuracy to
BDDCS classification. For the 11 data sets considered, there is a large
percentage of inaccuracy. To have a true understanding of the accuracy
of in vitro methods, physiologically scaled in vitro estimations and
observed in vivo clearance were directly compared, since incorporating
established physiologic scaling factors as well as unbound fractions in the
blood and possibly in vitro matrix should, in theory, give accurate
predictions. This is in contrast to some groups creating linear regression
equations from reference compound data and then applying an empirical
scaling factor to try to further improve predictions (Sohlenius-Sternbeck
et al., 2012). The fact that 66.5% of predictions overall are inaccurate
emphasizes the idea that amechanistic understanding of this inaccuracy still
needs to be determined before IVIVEpredictions can be completely trusted.
BDDCS classification and protein binding were then examined to

evaluate if accurate results could be separated from inaccurate results to
help determine whether predictions can be trusted in the future or not.
Class 1 drugs, or those that are extensively metabolized and highly
soluble, appear to overwhelm transporter effects, whereas class 2 drugs,
also extensively metabolized but poorly soluble, can be affected by
efflux transporters in the gut and both uptake and efflux transporters in
the liver (Shugarts and Benet, 2009). Given the trend that poorly
predicted compounds are often substrates for transporters (Soars et al.,
2007), it was expected that class 1 drugs that have no clinically relevant
transporter effects would yield better predictions than class 2 drugs. The
other part of the trend is that poorly predicted compounds are also often
highly protein-bound, which is why protein binding was considered
when data were available (Ring et al., 2011). Overall, the hypothesis was
that class 2 drugs would be more poorly predicted due to the fact that
they are substrates for transporters, and these poorly predicted class
2 drugs would also be highly protein-bound.
As expected, class 2 drugs yielded poorer predictions in every case

examined; however, there was still large inaccuracy for both class 1 and
class 2 drugs. Class 2 drugs also often had a higher AFE, but the
difference was not enough (or sometimes did not exist at all) to indicate
bias. However, AFE provides a better measure of bias than RMSE,
which is highly influenced by the marked differences in CLint values
from study to study. For example, the values reported by Brown et al.
(2007) for predicted and measured CLint for propofol were 2773 and
5052 ml/min/kg, respectively, whereas for the same drug McGinnity
et al. (2004) reported 283 and 24 ml/min/kg. At this point in time, with
the current methodology, relying on BDDCS class cannot confidently
provide information about whether predictions will be accurate or not.
This agrees with previous findings from Poulin et al. (2012), who found

that predictivity was similar between classes for a human microsome
data set of 42 drugs. It is interesting to note that microsomes and
hepatocytes gave similar prediction accuracies in both class 1 and class
2 drugs. A bigger difference between the two systems would have been
expected for class 2 drugs where transporters play a role, since necessary
uptake transporters are not present in microsomes. This again emphasizes
that there are likely major missing determinants when trying to mimic the
interplay between protein binding, uptake, and metabolism in vitro.
Poulin et al. (2012) also suggested that an approach involving determi-

nation of effective fraction unbound in plasma based on albumin-facilitated
hepatic uptake of acidic/neutral drugs improved the prediction accuracy
and precision for 25 high protein-binding drugs. Hallifax and Houston
(2012) examined this approach for 107 drugs studied in hepatocytes and
microsomes, also finding an increase in prediction accuracy but no change

TABLE 4

Percentage of highly protein-bound BDDCS class 1 and class 2 drugs that are inaccurate

System
Number of Highly

Protein-Bound Class 1 Drugs
Number of Inaccurate Highly

Protein-Bound Class 1 Predictions
Number of Highly

Protein-Bound Class 2 Drugs
Number of Inaccurate Highly

Protein-Bound Class 2 Predictions

(%) (%)

Brown et al. (2007)
Hepatocytes 2 1 (50.0) 8 7 (87.5)

Hallifax et al. (2010)
Microsomes 8 6 (75.0) 10 9 (90.0)
Hepatocytes 9 9 (100.0) 20 15 (75.0)

Obach (1999)
Microsomes (fub and fuinc) 2 1 (50.0) 4 4 (100.0)
Microsomes (fub) 2 1 (50.0) 4 4 (100.0)
Microsomes (no binding) 2 2 (100.0) 4 4 (100.0)

Riley et al. (2005)
Hepatocytes 5 4 (80.0) 21 17 (81.0)
Hepatocytes (serum) 2 2 (100.0) 6 6 (100.0)

TABLE 5

AFE and RMSE of high and low protein-binding BDDCS class 1 and class 2 drugs

Protein Binding
Class 1 Class 2

AFE RMSE AFE RMSE

Brown et al. (2007)
Hepatocytes

High 2.0 56.4 6.3 13,882.7
Low 3.1 307.1 10.3 229.6

Hallifax et al. (2010)
Microsomes

High 7.8 10,335.3 5.3 2671.0
Low 4.8 349.9 4.2 473.3

Hepatocytes
High 12.1 9814.8 4.2 479.9
Low 3.3 242.7 2.9 437.0

Obach (1999)
Microsomes (fub and fuinc)

High 1.7 0.3 4.7 3.1
Low 2.0 4.9 2.3 6.7

Microsomes (fub)
High 4.7 0.4 7.3 3.1
Low 3.6 7.3 5.2 8.6

Microsomes (no binding)
High 13.7 1.5 7.7 6.8
Low 1.1 17.7 1.0 2.2

Riley et al. (2005)
Hepatocytes

High 3.1 175.2 3.9 2175.6
Low 2.2 173.3 2.8 136.5

Hepatocytes (serum)
High 17.0 406.3 64.2 3232.0
Low 8.0 170.2 — —
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in precision, and reported that there was no evidence that prediction bias
was associated with measured fraction unbound in plasma. These latter
authors emphasized the need for further “mechanistic elucidation to
improve prediction methodology rather than empirical correction of
bias” (Hallifax and Houston, 2012).
Last, protein binding was considered along with BDDCS. Given

current trends, class 2 drugs with high protein binding would have been
expected to yield the poorest results. There were more inaccurate class
2 drugs that had higher protein binding than class 1, but this may be
because class 2 drugs generally have higher protein binding than class
1 (Broccatelli et al., 2012). This coupled to the fact that there may be a
slight dependency of bias on protein binding, both here and as found
previously with hepatocytes by Hallifax et al. (2010), could explain
some of the difference seen between the inaccuracies in class 1 and class
2 drugs. However, on average, highly bound drugs in both classes had
similar high percentages of inaccuracy, and there were no clear trends in
the bias or precision of highly bound drugs between classes.
This study emphasizes the fact that the in vitro to in vivo extrapolation

of hepatic clearance needs to be improved through a better understand-
ing of clearance mechanisms, as in vitro methods on their own are often
not accurate, and looking at BDDCS class cannot separate out which
compounds will have accurate predictions.
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