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ABSTRACT OF THE THESIS 

 

Deep Learning-Based Automatic Pipeline for 3D Needle Localization on 

Intra-Procedural 3D MRI 

 

by 

 

Wenqi Zhou 

Master of Science in Bioengineering 

University of California, Los Angeles, 2023 

Professor Holden H. Wu, Chair 

 

The distinct advantages of magnetic resonance imaging (MRI), including exquisite soft 

tissue contrast, diverse contrast mechanisms, and tomographic imaging with adjustable 

plane orientation, have made it a promising technology for guiding and directing 

interventions and surgeries. Nonetheless, MRI-guided percutaneous interventions 

encounter challenges in obtaining accurate, real-time 3D needle localization due to the 

intricate structure of biological tissue and the variability of needle features on in vivo 

MR images. This thesis aims to develop and assess a deep learning-based automatic 

pipeline for rapid 3D needle localization using intra-procedural 3D MRI. 

 

Firstly, the pipeline incorporated Shifted-window UNEt TRansformers (Swin UNETR) 
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for 3D needle feature segmentation on intra-procedural 3D MRI. Next, a post-

processing method was developed to determine and extract the 2D reformatted image 

plane that passes through the main axis of the segmented 3D needle feature. Lastly, a 

2D Swin Transformer network was adapted and trained for fine segmentation of needle 

features on reformatted 2D image planes. The 3D needle location was calculated based 

on the 2D coordinates of the needle feature tip and entry point on the 2D reformatted 

images. 

 

The pipeline was evaluated using in vivo 3D MR images acquired during MRI-guided 

interventional experiments in pre-clinical pig models. The automatic pipeline achieved 

real-time and accurate 3D needle localization, with a needle tip and axis localization 

accuracy comparable to human intra-reader variations and a processing time of about 6 

seconds from start to end. This pipeline can offer real-time visual assistance for 

physicians during percutaneous procedures, expediting the interventional workflow and 

holding the potential for enabling robotic-assisted MRI-guided interventions. 
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Chapter 1 Introduction 

1.1 Significance 

Over the past 20 years, advances in medical imaging have significantly expanded the 

field of image-guided interventions1. Image-guided interventions play a key role in 

enabling new minimally invasive procedures with their markedly less invasive nature2. 

Traditional image-guided interventions use imaging modalities such as computed 

tomography (CT) and ultrasound (US)3. However, US offers relatively low-quality 

images of tissues and needles4, limiting its ability to visualize deep or small lesions5. 

Meanwhile, CT may fail in visualizing certain lesions, such as hepatocellular carcinoma 

(HCC)6. On the other hand, MRI excels in visualizing various cancerous lesions in 

organs like the liver or kidney, detecting smaller tumors that CT and US cannot7. 

Furthermore, MRI eliminates ionizing radiation exposure for both physicians and 

patients8 and allows for 2D or 3D imaging in arbitrary orientations. 

 

Despite MRI's distinct advantages, performing MRI-guided percutaneous interventions 

in the abdomen remains challenging due to difficulties in real-time needle localization9. 

Manual interventional needle localization on 3D images is time-consuming, as it 

involves manually inspecting multiple slices of the 3D volume to identify the needle 

tip and axis, potentially prolonging interventional procedures10. Previous research has 

investigated 3D deep learning-based methods for automatic interventional needle 

localization in 3D MR images11. However, training 3D deep learning networks 

generally requires a large-scale dataset of 3D MR images to achieve reliable 
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performance due to the complexity of biological tissue structures and the variability in 

needle features' appearance on in vivo MR images. However, a large 3D MRI dataset 

may not be available for certain applications12. 

 

This study aims to expand the technical capability of MRI to guide percutaneous 

interventions by developing a pipeline that automatically localizes interventional 

needles on 3D images in real time. Utilizing transformer-based deep learning networks 

and a coarse-to-fine pipeline structure, the pipeline was trained using a relatively small 

set of in vivo 3D MR images and demonstrates high accuracy in real-time needle feature 

tip and axis localization. 

  

1.2 MRI-Guided Percutaneous Interventions 

1.2.1 Overview of MRI-Guided Needle Placement 

In MRI-guided percutaneous interventions, needles are inserted into the target lesion 

under MRI guidance to perform tissue biopsy or deliver therapeutic energy to the 

lesion13. MRI offers excellent soft tissue contrast, enabling the visualization of various 

types of cancerous lesions and critical structures that must be avoided during 

interventions. Additionally, MRI provides needle visualization based on passive signal 

void features caused by needle-induced magnetic susceptibility effects, guiding needle 

manipulation during procedures. The capacity to obtain image slices in arbitrary 

orientations without ionizing radiation has positioned MRI as an emerging intra-

procedural imaging modality14. 
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In typical MRI-guided interventions, physicians have established the step-and-shoot 

workflow to adapt the MRI advantages for percutaneous interventions1. The workflow 

includes the planning, insertion, and confirmation stage13 as illustrated in Figure 1-1: 

 
Figure 1-1 The step-and-shot workflow for MRI-guided percutaneous 
interventions. 
 

During the step-and-shoot workflow of the MRI-guided intervention procedure, the 

patient or experimental subject is placed on the imaging table and may receive local or 

general anesthesia. Preoperative MR images of the region of interest are acquired for 

planning purposes. The physician uses the preoperative MR images to identify 

suspicious target regions and initialize a suited entry point on the patient's skin. The 

needle trajectory is then chosen such that impenetrable structures such as bones and 

critical structures such as larger blood vessels are avoided15.  
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Next, the physician inserts the needle according to the chosen path and scans the region 

of interest to visualize the position of the needle relative to the patient’s anatomy. The 

physician then adjusts the needle trajectory in a step-and-shot procedure, with 

intermediate confirmation scans and angular adjustments. The intermediate 

confirmation scans were done with the patients in the MR scanner bore, while the 

needle insertion and adjustment require the patient table to be moved out from the MRI 

scanner bore. This 'in/scan–out/adjust' technique16 inhibits physicians from 

interactively manipulating the needles while visually monitoring the needle location 

relative to the target based on direct image feedback. Typically, a repeated in/scan–

out/adjust process is required until the needle reaches the intended location. The number 

of required iterations largely depends on the physicians’ skill in localizing the needle in 

3D and performing desired needle adjustments and insertions17,18, which may lead to 

prolonged procedure time. 

 

The iterative step-and-shoot process of manual adjustments to needle placement and 

subsequent validation has three direct negative consequences: (a) lack of direct image 

feedback during the manipulation of the needle; (b) increased tissue damage due to 

repeated incorrect needle insertions; (c) greater patient discomfort and higher costs as 

a result of extended procedure duration, emphasizing the need to enhance procedural 

efficiency and accuracy/precision by developing systems that assist in percutaneous 

needle placement12. 

 



5 
 

1.2.2 Clinical Applications of MRI-Guided Percutaneous Interventions 

MRI-Guided Percutaneous Biopsy 

MRI-guided biopsy is becoming increasingly important for the diagnosis and treatment 

of various abdominal lesions. Traditional imaging methods, such as US, have 

limitations in detecting more than half of small focal liver lesions14. In CT-guided 

biopsy, the iodine-based contrast agent may be required in some cases, making it 

unsuitable for patients who are allergic to iodine20. 

 

MRI facilitates visualization and access to abdominal targets by improving biopsy 

accuracy with excellent soft-tissue contrast19. Recent studies have demonstrated the 

feasibility of MRI-guided biopsy in various abdominal organs, including the liver, 

gallbladder, pancreas, spleen, and kidney, with targeting accuracy rates ranging from 

89% to 100%14. The median duration of MRI-guided biopsy procedures is less than 60 

minutes, which is comparable to that of CT-guided biopsy. However, MRI-guided 

biopsy also has challenges, including respiratory motion and longer distances between 

the skin and targeted lesions, particularly in the liver. Overall, MRI-guided biopsy is a 

promising tool for accurate diagnosis and treatment of abdominal lesions, although 

further research is needed to optimize the technique and overcome its challenges. 

 

MRI-Guided Percutaneous Thermal Therapy 

MRI-guided ablation methods, including percutaneous radiofrequency ablation (RFA), 

and microwave ablation (MWA), laser-induced thermotherapy (LITT), have been used 

in the treatment of cancer and other disease.21,22,23. MRI-guided percutaneous 
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radiofrequency ablation (RFA) is a minimally invasive therapy that uses an 

electromagnetic field to induce thermal injury22. CT or US is commonly used to guide 

RFA. On the other hand, there is ongoing development of MRI-guided RFA24. Multiple 

reports have been published on the feasibility and safety of RFA of liver lesions in a 

wide-bore MRI scanner14. T1-weighted (T1w) imaging is generally used to visualize 

thermal changes in tissue during MRI-guided percutaneous RFA. T1w MRI after RFA 

can be used to measure the size of the ablation zone and guide the RFA procedure14,25. 

However, MRI-guided RFA requires switching between imaging and the application of 

therapeutic radiofrequency energy due to radiofrequency emission interference with 

imaging. MRI-guided percutaneous microwave ablation (MWA) features a higher 

temperature, faster ablation time, larger ablation zones, and lower susceptibility to heat 

sink than radiofrequency ablation (RFA). Therefore, MWA may be preferable to RFA, 

especially for tumors ≥ 3 cm in diameter or those located close to large vessels, 

regardless of size26. MRI-guided percutaneous laser-induced interstitial thermotherapy 

(LITT) is currently performed using implantable percutaneous catheter systems in local 

anesthesia and with outpatient management27. In LITT, laser energy is transmitted to 

the target volume via an optical fiber and is converted into thermal energy, which causes 

tissue damage. The extent of thermal damage is controlled through the use of real-time 

MR-thermography guidance. The advancement of magnetic resonance imaging 

thermometry in recent years has enabled precise monitoring and delivery of thermal 

energy to predetermined targets, thereby reviving LITT as a powerful and practical tool 

in neurosurgical procedures28. 
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1.2.3 Advancements in MRI-Guided Percutaneous Interventions 

A major limitation of MR-guided interventions is the restricted space in closed-bore 

MRI scanners. The space inside the MRI bore is typically 60-70 cm in diameter and 

170 cm in length of the bore29. The limited space makes manual needle placement in 

the scanner bore very difficult. On the other hand, needle placement outside the bore 

(e.g., during step-and-shoot procedures) suffers from time-consuming, iterative needle 

positioning and does not permit simultaneous imaging and needle insertion8.  

 

To address the challenges of the manual insertion scenario, MRI-compatible remote-

controlled systems are being developed to achieve needle insertion inside the scanner 

controlled by operators outside the scanner30,31. Wu et al. developed a 2-degree-of-

freedom (DOF) needle driver and actuation box32. The 2-DOF needle driver is placed 

inside the scanner bore and driven by the actuation box positioned at the end of the 

table through a beaded chain transmission32. Such systems address the challenge of 

limited space within the bore and facilitate simultaneous MRI guidance while 

emphasizing the importance of real-time automatic MRI-guided device tracking for 

these applications. 

 

1.2.4 Needle Feature Visualization on MR Images 

The visualization of the needle relative to surrounding tissues on MRI is crucial for the 

safety and success of percutaneous biopsies. Typically, MRI-compatible needles used 

in these procedures are metallic and have a magnetic susceptibility different from 
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water33. The difference in magnetic susceptibility between the needle and the 

surrounding tissue results in magnetic field perturbation and leads to MR signal 

dephasing34. Passive signal void features on MR images, caused by the susceptibility 

effects induced by the needle, are used to indicate the location of the needle. 

 

Multiple factors can affect the appearance of the needle feature on MRI. The higher the 

MR field strength, the larger the apparent width of the needles8. The frequency 

encoding direction also affects the size of the needle feature. When a needle is present 

in the tissue, it distorts the local magnetic field, which results in image artifacts in the 

frequency-encoding direction. This effect is more pronounced when the frequency 

encoding is perpendicular to the needle, causing the artifact to appear wider. If the 

frequency encoding is parallel to the needle, the artifact is less noticeable 35,36.  

 

The apparent needle diameter is also related to the relative needle orientation to the 

main magnetic field (B0). As Figure 1-2 shows, when the needle moves closer to the 

axis of the main magnetic field, the diameter of the needle feature decreases 

significantly due to a reduction in image artifact. The distortion in the magnetic field 

that causes artifacts are most prominent at the points where the field enters and exits 

objects with different magnetic susceptibilities, such as the needle and the surrounding 

tissue. When the needle is aligned parallel to the main magnetic field, the distortion of 

the magnetic field (and therefore image artifact) is mainly present at the tip of the needle, 

with less distortion along the needle shaft37. 
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Figure 1-2 3D T1w gradient-echo MR images of a 22 gauge, 15 cm needle (Mreye®) 
with different needle axis orientations with respect to the B0 field. (a)Needle axis 
parallel with the B0 field. (b) The angle between the needle axis and the B0 field is 
approximately 45 degrees. (c) Needle axis is perpendicular to the B0 field. 

 

1.2.5 Automatic Needle Localization Techniques 

Accurate and efficient needle placement is crucial for the success of percutaneous 

interventional procedures, and MRI guidance allows physicians to visualize the needle's 

feature tip and trajectory relative to the target11. Recent studies have leveraged deep 

neural networks for needle feature segmentation and localization in MRI.  
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For instance, Li et al. used a 2D Mask Region-based Convolutional Neural Network 

(R-CNN) to automatically segment needle features in real-time MRI datasets38. The 

algorithm achieved consistent needle localization performance, with an accuracy of 

around 1 mm in needle tip detection and around 1° in needle trajectory angle. However, 

a major limitation of this study was that the oblique 2D slice containing the needle 

feature needed to be located manually, and the output of the network was limited to 2D 

segmentation masks and 2D needle coordinates in the slice.  

 

To overcome this limitation, neural networks that can perform needle localization on 

3D MR images are required. Mehrtash et al. adopted a deep 3D fully convolutional 

neural network (CNN) for needle segmentation on 3D MR images, achieving an 

average needle localization accuracy of 2.80 mm in needle tip detection and 0.98° in 

needle trajectory angle11. However, one major drawback of this approach is that the 

large 3D dataset needed for training a fully 3D CNN is not always available for the 

intended application. 

 

1.3 Advancements in Image Segmentation with Transformer Architectures 

1.3.1 Vision Transformer 

In recent years, transformers have gained considerable popularity due to their 

exceptional ability to capture long-range global information39. Transformers were first 

proposed for machine translation and have since become the state-of-the-art method in 

many natural language processing (NLP) tasks. The attention mechanism of the 
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transformer allows the model to capture the long-term dependencies of sentences. 

Inspired by its success in NLP, researchers further developed Vision Transformer (ViT) 

networks for computer vision tasks. In ViT, an image was split into many patches and 

the image patches are then treated as words in a sentence. By exploring global 

interactions between different patches, the ViT learns to direct attention to crucial image 

regions40. 

 

1.3.2 2D Swin Transformer 

To tailor the transformer more effectively for computer vision tasks, researchers 

developed the Shifted Window (Swin) Transformer. Compared to the ViT, the Swin 

Transformer has three distinctive characteristics. First, self-attention is computed only 

within local windows, and the windows have different sizes to capture visual elements 

in various scales. Second, the number of patches in each window is fixed, and thus the 

complexity becomes linear to the image size. Third, the windows are shifted between 

each layer, thus providing connections among each window40. By contrast, ViT only 

produces feature maps of a single low resolution and has quadratic computation 

complexity with respect to input image size due to the computation of self-attention 

globally. 

 

1.3.3 3D Swin UNETR 

Building on the success of the Swin Transformer, researchers introduced the Swin 

UNEt TRansformers (Swin UNETR) to further enhance the capabilities of the 
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transformer architecture for medical imaging tasks41,42. The Swin UNETR model is 

characterized by a U-shaped network architecture43, employing a Swin transformer as 

the encoder and a CNN-based decoder linked to the encoder via skip connections at 

varying resolutions. The encoder within the Swin UNETR is uniquely designed to 

process 3D input patches directly and can be fine-tuned using self-supervised pre-

training tasks, making it highly suitable for 3D medical image segmentation. 

Hatamizadeh at el. demonstrated the efficacy of Swin UNETR in 3D brain tumor 

segmentation during the BraTS 2021 segmentation challenge, achieving top-tier 

performance41. Moreover, in the PARSE challenge 2022, Maurya et al. conducted a 

comparative analysis between the U-Net and Swin UNETR for pulmonary artery 

segmentation, with Swin UNETR outperforming the U-Net44. 

 

1.4 Specific Aims 

This thesis aims to build and evaluate a novel coarse-to-fine deep learning-based 

pipeline for 3D needle feature segmentation and needle localization using limited intra-

procedural 3D in vivo MR images collected during MRI-guided interventions. The 

pipeline combines an efficient 3D deep learning network responsible for initial 3D 

needle feature segmentation, and a 2D deep learning network that performs fine 

segmentation of the needle feature on the 2D slice containing needle feature. 

 

The purpose of this work is to automatically perform 3D needle localization in real-

time, providing a visual aid for physicians during percutaneous interventions and 
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accelerating the interventional procedure by reducing the time spent on manual needle 

localization. The coarse-to-fine nature of the pipeline and the transformer-based neural 

network design enables the pipeline to use a limited number of 3D images for training 

while achieving accurate needle localization.  

 

1.4.1 Aim 1: To Develop and Test Neural Networks for 3D and 2D Needle Feature 

Segmentation on Intra-Procedural MRI.  

This study adapted 3D Swin UNETR for initial 3D needle feature segmentation on 

intra-procedural MRI collected during MRI-guided in vivo pig liver interventions. The 

3D model was trained and evaluated on 3D T1w Volumetric Interpolated Breath-hold 

Examination (VIBE) gradient-echo (GRE) MR images. As a result, the Swin UNETR 

model generated a 3D volumetric representation of the needle feature, enabling the 

localization of the oblique 2D image plane containing the needle feature. 

 

Furthermore, this study utilized a 2D Swin Transformer network for fine segmentation 

of the 2D needle feature on the realigned image plane containing the needle feature to 

improve the accuracy of the needle tip and axis localization. The 2D Swin Transformer 

network was first pre-trained on single-slice 2D GRE MR images and then fine-tuned 

with the reformatted 2D image slices from the 3D T1w-VIBE dataset. The resulting 2D 

segmentation mask was used to localize the needle tip and axis location in the 2D slice 

and converted to coordinates in 3D space. 
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1.4.2 Aim 2: To Develop and Test an Automatic Deep Learning-Based Pipeline for 

3D Needle Localization on Intraprocedural MRI. 

The 3D Swin UNETR and the 2D Swin Transformer network specified in Aim 1 were 

combined with post-processing algorithms to form an automatic end-to-end pipeline 

that takes the intraprocedural 3D MR image as input and produces the 3D coordinates 

of the needle tip and the orientation of the needle axis as output. The pipeline was 

evaluated in the aspect of needle localization accuracy and processing time and 

achieved consistent needle localization performance with real-time processing time.  
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Chapter 2 Methods 

2.1 MRI-Guided Interventional Experiments 

In an animal research committee-approved study, we performed MRI-guided needle 

(Cook Medical, 20 gauge, 15 cm; Invivo, 18-gauge, 10 cm) interventions in the liver of 

seven healthy female pigs (32-36 kg) on a 3 T scanner (Prisma, Siemens). First, multiple 

targets were created in the liver using RFA under CT and US guidance. The targets were 

confirmed under post-contrast CT. Following the creation of targets, the pigs were 

transported to the MRI suite for needle insertion experiments. Under 3D T1w-VIBE 

MR images (imaging parameters listed in Table 2-1), the diameter of the target feature 

under post-contrast MRI ranged between 10.6 mm to 16.8 mm. 

 

During the interventional experiments, the pigs were under anesthesia, and breathing 

was controlled by a ventilator. The MRI-guided needle insertion experiments consisted 

of planning, insertion, and confirmation stages, with a semi-automatic software 

interface providing guidance. In the planning stage, fiducial grids were attached to the 

pigs' skin to identify needle entry points relative to anatomical structures, while needle 

trajectories were planned based on entry points and targets.  In the insertion stage, 3D 

T1w-VIBE images were used to track needle trajectories and adjust them as needed. 

Finally, in the confirmation stage, 3D T1w-VIBE images were used to verify needle 

placement within the target. The time for each targeted needle insertion, from planning 

to confirmation, was approximately 30 minutes.  
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2.2 Datasets 

2.2.1 Overview 

(1) 3D T1w-VIBE Dataset: During the insertion and confirmation stages, intra-

procedural 3D T1w VIBE Dixon water MR images were acquired with the parameters 

in Table 2-1. For each of the seven interventional experiments, seven images were 

selected, resulting in a total of 49 volumetric images.  

 

(2) 2D GRE dataset: During the insertion stage of the experiment, single-slice golden-

angle 2D radial gradient-echo images45 with the image plane aligned with the needle 

axis were collected with the parameters in Table 2-1. In each of the seven interventional 

experiments, seventy images were chosen, resulting in a total of 490 images. 

 

(3) 2D reformatted image dataset: Image plane realignment was performed on the 3D 

T1w-VIBE images to obtain 2D reformatted images that pass through the needle axis. 

The generated 2D reformatted images have a field of view of 300x300 mm2 and an in-

plane resolution of 1.56x1.56 mm2. In each of the 3D T1w-VIBE images, one 2D 

reformatted image containing the needle was generated, resulting in a total of 49 images. 
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Table 2-1 MRI Datasets and Imaging Parameters. Intra-procedural 3D T1w-VIBE 
MRI and 2D GRE MRI were used to train and test the proposed algorithms. TR: 
repetition time. TE: echo time. FOV: field-of-view.  

 3D T1w-VIBE Dataset 2D radial GRE dataset 

 

TR/TE 

 

3.91 ms / 1.23 ms, 2.46 ms 

(TE1, TE2) 

3.8 ms / 1.72 ms 

5.08 ms / 3 ms 

6.3ms / 2.85 ms 

FOV 237 x 346 x 180 mm3 300 x 300 mm2 

Number of Slices 120 1 

In-plane resolution 1.35 x 1.35 mm2 1.56 x 1.56 mm2 

Matrix Size 176 x 256 192 x 192 

Slice thickness 1.5 mm 5 mm 

Flip angle 9° 9° 

Parallel imaging factor 4 N/A 

Acquisition time 13 s (breath held) 100 ms (free breathing) 

 

2.2.2 Image Augmentation 

The size of each dataset was relatively small. Therefore, all three datasets were 

expanded through data augmentation by applying the following transformations: 

random rotation (0°–360°), horizontal flipping, vertical flipping, translation, zooming, 

and adding Gaussian noise. With the augmentation, the size of each dataset grew by a 

factor of 15. Table 2-2 shows the size of the datasets before and after image 
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augmentation. 

 

Table 2-2 Size of datasets before and after image augmentation  

 3D T1w-VIBE Dataset 2D radial GRE dataset 

Size of Dataset 

Before Augmentation 
49 3D Volumes 490 2D Slices 

Size of Dataset 

Before Augmentation 
784 3D Volumes 7840 2D Slices 

 

2.2.3 Annotation Creation 

For 3D T1w-VIBE images, the 3D needle feature segmentation references were 

generated by a researcher under the guidance and supervision of a radiologist. First, the 

needle feature in each axial slice of the 3D images was annotated. Then the slice-wise 

annotations were reviewed and edited in the 3D Slicer software to ensure the continuity 

of the 3D needle feature segmentation reference. For 2D radial GRE images and 2D 

reformatted images, annotation of the 2D needle feature was performed according to 

the same guidelines. Examples of the needle feature segmentation annotations are 

shown in Figure 2-1.  To create needle feature tip and needle axis references, the 

needle feature tips and entry points (at the skin) in 3D T1w-VIBE Dixon water images 

were annotated in 3D Slicer46 by a researcher according to previously established 

guidelines38,47. The angle and insertion depth of the needle axis were calculated based 

on the 3D coordinates of the needle tip and needle entry point. The researcher repeated 
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the annotations with a washout period of two weeks to assess the human intra-reader 

variation. Examples of the needle tip and axis annotations are shown in Figure 2-2. 

 

 Original input image 
Reference needle feature 

segmentation annotation 

(a) 3D T1w-

VIBE images 

  

(b) 2D radial 

GRE images 

  

(c) 2D 

reformatted 

images 

  
Figure 2-1 Examples of the reference needle feature segmentation annotations on 
3D T1w-VIBE images, 2D radial GRE images, and 2D reformatted images. 
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Needle 

Tip 

Annotati

on 

 

Needle 

Entry 

Point 

Annotati

on 

 

Needle 

Entry 

Point 

Annotati

on 

 
Figure 2-2 Examples of the reference needle tip and needle axis annotations on 
3D T1w-VIBE images. Tip: needle tip; Entry: needle entry point. 
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2.3 Overview of 3D Needle Localization Pipeline 

The proposed pipeline (Figures 2-3 and 2-4) takes 3D T1w-VIBE Dixon water images 

as input and localizes the needle feature tip and axis in 3D space via a fully automatic 

process implemented in 3D Slicer46. There are three main steps in the pipeline:  

 

Step 1: An initial 3D segmentation of the needle feature was generated with the 3D 

Swin UNETR and post-processed with the false-positive removal module.  

In the first step, we applied the 3D Swin UNETR to the 3D T1w-VIBE image to 

segment the needle feature and then used post-processing modules to remove false-

positive segmentations. These modules determine the volume of each object in the 

segmentation results and remove the small ones, as true positive segmentations of the 

needle tend to have the largest volume. The result of Step 1 is a coarse 3D segmentation 

of the needle feature, with false positives removed. Any false negatives (under-

segmentation) will be addressed in the following step, which involves fine 

segmentation. 

 

Step 2: A 2D reformatted image plane that passes through the main axis of the 

needle feature was generated from the 3D image.  

To perform image plane realignment, we first fitted a bounding box to the 3D needle 

feature segmentation and identified the main axis of the bounding box as the axis of the 

needle feature. Next, we carried out oblique axial image plane realignment, resulting in 

the generation of a 2D reformatted image plane that passes through the axis of the 
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needle feature. This 2D reformatted image plane will serve as the input for the third 

step of the pipeline. 

 

Step 3: The 2D coordinates of the needle feature tip, entry point, and axis were 

calculated from the 2D network segmentation mask and converted to 3D 

coordinates. 

We applied the 2D Swin Transformer network to the reformatted 2D image generated 

in Step 2 to generate a 2D segmentation mask of the 2D needle feature. Next, we 

employed orthogonal distance regression (ODR)48 to localize the needle axis in the 2D 

image using the segmentation mask. The intersection of the detected needle axis and 

the 2D segmentation mask was identified as the needle feature tip and needle entry 

point. We then converted the 2D coordinates of the needle tip and entry point into 3D 

coordinates, producing the needle tip coordinates and needle axis orientation in 3D 

space. 
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Figure 2-3 Schematic showing the deep learning-based automatic pipeline for 
coarse-to-fine needle localization in 3D space using intra-procedural 3D MRI. 
 

 
Figure 2-4 Output of each step in the proposed automatic pipeline. (Ⅰ) 3D T1w-
VIBE Dixon water image. (Ⅱ) Deep learning-based 3D segmentation of the needle 
feature displayed in 3D space using subject coordinates (R/L: right/left A/P: 
anterior/posterior, S/I: superior/inferior). (Ⅲ) The 2D reformatted image aligns 
with the axis of the segmented needle feature. (Ⅳ) Deep learning-based 
localization of the needle tip and axis on the 2D reformatted image. (Ⅴ) Needle tip 
and axis in 3D space. 

 

2.3 3D Swin UNETR  

2.3.1 3D Swin UNETR Network Structure 

We employed the 3D Swin UNETR, implemented using Keras and PyTorch 
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frameworks49, as depicted in Figure 2-5. The input grayscale 3D MR images were zero-

padded into a matrix of 256 x 256 x 128 pixels by adding zeros, and the needle signal 

void feature on 3D MR images was defined as the only non-background class. 

 

In the encoder of the Swin Transformer, the patch partitioning layer created a sequence 

of 3D tokens, then the 3D tokens were divided into non-overlapping windows and local 

self-attention was computed within each region. Specifically, the partitioned windows 

were shifted between each layer by one-half of the window size. In between each stage, 

a patch merging layer was used to reduce the resolution by a factor of 2. The hierarchical 

representations of the encoder at different stages were used in downstream applications 

such as segmentation for multi-scale feature extraction40. 

 

The CNN-based decoders were connected to the encoder via skip connections. The 

extracted features were processed using a residual block with 3x3x3 convolutional 

layers and instance normalization50. The processed features were up-sampled using a 

deconvolutional layer and concatenated with the previous stage's features and then 

passed through another residual block before feeding to the next stage. For 

segmentation tasks, the Swin Transformer encoder output was first concatenated with 

the processed input features. The resulting feature map was then passed through a 

residual block, followed by a 1x1x1 convolutional layer with softmax activation that 

produced segmentation probabilities. 



25 
 

 

Figure 2-5 Overview of the 3D Swin UNETR architecture42. The Swin UNETR 
architecture processed 3D T1w-VIBE MRI images as input. It generated distinct 
patches from the input data to establish windows of a specific size for self-attention 
calculation. The Swin transformer's encoded feature representations were then 
transmitted to a CNN decoder through skip connections at various resolutions. 
W:255, H:256, D:128. 

 

2.3.2 3D Swin UNETR Training and Testing 

We adopted the pre-trained 3D Swin UNETR model that was pre-trained on 5,050 

publicly available CT images from various body organs with self-supervised learning 

tasks42. These tasks include masked volume inpainting, 3D image rotation, and 

contrastive coding. The pre-training was performed by minimizing the total loss 

function of the pre-training tasks. To train the 3D Swin UNETR, we employed the Dice 

Loss51 as the training loss metric. Additional specific training hyperparameters are 

shown in Table 2-3.  

 

To evaluate the 3D needle feature segmentation using 3D Swin UNETR, we performed 
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seven-fold cross-validation (seven 3D T1w-VIBE images in each fold). All images in 

the training dataset underwent 15-fold image augmentation. The Dice similarity 

coefficient (Dice, 0 to 1) was used as a metric to assess experimental results. 

 

Table 2-3 3D Swin UNETR model training parameters. 

Batch size 4 

Iteration 10000 

Weight decay 0.00001 

Learning rate 0.0001 

Window size 4 x 4 x 4 

 

2.4 2D Swin Transformer Training and Testing 

2.4.1 2D Swin Transformer Network Structure 

For 2D needle feature segmentation on the reformatted 2D image, we adapted the 2D 

Swin Transformer network for semantic segmentation. The network was implemented 

using Keras and PyTorch frameworks 52. Figure 2-6 depicts the architecture of the 2D 

Swin Transformer. Firstly, each input 2D image was split into non-overlapping patches 

by a patch-splitting module. These patches were then linearly embedded into a sequence 

of 1D tokens, which served as the input for the transformer layers. Figure 2-6 (a) shows 

the network architecture that comprised multiple stacked Swin Transformer blocks, 

which were responsible for capturing contextual information. Figure 2-6 (b) shows the 

structure of the Swin Transformer blocks which included (1) multi-head self-attention 

modules with regular and shifted windowing; (2) Multi-Layer Perceptron (MLP); (3) 



27 
 

Layer Normalization (LN); At the final stage of the architecture, a semantic 

segmentation head was used to generate the pixel-wise semantic labels. 

 

(A) 

 

(B) 

 
Figure 2-6 (a) The architecture of the 2D Swin Transformer. (b)Two successive 
Swin Transformer Blocks. W-MSA and SW-MSA are multi-head self-attention 
modules with regular and shifted windowing configurations, respectively. 
 

2.4.2 2D Swin Transformer Training and Testing 

The 2D Swin Transformer was first pre-trained with the 2D GRE images collected 

during the insertion stage of the experiment and then fine-tuned using the 2D 

reformatted images generated from the 49 3D T1w-VIBE images (Table 2-2). To train 

the 2D Swin Transformer, we employed Weighted Dice Loss51 as the training loss 

metric. Specific training hyperparameters are reported in Table 2-4. 

 

To ensure the reliability of the 2D reformatted images used for cross-validation, the 3D 

needle feature segmentation generated by the 3D Swin Transformer served as the basis 
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for generating the 2D reformatted images. Post-processing modules in the pipeline were 

applied to the 3D needle feature segmentation to generate the 2D reformatted image 

plane that passes through the main axis of the predicted 3D needle segmentation.  

 

To assess the effectiveness of the 2D Swin Transformer in needle feature segmentation, 

the study conducted seven-fold cross-validation. Each fold utilized 420 2D radial GRE 

images for pre-training and 42 2D reformatted images (from 3D T1w-VIBE) for fine-

tuning. All images in the training dataset underwent 15-fold image augmentation. The 

Intersection over Union (IoU) score, ranging from 0 to 1, was used as a metric to 

measure the experimental results. 

 

Table 2-4 2D Swin Transformer training parameters 

 Pre-training 

(2D radial GRE dataset) 

Fine-tuning 

(Reformatted 2D 

Dataset) 

Batch size 8 8 

Iteration 20000 10000 

Weight decay 0.0001 0.0001 

Learning rate 0.01 0.01 

Window size 4 x 4 4 x 4 
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2.5 Evaluation of the Automatic 3D Needle Localization Pipeline  

The needle localization pipeline takes intra-procedural 3D MR images as input and 

automatically locates the interventional needle feature tip coordinates and axis 

orientation in 3D. The pipeline was built in 3D Slicer46 with SlicerIGT53. 

 

For pipeline performance evaluation, the needle tip and axis localization accuracy and 

image plane realignment accuracy were evaluated with the metrics shown in Figure 2-

7. For 3D needle feature tip and axis localization evaluation, 𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑡 (Euclidean distance 

between the predicted needle tip and reference needle tip) and 𝛼𝛼 (The angle between 

the predicted needle axis and needle axis reference) were calculated. For 2D image 

plane realignment evaluation, 𝛿𝛿𝑡𝑡𝑡𝑡𝑡𝑡  (Euclidean distance between the reformatted 2D 

image plane and the reference needle tip), 𝛿𝛿𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  (Euclidean distance between the 

reformatted 2D image plane and the reference needle entry point), 𝜃𝜃  (The angle 

between the reference needle axis and the reformatted 2D image plane) was calculated.  
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Figure 2-7 (A) Diagram of the needle tip and axis localization evaluation metrics. 

𝜹𝜹𝒕𝒕𝒕𝒕𝒕𝒕 : Euclidean distance between the reformatted 2D image plane and the 

reference needle tip. 𝜹𝜹𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 : Euclidean distance between the reformatted 2D 

image plane and the reference needle entry point. 𝜽𝜽 : The angle between the 
reference needle axis and the reformatted 2D image plane. (B) Diagram of image 

plane realignment evaluation metrics... 𝜺𝜺𝒕𝒕𝒕𝒕𝒕𝒕 : Euclidean distance between the 

predicted needle tip and reference needle tip. 𝜶𝜶: The angle between the predicted 
needle axis and needle axis reference. 
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Chapter 3 Results  

3.1 3D Swin UNETR Evaluation 

Figure 3-1 shows an example output of Swin UNETR. Figure 3-1 (a) depicts the input 

3D T1w-VIBE MR images in axial, coronal, and sagittal views. Figure 3-1(b) depicts 

the 3D T1w-VIBE MR images overlaid with the predicted masks generated by the 3D 

Swin UNETR (red) and reference segmentation mask (blue). Figure 3-1(c) depicts the 

predicted 3D needle feature segmentation (red) overlaid with the reference 3D needle 

feature segmentation (blue) in the 3D view. The post-processing module in the pipeline 

calculates the volume of all the objects in the segmentation results and removes all the 

small objects as the needle feature segmentation typically has the largest volume. 

Figure 3-1 (d) depicts the predicted 3D needle feature segmentation (red) after post-

processing overlaid with reference 3D needle feature segmentation (blue). 
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Figure 3-1 Segmentation results of the 3D Swin UNETR before and after post-
processing (a) Input 3D T1-VIBE image. (b) Segmentation mask overlaid with 
input 3D T1-VIBE image. (c) Predicted 3D needle feature segmentation (red) 
overlaid with the reference 3D needle feature segmentation (blue) (d) Predicted 3D 
needle feature segmentation (red) after post-processing overlaid with the reference 
3D needle feature segmentation (blue). For (c) and (d) the needle feature 
segmentations are displayed in 3D space using subject coordinates (R/L: right/left 
A/P: anterior/posterior, S/I: superior/inferior). 
 

For the 49 instances in the seven-fold cross-validation, the average inference time of 

the 3D Swin UNETR was 2.14 sec per 3D volume on one NVIDIA RTX A6000 GPU 

card. Table 3-1 summarizes the accuracy and precision of the 3D needle feature 

segmentation produced by 3D Swin UNETR, both with and without post-processing. 

The performance is quantified in terms of Dice Score, false positive rate, false negative 
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rate, true positive rate, and true negative rate. The mean and standard deviation (SD), 

median and interquartile range (IQR), and maximum values (i.e., worst-case 

performance) were reported.  

 

In the 7-fold cross-validation involving the 49 3D T1w-VIBE images, the needle feature 

detection success rate was 100%. Of these 49 images, 34 contain segmentation results 

of multiple 3D objects. The post-processing modules succeeded in removing all false-

positive segmentation objects while preserving the segmentation object that 

corresponded to the needle feature across all 49 instances.  

 

Table 3-1 shows that after post-processing, the median Dice Score increased from 

0.8042 to 0.8241. The median false-positive rate, after post-processing, decreased from 

0.0026% to 0.0011%. This reduction occurred as a result of the false-positive removal 

module successfully removing all false-positive segmentation objects from the 

segmentation results. The false positive rate remains above zero after post-processing 

as the false-positive due to persisting false-positive segmentations within the largest 

object. Concurrently, the false negative rate increased as in some instances the needle 

feature segmentation comprised several smaller objects, and post-processing led to the 

removal of parts of the needle feature segmentation.  
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Table 3-1 3D needle feature segmentation accuracy of the 3D Swin UNETR. w/o 
pp: without post-processing. w/ pp: with post-processing. 

M
ax

 

0.
89

85
 

0.
89

89
 

0.
03

25

 
0.

01
28

 
0.

03
33

 
0.

03
34  

0.
08

86

 
0.

08
85

 
99

.9
91  

99
.9

91

 

w
/o

 
pp

: 

  

 

w
/ p

p:
  

w
/o

 
pp

: 

 

w
/ p

p:
  

w
/o

 
pp

: 

 

w
/ p

p:
  

w
/o

 
pp

: 

  

w
/ p

p:
  

w
/o

 
pp

: 

 

w
/ p

p:
  

IQ
R

 

0.
10

50
 

0.
14

79
 

0.
00

39

 
0.

00
32

 
0.

01
17

 
0.

01
32

 
0.

01
79

 
0.

01
73

 
0.

02
40  

0.
02

38

 

w
/o

 
pp

: 

  

 

w
/ p

p:
  

w
/o

 
pp

: 

 

w
/ p

p:
  

w
/o

 
pp

: 

 

w
/ p

p:
  

w
/o

 
pp

: 

  

w
/ p

p:
  

w
/o

 
pp

: 

 

w
/ p

p:
  

M
ed

ia
n 

0.
80

42
 

0.
82

41
 

0.
00

26

 
0.

00
11

 
0.

01
04

 
0.

01
06

 
0.

02
37

 
0.

02
35

 
99

.9
63  

99
.9

65

 

w
/o

 
pp

: 

  

 

w
/ p

p:
  

w
/o

 
pp

: 

 

w
/ p

p:
  

w
/o

 
pp

: 

 

w
/ p

p:
  

w
/o

 
pp

: 

  

w
/ p

p:
  

w
/o

 
pp

: 

 

w
/ p

p:
  

SD
 

0.
10

10
 

0.
11

56
 

0.
00

51

 
0.

00
30

 
0.

00
80

 
0.

00
84

 
0.

02
00

 
0.

02
02

 
0.

02
72

 
0.

02
60

 

w
/o

 
pp

: 

  

 

w
/ p

p:
  

w
/o

 
pp

: 

 

w
/ p

p:
  

w
/o

 
pp

: 

 

w
/ p

p:
  

w
/o

 
pp

: 

  

w
/ p

p:
  

w
/o

 
pp

: 

 

w
/ p

p:
  

M
ea

n 

0.
77

68
 

0.
77

71
 

0.
00

38

 
0.

00
23

 
0.

01
14  

0.
01

21

 
0.

02
90

 
0.

02
84

 
99

.9
55

 
99

.9
57

 

w
/o

 
pp

: 

  

 

w
/ p

p:
  

w
/o

 
pp

: 

 

w
/ p

p:
  

w
/o

 
pp

: 

 

w
/ p

p:
  

w
/o

 
pp

: 

  

w
/ p

p:
  

w
/o

 
pp

: 

 

w
/ p

p:
  

 D
ic

e 
Sc

or
e 

Fa
ls

e 
Po

si
tiv

e 
R

at
e 

Fa
ls

e 
N

eg
at

iv
e 

R
at

e 

Tr
ue

 P
os

iti
ve

 R
at

e 

Tr
ue

 N
eg

at
iv

e 
R

at
e 



35 
 

3.2 2D Swin Transformer Evaluation 

Figure 3-2 shows the segmentation results of the 2D Swin Transformer. Figure 3-2(a) 

depicts the input 2D reformatted MR images generated by the slice realignment module 

in the pipeline. Figure 3-2(b) depicts the 2D reformatted MR images overlaid with the 

predicted needle feature segmentation mask (red) from the 2D Swin Transformer. 

Figure 3-2(c) displays 2D reformatted MR images overlaid with the reference needle 

feature segmentation mask (blue).  

(a) Original 2D 

reformatted image 

(b) Predicted 

segmentation mask 

(c) Reference 

segmentation mask 

   

   

   
Figure 3-2 Example needle segmentation results on 2D reformatted MR images 
generated from the slice realignment module in the pipeline. (a) Original input 2D 
reformatted image generated by the pipeline. (b) Segmentation mask of the needle 
feature generated by the 3D Swin UNETR. (c) Reference needle feature 
segmentation mask. 
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For the 49 instances in the seven-fold cross-validation, the average inference time of 

the 2D Swin Transformer was 11 microseconds per image on one NVIDIA RTX A6000 

GPU card. The testing result for the 2D needle feature segmentation of the 2D Swin 

Transformer model with and without fine-tuning are shown in Table 3-2. The non-fine-

tuned model achieved a median Dice Score of 0.8940 and the fine-tuned model 

achieved a median Dice Score of 0.9261. 
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Table 3-2 2D Swin Transformer segmentation accuracy. w/o ft: without post-pro 
fine-tuning. w/ ft: with fine-tuning. 
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3.3 Automatic Needle Localization Pipeline Evaluation 

For needle feature localization, we performed 7-fold cross-validation on 49 3D T1w-

VIBE images. In 49 T1w-VIBE images, the range of needle insertion depth was 1.94-

12.26 cm. The range of needle insertion angle (angle between the needle and axial plane) 

was -87.64° to 2.23°. The accuracy of 3D needle localization was assessed by (A) 

needle tip and axis localization performance and (B) reformatted image plane 

localization performance.  

(A) 

 

 

(B) 

 

 
Figure 3-3 Evaluation of the pipeline with both 3D Swin UNETR and 2D Swin 
Transformer. (A)Box plots of needle feature tip and axis localization results. 
(B)Box plots of reformatted image plane localization evaluation results. The 
numbers reported in the plots are the medians of the results. 
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For the pipeline utilizing both 3D Swin UNETR and 2D Swin Transformer, the average 

computation time for localizing the needle feature tip and axis was approximately 6 

seconds per instance from start to end. The needle detection was 100% successful in 

the 49 instances of the seven-fold cross-validation. Figure 3-3 shows needle 

localization results of the pipeline from seven-fold cross-validation. For needle tip and 

axis localization, median 𝜺𝜺𝒕𝒕𝒕𝒕𝒕𝒕, which is the distance between the predicted needle tip 

and reference needle tip, was 1.476 mm (1.09 pixels). The median 𝜶𝜶, which is the angle 

between the predicted needle axis and the reference needle axis, was 0.983°. For 

reformatted image plane localization, median 𝜽𝜽 , which is the angle between the 

reference needle axis and the reformatted 2D image plane, was 0.47°. Representative 

3D needle tip and axis localization results with oblique axial 2D reformatted image 

planes generated by the pipeline as reference are shown in Figure 3-4. These results 

showed accurate 3D needle localization using the automatic pipeline. 
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Figure 3-4 Example needle localization by the automatic pipeline. (a) 3D 
segmentation results of the 3D Swin UNETR and the oriented bounding box on 
the 2D reformatted image plane generated by the pipeline. (b) 2D Segmentation 
mask of the needle feature generated by the 2D Swin Transformer and needle axis 
on the 2D reformatted image plane. (c) Predicted needle tip and axis generated by 
the pipeline (red) and reference needle tip and axis (blue) in 3D. OBB: Oriented 
Bounding Box. 

 

3.3.1 Comparison of 3D Needle Localization Pipelines with Different Structures  

To support the design choices in our coarse-to-fine pipeline, we performed an ablation 

study where the proposed pipeline was compared with a pipeline that only employs the 

3D Swin Transformer and predicted the needle location based on the 3D segmentation 

(a)3D Swin UNETR 

segmentation results 

and oriented bounding 

box 

(b) 2D Swin 

Transformer 

segmentation results 

and 2D needle tip and 

needle axis 

(c) Needle tip and axis 

localization results in 3D 
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results generated by the 3D Swin Transformer (without using a 2D Swin Transformer).  

 

Figure 3-5 shows the structure of the needle localization pipeline that only utilizes 3D 

Swin UNETR. The pipeline takes 3D T1w-VIBE images as input and utilizes 3D 

UNETR for 3D needle feature segmentation. The segmentation output then undergoes 

small volume removal to eliminate false positives. Afterward, a bounding box is fitted 

to the 3D needle feature, with the main axis of the bounding box serving as the needle 

axis. The two intersections of the 3D needle feature segmentation and needle axis were 

designated as the needle tip and needle entry point. These two points are differentiated 

based on the average grayscale value surrounding them, with the one possessing higher 

grayscale values being considered the needle tip and the one with lower average 

grayscale values regarded as the needle entry point. 

 

 
Figure 3-5 Structure of the pipeline that only employs 3D Swin Transformer.  
 

Compared to the pipeline proposed in Chapter 2, the pipeline that only employs 3D 

Swin UNETR lacks correction from 2D fine segmentation generated by the 2D Swin 

Transformer network. Consequently, although the post-processing modules can remove 
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false-positives objects in segmentation results, false negatives (under-segmentation) 

persist, leading to more significant errors in the localization of the needle tip. However, 

both pipelines yielded the same image plane realignment outcomes because they both 

use the 3D needle feature segmentation for localizing the 2D reformatted image plane.  

On the other hand, compared with the pipeline proposed in Chapter 2 which has a 

computation time of 6 seconds, this pipeline achieves a computation time of about 4 

seconds as it has fewer steps for needle localization. 

 

Table 3-3 summarizes the needle tip and axis localization results of the proposed 

pipeline and the pipeline with only 3D Swin UNETR. By applying a 2D Swin 

Transformer in the pipeline, median 𝜺𝜺𝒕𝒕𝒕𝒕𝒕𝒕 of decreased from 1.902 mm to 1.476 mm, 

and maximum 𝜺𝜺𝒕𝒕𝒕𝒕𝒕𝒕  decreased from 37.083 mm to 4.430 mm. There is no notable 

improvement in needle axis localization after applying the 2D Swin Transformer 

network. 
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Table 3-3 3D needle localization accuracy. w/o 2D: Pipeline without 2D Swin 
Transformer network. w/ 2D: Pipeline with 2D Swin Transformer network. 
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Figure 3-6 shows the distribution of needle localization results of the pipeline with both 

3D Swin UNETR and 2D Swin Transformer network compared with the pipeline 

utilizing only the 3D UNETR. The result of the Wilcoxon signed rank test indicates that 

the needle tip localization results were significantly improved by employing a 2D Swin 

Transformer in the pipeline. On the other hand, there is no significant difference in 

needle axis localization results generated by the two pipelines. 

 

 
Figure 3-6 Violin plots of needle tip localization results(blue) and needle axis 
localization results(right) compared with a pipeline using only 3D UNETR.  
In the pair-wise comparison, the Wilcoxon signed rank test shows p-value=0.0010 
for needle tip localization results and p-value=0.4956 for needle axis localization 
results. * indicates Wilcoxon signed rank test with p<0.01. w/ 2D network: with 
2D network. w/o 2D network: without 2D network. 
 

Figure 3-7 Scatter plot of 𝜺𝜺𝒕𝒕𝒕𝒕𝒕𝒕 and 𝜶𝜶 for insertion depth in the proposed pipeline and 

in the pipeline that only employs the 3D Swin UNETR. Figure 3-7 (A) shows that 2D 
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Swin UNETR increases the pipeline’s performance in needle tip localization by 

removing the outliers in needle tip localization, as the under-segmentation of the 3D 

Swin Transformer can be compensated by applying the 2D Swin Transformer with 

higher precision. Figure 3-7 (B) shows that the needle axis localization results of the 

two pipelines are comparable. Furthermore, the needle axis localization error decreases 

with the needle insertion depth as when needle insertion depths are small, the 

inaccuracy of the 3D needle segmentation predictions tends to have a greater effect on 

the needle axis localization results. 
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(A) 

 

 

(B) 

 

 
Figure 3-7 Scatter plot of (A) 𝜺𝜺𝒕𝒕𝒕𝒕𝒕𝒕 and (B) 𝜶𝜶 with respect to insertion depth in 

the proposed pipeline and in the pipeline that only employs the 3D Swin UNETR. 
 

3.3.2 Comparison of 3D Needle Localization Pipelines Results with Human Intra-

Reader Variation 

During the needle tip and axis annotation process, the needle tip and entry point were 
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marked on the 3D Slicer, and the process was repeated twice with a wash-out period of 

two weeks in between sessions. The needle localization difference between the two 

annotations was recorded as a human intra-reader variation. 𝜺𝜺𝒕𝒕𝒕𝒕𝒕𝒕 which is the needle 

tip distance between the predicted needle tip and reference needle tip, and 𝜶𝜶 which is 

the angle between the predicted needle axis and reference needle axis were compared 

with the human intra-reader variation. The distribution of the needle localization results 

from seven-fold cross-validation and human intra-reader variation of all the images are 

summarized and compared using violin plots in Figure 3-6. Based on Wilcoxon signed 

rank test, there is a significant difference in 𝜀𝜀𝑡𝑡𝑡𝑡𝑡𝑡, and no significant difference in 𝜶𝜶. 

 
Figure 3-8 Violin plots of needle tip localization results(blue) and needle axis 
localization results(right) compared with the human intra-reader variations.  
In the pair-wise comparison, the Wilcoxon signed rank test shows p-value=0.0085 
for needle tip localization results and p-value=0.9960 for needle axis localization 
results. * indicates Wilcoxon signed rank test with p<0.01.  
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Chapter 4 Discussion 

In this study, we have developed an automatic 3D needle localization pipeline for MRI-

guided interventions. The pipeline incorporated a 3D Swin UNETR and a 2D Swin 

Transformer. First, the 3D Swin UNETR produced an initial coarse segmentation of the 

needle feature on intra-procedural 3D MR images. Next, the post-processing modules 

generated reformatted 2D images that aligned with the 3D needle axis. The reformatted 

2D images were then sent to the 2D Swin Transformer for fine segmentation. The fine 

2D segmentation of the needle feature was then used to calculate the 2D coordinates of 

the needle tip, entry point, and needle axis. The 2D coordinates were converted back to 

3D space and produced 3D needle localization results.  

 

We performed seven-fold cross-validation with a total of 49 in vivo 3D interventional 

MR images. The cross-validation results demonstrated consistent 3D needle 

localization accuracy, with a median needle tip localization error of 1.476 mm (1.09 

pixels) and a median needle axis localization error of 0.98°, which was comparable to 

human reader variability. This level of accuracy is sufficient for liver biopsy since 

clinically-relevant lesions typically have a diameter of 5-10 mm54,55. The pipeline also 

achieved real-time 3D needle localization, with a processing time of around 6 seconds 

from start to finish. 

 

As part of the pipeline, we adopted 3D Swin UNETR for 3D needle feature 

segmentation. The 3D Swin UNETR achieved a median Dice Score of 0.8042 in 3D 
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needle feature segmentation. The 3D UNETR trained on a relatively small 3D MR 

image dataset (~40 volumetric images) and achieved the accuracy mentioned above 

with its transformer-based network design to capture the long-range information in the 

3D image and its adoption of the pre-trained model weights generated by the self-

supervised pre-training on the CT images42. The reformatted 2D image plane 

realignment results generated based on the 3D segmentation result of the 3D Swin 

UNETR achieved a median 𝜽𝜽 (angle between the predicted reformatted image plane 

and reference needle axis) of 0.47° which is adequate for guiding image plane 

realignment during interventional procedures. 

 

We also developed a 2D Swin Transformer for 2D needle feature segmentation on the 

2D reformatted image plane generated by the pipeline. The 2D Swin Transformer 

achieved a median Dice Score of 0.8940 after pre-training with the 2D single-slice GRE 

images of the 2D needle feature collected during the interventional experiments and a 

median Dice Score of 0.9261 after fine-tuning with the reformatted 2D images 

generated from 3D T1w-VIBE by the pipeline. By combining the 2D Swin Transformer 

and the 3D Swin UNETR, the pipeline’s performance of needle tip localization 

improved from a median 𝜺𝜺𝒕𝒕𝒕𝒕𝒕𝒕  (distance between the predicted needle tip to the 

reference needle tip) of 1.902 mm to 1.476 mm. During the interventional procedures, 

the 2D fine segmentation generated by the 2D Swin Transformer in the pipeline will be 

of great clinical significance in the final insertion stage and confirmation stage where 

the precise needle tip and axis localization are required. 
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There are limitations to this study. Firstly, due to the limitation of the size of the dataset, 

all the results shown here are from the cross-validation experiments. In the future, 

independent testing can be done to further assess the pipeline’s performance. Secondly, 

in this study, the position of the needle tip and axis was estimated by the location of the 

needle feature tip and needle feature axis. However, a major limitation is that the 

discrepancy between the needle feature and the underlying physical needle position has 

not been addressed. The susceptibility difference between a physical needle and water 

causes magnetic field perturbation and MR signal dephasing. The signal void features 

caused by the susceptibility effect can have an irregular shape at the tip and the axis can 

be shifted from the physical needle axis. Previous studies have shown that the needle 

tip artifact can extend beyond the actual needle tip location and exhibit strong curvature 

in the direction of the B0 magnetic field56,57. Nevertheless, the observed titanium needle 

feature void artifact displacements are typically 2 mm or less from the actual needle 

location, smaller than the radius of the clinically significant tumor size of approximately 

4.9 mm56. Thirdly, the pipeline design can be further improved. The post-processing 

module employed in the pipeline removes the false-positive objects by calculating the 

volume of each object and removing the small one. In the future, the false-positive 

removal modules could incorporate relative position information of the needle and 

surrounding tissue to enhance performance. 
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Chapter 5 Future Work and Conclusion 

In summary, this study achieved the first aim of developing neural networks for 3D and 

2D needle feature segmentation on intra-procedural MRI by the implementation of 3D 

Swin UNETR and 2D Swin Transformer. Based on the results from cross-validation, 

the 3D Swin achieved a median Dice Score of 0.8042 in 3D needle feature segmentation 

on 3D T1w-VIBE images collected during the interventional experiments. The 2D Swin 

Transformer achieved a median Dice Score of 0.9261 in 2D needle feature 

segmentation on the 2D reformatted images generated by the pipeline. The second aim 

of developing an automatic deep learning-based pipeline for 3D needle localization on 

intraprocedural MRI was achieved by the implementation of the proposed pipeline. The 

cross-validation results show that the proposed pipeline achieved real-time and accurate 

3D needle localization with a computation time of 6 seconds, median needle tip 

localization error of 1.476 mm, and median needle axis localization error of 0.98 

degrees which is comparable to human intra-reader variation. 

 

5.1 Future Work 

Firstly, the time efficiency of the pipeline will be improved in the future. The average 

computation time for 3D needle localization in each instance was about 6 sec. In the 

pipeline, the inference time for 3D Swin UNETR was about 2 seconds and the inference 

time for 2D Swin Transformer was about 11 microseconds. Therefore, there is still room 

for improvement in accelerating the processing time of data loading and transferring by 

optimizing the pipeline design. The optimal processing time for needle localization in 
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each instance will be around 2-3 seconds, which is within the time constraints of 

interventional procedures. Secondly, to address the challenges of limitation of the size 

of the 3D dataset, needle feature synthesis in 3D MR images will be performed to 

expand the dataset of the 3D images47. The synthesized images can be utilized for 

training and testing the 3D neural network and the pipeline. Thirdly, MRI scan plane 

control modules will be implemented by utilizing the realignment image plane 

localization results generated by the pipeline. The scan plane control module in the 

scanner will enable real-time scan plane updates during the interventional experiments 

to streamline the workflow. Fourthly, the discrepancy between the physical needle tip 

and needle feature tip will be taken into account by applying physical needle 

localization methods preciously studied47. Finally, additional in vivo interventional 

experiments will be conducted to collect more data for training and also to further 

validate the pipeline’s performance. 

 

5.2 Conclusion 

The work in this thesis developed a pipeline for real-time automatic 3D needle 

localization in MRI-guided interventions. The pipeline has a coarse-to-fine structure 

where it adopts 3D Swin UNETR for coarse segmentation of the 3D needle feature and 

2D Swin Transformer for fine segmentation of the needle feature in the 2D reformatted 

image plane. The proposed pipeline achieved real-time and accurate 3D needle 

localization and thus further expanded clinical applications of MRI-guided 

percutaneous interventions. 
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