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Abstract: Electrochemical impedance spectroscopy (EIS) is a powerful technique used for the analysis
of interfacial properties related to bio-recognition events occurring at the electrode surface, such as
antibody–antigen recognition, substrate–enzyme interaction, or whole cell capturing. Thus, EIS could
be exploited in several important biomedical diagnosis and environmental applications. However,
the EIS is one of the most complex electrochemical methods, therefore, this review introduced the
basic concepts and the theoretical background of the impedimetric technique along with the state of
the art of the impedimetric biosensors and the impact of nanomaterials on the EIS performance. The
use of nanomaterials such as nanoparticles, nanotubes, nanowires, and nanocomposites provided
catalytic activity, enhanced sensing elements immobilization, promoted faster electron transfer,
and increased reliability and accuracy of the reported EIS sensors. Thus, the EIS was used for the
effective quantitative and qualitative detections of pathogens, DNA, cancer-associated biomarkers,
etc. Through this review article, intensive literature review is provided to highlight the impact of
nanomaterials on enhancing the analytical features of impedimetric biosensors.

Keywords: electrochemical impedance spectroscopy (EIS); impedimetric biosensors; nanomaterials

1. Overview of Electroanalytical Methods

Electroanalytical methods are considered as the most important branch of analytical
chemistry, which determines characteristics along with quantity of specific analyte(s)
present in an electrochemical cell. The measurement of electrochemical features taking
place at the electrode interface reflects the association between the magnitude of the
property measured and the concentration of particular chemical species. Compared to other
analytical methods, e.g., chromatography or spectroscopy, electroanalytical techniques
are much simpler and easier to miniaturize as well as being cheaper, which makes them
more appropriate for rapid and accurate detection. Based on the measurable signals,
electroanalytical methods are categorized as follows:

Potentiometric analysis: a reference electrode and an indicator electrode are allocated
in a simple electrochemical cell whereas the difference of potential between the two elec-
trodes is recorded to provide significant information about the sample concentration [1].
In the potentiometric technique, at zero current, the potential changes (vs. a reference
electrode) are correlated to the changes of a concentration of a target analyte. The EMF of a
cell depends on that concentration. Therefore, a direct calculation is easily obtained from
the Nernst correlation (Equation (1)):

Ecell = E0
cell − (RT/nF) ln Q (1)
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where Ecell is the measured cell potential, E0 is the standard cell potential, R is the universal
gas constant, T is the temperature, n is the number of electron transfer, F is the Faraday
constant, and Q is the reaction quotient that represents the instantaneous ratio of redox-
concentrations between the anode and the cathode.

Coulometric analysis: Coulometry is a method to carry out exhaustive electrolysis of
an analyte by applying constant potential onto a working electrode surface with respect to a
reference electrode [2]. Coulometric titrations are common practices to measure the sample.
However, the constant-potential coulometry is not subjected to the effects of interferences,
since the potential of the working electrode is controlled at a value at which only a single
electrochemical reaction is conducted.

Voltammetric analysis: The sample is subjected to a constant/varying potential at the
electrode’s surface to record the Faradaic current produced. This technique is very impor-
tant to understand the mechanisms and the kinetics of oxidation–reduction reactions and
the electrochemical reactivity of an analyte [3]. The voltammetry falls into two sub-classes
termed as polarography and amperometry. Polarography is a voltammetric technique in
which chemical species (ions or molecules) undergo oxidation or reduction at the surface of
a polarized dropping mercury electrode (DME) at an applied fixed potential vs. a reference
electrode. From the resulting current–voltage (I–V) curve, both the concentration and the
nature of the oxidized and/or the reduced substance(s) adsorbed at the dropping mercury
electrode surface could be determined [4]. In amperometric methods, redox reactions
(oxidation or reduction) of electroactive molecule(s) are measured at a constant potential.
Application of voltammetry is widely exploited in biomedical diagnosis and environmental
analysis [5].

Electrochemical impedance spectroscopy (EIS): EIS is one of the most important elec-
trochemical techniques where the impedance in a circuit is measured by ohms (as resistance
unit). Over the other electrochemical technique, EIS offers several advantages reliant on
the fact that it is a steady-state technique, that it utilizes small signal analysis, and that it
is able to probe signal relaxations over a very wide range of applied frequency, from less
than 1 mHz to greater than 1 MHz, using commercially available electrochemical working
stations (potentiostat). EIS theory and its data interpretation are very complicated for re-
searchers who are not familiar with it, such as biologists, biochemists, or material scientists.
Therefore, we directed our attention to explain its fundamentals in the next sections.

2. Basic Concept of EIS

In a conventional electrochemical cell, matter–(redox species)–electrode interactions
include the concentration of electroactive species, charge-transfer, and mass-transfer from
the bulk solution to the electrode surface in addition to the resistance of the electrolyte.
Each of these features is characterized by an electrical circuit that consists of resistances,
capacitors, or constant phase elements that are connected in parallel or in a series to form
an equivalent circuit, as shown in Figure 1 [6]. Thus, the EIS could be used to explore
mass-transfer, charge-transfer, and diffusion processes. Accordingly, the EIS has the ability
to study intrinsic material properties or specific processes that could influence conductance,
resistance, or capacitance of an electrochemical system. The impedance differs from the
resistance, since the resistance observed in DC circuits obeys Ohm’s Law directly. A small
signal excitation is applied for measuring the impedance response. The electrochemical
cell response is pseudo-linear in which a phase-shift is acquired while the current response
to a sinusoidal potential is a sinusoid at the applied frequency. Thus, the excitation signal
is presented as a function of time, as shown in Equation (2):

Et = E0·sin(ωt) (2)

where Et is the potential at time t, E0 is the amplitude of the signal, andω is the radial frequency.
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Figure 1. A simple scheme to descript the EIS circuit and the redox reaction takes place at the surface
of working electrodes in a conventional-electrochemical cell (i.e., three-electrode system). Rct is the
charge transfer resistance, Rs is electrolyte resistance, and Cdl is the capacitance double layer.

The correlation between the radial frequency (ω) and the applied frequency (f) is
calculated by Equation (3):

ω = 2·π·f (3)

In a linear system, the signal is shifted in phase (Φ) and has a different amplitude than
I0 (Equation (4)).

It = I0 sin(ωt + Φ) (4)

Thus, the impedance of the whole system can be obtained from Equation (5):

Z = E/I = Z0 exp(iΦ) = Z0 (cosΦ + isinΦ) (5)

where Z, E, I, ω, and Φ are impedance, potential, current, frequency, and phase shift
between E and I, respectively. The impedance is expressed in terms of a magnitude, Z0,
and a phase shift, Φ. If the applied sinusoidal signal is plotted on the X-axis and the
sinusoidal response signal (I) on the Y-axis, the result is a “Lissajous Plot”, Figure 2(I).
Before the existence of modern EIS instrumentation, Lissajous analysis was the only way
for the impedance measurement [6,7].
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Figure 2. The Lissajous plot (I) and the Nyquist plot with impedance vector (II). Source: Figure modified from [8],
electrochemical impedance spectroscopy (EIS) applications to sensors and diagnostics.

3. Representations of EIS

The impedance expression is divided into a real part and an imaginary part. When
the real part (Zreal) is plotted on the X-axis and the imaginary part (Zimag) is plotted on
the Y-axis, a “Nyquist Plot” is formed (Figure 2(II), right side). Each point on the Nyquist
plot is an impedance value at a frequency point, while the Zimag is negative. At the X-axis,
impedance at the right side of the plot is conducted with low frequency, while, at the
higher frequencies, their generated impedances are exerted on the left. Moreover, on a
Nyquist plot, impedance can be represented as a vector (arrow) of length |Z|. The angle
between this arrow and the X-axis is called the “phase angle”. Another way to express
the impedance results is to use what is called a Bode plot, which is very common in the
engineering community compared to the Nyquist plot, where the Bode plot comprises two
separate logarithmic plots: magnitude vs. frequency and phase vs. frequency (Figure 3).
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Practically, impedance is measured by applying a potential wave to the working
electrode and recording the resulting current wave. From these two waves, Z, Φ, Zreal, and
Zimag are extracted and sketched. The spectrum is obtained by measuring these param-
eters for potential waves with different frequencies. The first report on electrochemical
impedance spectroscopy was introduced in 1975 [10], when a small sinusoidal potential
variation and the current response was measured [11,12]. In a three-electrode system, an
EIS experiment is conducted by fixing an applied voltage [13]. The produced solution
resistance (Rs), charge transfer resistance (Rct), and Warburg impedance (W) are collected
and displayed in the Nyquist plots.

There are two forms of EIS, Faradaic and non-Faradaic. In the former, impedance is
produced when redox reactions take place, while the latter is a DC-based impedance, and
its electrical features are produced by double layer capacitance. Electron transfer through
electrode surfaces is expressed as the Faradaic current, which is exploited for quantitative
analysis [14]. When frequency is plotted against phase angle, a Bode plot is configured,
which is useful to find capacitance of the electrochemical systems; more information about
Bode plots can be obtained from Scully and Silverman [15]. In general terms, Bode plots
are used for evaluating the capacitive systems, while the Nyquist plots are typically used
for analyzing the resistive processes [16]. Sum of impedances of each constituent is the
overall impedance of the whole circuit that could be analyzed [8]. In that case, Ohm’s law
is applied to calculate the overall impedance of a circuit with numerous components by
taking the entirety of the impedances of each element:

Ztotal = Z1 + Z2 + Z3 + . . . . . . . . . . . . . . . + Zx (6)

On the other hand, diffusion of molecules or redox species can create an additional
resistance known as the Warburg impedance (W). This impedance is frequency dependent.
Thus, at high frequencies, the Warburg impedance is small, since diffusing reactants do not
have to move very far. At low frequencies, the redox molecules have the force to diffuse,
thereby increasing the Warburg resistance. On the Nyquist plot, the infinite Warburg
impedance displays as a tilted line with a slope of 45◦. On the other hand, a phase shift of
45◦ is exhibited on the Bode plot referring to the Warburg effect.

4. EIS Equivalent Circuits

Electrochemical processes associated with the electrolyte/interface and redox reac-
tions are simulated/computed as an electric circuit (equivalent circuit) involving electrical
components (resistors, capacitors, inductors). This equivalent circuit is designed and
implemented to understand and evaluate the individual components of the EIS system.
Resistance of solution (Rs), double layer capacitance at the surface of the electrode (CdI),
charge transfer resistance (Rct), and Warburg resistance (Zw) are simplified in the Ran-
dles equivalent circuits, as shown in Figure 4, [13]. Warburg resistance is the result of
a diffusion process occurring at the electrode–electrolyte interface. Experimentally, the
perfect capacitor does not regularly exist, thus an additional element called a constant
phase element (CPE) is applied to mimic/model this non-ideal capacitance behavior. The
discussed reasons behind this include surface roughness, non-homogeneity, or surface
porosity of the investigated materials [17].

From Nyquist plots (practical data must be obtained first), elements of the equivalent
circuit are determined and connected according to the Nyquist shape. Therefore, the EIS
curve is the most important datum to be obtained first, and then surface characteristics
are evaluated from fitting the electrical circuit simulation (see Figure 5). The shape of a
Nyquist plot is dependent on the electrode matrix (i.e., working electrode composition) and
the electrochemical responses taking place either at the surface of the working electrode
or in the bulk solution. Thus, different Nyquist plot curves could be generated, e.g., a
single semicircle, two semicircles, or two half-semicircles could be obtained for specific
electrochemical operation [13].
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circuit for an electrochemical system (original data obtained by our team). Impedance measurement is
formed by Nyquist plot, which is constructed into two-dimensional X- and Y-axes for the real and the
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adjusted at AC potential of 5 mV, and the applied frequency sweeps extended from 10,000 to 0.1 Hz.
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Physical and chemical processes in fuel cells as well as energy storage devices can be
characterized effectively using the EIS technique as a non-destructive investigating tool.
Thus, the EIS can be implemented to monitor stability and performance of these materials
and devices in addition to monitoring their charge transport properties [18].

5. Impedimetric Biosensors

Biosensors are devices used to sense the existence or the actual concentration of chem-
ical or biological target(s). A biosensor consists of a recognition element that identifies
molecular component(s) in the sample being investigated. Next, the recognition event is
detected via the implementation of a diverse transducer (colorimetric, optical, electrochem-
ical, or mass change), which collects specific signals to be processed and amplified for data
interpretations. Due to small sample prerequisite, high selectivity, reproducibility, rapid
detection, and high sensitivity, the biosensors become the essential diagnostic tools. Keep
in mind that each target (analyte) needs certain sensing strategies and sensor configurations
to be developed.

Electrochemical biosensors (see Figure 6) have been defined as simple, easy to use,
portable, cost effective, and disposable, all features that make them ideal for point-of-
care devices [19]. Electrochemical sensing is made possible: a typical three-electrode
electrochemical cell consists of a working, a counter (CE), and a reference electrode. In
these cases, the working electrode serves as a surface on which the redox reaction takes
place. Electrochemical techniques can characterize surface modifications by evaluating
the electroactive area or the presence of electroactive species or by evaluating the rate
of electrons exchange. Cyclic voltammetry (CV) is the most common, simple, and fast
technique for acquiring qualitative and quantitative information on biological and redox
reactions. The kinetics of heterogeneous electron transfer reactions, the thermodynamics
of redox processes, and the coupled chemical reactions or adsorption processes can be
accomplished by the CV [20,21]. The understanding of such properties could be exploited
in various applications and devices such as biofuel cells or biosensors.

On the other hand, EIS is a very important method for studying and understanding
the interfacial properties related to the selective bio-recognition events [22,23], e.g., the
antigen–antibody capturing that occurs at the sensor surface or any other actions such
as the molecular recognition of specific proteins, receptors identification, nucleic acids,
or whole cells. Accordingly, several studies on EIS-based biosensors concentrated on
designing aptasensors and immunosensors [24,25]. Aptamers are short single-stranded
oligonucleotides (RNA or DNA) with high stability, high accessibility, and strong binding
affinity [26]. Hence, aptamers are perfect for designing high performance EIS biosensors. In
EIS-immunosensors, a difference in the electrical signal is created due to the kinetic binding
of antibodies and its antigens at the sensors surface. As a result, electron transfer/charge
transfer resistance is produced, representing the amount of bound molecules. Thus, as
a label free detection, the EIS biosensors enable direct determination of biomolecular
recognition actions [27]. EIS biosensors are increased significantly due to their facile
manipulation, rapid response, miniaturization capability, and readiness for lab-on-a-chip
integration with low cost and online measurement to detect very low concentrations [28,29].
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6. Nanomaterials Influences the Impedimetric Biosensors

Engineering of novel electrode design using nanomaterials to functionalize the trans-
ducer surface and the tethering of receptors or the recognition elements is one of the
strategies applied for the construction of electrochemical sensors. From the synthetic point
of view, various techniques (physical, chemical, biological, or mixing techniques) could be
used for nanomaterial synthesis. Based on the material of interest, the type of nanomaterials
(e.g., 0D, 1D, 2D), the sizes, or the desired quantity, the synthesis technique is decided [31].
A wide range of nanostructured materials has been extensively used for increasing the
sensor’s surface area, allowing more spaces for immobilizing the sensing element or for
facilitating/amplifying the signals received from the receptor–analyte interaction [32].
Carbon based nanomaterials (e.g., fullerene (C60), graphene, carbon nanotubes, and carbon
nanofibers) are popular for sensors surface modification due to their advantages of high
electrical conductivity, large surface area, easy functionalization, and their biocompatibility.

Metal and metal oxides nanostructures are predominant materials used for electrode
modification due to their electrocatalytic activity and facilitation of direct electron transfer
in mediatorless biosensing systems [33,34]. Thus, ZnO, CuO, NiO, TiO2, and Fe3O4 were
extensively used in the impedimetric biosensing to support faster electron transfer kinetics
from the active sites of immobilized bioreceptors to the electrode surface, which led to
synergistic enhancement in the sensing performance [35–37]. In one of these reports, ZnO
doped-copper nanoparticles showed promising features for the development of a cost
effective non-enzymatic impedimetric glucose biosensor [38].

Precious metal nanostructures including Au, Pt, Ag, or Pd were exploited for electrode
modification due to their good biocompatible properties, and inertness against oxidation
reactions occurred at their surfaces [39–42]. The sensors surface is functionalized by
these nanostructures either directly via drop-casting or by mixing with other components
(e.g., polymeric substances or sol-gel materials) in the electrode matrix [43]. Wandersonda
Silva et al. developed an impedimetric sensor for tyramine based on gold nanoparticles
doped-poly(8-anilino-1-naphthalene sulphonic acid) modified flat gold electrodes. The
addition of gold nanoparticles increased the sensitivity of the sensor’s response with a
linear range from 0.8 to 80 µM and the limit of detection of 0.04 µM [44].
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In a recent study, an impedimetric sensor for total calcium detection was developed
using a gold nanoparticle self-assembled monolayer to provide high sensitivity and a
wide linear range from 5 × 10−12 to 1 × 10−6 mol L−1 with the low limit of detection of
3.6 × 10−12 mol L−1 [45].

On the other hand, a labeled electrochemical system for the detection of DNA breast
cancer using AuNPs was established. The concept is built on the fact that electrons from the
redox mediator (Fe(CN)6) are transferred to the electrode through the ssDNA conjugated
AuNPs [46]. By applying this approach, breast cancer gene BRCA1 was detected without
any signal amplification. Consequently, Gao et al. developed a DNA sensor in which the
AuNPs were displaced by target DNA, and it was utilized for the mediated impedimetric
detection with a very high sensitivity, whereas the detection limit was 50 fM [47]. These
DNA sensors consisted of simple structural designs of the capture probes with minimum
steps of preparation, which are great advantages for sensor fabrication. However, in
these sensors, the DNA–gold binding is attained through the interaction between gold
and bases of DNA via the electrostatic interaction, and, hence, the success of binding
between the AuNPs and the DNA is necessary for the sensor fabrication where the size
and the charge on the AuNPs become significant. Accordingly, functionalized AuNPs
were prepared to solve the above issues and achieved successful binding between AuNPs
and DNA. Other classes of nanostructured electrodes were fabricated using a hybrid
of metal and metal oxides to enhance the electron communication rate between redox
active species and electrode surface. In this regard, magnetite and gold nanoparticles
(Fe3O4/Au) modified electrodes were implemented for quantification of DNA of the
hepatitis B virus [48]. The Fe3O4/Au modified electrode accelerated the charge transport
and increased the sensitivity for DNA hybridization. Other studies attempted to couple
different materials to maximize electron transfer. On the other hand, gold nanoparticles-
assembled peptide nanotubes modified with graphite electrodes were introduced for the
impedimetric analysis of circulating miRNA-410 secreted by prostate cancer cells (Figure 7).
The modified electrode showed high sensitivity and low detection limit to be applicable in
the impedimetric recognition of the target miRNA [49]. In another report, a prostate specific
antigen as a biomarker for prostate cancer was detected using the aptasensor modified
with gold nanoparticles (Figure 8) [50]. The anti-PSA DNA aptamer was exploited for
both square wave voltammetry (SWV) and impedimetric detections. Using the Au-NPs, a
significant improvement in the limit of detection was obtained.

Further, detection of the HIV-1 gene using a label-free DNA impedimetric sensor was
assisted by the AuNPs/carbonized glass fiber-coal tar pitch-electrodes [51]. This sensor
offered a limit of detection of 13 fM. The thiol-modified electrodes were prepared using
amine-crosslinking chemistry, and the coated surfaces with AuNPs self-assembled were
highly conductive.

Besides, bacterial impedimetric biosensors for fast detection of major foodborne
pathogens (E. coli O157:H7) were made using the immunoglobulin G (IgG) antibody. A
well-defined order of self-assembled layers of thiolated protein G (PrG)@ gold nanoparticles
modified electrodes was exploited for the IgG immobilization. The AuNPs-based biosensor
exhibited a very high selectivity towards the target pathogen over other bacteria such as
Staphylococcus aureus and Salmonella typhimurium. Moreover, the sensor provided a limit of
detection of 48 colony forming units (cfu mL−1), which is three times lower than that of
the planar gold electrode biosensor (140 cfu mL−1). Therefore, the improved impedimetric
performance was attributed to the synergistic effect of the AuNPs-PrG-thiol framework [52].
Furthermore, AuNPs-protein G was exploited for building up a sensitive EIS biosensor
for the detection of cancer biomarker epidermal growth factor receptors. The biosensor
was tested on different samples obtained from human plasma and brain tissue, which
encouraged it to be applied in clinical screenings and prognoses of tumors [53]. Arginine-
functionalized gold nanoparticles for the detection of DHEAS, a biomarker of pediatric
adrenocortical carcinoma, was developed, and the EIS was applied as the measuring
technique [54]. This immunosensor was developed using anti-DHEA IgM antibodies as
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the bio-recognition element immobilized at the glassy carbon electrode functionalized with
AuNPs. A linear relationship between ∆Rct and DHEAS concentration was verified in the
range from 10 to 110 µg/dL, with a LOD of 7.4 µg/dL. Besides the good sensitivity, the
immunosensor displayed accuracy, stability, and specificity to detect the DHEAS in real
patient plasma samples.
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As a sensing strategy, from the above mentioned finding, the use of nanomaterials
for developing EIS biosensors did not only increase the electrode surface but also allowed
rapid and sensitive detection of desired analytes.

7. Carbon-Based Impedimetric Biosensors

As a result of the advances made in developing electrochemical biosensors, carbon
nanomaterials have continuously expanded in various aspects, from raw electrode mate-
rials to surface modifications at the nanoscale. Graphene and carbon nanotubes are the
most common carbon materials used for constructing EIS biosensors due to their high
electrochemical activity, high electrical conductivity, large surface area, ease for function-
alization, and biocompatibility [55,56]. Thus, derivatives of carbon materials including
graphene oxide (GO) and reduced graphene oxide (rGO) have been utilized in electro-
chemical sensing. By exfoliation of graphite in water using sonication, a single layer to a
few layers (nano-sheets) of graphene oxides could be produced [57]. The GO is strongly
affected by the density of oxygen-containing groups because of the higher negative charge
of the graphitic surface that causes a higher charge transfer resistance [58]. Therefore, the
formed GO has less electrical conductivity than the reduced GO. On the other hand, the
hydrophilicity of graphene oxides is increased due to the presence of oxygen-containing
functional groups on its surface, which provides high dispersion and more surface area for
molecular binding [59].

Those oxygen-containing groups could be reduced electrochemically by applying a
suitable electrical potential to create a reduced graphene oxide (rGO) with excellent conduc-
tivity [60]. Alternatively, thermal, chemical, or combined chemical and thermal methods
could be used to achieve the complete reduction and exfoliation of graphene oxide [61–63].
Composition and functionalization of graphene-related nanomaterials have a strong ef-
fect on the immobilization of biorecognition elements. Generally, EIS measurements are
performed in Faradaic mode using electrochemical redox probes (electron mediators) to
focus on the Rct variations between the solution and the electrode interface [64]. Using
graphene quantum dots and gold-embedded polyaniline nanowires, impedimetric sensors
for the hepatitis E virus (HEV) were designed. HEV virus particles were captured by the
immobilized antibody to provide high sensitivity. The sensor linearity response in serum
samples ranged from 10 fg mL−1 to 100 pg mL−1. Ultimately, the proposed sensor was
suggested as a robust probe for rapid HEV detection [65].

Three-to-four-layers of reduced graphene oxide were fabricated and used as a sensing
platform for hairpin DNA [66]. The detection of complementary ssDNA was more robust
and sensitive with LOD of 6.6 pM, while the single rGO-layer platform gave LOD of 50 nM.
Moreover, a DNA-based rGO sensor was developed by Hu’s group. In this approach,
positively charged moieties were introduced for the chemical coupling of DNA probes [67].
Additionally, rGO-nanoparticles were formed on indium tin oxide (ITO) flat electrodes
using cyclic voltammetry. This sensor platform was applied for the direct impedimetric
detection of C-reactive protein (CRP) in human serum samples with a detection limit of
0.08 ng mL−1 [68].

Another label-free impedimetric biosensor was constructed for the detection of low-
density lipoprotein (lipid or LDL) cholesterol. Anti-lipoprotein B-100 was covalently
immobilized on amine-functionalized reduced graphene oxide using EDC/NHS cou-
pling chemistry to show a high sensitivity with the limit of detection of 5 mg/dL of LDL
molecules within 250 s [69].

Referring to the other carbon-based materials, single-walled carbon nanotubes (SWC-
NTs) and multi-walled carbon nanotube (MWCNTs) are two basic forms of the carbon
nanotubes (CNTs) which possess almost all of the aforementioned advantages of graphene
materials, making them the second most popular nanomaterials for electrochemical biosen-
sors. Different electrochemical properties could be induced upon changing the orientation
and the arrangement of CNTs on the electrode surface [69]. CNTs can be utilized either
as a nanocarrier due to the large surface area and the easy amendment or as an electro-
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chemical nanoprobe-based sensor. Growth of Au nanoparticles onto the vertically aligned
MWCNTs was reported to detect a specific TP53 gene sequence [70]. Hence, the EIS was
used to evaluate the DNA hybridization events related to the TP53 gene, and it exhibited
outstanding response towards the target TP53 mutation. The detection limit was 10 nM,
and the sensitivity enhancement was due to the synergistic interactions of the aligned
MWCNTs arrays with the well-distributed AuNPs. On the other hand, gold-coated SWC-
NTs as a microelectrode were exploited to detect complementary 10-base DNA whereas
the charge transfer resistance of the sensor was varied with respect to the target DNA
concentrations. The synergistic interactions of horizontal SWCNT arrays with the AuNPs
were the reason behind the major enhancement occurring in the sensitivity of this sensor.
By using this methodology, the sensor gave a detection limit of 100 nM for single base
mismatch DNA. As the authors claimed in their report, each gold-coated SWCNT acted as
a separate micro-electrode, which could be used to detect fewer than six DNA molecules
in a 1 mL sample [71]. On the other side, heavy metal (Pb2+) was detected indirectly
based on its inhibition effects on choline oxidase using the MWCNTs conjugated with
AuNPs [72]. A unique nanocomposite made of Au NPs/MWCNTs-graphene quantum
dots was produced by Ghanavati et al. [73] for the label-free detection of a prostate specific
antigen (PSA) in clinical samples with a limit of detection of 0.48 pg/mL. Based on the
mentioned EIS applications of the carbon-based materials (graphene and carbon nanotubes
or their nanocomposites), they share interesting features in common, including thermal
properties and them being electronic and excellent mechanics. However, graphene affords
more opportunities in biosensing applications, as it can be greatly produced at a low cost
in large-scale construction.

8. Nanowires-Based Impedimetric Biosensors

Among the nanomaterials used, nanowires (NWs) have emerged as a new class of
promising functional nanomaterials [74,75]. Certain aspects render considerable interest
in the use of NWs as electrochemical transducers. Those unique NWs characteristics
are unidirectional conduction channels, diameters and dimensions appropriate to the
size and the shape of target molecules, in addition to the outstanding electrical transport
property. Both conducting and semiconducting nanowires were reported, including gold
nanowires for Alzheimer’s disease detection [76], gallium nitride nanowires for nucleic
acid detection [77], titanium oxide nanowires for bacterial sensing, and silicon nanowires
for the detection of hepatitis B and liver cancer biomarkers (α-fetoprotein (AFP)) [78].
NWs EIS-based sensors have different constructions and configurations that affect their
applications. One-dimensional (1D) nanostructure wires are used for semiconducting field
effect devices, while 3D collections of nanowires are implemented as sensing ensembles
(nanowires array) [75]. A nanowire array performance is highly dependent on the fabrica-
tion techniques that control the structural parameters, such as diameter, length, ordered
orientation, and crystallinity structure. For example, a DNA biosensor based on vertically
aligned gold nanowires array by electrodeposition was developed by Ramulu et al. [77].
From Au-NWs morphological studies, the nanowires were strongly attached to the flat
gold surface and well-aligned, which provided more electron transfer ability to detect
the specific hybridized DNA in a low concentration. In another study, different metal
nanowire types with different lengths were grown on paper substrates using electrodeposi-
tion template-assisted and simple adhesive tape-based patterning at room temperature.
The approach exhibited excellent electrode tissue impedance suitable for recording electro-
cardiogram signals without any wet-gel adhesives [79]. Moreover, tellurium doped zinc
oxide (Te-ZnO NWs) nanowires were used for highly sensitive impedimetric DNA sensors
in a label-free approach for hepatitis B virus (HBV) detection [80]. The HBV-DNA sensor
responded to the complementary target in a concentration range from 1 pM to 1 µM, with
the detection limit of 0.1 pM.

Additionally, functionalized ZnO nanorods and carboxylated graphene nano-flakes
were used as a composite deposited on an indium tin oxide (ITO) substrate for the covalent
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immobilization of E. coli O157:H7-specific DNA probe. The obtained impedimetric results
displayed linear response in a wide range of DNA concentrations (10−16 M to 10−6 M)
with a detection limit of 0.1 fM.

Another NWs-based impedimetric platform was constructed for the detection of a car-
diac biomarker (Troponin-I (cTnI)) using tungsten trioxide nanowires (WO3-NWs). A layer
of 3-aminopropyltriethoxy saline was deposited onto the WO3 surface. The impedimetric
response demonstrated high sensitivity with the linear detection range of 0.01–10 ng/mL.
The sensor’s surface modification with the WO3-NWs is a very promising platform for
the development of a point-of-care biosensing device for cardiac detection [81]. With
a controlled thermal synthesis of WO3, a thin layer of 3-aminopropyltriethoxy saline
(APTES)-functionalized WO3 was placed on an ITO substrate, while the covalent binding
of a cTnI antibody onto a functionalized surface was carried out using EDC-NHS chemistry.
The impedimetric response of this immunosensor was suggested as a promising platform
for cardiac detection. It is worth mentioning here that the cardiac troponins (cTnI) are
considered as the gold standard biomarkers for myocardial injury [82,83].

9. Nanocomposite-Based Impedimetric Biosensors

Nanocomposites are materials (two or more phases) with different types or different
structures engineered in nanoscale dimensions [21,84]. Use of nanocomposites (nanoparti-
cles [85], nanosheets [86], or nanotubes [87]) is one of the most trending strategies in the
development of impedimetric biosensors due to their unique electrochemical, mechanical,
thermal, optical, and catalytic features.

Fusco et al. developed an impedimetric sensor for the detection of a tumor asso-
ciated antigen expressed in malignant cells by electrochemical deposition of a polyani-
line/graphene oxide nanocomposite on indium tin oxide (PANI/GO@ITO) [88]. An in-
crease in the amplitude of the impedance signal was obtained resulting from the over-
expression of the target cancer biomarker (CSPG4) in both cell culture medium and cell-
lysate protein. This biosensor was recommended to be an alternative to ELISA and flow
cytometry. In another study, AuNPs/PANI nanocomposite was used as a non-enzymatic
EIS glucose sensor, which give a linear range from 0.3–10 mM and lower detection limit of
0.1 mM [89]. Using this nanocomposite, enzymatic-less glucose detections were enabled,
and the use of glucose oxidase was avoided. In another report, a thin film of a PANI-Ag-Cu
nanocomposite was deposited on glass substrates using spin coating technique and was
applied in the impedimetric detection of E. coli [90]. Furthermore, electropolymerization
of a poly-(aniline-co-3-aminobenzoic acid) (PANABA/AuNPs) nanocomposite material
was conducted for the immunodetection of 2,4-dichlorophenoxy acetic acid herbicide in
spiked samples [91]. The established impedimetric immunosensor showed a limit of de-
tection of 0.3 ppb, which is lower than herbicide emission limits. In conclusion to this
section, nanocomposite-based EIS sensors are very promising but need continuous efforts
to develop novel materials for various target detection.

For another clinical diagnosis, the level of vitamin D deficiency was tracked in blood
samples using Au nanoparticles functionalized with a nanocomposite consisting of a hybrid
of graphitic carbon nitride (GCN) and β-cyclodextrin (β-CD). This label-free impedimetric
immunosensor provided high sensitivity signals with the LOD of 0.01 ng/mL [23].

10. Nanopores and Nanochannels Array

Conceptually, formation of nanopores and nanochannels arrays on the electrode ma-
trix or surfaces could be accomplished to create nanoelectrode arrays with exceptional
ion transfer and mass transport properties. This could be exploited for designing high
performance electrochemical sensors [92–94]. In nanochannel-based biosensing systems,
the concentration of analytes is quantified by measurement of electrical conductance
change between two separated conductive compartments, where such analytes pene-
trate/diffuse to be firmly anchored in the nanochannels. Applications of the nanochannel
platforms in biosensing are diverse, ranging from DNA [95], cancer biomarkers [96],
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enzyme [97], and pathogens [98] to gases and vapors of small molecules such as polychlori-
nated biphenyls [99]. In nanochannel-based biosensing systems, the impedance sensing can
be performed by Faradaic or non-Faradaic models [100]. To avoid the use of redox species,
the non-Faradaic models are more common. Thus, they are well-suited for the detection of
binding events inside the nanopores. Anodic aluminum oxide nano-porous membranes
are the most popular nanochannel-based platforms used with EIS technique [101]. The
preparation of anodic aluminum oxide nano-porous membranes was performed by using
electrochemical anodization, and they present an attractive method to develop nanopore
biosensing devices due to their uniform pore size, high surface area, high aspect ratio, and
inexpensive preparation [102].

Nagaraj and his group successfully improved a nanochannel sensor for pharmaceutical
contaminants detection in water. Ibuprofen concentration was measured in water samples
with the LOD of 0.25 pg mL−1 [100]. Furthermore, different pathogens (such as S. aureus
and E. coli O157:H7) were detected, where selectivity and sensitivity reached a detection
capability of 102 CFU/mL [103].

For adjusting the nanostructures to be suitable for non-Faradaic sensing models, Kant
et al. studied the impact of pore dimension on the performance of biosensing by attaching
streptavidin and biotin covalently with a selected monoclonal antibody of the targeted
organisms [103]. The anodic aluminum oxide nano-porous membrane was prepared with
different pore sizes and lengths followed by the functionalization of streptavidin on the
inner surface of the pores, creating a covalent binding site for biotin molecules. As a
recommendation, lowering nanochannel diameters (less than 10 µm) is not favorable
for non-Faradaic EIS detection due to the high resistance and the long time required for
analyte diffusion inside the channels. Hence, optimization of nanochannel dimensions
is a critical factor that has significant influence on the performance of nanopore-based
electrochemical biosensing devices. Nanochannel-based biosensing approaches are a very
promising research area with tremendous potential applications. In conclusion to this
section, the construction of nanodevices enabling real-time detection systems for sensing of
selected target(s) occurring at confined spaces or interfaces is a significant challenge. Thus,
the nanochannel-based electrochemical sensors could be constructed and optimized.

11. Nanogap Electrodes

As a suggested solution to eliminate the negative effect of the double layer, the debye
length was increased as the ionic strength of the solution was increased. However, this re-
quired additional separation and purification steps for medium replacement. Alternatively,
decreasing the electrode separation distance permitted the electric field uniformity within
the target medium. This concept inspired researchers to construct nanogap electrodes [104].
A nanogap-based biosensing platform represents the organization of two conductive elec-
trodes separated by a distance of no more than 300 nm. Nanogab sensors were applied
in the detection of chemical or biological interactions taking place at the interface. The
distance limit of 300 nm was defined, since it characterizes the upper limit of the electrical
double layer, which formed at all charged conductive sides in aqueous media [105,106].

By exploiting this advance approach, DNA [107], protein [108], and other biological
molecules [109] were detected. The 1D nanogap with point-type gap junctions is classi-
cally intended for single molecule detection by applying AC potential to produce resistive
quantities. The 2D nanogap with band-type gap junctions and the 3D nanogap with
surface-type gap junctions are intended for monitoring of biological parameters (e.g., bind-
ing efficiency of biomolecules) from complex impedance response via AC measurement
techniques [110]. To overlap the double layer effect as well as to reduce the ohmic drop
between electrodes, the gap size was defined to be less than 100 nm. Graphene nanogap
electrodes (GNEs) were used for the detection of streptavidin–biotin biomolecular interac-
tions. The electrodes showed high-affinity interactions of streptavidin–gold nanoparticles
to the biotin-functionalized nanogaps. This platform is recommended as a biosensor for the
detection of other affinity-based biomolecular interactions, such as nucleic acid, antigen–
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antibody, or chemo-selective interactions [111]. In another study, nanogap interdigitated
electrode (IDE) arrays with assisted gold nanoparticles were used to enhance the sensitivity
of detection [85].

Nanogap biosensors were able to detect specific proteins in serum or blood directly,
and they were used also in early disease detection. Despite nanogap biosensors devel-
opment, there is still no commercial device available in the research phase to fulfill the
selectivity and the reproducibility issues due to the technical limitations in mass fabri-
cation. However, the perspective of a small volume, highly sensitive, label-free, low
power consumption and all-electrical biosensing device is still appealing. Ultimately, the
nanogap electrodes are very important tools for the investigation of material properties
at the nanometer scale or at the molecular level. Therefore, they might be considered as
building blocks for the construction of nano-circuits and nanodevices.

12. Conclusions, Remarks and Future Perspective

A biosensor is a self-contained integrated device based on a biological recognition
element(s) (e.g., enzymes, nucleic acids, antibodies bacteria, lectins, cells) to provide precise
quantitative or semi-quantitative analytical information. Among the most common elec-
trochemical biosensors, impedimetric biosensors have attracted a great deal of attention.
Accordingly, they have been widely exploited to detect enzymatic activity, DNA hybridiza-
tion, antibody–antigen recognition, and binding affinity. From our sorted information in
this review, nanomaterials such as metals, metal oxides, carbon, nanowires, nanocomposite,
nanopores, nanochannels array, and nanogap species have been used for developing EIS
biosensors. The use of such nanomaterials provided several improvements in terms of
analytical features, including enlarging sensor surface area, increasing sensitivity and
selectivity, amplifying the electrochemical signals, and increasing rapidity of the sensor’s
response. Table 1 provides a summary of all the reported materials in this review. Dealing
directly with samples on the chip, the EIS could be provided as a portable device for
instantaneous and simple point-of-care (POC) in hospitals, airports, and hotspots.

Table 1. A summary of the reported materials for target analysis using the EIS.

Electrode Material Target of Analyte Detection Limit Linear Range Ref

GCN-β-CD/Au nanocomposite Vitamin D deficiency detection 0.01 ng/mL 0.1 ng/mL to 500 ng/mL [23]
Reduced graphene oxide and
gold nanoparticles Detection of penicillin G 0.8 fM 1.0 fM to 10 µM [26]

Reduced graphene oxide (RGO)
with iron oxide
nanoflowers (IONFs)

Removal of the synthetic
organic dye reactive blue [36]

Copper-doped Zinc oxide
nanoparticles (Cu-ZO) Detection of glucose 10−9 M 10−9 M to 10−5 M [38]

Silver nanoparticles DNA sensor [39]
Platinum nanomaterials Listeria detection 1 × 10−1 M to 1 × 10−4 M [40]
Microwires formed by
platinum nanoparticles

Detection of acetamiprid and
atrazine 1 pM 10 pM to 100 nM [41]

Aluminum oxide (AAO)
gold nanoparticles (GNPs)

Detection of genomic length
hepatitis B virus (HBV) DNA 102 copies/mL 102–103 and 103–105.

copies/mL
[43]

Gold nanoparticle-poly-(8-
anilino-1-napthalene sulphonic
acid), AuNP-PANSA

Determination of
tyramine (Tyr) 0.04 µM 0.8 to 80 µM [44]

Gold Nanoparticles Calcium detection 3.6 × 10−12 mol L−1 5 × 10−12–1 × 10−6 mol L−1 [45]

Gold nanoparticles (GNPs) Label-free DNA detection 1 pM breast cancer
gene BRCA1 [46]

Gold nanoparticles (AuNPs) DNA detection 50 fM to 1 pM [47]

Gold nanoparticle Hepatitis B virus DNA 8.3 (±0.1)×10−13 to 6.4
(±0.2)×10−7 M

[48]

Gold nanoparticle assembled
peptide nanotube (AuNP-PNT) miRNA 410 3.90 fM 10 fM to 300 pM [49]
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Table 1. Cont.

Electrode Material Target of Analyte Detection Limit Linear Range Ref

Gold nanoparticles Detection of a prostate cancer
biomarker 10 pg/mL 10 pg/mL to 10 ng/mL [50]

Gold nanoparticles (AuNPs) Detection of HIV-1 DNA 13 fM 0.1 pM and 10 nM [51]
Gold nanoparticles (AuNPs) Detection of E. coli O157:H7 48 cfu mL−1 up to 107 cfu mL−1 [52]

Gold nanoparticles

Cancer marker epidermal
growth factor receptor in
human plasma and brain
tissue

1 pg mL−1–1 µg mL−1 [53]

Arginine-functionalized gold
nanoparticles (AuNPs-ARG)

Detection of DHEAS, a
biomarker of pediatric
adrenocortical carcinoma

7.4 µg dL−1 10.0 to 110.0 µg dL−1 [54]

Graphene quantum dots and
gold nanoparticle-embedded
polyaniline nanowires

White spot syndrome virus 48.4 DNA
copies/mL.

1.45 × 102 to 1.45 × 105 DNA
copies/m

[62]

Reduced graphene
oxide-nanoparticle (rGO-NP) Detection of C-reactive protein 0.06 and

0.08 ng mL−1 1 ng mL−1 and 1000 ng mL−1 [68]

Reduced graphene oxide Detection low-density
lipoprotein (LDL) molecules 5 mg/dL [69]

Gold nanoparticles/aligned
carbon nanotubes

Detection of cancer, TP53
gene mutation 1.0 × 10−17 M 1.0 × 10−15-1.0 × 10−7 M [71]

Multiwalled carbon nanotubes
(MWCNT) and gold
nanoparticles (GNP).

Choline determination 0.6 µM 3 to 120 µM [72]

Au nanoparticles/MWCNTs-
graphene quantum
dots nanocomposite

Detection of prostate
specific antigen 0.48 pg/mL 1–10000 pg/mL [73]

Pd Nanowires H2-based
electrochemical biosensor 0.04 ng mL–1 0.1–50 ng mL–1 [74]

Diamond nanowires decorated
with nickel nanoparticles

Detection of immunoglobulin
G (IgG) 0.3 ng mL−1 (2 nM) 300 ng mL−1 (2 µM) [75]

Reduced graphene oxide and
gold nanowires

Detection of Alzheimer’s
diseasequantification of serum
microRNA-137

1.7 fM 5.0 to 750.0 fM [76]

Gold nanowires array
electrode (AuNWsA)

Enhanced electrochemical
detection of nucleic acid 6.78 × 10−9 M [77]

Silicon-on-isolator-
nanowires (SOI-NWs)

Detection of the hepatitis B
marker HBsAg

up to 10−14 and
10−15 M for HBsAg
and AFP,
respectively

[78]

Tellurium doped ZnO nanowires Hepatitis B virus
DNA detection 0.1 pM 1 pM to 1 µM [80]

WO3 nanorods Detection of a
cardiac biomarker 0.01–10 ng/mL [81]

Polyaniline/graphene
nanocomposite

Detection of chondroitin
sulphate proteoglycan 4 [88]

Gold nanoparticles/polyaniline Glucose detection 0.1 mM 0.3 to 10 mM [89]
PANI-Ag-Cu nanocomposite Detection of E. coli [90]
AuNPs-functionalized
PANABA-MWCNTs
nanocomposite

2,4-dichlorophenoxy acetic
acid detection 0.3 ppb [91]

Alumina nanopore DNA 2.5 nM [95]

Gold nanoparticles Direct detection of a cancer
biomarker in blood

52 U mL−1 of
CA15-3

[96]

Nanoporous membrane with
hyaluronic acid (HA)

Detection of pathogenic
bacteria in whole milk 10 cfu/mL 10–105 cfu/mL [98]
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