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Abstract

Carbon flux phenology is widely used to understand carbon flux dynamics 
and surface exchange processes. Vegetation phenology has been widely 
evaluated by remote sensors; however, very few studies have evaluated the 
use of vegetation phenology for identifying carbon flux phenology. Currently 
available techniques to derive net ecosystem exchange (NEE) from a 
satellite image use a single generic modeling subgroup for agricultural crops.
But, carbon flux phenological processes vary highly with crop types and land 
management practices; this paper reexamines this assumption. Presented 
here are an evaluation of ground-truth remotely sensed vegetation indices 
with in situ NEE measurements and an identification of vegetation indices for
estimating carbon flux phenology metrics by crop type. Results show that 
the performance of different vegetation indices as an indicator of phenology 
varies with crop type, particularly when identifying the start of a season and 
the peak of a season. Maize fields require vegetation indices that make use 
of the near-infrared and red reflectance bands, while soybean fields require 
those making use of the shortwave infrared (IR) and near-IR bands. In 
summary, the study identifies how to best utilize remote sensing technology 
as a crop-specific measurement tool.
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1. Introduction

Phenological dynamics are key to identifying changes in growing season and 
how they change with global climate change (Zhang et al. 2003). Many 



human-managed landscapes have been shown to have a significant impact 
on carbon flux dynamics between terrestrial ecosystems and the 
atmosphere, and therefore they are a major factor in climate change. The 
responses of the global carbon cycle as a result of human-managed 
landscapes are a significant source of uncertainty in future climate 
projections (Le Quéré et al. 2015). Phenology metrics have been derived for 
identifying changes in vegetation type and length of growing season as a 
result of climate change. The vegetation phenology in agricultural systems 
has posed great challenges in modeling of carbon dynamics because of 
human interference, and therefore it will not always follow the same time-
resolved signatures as other landscapes, for instance, forests within the 
same climatic zone may have varying phenology because of human 
management practices (Walker et al. 2012).

Carbon flux phenology (CFP) metrics is a method that has been used for 
tracking changes in carbon dynamics within an ecosystem, and it can be 
directly derived from field-based measurements such as net ecosystem 
exchange (NEE) and PhenoCams (e.g., Noormets et al. 2009; Klosterman et 
al. 2014). The physiological stages of crops are highly correlated to CFP, 
where CFP identifies five recurring transition periods that occur annually in 
NEE measurements (Garrity et al. 2011; Viña et al. 2011; Balzarolo et al. 
2016). Wu et al. (2012) demonstrated the importance of identifying the true 
length of the carbon uptake period by showing the strong correlation 
between the carbon uptake period and net ecosystem production (NEP). 
When the carbon uptake period is delayed by one day, there can be a 
reduction in NEP estimates of 16.1 gC m−2 in nonforested land covers (Wu et 
al. 2012). Limited ground-based carbon flux observations make it difficult to 
scale the total contribution of agricultural land management to the carbon 
budget. Unfortunately, ground-based measurements represent finer spatial 
scales (typically <10 km2) and show significant changes occurring on time 
scales as short as 30 min. Meanwhile, PhenoCams cover a single field, but 
they do not represent a landscape for the region. Therefore, to represent a 
broader area, satellite remote sensing has been used for estimating regional 
phenology dynamics (Wang et al. 2011).

Work by Wang et al. (2011) made use of satellite remote sensing for 
differentiating between grass types (i.e., C3 or C4 grasses) and row crops. 
Their work uses the 500-m 8-day MODIS normalized difference vegetation 
index (NDVI) time series to examine the crop and grassland phenology and 
gives several statistics that can successfully delineate a variety of grass 
types as well as major row crops. Wang et al. (2011) showed there are 
differences in the phenological signals of different crop types and grass 
types.

Previous work that has sought to identify CFP metrics and carbon dynamics 
in agricultural landscapes have often used a single vegetation index (VI) 
calculated from remote sensing imagery to model for all crop types. This is a 
limitation of many remote sensing models because agricultural lands are 



grouped into a single land-cover category, ignoring the variations in 
physiology of different crop types and management practices (e.g., Fu et al. 
2014; Dong et al. 2015; Xiao et al. 2011; and others). This is known to be 
inaccurate, as field-based studies have found that the gas exchange 
between different crop types and land management procedures are not 
uniform (e.g., Gebremedhin et al. 2012; Frank and Dugas 2001; Cicuéndez et
al. 2015; and others). This makes the regional prediction of ecosystem–
atmosphere energy and gas exchange particularly challenging in agricultural
lands.

The two most accessible datasets for estimating phenology are MODIS and 
Landsat, but they do not provide comparable spatial and temporal coverage. 
The daily and weekly 500-m spatial resolution of MODIS is too coarse over a 
heterogeneous landscape to accurately represent agricultural flux 
environments, while the 16-day return period of the finer spatial resolution 
Landsat is spaced too far in time to capture the daily changes that can occur 
in agricultural environments. Zhu et al. (2010)developed methods to address
this by fusing the datasets to create a time series of Landsat and MODIS 
using the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model
(daily) (ESTARFM). This methodology can be used to maintain the temporal 
resolution of MODIS and the spatial resolution of Landsat (30-m pixels) to 
create “Landsat like” MODIS images, a spatial time series of VIs for aiding in 
the identification of CFP metrics, and discrimination of vegetation type 
(Wang et al. 2011; Price et al. 2002; Guo et al. 2003).

Here, we will identify the best VI for identifying satellite remote sensing–
derived phenology metrics to estimate crop-based CFP metrics to improve 
models of energy and gas exchange. Multiple methods exist to remotely 
estimate CFP, but they have rarely been compared. The work presented here
evaluates which VIs best identify CFP metrics derived from downscaled 
MODIS and Landsat satellite observations. This was done by comparing 
ground-observed CFP transition periods from eddy covariance flux tower 
observations of NEE to satellite-derived phenology metrics. We present here 
an evaluation of the effectiveness of 10 VIs in maize (C4 photosynthetic 
pathway) and soybean (C3photosynthetic pathway) agricultural fields, and a 
method for comparison of these spatially disparate measures. We 
hypothesize that the most effective remotely sensed VIs for determining CFP 
metrics will vary based on crop types as a result of the variation in biomass 
that can be observed in the field of view, and the differences in plant 
physiology between maize and soybean.

2. Datasets and preprocessing

a. Remote sensing datasets

During the study period from 2002 to 2011, numerous satellite observations 
have been archived for the U.S. Great Plains region. Here, we utilized land 
surface reflectance datasets from MODIS (500-m resolution) and Landsat 
(30-m resolution). The 8-day 500-m MODIS surface reflectance product 



(MOD09A1) was obtained for 2002–11 for the three tiles that covered the five
AmeriFlux sites of interest (Vermote 2015; Wan et al. 2015). The data were 
downloaded from the Land Processes Distributed Active Archive Center (LP 
DAAC) managed by NASA.

The MOD09A1 data product provides the spectral surface reflectance using 
MODIS bands 1–7. Each pixel contains the highest-quality higher-order 
gridded level-2 (L2G) observation over an 8-day period (Fig. 1, steps 2 and 
3). The use of this dataset minimizes the influences of clouds that will occur 
in the daily MODIS files. The state flags provided with the dataset were 
applied to each image to mask cloudy pixels, snow or ice, and cloud-
shadowed pixels. Each image was subset to a 10 km × 10 km area around 
the station to ensure the entirety of the station fetch was included within the
subset image (Horst and Weil 1994; Leclerc and Foken 2014, 213–214) and 
to reduce processing time.



Landsat datasets have a 16-day revisit cycle and 30-m spatial resolution (Fig.
1, step 1). Images from the Landsat-5 Thematic Mapper and the Landsat-
7 Enhanced Thematic Mapper Plus were used. All Landsat data were 
acquired from the U.S. Geological Survey’s (USGS) Earth Resources 
Observation and Science Center Science Processing Architecture. This 
product has been atmospherically corrected and geometrically corrected 
using the same subroutines conducted on MODIS surface reflectance 
datasets, making these two datasets comparable (Masek et al. 2006). The 



files downloaded contained surface reflectance, cloud mask, and quality 
assurance flags. The blue (450–520 nm), green (520–600 nm), red (630–690 
nm) near-infrared (NIR, 760–900 nm), and two shortwave-infrared surface 
reflectance bands (SWIR1, 1550–1750 nm; SWIR2, 2080–2350 nm) were 
used in this analysis. The 10 km × 10 km subsets of all Landsat surface 
reflectance products were created to match the subset of the MODIS 
datasets. Using the quality control and cloud flags provided by USGS, all 
pixels labeled as cloud, adjacent to cloud, snow/ice, or poor quality were 
removed.

b. ESTARFM downscaling model

The subset images were processed in the ESTARFM image fusion algorithm 
(Zhu et al. 2010). The MODIS bands 1–7 were reordered to spectrally match 
those bands found in Landsat imagery. For instance, MODIS band 1 (red 
band) became band 3 to have the same band placement as the red band in 
the Landsat file. The MODIS surface reflectance was then spatially resampled
from a spatial resolution of 500 to 30 m to match Landsat using standard 
raster resampling methodology described in DeMers (2002). The image 
fusion resulted in up to 46 time stamps annually, which made use of the 
benefits of the finer spatial resolution and higher temporal resolution of both 
satellites (Wang et al. 2013; Walker et al. 2012).

To downscale a MODIS image to a 30-m pixel size, ESTARFM requires two 
Landsat–MODIS imagery pairs that occur within the same 8-day period to 
run: one pair of images occurs before the MODIS image to be downscaled 
and one pair of images that occurs after (Fig. 1, step 4–5). All Landsat–MODIS
imagery pairs were identified using the cloud mask dataset from MODIS and 
Landsat: if both temporally matching MODIS and Landsat subset images had 
≤10% clouds, then the pair was used for downscaling. This was done 
because the image pairs need to be as cloud and snow/ice free as possible 
for the ESTARFM algorithm to work. Figure 1 illustrates this process in steps 
2–4. More information about how the algorithm downscales the 500-m 
MODIS to 30-m spatial resolution can be found in Gao et al. (2006) and Zhu 
et al. (2010). The ESTARFM methodology creates a spatial time series of 
Landsat-like surface reflectance, which is a downscaled MODIS image to 30-
m Landsat spatial resolution, and includes the blue, green, red, NIR, SWIR1, 
and SWIR2 bands. The Landsat-like surface reflectance time series are later 
used to calculate VIs for aiding in the identification of CFP metrics (Wang et 
al. 2011; Price et al. 2002; Guo et al. 2003; Fang et al. 2013; Garrity et al. 
2011)

c. Net ecosystem exchange

Tower-based carbon flux observations are used as the ground-truth control 
data points for VIs discussed below. These observations come from FluxNet, 
a confederation of regional networks of flux towers (Running et al. 
1999; Papale et al. 2015; Baldocchi et al. 2001). One data provider to 
FluxNet is AmeriFlux, which is a network of Primary Investigator (PI)-



managed sites measuring carbon, water, and energy fluxes within the 
Americas. These sites include the most continuous and reliable observations 
of carbon flux data available in the United States. We focus here on five sites
located in the U.S. Great Plains with multiyear data availability from 2002 to 
2011. The five stations selected are located on fields growing either maize, 
maize/soybean rotation, or maize/soybean/wheat rotation. There were 15 
site years for soybean and 27 site years for maize. Table 1 provides a 
summary of the stations and their data availability.

Since CFP is a direct function of net carbon exchange, NEE was the primary 
variable used in this analysis. The goal of this analysis was to compare 
remotely sensed phenology metrics to NEE phenology metrics from tower-
based observations. NEE is directly measured using the eddy covariance 
technique and averaged at 30- or 60-min intervals. The eddy covariance 
system makes use of a 3D sonic anemometer as well as an open- or closed-
path CO2 and H2O gas analyzer that is collocated with the sonic anemometer.
Since each station is individually managed, the specific instrumentation 
(manufacturer, model, etc.) varies. However, all data are collected and 
quality controlled by following best practices for flux observations (Baldocchi 
et al. 2001).

To use NEE as a basis for comparison, a time series matching the remote 
sensing data was constructed. To do this, it was desirable to find a total NEE 
value occurring at the times coincident with remote sensing products. The 
tier 1 FLUXNET2015 dataset was used. All FLUXNET2015 datasets have gone 
through extensive quality control measures and gap filling has been 
conducted on the datasets. All gap-filled datasets use the gap-filling method 
described in Vuichard and Papale (2015). One exception to the processing 
method was the Rosemount G21 Conventional Management Corn Soybean 
Rotation station (US-Ro1) located in Minnesota (Griffis et al. 2011). For this 
site the FLUXNET2015 dataset was not available. The gap-filled level 2 
AmeriFlux dataset was used instead. All level 2 gap-filled datasets are gap-
filled data by individual PIs and may not use the same methodology as the 
FLUXNET2015 dataset.



Gap-filled NEE values were converted from hourly or half-hourly NEE values 
in [μmolCO2 m−2 s−1] to [gC m−2 h−1] and then summed for the 8-day period 
that was coincident to the time stamp of the remote sensing images. This 
provides NEE values in units of [gC m−2 8 days−1]. The process of matching 
NEE measurements to the remote sensing data is shown in Fig. 1. Steps 1–5 
are the ESTARFM technique discussed below, and step 6 shows the 
computation of an 8-day NEE value.

One concern when working with carbon flux measurements is whether the 
NEE values represent the land cover that is being evaluated. To determine 
whether the predominant source locations of NEE fell within the represented 
agricultural field, a surface-layer footprint climatology analysis was 
conducted on all the sites (Fig. 2). The footprint climatology was computed 
using the model developed by Kljun et al. (2015) for non-gap-filled 
observations. All footprint climatologies had a 90% source contribution that 
fell within the agricultural field represented by the flux tower. This provides 
an independent confirmation that NEE values represent the agricultural crop.
Therefore, data were not scaled to a flux footprint because the samples 
represent the crop field a majority of the time. During stable boundary layer 
conditions, source locations may fall outside the agricultural field. However, 
because the temporal resolution of the data had been reduced from 30-min 
observations to 8-day totals, the nighttime respiration made up a small 
fraction of the total NEE value and was therefore not omitted from the 8-day 
total NEE.



3. Methods

a. Vegetation indices

The Landsat-like time series were used to determine a number of crop-
related VIs. The most familiar of these are NDVI (Rouse et al. 1974) and the 
enhanced vegetation index (EVI) (Huete et al. 1997, 2002), but we extend 
our analysis to eight additional indices that have been used throughout the 
literature for their sensitivity in agricultural regions. Each of the VIs was 
selected for the specific information it provides about the land surface. Table
2 provides a summary of all the VIs evaluated. The temperature and 
humidity of the stations were not considered for this analysis because 
vegetation indices have been shown to be a function of temperature, 
precipitation, and NEE (Bonan 2008; Wu et al. 2017; Frank and Karn 2003).



b. Extraction of field-scale measurements

Crop types grown in each agricultural field where the AmeriFlux site was 
located was provided by the station PI. To obtain statistics on surface 
attributes for the representative agricultural field, a polygon shapefile was 
created to extract pixel values for each downscaled Landsat-like VI value for 
all years from 2002 to 2011. The mean and standard deviation of the 
extracted values from each image were computed to create an 8-day time 
series of the 10 VIs at field scale. If any pixel value was previously removed 
because of poor quality, or the value fell outside the upper and lower bounds
of the VI, it was also removed from the computation of the field-scale 
statistics.

c. Comparison of VI-based and NEE-based phenology metrics

The CFP variables of interest include start of season (SOS), sink (SINK), peak 
of season (POS), source (SOURCE), and end of season (EOS) from both the 
NEE measurements and the VIs. From this point forward, subscripts NEE and 
VI will be used to denote which data source was used to find the 
phenological metric. All NEE-based metrics were estimated using the ground-
based direct measurement of carbon dynamics between the atmosphere and
the ecosystem. The VI-based metrics were estimated using VIs that were 
calculated from satellite remote sensing and were assessed in this study 
against the NEE-based metrics. The units for each phenological metric are 
day of the year (DOY) when it occurs.

All NEE and VI data were divided by year and station based on the crop type 
grown each site year. There were 27 site years of maize and 15 site years of 
soybean. Soybean and maize were the main focus of this analysis; therefore, 
the years that the US-ARM station grew wheat or canola were not included 
(Raz-Yaseef et al. 2015). Specific land management activities of the 
agricultural fields were not considered.

Using the tower measurements, SINKNEE, SOURCENEE, SOSNEE, EOSNEE, and 
POSNEE metrics were determined using the methodology defined in Garrity et 
al. (2011). SOSNEE was determined as the time stamp following the peak of 
ecosystem respiration in the spring, and EOSNEE was determined as the peak 
of ecosystem respiration in the fall. SINKNEE was the day of year in the spring 



that NEE became negative, and SOURCENEE was the day of year in the fall 
that NEE became positive again. Figure 3a shows the points where these 
metrics would occur on an annual time series of NEE.

Using the methods discussed in Wang et al. (2011), SOSVI was calculated for 
the VIs by determining the day of year when the VI increased by 20% of the 
total amplitude for the entire season. POSVI was the day of year when the 
maximum VI occurred, and EOSVI was the day of year when the VI decreased 
to values less than 20% of the total amplitude for the season. These points 
are shown in Fig. 3b.

The VI-based phenological metrics were compared on a scatterplot to the 
NEE-based metrics for each crop type. An example of the comparison for EVI 
is shown in Fig. 4. SOSVI and EOSVI were compared to SOSNEE and EOSNEE, 
respectively, to determine whether SOSVI and EOSVI better represented the 
onset and ceasing of photosynthetic acclimation (SOSNEE, EOSNEE). SOSVI and 
EOSVI were also compared to SINKNEE and SOURCENEE to determine how well 
they represent the day of year when SINKNEE or SOURCENEE occurs. The 
phenological metrics are compared against a 1:1 line (gray dashed line, Fig. 



4). The mean signed difference (MSD) in days was determined for each 
phenology point as

where i is the corresponding value for the same year and station, and n is 
the number of values being averaged. The metrics were compared across 
varying climate conditions, however, temperature and humidity were not 
considered (Garrity et al. 2011; Peng et al. 2017).

The significance of each of the VIs was tested by calculating the t test using 
a 10% confidence interval. A VI was considered significant when t was 
greater than 1.3, as determined by the degrees of freedom. It was assumed 
that the population mean was zero during the calculation of the t statistic.

The total NEE value was calculated annually for the growing season by 
summing NEE from the NEE-based SINK to SOURCE dates. This total carbon 
uptake value was then compared to the sum of NEE from SOS and EOS dates
as estimated by VI-based phenology. The total growing season carbon 
uptake as estimated from VI-based SOS to EOS for each vegetation index 
was compared to the total carbon uptake value from NEE-based SINK to 
SOURCE.

4. Results

When considering the performance of each VI as presented here, it is 
important to understand that any MSD values less than 8 days is considered 
to be a good measure because the images used to compute the VI can fall 
anywhere in the 8-day time stamp of MODIS (Fig. 1, step 5).



In Fig. 4, the scatterplot shows that in general for maize (Fig. 4a) the VI-
based versus NEE-based phenological metrics were clustered near the 1:1 
line for EVI, where for several site years the VI-based metrics fall before and 
after the NEE-based metrics. There is a different pattern that occurs in 
soybean (Fig. 4b) for the same VI, where VI-based SOS were estimated 
before NEE-based SOS and SINK phenology metrics, and VI-based EOS was 
estimated after NEE-based SOURCE and EOS dates. A scatterplot for each VI 
was visually inspected to visualize the closeness of the VI-based phenology 
metrics to the NEE-based phenology metrics. These results are included in 
the text of the following sections. A table of the relevant values for all VIs 
and phenology points is included in Table 3. It should be noted that several 
stations had multiple crop rotations in the same year. These stations resulted
in erroneously early or late phenology metrics and were therefore emitted 
from the analysis.

a. Start of season and SINK

In maize fields the VI that best captured SOSNEE, in terms of both absolute 
difference and variability, was the EVI with an MSD of 4.27 days, a standard 
deviation of 14.14 days, and a significant t statistic value. This means that, 



on average EVI estimated the SOS in maize fields 4 days before the true start
of season. EVI was able to estimate SOS most consistently from VI-based 
phenology metrics with a low standard deviation and an absolute difference 
less than 8 days, which is the number of days between time stamps. Another
index that performed well and had significant t statistic values with 
predictions within 11days included the soil-adjusted vegetation index (SAVI). 
The simple tillage index (STI) also had low standard deviation of 9.66 days 
and a significant t value. Thus, although STI estimated the SOS 30 days after 
the true SOS, it was consistent in this bias.

In soybean fields, the normalized difference senescent vegetation index 
(NDSVI) could estimate SOS with a lower standard deviation (12.22 days), a 
larger MSD (29.33 days), and a significant t statistic. This indicates that 
NDSVI estimated the SOS 29 days too early. NDSVI was the only significant 
VI with an MSD less than 30 days and a standard deviation less than 20 days.
The standard deviations of the signed differences were larger in soybean 
fields than in maize, partially as a result of the limited number of site years 
available.

The VI that best captured the day of carbon SINK in a maize field was the STI 
with an MSD of −6.00 days, a standard deviation of 17.44 days, and a 
significant t statistic. This indicates that the VI-based phenology using STI 
estimated the day of year when the field became a carbon SINK 6 days later,
which is less than the 8-day time stamp between data points. Normalized 
difference index (NDI7) performed similarly by predicting the SINK point 6 
days too early, with a standard deviation of 18.41 days.

Meanwhile, the significant VIs that best captured the day of carbon SINK in 
soybean fields were the land surface water index (LWSI) with an MSD of 
−11.20 days with a standard deviation of 9.12 days. No other VIs were able 
to adequately represent the SINK date in soybean fields.

In maize fields the NEE measurements had an average of 24 days difference 
between SOS and day of carbon SINK. This means there are three 8-day data
points between SOS and day of carbon SINK in maize fields. This underscores
how few data passages are available between these two metrics, and 
missing observations that occur in satellite remote sensing as a result of 
clouds may miss these transition points in CFP. The average 24-day bias was 
reflected in the differences from VI-based metrics because the same start of 
season metric obtained from VI-based metrics were used to compare against
NEE-based SOS and SINK dates.

In soybean fields the average difference between SOS and SINK dates as 
determined by NEE measurements were 8 days. This is significantly shorter 
than maize fields, and there is only one time stamp between SOS and SINK 
dates for maize. This means if there is one missing remote sensing scan that 
the SOS or SINK can be missed. This would indicate the need for finer-
temporal-resolution datasets.



b. Peak of season

When estimating the time of peak productivity in maize, the VI that had a 
significant t statistic and the best fit was EVI, which had an MSD of −11.20 
days and a standard deviation of 14.01 days. SAVI was also significant, and 
had an MSD of −10.24 days and a standard deviation of 20.72 days. The 
other eight VI MSDs were between ~10 and 16 days late, which would 
indicate that the POS as determined from VI-based metrics was between 8 
and 16 days late. The VIs with the most consist performance were EVI and 
SAVI.

The VIs that identified POS in the carbon uptake in soybean fields from VI-
based phenology metrics with a small MSD, a small standard deviation, and a
significant t statistic were NDSVI, NDVI, and SAVI with a mean signed 
difference of −6.77, −8.00, and −8.00 days, respectively, and a standard 
deviation of 17.23, 16.97, and 17.28 days, respectively. All the VIs tested 
had very good agreement across sites with a standard deviation in the 
signed differences between 16 and 20 days; however, several VIs were 
deemed insignificant. There was a significantly tighter spread in the MSDs for
soybean than maize. The best metric for identifying POS in soybean fields 
was NDSVI because it had the smallest MSD and a smaller standard 
deviation.

c. End of season and SOURCE

Estimating the time when the maize field became a carbon SOURCE had 
similar challenges as those found when estimating SOS and SINK. The MSDs 
were large across most VIs tested (see Table 3); however, they were the 
more consistent with a smaller standard deviation. The significant VI that 
best captured the day of carbon SOURCE for maize was EVI with an MSD of 
−6.40 days and a standard deviation of 14.01 days. SAVI was able to 
estimate NEE-based metrics from VI-based metrics consistently with a larger 
MSD. The VIs that performed best in estimating the day of carbon source 
were consistently 8–16 days late. There was a small mean signed difference 
(−0.89 days) for the normalized difference tillage index (NDTI), but this index
was not selected as a good metric for the SOURCE date because of the large 
standard deviation (76.89 days) and the t statistic deemed the VI to be 
insignificant.

The estimation of the SOURCE date from VI-based phenological metrics for 
soybean fields had a similar delay pattern to what was found in maize. The 
VIs that most effectively estimated the day of carbon SOURCE were LWSI and
STI. Both VIs had a larger MSD of −24.00 days, but they had a standard 
deviation less than 10 days, which is within one 8-day time stamp.

The best VIs for estimating EOS dynamics in maize fields were EVI and SAVI, 
where both VIs had significant t statistics. The MSD for EVI was 7.20 days 
with a standard deviation of 15.29 days, and SAVI had an MSD of −1.60 days



with a standard deviation of 14.99 days. This means that EVI and SAVI could 
accurately estimate NEE-based EOS within 0–8 days.

When estimating the EOS in soybean fields, all VIs had a higher value in 
MSD. On average the MSD ranged from 16 to 28 days between NEE-based 
and VI-based phenology metrics. The VI that had the smallest mean signed 
difference and standard deviation was the STI with an MSD of −10.67 days 
and a standard deviation of 10.93 days. Other alternatives for estimating the
EOS from VI-based phenology in preference order were LWSI, the green 
normalized difference vegetation index (GNDVI), and EVI. The statistics for 
these additional three VIs can be found in Table 3.

d. Metric comparison for soybean and maize fields combined

The MSDs were computed for all phenology metrics where crop type was not 
considered. When crop type was not considered when estimating CFP 
metrics, there were higher standard deviations of the MSDs. As expected, 
the MSD was approximately the mean of the two MSDs of soybean and maize
separately. A summary of these statistics is found in Table 3.

e. Total NEE during carbon uptake period

Accurately capturing the CFP is important for estimating the total carbon 
uptake that occurs from the day of carbon SINK to the day of carbon 
SOURCE. The total NEE was summed using SINKNEE and SOURCENEE NEE-based
phenology metrics, and was compared to the total NEE when using VI-based 
estimated SOSVI and EOSVI phenology metrics. The results found that the 
total NEE was less negative than ground-based results; the results for maize/
soybean rotation (US-Ne2) can be seen in Fig. 5. In 2007 there were 
significant data gaps as a result of cloud cover, so the SOS and EOS could 
not be calculated for this year for this station. In this example the VI-based 
phenology metrics were not able to capture the true sum of NEE during the 
carbon uptake period and typically underestimated the total carbon uptake 
for the year. The same pattern was observed in the other four sites in this 
analysis. The life cycle and structure of maize and soybean are starkly 
different, which results in different reflectance between each crop type; 
greater carbon uptake in maize compared to soybean affirms the need for 
crop type spatiotemporal models.



5. Discussion

a. Start of season and SINK date

SOS and SINK dates were best captured by indices other than those used in 
most literature, which are EVI and NDVI; these varying indices also varied by 
crop type. Balzarolo et al. (2016) assessed six indices, whereas we assessed 
four of the six in our analysis. We identified that EVI performed better than 
NDVI in croplands when identifying phenological metrics. Our results support 
that EVI and NDVI can accurately estimate SOS with biases of approximately 
eight days when crop type is not considered. More specifically, our results 
also show the MSDs are larger than 30 days when using EVI to estimate SOS 
for soybean, but it performs with acceptable biases of less than eight days 
for maize fields for SOS.

Contrary to Balzarolo et al. (2016), we found that NDSVI is a better metric for
estimating SOS for soybean. The results presented here are consistent 
with Balzarolo et al. (2016) that EVI performs best in croplands for identifying
CFP metrics, but that it is more accurate in maize fields (C4 photosynthetic 
pathway) than soybean fields (C3 photosynthetic pathway). The biases 
tended to be larger for soybean crops than maize because of differences in 
early developmental stages and in the timing of the point of photosynthetic 
acclimation. Depending on the temperature and moisture availability, the 
plant-to-emergence time for soybeans is 5–21 days and for maize 7–10 days.
The period from vegetation emergence to peak photosynthetic uptake 
[which typically occurs in reproductive phases 1–2 (R1–R2)] is 39–71 days in 
soybeans and 69–75 days in maize. Soybean goes through 6 growing stages,
while maize goes through 18 growing phases before beginning the 
reproductive phase (Fehr et al. 1971; Licht 2014; Abendroth et al. 2011). This



apparent temporal mismatch is a strong contributor to why different VIs 
perform better for soybean than maize. Previous work by Klosterman et al. 
(2014) is consistent with our findings because they found there was a 2–8-
day lag in phenology metrics derived from satellite remote sensing 
compared to those derived from PhenoCams.

The LWSI is the best VI for soybean when estimating the day of year when 
the crop field became a carbon SINK. This index relies on the use of the NIR 
and SWIR2 reflectance bands, which are sensitive to the amount of water 
(SWIR2), and there is a higher amount of reflectance of NIR from 
chloroplasts, which contain chlorophyll (Jensen 2005). However, maize was 
most sensitive to EVI and SAVI, which rely on the red and NIR bands. Water 
reflects a majority of the NIR and SWIR2 wavelengths (Jensen 2005). Both 
maize and soybean are highly sensitive to water availability and temperature
in stages of growth (Fehr et al. 1971; Abendroth et al. 2011), making it 
logical that both crops make use of a VI that includes bands that are 
sensitive to water. However, maize relied on VIs that made use of the red 
band. The red band is where a large amount light is absorbed by the 
mesophyll as a result of chlorophyll content, making it the best band for 
chlorophyll absorption characteristics. In the SWIR2 and NIR bands, there is 
scattering of these wavelengths in the spongy mesophyll (Jensen 2005). This 
is consistent with the findings of Viña et al. (2011), who found the red band 
to be more significant for maize in the early part of the growing season than 
soybean. This occurs because there is significantly more scattering of longer 
wavelengths in soybean leaves, which results in much higher reflectance in 
soybeans compared to maize (Viña et al. 2011).

b. Peak of season

We found POS the easiest transition point to identify remotely. The metrics 
for soybean had a smaller standard deviation and smaller MSDs than maize 
metrics, indicating that soybean POS can be estimated with better certainty 
than maize. Maize has a peak in carbon uptake approximately 8–16 days 
after the peak greenness, while the peak in greenness is approximately the 
same as the peak in carbon uptake in soybean fields. This may be due to the 
larger amount of biomass that is visible when viewing maize fields; this was 
confirmed with the biomass data available for US-Ne* stations from 
AmeriFlux (Fig. 6). This means there is a greater leaf area index (LAI). High 
LAI can saturate the reflectance in a pixel, and there may be points in the 
time series where the satellite is unable to detect changes in greenness.



Reflectance saturation is the cause of the 10-day bias in several of the VIs for
maize when using SAVI or EVI. Maize transitions to a new vegetation stage 
every 2 days, and so the 8-day temporal resolution may be too coarse to 
capture changes in maize greenness. This may result in the sensor missing 
the appropriate scan time for maximum carbon uptake, which occurs in 
reproductive phases 1–2 (Abendroth et al. 2011). It is vitally important to 
capture the peak LAI in maize because the maximum LAI is linked to 
maximum daytime NEE and gross primary production (Suyker et al. 2004). 
Meanwhile, soybean has a smaller LAI and therefore will not saturate the 
remote sensing pixel; as a result the POS is easier to capture.

While POS is easiest to identify, the most effective metrics are EVI and SAVI 
for maize fields and NDSVI, NDVI, and SAVI for soybean fields. All of these VIs
make use of the red reflectance band and the secondary bands are NIR and 
SWIR1, respectively. The results agree well with the findings in Viña et al. 
(2011), who found that soybean had an increasing reflectance with 
increasing wavelength, while maize had a lower reflectance in longer 
wavelengths when compared to soybean, indicating that soybean and maize 
needed different remote sensing algorithms for estimating LAI, and therefore
VI-based CFP metrics.

c. End of season and SOURCE date

EOS and SOURCE dates were very difficult to estimate, but this is not 
exclusive to agricultural crops. Klosterman et al. (2014) reported larger root-



mean-square differences between all phenology metrics derived from 
satellite remote sensing and PhenoCams. This is caused by complicated 
relationships between senescence and carbon fluxes as a result of foliar 
pigments, meteorological conditions, and environmental stresses, which will 
affect all plants (Garrity et al. 2011). The differences in structural leaf 
orientation and chlorophyll content between soybean and maize leaves will 
cause these crops to appear differently during senescence (Viña et al. 2011).
In maize fields, EOS and SOURCE dates had higher standard deviation than 
those found in soybean fields. In both cases the MSDs were high but 
consistent. For instance, there was a three 8-day time stamp bias (24 days) 
between the EOS estimated by VI-based phenology and the NEE-based day 
of carbon SOURCE; this bias will be used to estimate the day of SOURCE in 
future work.

d. Implications and future work

One limitation of the method demonstrated here was that the CFP metrics 
could not be estimated in maize and soybean fields that had two crop 
rotations within the same year. This resulted in two growing seasons, making
the differentiation programmatically challenging. The years where maize and
soybean were grown at the US-ARM station also had wheat grown earlier in 
the year. As a result of this challenge, the US-ARM station was omitted from 
the MSDs. Crop fields where there are two crop rotations per year will not 
perform well in this methodology, unless the dates are known when each 
crop occurred during the year.

Viña et al. (2011) determined that the differences in the reflectance of 
soybean and maize leaves at different wavelengths during peak LAI were 
due to differences in leaf structure and leaf chlorophyll content. Despite 
soybeans having a smaller LAI, soybean had higher reflectance than maize in
longer wavelengths as a result of higher chlorophyll content in the adaxial 
side of soybean leaves and lower water content. In maize leaves, there is a 
larger depth of light penetration. Since the chlorophyll content is constant 
throughout the maize leaves, deeper light penetration leads to more light 
absorption in the shorter wavelengths. Meanwhile, because the chlorophyll 
content varies between the adaxial and abaxial sides of soybean leaves, the 
light penetration reaches only the spongy layer, which has lower chlorophyll 
content and results in less light absorption.

The results of this analysis show that the differences between reflectance 
and physiological composition between maize and soybean means each crop
will appear different in remote sensing datasets. The downscaling process 
amplifies these differences. One limitation of using downscaled MODIS 
imagery is that if a clear-sky and snow-free remote sensing pair of Landsat 
and MODIS cannot be identified before the true SOS and/or after EOS, then 
the full growing season cannot be observed. In this case VI-based phenology 
metrics will be missing or incorrect. This is especially true in humid 
environments, where cloud cover is more frequent, and in northern latitudes,



where snow is prevalent for long periods, making Landsat’s 16-day revisit 
time insufficient. If missing pairs occur within the growing season, then 
incorrect VI-based phenology metrics will result regardless of the VI used. A 
different downscaling algorithm that does not require Landsat imagery would
be required to address this limitation.

As discussed above, it is common to model either NEE, gross primary 
production, or NEP with one agricultural subgroup. This work shows that 
using the correct VI for an individual field could improve model results. 
Future work will need to make use of land-cover datasets, such as the 
USDA’s cropland data layer, so that this analysis can be expanded outside of 
preidentified cropland fields and that the impacts of maize and soybean 
agriculture on carbon exchanges in the United States can be identified.

This approach, however, does have a limitation. When using 8-day temporal 
resolution datasets, a single missing remote sensing image can cause a true 
phenology metric to be missed. This will cause total NEE values to be too 
high, as demonstrated in Fig. 5. Future work may have to consider using 
daily MODIS imagery to limit the number of holes that may occur as a result 
of clouds and snow cover, and to capture changes in the vegetation that are 
occurring at time scales smaller than 8 days (especially during the 
vegetative stage).

6. Conclusions

Modeling and mapping CFP in agricultural systems require different 
strategies based on crop type when using VI-based products. Here we show 
that a single VI cannot accurately capture the full CFP for all crops because 
of the differences in crop life cycle and crop physiology. This work is 
important because incorrect CFP metrics can cause modeled NEE to be 
overestimate or underestimated. Therefore, in future work an empirical 
model will be developed and tested to estimate carbon uptake period from 
VI-based indices that is crop type dependent, beginning with maize and 
soybean crops. This will help to give a better understanding of which 
reflectance bands best capture carbon dynamics in maize and soybean 
fields. A better estimation of carbon flux dynamics will help to provide better 
information about the regional impact of growing maize and soybean in the 
U.S. Great Plains on carbon flux dynamics, which will inform future climate 
models as the cultivation of maize and soybean expands across the United 
States.
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