
UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
High-performance analysis of filtered semantic graphs

Permalink
https://escholarship.org/uc/item/17g115xs

ISBN
978-1-4503-1182-3

Authors
Buluç, Aydin
Fox, Armando
Gilbert, John R
et al.

Publication Date
2012-09-19

DOI
10.1145/2370816.2370897
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/17g115xs
https://escholarship.org/uc/item/17g115xs#author
https://escholarship.org
http://www.cdlib.org/


High-Performance Analysis of Filtered Semantic Graphs ∗

Aydın Buluç†, Armando Fox+, John R. Gilbert∗, Shoaib Kamil+†, Adam Lugowski∗†,
Leonid Oliker, Samuel Williams

Lawrence Berkeley National Laboratory, +University of California at Berkeley,
and ∗University of California at Santa Barbara

abuluc@lbl.gov, fox@cs.berkeley.edu, gilbert@cs.ucsb.edu, skamil@cs.berkeley.edu,
alugowski@cs.ucsb.edu, loliker@lbl.gov, swwilliams@lbl.gov

ABSTRACT
High performance is a crucial consideration when executing
a complex analytic query on a massive semantic graph. In a
semantic graph, vertices and edges carry “attributes” of var-
ious types. Analytic queries on semantic graphs typically
depend on the values of these attributes; thus, the com-
putation must either view the graph through a filter that
passes only those individual vertices and edges of interest,
or else must first materialize a subgraph or subgraphs con-
sisting of only the vertices and edges of interest. The filtered
approach is superior due to its generality, ease of use, and
memory efficiency, but may carry a performance cost.

In the Knowledge Discovery Toolbox (KDT), a Python
library for parallel graph computations, the user writes fil-
ters in a high-level language, but those filters result in rel-
atively low performance due to the bottleneck of having to
call into the Python interpreter for each edge. In this work,
we use the Selective Embedded JIT Specialization (SEJITS)
approach to automatically translate filters defined by pro-
grammers into a lower-level efficiency language, bypassing
the upcall into Python. We evaluate our approach by com-
paring it with the high-performance C++ /MPI Combinato-
rial BLAS engine, and show that the productivity gained by
using a high-level filtering language comes without sacrific-
ing performance.

Categories and Subject Descriptors
D.1.3 [Software]: Programming Techniques—Concurrent
Programming, Parallel programming

Keywords
Domain Specific Languages, Graph Analysis, SEJITS, KDT,
High-performance computing

1. INTRODUCTION
In a semantic graph, edges and/or vertices are labeled

with attributes that may represent a timestamp, a type of
relationship, or a mode of communication. An analyst (i.e. a

∗This work was supported in part by NSF grant CNS-
0709385, by DOE grant DE-AC02-05CH11231, and by
grants from Intel Corporation and Microsoft Corporation.
†Corresponding authors.

Copyright is held by the author/owner(s).
PACT’12, September 19–23, 2012, Minneapolis, Minnesota, USA.
ACM 978-1-4503-1182-3/12/09.

user of graph analytics) may want to run a complex workflow
over a large graph, but wish to only use those graph edges
whose attributes pass a filter defined by the analyst. For
example, in a graph where vertices represent Twitter users
and edges represent“following”or“retweeting”relationships,
the analyst may want to search through vertices reachable
from a particular user via the subgraph consisting only of
“retweet” edges with timestamps earlier than a given date.

Filters raise performance issues for large-scale graph anal-
ysis. In many applications, running a filter across an entire
graph data corpus to materialize the filtered graph as a new
object for analysis can be prohibitively expensive and creates
storage problems. Moreover, the time spent during materi-
alization is typically not amortized by many graph queries
because the user modifies the query (or just the filter) during
interactive data analysis. The alternative is to filter edges
and vertices “on the fly” during execution of the complex
graph algorithm. A graph algorithms expert can implement
an efficient on-the-fly filter as a set of primitive Combinato-
rial BLAS [2] operations coded in C++ , but filters written at
the higher-productivity KDT [5] level, as graph operations
in Python, incur a significant performance penalty.

Our solution to this challenge is to apply Selective Just-In-
Time Specialization techniques from the SEJITS approach [3].
We define an embedded domain-specific language (DSL) that
uses a subset of Python to define semantic graph filters, and
use the SEJITS methodology to implement the translation
necessary for filters written in that subset to run as effi-
ciently as the low-level C++ code. As a result, we are able
to demonstrate that SEJITS technology significantly accel-
erates Python graph analytics codes written in KDT and
running on clusters and multicore CPUs.

2. KDT FILTERS IN PYTHON
In KDT, any graph algorithm can be performed with an

edge filter. A filter is a unary predicate on an edge that
returns true if the edge is to be considered, or false if it is
to be ignored. The KDT user writes a filter predicate as
a Python function or lambda expression of one input that
returns a boolean value.

KDT filters are applied directly to the lowest-level KDT
structures; all operations on these structures then respect
the filter. This means that all algorithms automatically re-
spect filters with no modifications required. Additional fil-
ters can be added and removed at any time, with filter pred-
icates evaluated in the order they are added. KDT supports
two approaches for filtering semantic graphs: materializing
filters and on-the-fly filters.



When a materializing filter is placed on a graph (or
matrix or vector), the entire graph is traversed and a copy
is made that includes only the edges that pass the filter.
This touches every element only once and potentially dou-
bles the memory requirements. By contrast, every primitive
operation (e.g. semiring scalar multiply) applies an on-the-
fly filter to its inputs when it is called. No copy is made,
rather every primitive operation accesses the graph through
the filter and behaves as if the filtered-out edges were not
present. Only the filter predicates are stored. Each filtered
element may be touched multiple times, but, depending on
algorithm, some may not be touched at all.

3. SEJITS AND FILTERS
In order to mitigate the slowdown caused by defining filter

predicates in Python, which results in a serialized upcall
into Python for each operation, we opt to instead use the
Selective Embedded Just-In-Time Specialization (SEJITS)
approach [3]. By defining an embedded DSL for KDT filters,
and translating it to C++ , we avoid performance penalties
while still allowing users the flexibility to specify filters in
Python. We use the Asp1 framework to implement our DSL.

In the usual KDT case, filters are written as simple Python
functions. Since KDT uses Combinatorial BLAS at the low
level to perform graph operations, each operation at the
Combinatorial BLAS level must check to see whether the
vertex or edge should be taken into account, requiring a
per-vertex or per-edge upcall into Python.

We define an embedded domain specific language for fil-
ters, and allow users to write their filters in this DSL, ex-
pressed as a subset of Python with normal Python syntax.
At instantiation, the filter source code is introspected to
get the Abstract Syntax Tree (AST), and then is translated
into low-level C++ . Subsequent applications of the filter
use this low-level implementation, sidestepping the serializa-
tion and cost of upcalling into Python. Formal definition of
our domain-specific language and several examples of filters
written in Python can be found in our technical report [1].

4. EXPERIMENTS
We use synthetically-generated R-MAT [4] graphs with a

very skewed degree distribution. An R-MAT graph of scale
N has 2N vertices and approximately edgefactor ·2N edges.
Our edgefactor is 16, and R-MAT seed paratemeters a, b,
c, and d are 0.59, 0.19, 0.19, 0.05, respectively. After gener-
ating this non-semantic (boolean) graph, edge payloads are
artificially introduced using a random number generator in
a way that ensures target filter permeability. The edge type
is a struct that is composed of a boolean isfollower flag, a
timestamp, the number of retweets. Our technical report [1]
contains experiments on graphs from real social network in-
teractions on a distributed memory supercomputer.

The parallel scaling of our approach and the relative per-
formance of three methods is shown in Figure 1. The exper-
iment is run on Mirasol, a single node platform composed of
four Intel Xeon E7-8870 processors. The sustained stream
bandwidth is about 30 GB/s per socket. Mirasol has 256 GB
1067 MHz DDR3 RAM. We use OpenMPI 1.4.3 with GCC
C++ compiler version 4.4.5, and Python 2.6.6.

CombBLAS achieves remarkable linear scaling with in-
creasing process counts (34-36X on 36 cores), while SE-

1https://github.com/shoaibkamil/asp/wiki/

!"
#"
$"
%"
!&"
'#"
&$"

!#%"
#(&"

!" #" $" %" !&" '#" &$"

!
"#
$%
&'

(%
)*

"%

+,*-".%/0%!12%3./4"55"5%

)*+" ,-./+,0)*+" 1234567,"

(a) 1% permeable

!"

#"

$"

%&"

'!"

&#"

%!$"

!(&"

%" !" #" $" %&" '!" &#"

!
"#
$%
&'

(%
)*

"%

+,*-".%/0%!12%3./4"55"5%

)*+" ,-./+,0)*+" 1234567,"

(b) 10% permeable

!"

#"

$"

%&"

'!"

&#"

%!$"

!(&"

%" !" #" $" %&" '!" &#"

!
"#
$%
&'

(%
)*

"%

+,*-".%/0%!12%3./4"55"5%

)*+" ,-./+,0)*+" 1234567,"

(c) 25% permeable

!"

#"

$"

%&"

'!"

&#"

%!$"

!(&"

%" !" #" $" %&" '!" &#"

!
"#
$%
&'

(%
)*

"%

+,*-".%/0%!12%3./4"55"5%

)*+" ,-./+,0)*+" 1234567,"

(d) 100% permeable

Figure 1: Parallel ‘strong scaling’ results of filtered
BFS on Mirasol, with varying filter permeability on
a synthetic data set (R-MAT scale 23). Both axes
are in log-scale, time is in seconds.

JITS+KDT closely tracks its performance and scaling. Sin-
gle core KDT runs did not finish in a reasonable time to
report. We do not report performance of materialized filters
as they were the slowest by a large margin.

5. CONCLUSION
The KDT graph analytics system achieves customizabil-

ity through user-defined filters, high performance through
the use of a scalable parallel library, and conceptual sim-
plicity through appropriate graph abstractions expressed in
a high-level language. We showed that the performance hit
of expressing filters in a high-level language can be mitigated
by Just-in-Time Specialization. In particular, our embedded
DSL for filters enables Python code to achieve comparable
performance to a pure C++ implementation.

6. REFERENCES
[1] A. Buluç, A. Fox, J. Gilbert, S. Kamil, A. Lugowski,

L. Oliker, and S. Williams. High-performance analysis
of filtered semantic graphs. Technical Report
UCB/EECS-2012-61, May 2012.

[2] A. Buluç and J.R. Gilbert. The Combinatorial BLAS:
Design, implementation, and applications. International
Journal of High Performance Computing Applications
(IJHPCA), 25(4):496–509, 2011.

[3] B. Catanzaro, S.A. Kamil, Y. Lee, K. Asanović,
J. Demmel, K. Keutzer, J. Shalf, K.A. Yelick, and
A. Fox. SEJITS: Getting Productivity and Performance
With Selective Embedded JIT Specialization. In
PMEA, 2009.

[4] J. Leskovec, D. Chakrabarti, J. Kleinberg, and
C. Faloutsos. Realistic, Mathematically Tractable
Graph Generation and Evolution, Using Kronecker
Multiplication. In PKDD, pages 133–145, 2005.

[5] A. Lugowski, D. Alber, A. Buluç, J. Gilbert,
S. Reinhardt, Y. Teng, and A. Waranis. A Flexible
Open-Source Toolbox for Scalable Complex Graph
Analysis. In SDM’12, pages 930–941, April 2012.


	1 Introduction
	2 KDT Filters in Python
	3 SEJITS and filters
	4 Experiments
	5 Conclusion
	6 References



