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Abstract

We propose a machine architecture that integrates programmable logic into key components
of the system with the goal of customizing architectural mechanisms and policies to match an
application. This approach presents an improvement over traditional approach of exploiting
programmable logic as a separate co-processor by preserving machine usability through software
and over traditional computer architecture by providing application-specific hardware assists.
We present two case studies of architectural customization to enhance latency tolerance and
efficiently utilize network bisection on multiprocessors for sparse matrix computations. We
demonstrate that using application-specific hardware assists and policies can provide substantial
improvements in performance on a per application basis. Based on these preliminary results,
we propose that an application-driven machine customization provides a promising approach to

achieve high performance and combat performance fragility.



I. INTRODUCTION

Technology projections for the coming decade [1] point out that system performance is going
to be increasingly dominated by intra-chip interconnect delay. This presents a unique oppor-
tunity for programmable logic as the interconnect dominance reduces the contribution of per
stage logic complexity on performance and the marginal costs of adding switching logic in the
interconnect. Howevyer, the traditional co-processing architecture of exploiting programmable
logic as a specialized functional unit to deliver a specific application suffers from the problem
of machine retargetability. A system generated using this approach typically can not be re-
targeted to another application without repartitioning hardware and software functionality and
reimplementing the co-processing hardware. This retargetability problem is an obstacle toward

exploiting programmable logic for general purpose computing.

We propose a machine architecture that integrates programmable logic into key components of
the system with the goal of customizing architectural mechanisms and policies to match an ap-
plication. We base our design on the premise that communication is already critical and getting
increasingly so [17], and flexible interconnects can be used to replace static wires at competitive
performance [6], [9], [20] Our approach presents an improvement over co-processing by preserv-
ing machine usability through software and.over traditional computer architecture by providing
application-specific hardware assists. The goal of application-specific hardware assists is to over-
come the rigid architectural choices in modern computer systems that do not work well across
different applications and often cause substantial performance fragility. Because performance
fragility is especially apparent on memory performance on systems with deep memory hierar-
chies, we present two case studies of architectural customization to enhance latency tolerance
and efficiently utilize network bisection on multiprocessors. Using sparse matrix computations
as examples, our results show that customization for application-specific optimizations can bring
significant performance improvement (10X reduction in miss rates, 100X reduction in data traf-
fic), and that an application-driven machine customization provides a promising approach to

achieve robust, high performance.

The rest of the paper is organized as follows. Section II presents our analyses of the technology
trends and the project context, and Section III describes our proposed architecture. We describe
our case studies in Section IV and discuss related work in Section V Finally, we conclude with

future directions in Section VI.




II BACKGROUND

Technology projections for the coming decade point out a unique opportunity of programmable
logic. However, the traditional co-processing approach of exploiting programmable logic suffers

from the problem of machine retargetability, which limits its use for general purpose applications.

A. Key Technology Trends

The basis for architectural adaptation is in the key trends in the semiconductor technology.
In particular, the difference in scaling of switching logic speed and interconnect delays points
out increasing opportunities for programmable logic circuits in the coming decade. Projections
by the Semiconductor Industry Association (SIA) [1] show that on-chip system performance is
going to be increasingly dominated by interconnect delays. Due to these interconnect delays, the
on-chip clock periods will be limited to about 1 nanosecond, which is well above the projections
based on channel length scaling [1]. Meanwhile, the unit gate delay (inverter with fanout of two)
scales down to 20 pico-seconds. Thus, modern day control logic consisting of 7-8 logic stages per
cycle would form less than 20% of the total cycle time. This clearly challenges the fundamental
design trade-off today that tries to simplify the amount of logic per stage in the interest of
reducing the cycle time [14]. In addition, this points to a sharply reduced marginal cost of per

stage logic complexity on the circuit-level performance.

The decreasing delay penalty for (re)programmable logic blocks compared to interconnect de-
lays also makes the incorporation of small programmable logic blocks attractive even in custom
data paths. Because the interconnect delays scale down much more slowly than transistor switch-
ing delays, in the year 2007, the delay of the average length inter-connect (assuming an average
interconnect length of 1000X the pitch) would correspond to approximately three gate delays
(see [5] for a detailed analysis) This is in contrast to less than half the gate delay of the average
interconnect in current process technology. This implies that due to purely electrical reasons,
it would be preferred to include at least one inter-connect buffer in a cycle time. This buffer
gate when combined with a weak-feedback device would form the core of a storage element that
presents less than 50% switching delay overhead (from 20ps to 30ps), making it performance
competitive to replace static wires with flexible interconnect.

In view of these technology trends and advances in circuit modeling using hardware description
languages (HDLs) such as Verilog and VHDL, the process of hardware design is increasingly a
language-level activity, supported by compilation and synthesis tools [11], [12]. With these

CAD and synthesis capabilities, programmable logic circuit blocks are beginning to be used in
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improving system performance.

B. Co-processing

The most common architecture in embedded computing systems to exploit programmable
logic can be characterized as one of co-processing, i.e., a processor working in conjunction with
dedicated hardware assists to deliver a specific application. The hardware assists are built using
programmable circuit blocks for easy interpretation with the predesigned CPU Figure 1 shows
the schematic of a co-processing architecture, where the co-processing hardware may be operated
under direct control of the processor which stalls while the dedicated hardware is operational [10],
or the co-processing may be done concurrently with software [13] However, a system generated
using this approach typically can not be retargeted to another application without repartitioning
hardware and software functionality and reimplementing the co-processing hardware even if the
macro-level organization of the system components remains unaffected. This presents an obstacle
of exploiting programmable logic for general-purpose computing even though technology trends

make it possible to do so.

CPU

Co-processor
(Programmable Circuit Blocks)

v

Memory

Fig. 1 A co-processing Architecture

III. ARCHITECTURAL ADAPTATION

We propose an architecture that integrates small blocks of programmable logic into key el-
ements of a baseline architecture, including processing elements, components of the memory
hierarchy, and the scalable interconnect, to provide architectural adaptation - the customization
of architectural mechanisms and policies to match an application. Figure 2 shows our architec-

ture. Architectural adaptation can be used in the bindings, mechanisms, and policies on the
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interaction of processing, memory, and communication resources while keeping the macro-level
organization the same and thus preserving the programming model for developing applications.
Depending upon the hardware technology used and the support available from the runtime en-

vironment, this adaptation can be done statically or at run-time.

CPU

Flexible
Interconnect
Programmable
Logic

]
Programmable
Logic

J

Logic Logic

Network
Interface Memory

Fig. 2. An Architecture for Adaptation

Architectural adaptation provides the mechanisms for application-specific hardware assists to
overcome the rigid architectural choices in modern computer systems that do not work well
across different applications and often cause substantial performance fragility. In particular,
the integration of programmable logic with memory components enables application-specific
locality optimizations. These optimizations can be designed to overcome long latency and limited
transfer bandwidth in the memory hierarchy. In addition, because the entire application remains
in software while the underlying hardware is adapted for system performance, our approach
improves over co-processing architectures by preserving machine usability through software. The
main disadvantage of our approach is the potential increase on system design and verification time
due to the addition of programmable logic. We believe that the advances in design technology

will address the increase of logic complexity.

A. Project Context

Our study is in the context of the MORPH [5] project, a NSF point design study for Petaflops
architectures in the year 2007 technology window The key elements of the MORPH (MultiprocessOr
with Reconfigurable Parallel Hardware) architecture consists of processing and memory elements

embedded in a scalable interconnect. With a small amount of programmable logic integrated

with key elements of the system, the proposed MORPH architecture aims to exploit architectural




customization for a broad range of purposes such as:

« control over computing node granularity (processor-memory association)

interleaving (address-physical memory element mapping)

cache policies (consistency model, coherence protocol, object method protocols)

cache organization (block size or objects)

« behavior monitoring and adaptation

As an example of its flexibilityy, MORPH could be used to implement either a cache-coherent
machine, a non-cache coherent machine, or even clusters of cache coherent machines connected by
put/get or message passing. In this paper, we focus on architectural adaptation in the memory

system for locality optimizations such as latency tolerance.

IV CASE STUDIES

We present two case studies of architectural adaptation for application-specific locality op-
timizations. On modern architectures with deep memory hierarchies, data transfer bandwidth
and access latency differentials across levels of memory hierarchies can span several orders of
magnitude, making locality optimizations critical for performance. Although compiler optimiza-
tions can be effective for regular applications such as dense matrix multiply, optimizations for
irregular applications can greatly benefit from architectural support. However, numerous studies
have shown that no fixed architectural policies or mechanisms, e.g., cache organization, work well
for all applications, causing performance fragility across different applications. We present two
case studies of architectural adaptation using application-specific knowledge to enhance latency

tolerance and efficiently utilize network bisection on multiprocessors.

A FEzperimental Methodology

As our application examples, we use the sparse matrix library SPARSE developed by Kundert
and Sangiovanni-Vincentelli (version 1.3 available from http://www netlib org/sparse/), and
an additional sparse matrix multiply routine that we wrote. This library implements an efficient
storage scheme for sparse matrices using row and column linked lists of matrix elements as shown
in Figure 3. Only nonzero elements are represented, and elements in each row and column are
connected by singly linked lists via the nextRow and nextCol fields. Space for elements, which
is 40 bytes per matrix element, are allocated dynamically in blocks of elements for efficiency.

There are also several one dimensional arrays for storing the root pointers for row and column

lists.




Matrix

Starting Column Pointers Element
struct MatrixElement {
Complex val; ‘ Pointer
int row,col; l l l
struct MatrixElement i
*nextRow, *nextCol; — > [~
|5
Starting Row l l
Pointers
—
——

Fig. 3. Data Structures used in the Sparse Library

We perform cycle-based system-level simulation using a program-driven simulator based on
MINT [22] that interprets program binaries and models configurable logic blocks behaviorly.
The details of our simulation environment are presented in [4]. Table I shows the simulation
parameters used. We report our empirical results for current day computer technologies and
then use derivative metrics (such as miss rate) to extrapolate potential benefits for future com-
puter systems which will exhibit much higher clock rates and memory sizes. We also manually
translated the C routines modeling the customizable logic blocks into HardwareC [18] to evaluate
their hardware cost in terms of space and cycle delays. (However, our recent work is focused on

automatic translation of these routines to synthesizable blocks [19].)

TABLE 1

SIMULATION PARAMETERS

L1 Cache L2 Cache
Line Size 32B or 64B 32B or 64B
Associativity | 1 2
Cache Size 32KB 512KB
Write Write back + | Write back +
Policy Write allocate | Write allocate
Replacement
Policy Random Random
Transfer (L1-L2) (L2-Mem)
Rate 16B/5 cycles | 8B/15 cycles




B. Architecturgl Adaptation for Latency Tolerance

Our first case study uses architectural adaptation for prefetching. As the gap between pro-
cessor and memory speed widens, prefetching is becoming increasingly important to tolerate the
memory access latency. However, oblivious prefetching can degrade a program’s performance
by saturating bandwidth. We show two example prefetching schemes that aggressively exploit
application access pattern information.

Figure 4 shows the prefetcher implementation using programmable logic integrated with the
L1 cache. The prefetcher requires two pieces of application-specific information. the address
ranges and the memory layout of the target data structures. The address range is needed to
indicate memory bounds where prefetching is likely to be useful. This is application dependent,
which we determined by inspecting the application program, but can easily be supplied by the
compiler The program sets up the required information and can enable or disable prefetching
at any point of the program. Once the prefetcher is enabled, however, it determines what and
when to prefetch by checking the virtual addresses of cache lookups to check whether a matrix

element is being accessed.

——

! Processor
[ virtual
addresses/
data

L1 Cache

o ——

data | J
physncal e
I/ /{« addresses \\
AT \

/

-_—

Prefetcher \

Prefetcher Logic |

|
[
\ Z
/
N y
l ladditional P
¥ addresses "

} L2 Cache

\

Fig. 4. Organizations of the Prefetcher Logic

The first prefetching example targets records spanning multiple cache lines and for our ex-
ample, prefetches all fields of an matrix element structure whenever some field of the element
is accessed. The pseudocode of this prefetching scheme for the sparse matrix example is shown

below, assuming a cache line size of 32 bytes, a matrix element padded to 64 bytes; and a single
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matrix storage block aligned at 64-byte boundary. Prefetching is triggered only by read misses.
Because each matrix element spans two cache lines, the prefetcher generates an additional L2
cache lookup address from the given physical address (assuming a lock-up free L2 cache) that

prefetches the other cache line not yet referenced.

GroupPrefetch (vAddr, pAddr, startBlock, endBlock)
{
/* Check if vAddr is for the matrix and */
/* prefetch only if the check passes */
if (startBlock <= vAddr && vAddr < endBlock) { -
/* Determiné the starting address of */
/* not-yet-accessed part */
if (pAddr & 0x20)
ptrloc = pAddr - 0x20;
else
ptrLoc = pAddr + 0x20;

Initiate a request to transfer
the line at ptrloc to L1 cache;

The second prefetching example targets pointer fields that are likely to be traversed when
their parent structures are accessed. For example, in a sparse matrix-vector multiply, the record
pointed to by the nextRow field is accessed close in time with the current matrix element. The
pseudocode below shows the prefetcher code for prefetching the row pointer, assuming a cache
line size of 64 bytes. Again prefetching is triggered only by read misses, and the prefetcher
generates an additional address after the initial cache miss is satisfied using the nextRow pointer
value (whose offset is hardwired at setup time) embedded in the data returned by the L2 cache.!

PointerPrefetch (data, vAddr, startBlock, endBlock)
{
/* Check if vAddr is for the matrix and */
/* prefetch only if the check passes */
if (startBlock <= vAddr && vAddr < endBlock) {
/* Find the row pointer value inside */
/* the returned cache line (data) */
ptrLoc = data [24]; /* row pointer offset = 24 */

Initiate a request to transfer
the matrix elt at ptrLoc to L1 cache;

Our prefetching examples are similar to the prefetching schemes proposed in [23], where they

! As pointed in [23], the implementation of this prefetching scheme is complicated by the need to translate the
virtual pointer address to physical address. We assume that the prefetcher logic can also access the TLB structure.
An alternative implementation is to place the prefetcher logic in memory and forward the data of the next record

to the upper memory hierarchy. This requires an additional group translation table [23] for address translation.
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are shown to benefit various irregular applications. However, unlike [23], using architectural
customization enables more flexible prefetching policies, e.g., multiple level prefetch, according

to the application access pattern.

C. Architectural Adaptation for Bandwidth Reduction

Our second case study uses a sparse matrix-matrix multiply routine as an example to show
architectural adaptation to improve data reuse and reduce data traffic between the memory
unit and the processor. The architectural customization aims to send only used fields of matrix
elements during a given computation to reduce bandwidth requirement using dynamic scatter
and gather. Our scheme contains two units of logic, an address translation logic and a gather

logic, shown in Figure 5.

Processor
Address
Transiation

P L

Val2 RowPu2,

Val3,RowPr3,ColPr3

Fig. 5. Scatter and Gather Logic

The two main ideas are prefetching of whole rows or columns using pointer chasing in the
memory module and packing/gathering of only the used fields of the matrix element structure.
When the root pointer of a column or row is accessed, the gather logic in the main memory
module chases the row or column pointer to retrieve different matrix elements and forwards
them directly to the cache. The cache, in order to avoid conflict misses, is split into two parts:
one small part acting as a standard cache for other requests and one part for the prefetched
matrix elements only. The latter part has an application-specific management policy, and can

be distinguished by mapping it to a reserved address space. The gather logic in pseudocode is

shown below.




/* Row gather: pAddr is the start of a row */
Gather (pAddr)
{
chaseAddr = pAddr;
vhile(chaseAddr) {
forward chaseAddr->val
forward chaseAddr->row
chaseAddr = virtual-to-physical(chaseAddr->nextRow)
}
¥

Because the data gathering changes the storage mapping of matrix elements, in order not to
change the program code, a translate logic in the cache is required to present “virtual” linked list
structures to the processor. When the processor accesses the start of a row or column linked list,
a prefetch for the entire row or column is initiated. Because the target location in the cache for
the linked list is known, instead of returning the actual pointer to the first element, the translate
logic returns an address in the reserved address space corresponding to the location of the first
element in the explicitly managed cache region. In addition, when the processor accesses the next
pointer field, the request is also detected by the translate logic, and an address is synthesized
dynamically to access the next element in this cache region. The translate logic in pseudocode

is shown below.

Translate(vAddr, pAddr, newPAddr)
{
/* check if accessing start of a row */
if (startRowRoot <= vAddr && vAddr/<= endRowRoot) {
Initiate prefetch
return row location in cache
}

/* Similarly for column roots */

/* Accessing packed rows */
if (startPackedRows <= pAddr && pAddr <= endPackedRows) {

offset = pAddr & 63; /* check which field (record length is 64) */
if ( offset == 24 ) /* row pointer at offset 24 */

return pAddr + 64; /* if nextRow, synthesize next address */
else {

/* There are two other fields used that reside at offset_1 and _2
of the original record and at packed_offset_1 and _2 of new layout
*/
if (offset < offset_2) /* first used field: val */
new_offset = offset - (offset_1 - packed_offset_1);
else /* second used field: row */
new_offset = offset - (offset_2 - packed_offset_2);
return (pAddr >> 6) * PACKED_SIZE + new_offset;
>

/* Similarly for packed columns */

As in the case of dense matrix-matrix multiply, blocking of the matrices in the cache is essential
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to achieve good performance. However, software blocking for sparse matrix-matrix multiply is
not as effective as blocking in the dense case because the additional fields in a matrix element
structure reduce the number of rows or columns that can fit in the cache, reducing reuse, and
because elements are scattered in memory, increasing conflict misses. Figures 6 and 7 compare
the miss rates and total data volume transfered between the memory and processor for the
straightforward implementation, a pure software blocking scheme, and customized scatter and
gather. (The last bar shows bypassing the cache for the result matrix.) The figures show that
the hardware assists provided by customization significantly improve the software blocking by
reducing row and column footprints to improve reuse. The final results show a 10X in read miss
rates and 100X reduction in data volume compared to the straightforward implementation. The

implementation costs of these units are less than 1000 in LSI logic 10K family gates and around

1500 in FPGA CLBs, requiring delays of about 3 cycles.

24 — B Naive
I SW-Blocking
21— W 2385  HW Gather
5 18 |- HW Gather+Bypass
(=)
g 15 —
c 12|
8 9
=
6 —
3 -
O L1 Read Miss L1 Write L;Iss

Fig. 6. Cache miss rates comparisons of the naive sparse matrix-matrix multiply, a software blocking
scheme, a programmable logic implementation of gather/scatter, and with cache bypass of the result

matrix. (For two 460x460 matrices, each with 21660 non-zero elements.)

V. DiscussioN AND RELATED WORK

Traditional computer architectures are designed for best machine performance averaged across
applications. Due to the static nature of such architectures, such machines are limited in exploit-
ing an application characteristics unless it is common for a large number of applications. Since
no single machine organization fits all applications, the delivered performance is often only a
small fraction of the peak machine performance (frequently less than a tenth [5]). Therefore, we

believe that there are significant opportunities for application-specific architectural adaptation.
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Fig. 7 Data traffic volume comparisons of different schemes in MB. (For two 460x460 matrices multiply,
each with 21660 non-zero elements, with total size of elements 1.35 MB.)

In this paper, we have demonstrated mechanisms for latency hiding and required bandwidth re-
duction that leverage small hardware support as well as do not change the programming model.
Following the same methodology, we can build such assists for other applications as well. Among
other examples that applications can benefit from are mechanisms for recognition of working set
size for a given application that can be used to alter cache update policies or even use a synthe-
sized small victim cache [16], and me?hanisms for monitoring access patterns and conflicts in the
caches or memory banks and reconfiguring the assists according to these patterns and conflicts.
In summary, we expect an adaptable machine to have a large number of application-specific
assists that alter architectural mechanisms and policies in view of application characteristics.
The application developer with the help of compilation tools selects appropriate hardware assists
to customize the machine to match the application without having to repartition the system
functionality or rewrite the application.

There are other approaches for locality optimizations. Researchers have proposed processor-in-
memory (PIM) [2], [3], [7], [8], [21] as a solution for solving the latency and bandwidth limitations
of the memory hierarchy. We rely on more traditional processor-memory structures with cus-
tomizable components, which we believe will yield a machine with more accessible performance
than an organization in which processors are accessing primarily their local on-chip memory, par-
ticularly for irregular applications. In addition, by adding a small amount of programmable logic
to the memory units, we can yield some benefits of having computational elements within the
memory. Researchers have also proposed various specific architectural mechanisms for locality

optimizations, for instance, group prefetching [23] and informing memory operations [15], with
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mechanism-specific implementations. As shown in our case studies, we believe that integrating
programmable logic into memory components provide a flexible implementation framework for

these mechanisms.

VI. CoNcLuUsIONS AND FUTURE DIRECTIONS

The increasing dominance of interconnect delays on system performance makes it practical to
integrate programmable logic into alt key system components, enabling them to be customized to
specific applications’. As illustrated by two case studies, we believe such architectural adaptation
can provide flexible mechanisms for application-specific locality optimizations to combat the
increasing gap between processor and memory speed. In addition, system co-design using this
approach presents a way to utilize application-specific hardware much more effectively than would
be the case when part of an application is implemented in hardware as is the case in co-processing
architectures. As future directions, we are studying compilation tools in hardware/software co-
design for the architectural assists, IC processing issues for implementing customizable system

components, such as cache and scalable interconnects, as well as more, larger application studies.
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