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Abstract 

Modeling of GHG Mitigation Strategies in the Trucking Sector 

by  

Sebastian E. Guerrero 

Doctor of Philosophy in Engineering – Civil and Environmental Engineering 

University of California, Berkeley 

Professor Samer Madanat, Chair 

 

In response to the growing climate change problem, many governments around the world 
are seeking ways to reduce the greenhouse gas (GHG) emissions of various sectors of the 
economy. The trucking sector is important in meeting this challenge in the US because it 
is responsible for a share of emissions that is significant and rapidly growing. For 
governments to intervene in this sector smartly, they need models that capture its key 
incentives, constraints and dynamics, while making the most out of the limited data 
available. However, existing models fall short of this ideal. This dissertation first 
introduces the Trucking Sector Optimization Model (TSO) as a tool for studying the 
decisions that carriers and shippers make within a short-run time horizon—modeling the 
dynamics of truck fleets, penetration rate of Fuel Saving Technologies (FSTs) such as 
aerodynamic improvements and low rolling resistance tires, and changes in the demand of 
trucking. In addition to estimating tailpipe GHG emissions, the model also estimates 
emissions from upstream fuel production sources, vehicle manufacturing, and pavement 
rehabilitation activities.  

This model is then used to evaluate the effectiveness of various incentives-based 
and regulation-based strategies that California’s government could implement in the 
trucking sector to help achieve the objectives of the Global Warming Solutions Act of 2006 
(AB 32). The strategies analyzed are: fuel taxation, mileage taxation, truck purchase 
taxation, FST subsidies, FST regulations, increases in the allowed weight of trucks, and 
the Low Carbon Fuel Standard recently introduced in California. Results indicate that there 
presently exist significant economic incentives for carriers to invest in FSTs beyond what 
is currently commonplace. The correction of market mechanisms that are responsible for 
this apparently suboptimal behavior, would lead to significant reductions in emissions, and 
would also allow for incentive-based strategies to have their first-best outcomes. Without 
making these corrections, the regulation approach currently adopted in California, of 
mandating certain investments in FSTs, serves as a reasonable first-step in meeting AB 
32’s medium-term emissions target. However, moving forward, the correction of these 
market mechanisms and subsequent implementation of incentives-based strategies, 
particularly those that are complementary with each other, should be a priority. Based on 
their estimated effectiveness, these and other recommendations are articulated in a seven-
step plan for reducing trucking related emissions in the state. 
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The remaining chapters of this work study some long-run factors that affect how 
carriers manage their fleets and invest in FSTs, in particular considering that they often 
discount heavily the future because of the existence of various market failures, hidden costs 
and uncertainties in the industry. The nature of these issues is not investigated deeply in 
this research, but their effect on carriers is captured by parameterizing the level of 
discounting in an improved model called the Trucking Sector Trip Segmentation Model 
(TSTS). This model represents the long-term decisions made in this sector better than the 
TSO model by: (i) modeling endogenously how trucks are utilized throughout their service-
lives, and (ii) capturing some heterogeneity in truck retirements. The first of these 
improvements is made possible by incorporating information on the performance of 
trucking (the ability of carriers to complete shipments) and on the spatial distribution of 
shipment demand. The second of these improvements is made possible by assuming that 
truck retirements follow a log-logistic function. Combining both of these methodological 
improvements with a parameterized discount rate provides analysts a more flexible model 
for studying the long-term decisions made in the trucking sector, especially regarding FST 
investments, which impact greatly emissions and costs. 

The TSTS model is then used to evaluate the effectiveness of three additional 
governmental interventions that reduce GHG emissions, which could not have been studied 
with the TSO model. Improvements in trucking performance—by reducing congestion or 
shipment waiting times for example—were found to significantly incentivize investments 
in FSTs and reduce GHG emissions. However, 40 – 50% of these reductions were offset 
in the aggregate by increases in the demand for shipments precipitated by the lower market 
prices of trucking. Mode-shifts were also found to incentivize investments in FSTs because 
they distort the spatial distribution of shipments in ways that favor making greater capital 
investments because trucks are used more intensely and retired quicker. And finally, 
implementing FST regulations that only apply to a subset of the truck fleet (as in California 
currently) also reduces emissions, but incentivizes other changes in how the industry 
operates.  

The TSO model is best suited for studying the dynamics and transitions of truck 
fleets in response to governmental interventions, while the TSTS model is best suited for 
studying long-run responses. Together, they allow policy makers and researchers to study 
a wide range of issues in the trucking sector, considering many interactions and responses 
that had not been adequately explored previously. They also share a rich theoretical 
framework that can be used in future research to develop better models of this sector, 
especially to help design interventions that have environmental objectives.
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1 3BIntroduction  

 

1.1 11BProblem Statement  

One of the most critical challenges facing our generation is the need to improve the 
sustainability of our economy by reducing its Greenhouse Gas (GHG) emissions. Multiple 
studies have concluded that anthropogenic GHG emissions lead to global climate change, 
which impacts humanity negatively in many ways (IPCC 2007). The trucking sector is 
important in meeting this challenge because its GHG emissions have been growing 
relatively rapidly over the past two decades (Davies et al. 2007), and now account for over 
7% of all emissions in the US (EPA 2013). Much of this growth has been driven by 
increases in the demand for tucking, as supply chains have become more responsive to 
inventory costs and customer demands (Kamakate and Schipper 2009).  

This growth trend was interrupted by the economic crisis of 2008, which caused trucking 
emissions to decrease by 12.4% from 2007 to 2009 (EPA 2013). However, this sector has 
bounced back since, with emissions increases of 3.1% between 2009 and 2011 (EPA 2013). 
Even though these are the last years for which these emissions data are available, there are 
indications from the Freight Transportation Services Index—which is a measure of freight 
transportation activity reported every month—that the demand for goods movement has 
continued to increase past 2011, and in fact has already matched its pre-recession peak 
(BTS 2013). Therefore, the GHG emissions outlook of this sector is still worrisome.   

As such, governments in the US, and around the world, should intervene in the trucking 
sector to ensure that its market participants observe the environmental externalities of their 
actions. Theoretically, governments should intervene up to the point where the marginal 
societal benefit of emission reductions equals the marginal economy-wide cost of these 
reductions, because it leads to an allocation of resources that maximizes total classical 
welfare. Therefore, it can be strongly argued that governments should implement pricing 
and/or regulation strategies to correct this market failure.  

In addition, governments should also intervene in this sector to correct other sources of 
market failures that might be causing suboptimal outcomes. It has been found that many 
industries operate less efficiently than is privately optimal for a variety of reasons 
(Gillingham et al. 2009), resulting in greater energy consumption and higher costs. Recent 
research has found that many of these market failures are also present in the trucking 
industry (Aarnink et al. 2012; Vernon and Meier 2012), decreasing the incentives for 
trucking companies improve the fuel economy of their operations. These market failures 
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include: principal-agent problems in who bares fuel costs, information asymmetries in the 
contracting of trucking services, and financial constraints on long-term investments. Some 
reasons for these problems are discussed in the body of this dissertation. For now, it suffices 
to point that strong arguments can also be made that—in addition to internalizing the costs 
of GHG emissions—governments should also intervene to reduce these other types of 
market failures, in order to improve the operations of the industry while reducing its 
emissions.  

However, governments should be careful when intervening in this sector because the 
quality and efficiency of freight transportation has fundamental impacts on our economy 
(Hummels 2007). Over the years, the lowering of transportation costs has expanded the 
reach of markets, empowering more buyers and sellers throughout the world, and 
increasingly from more remote areas, to engage in the modern economy. Advances in 
freight transportation have been instrumental in driving urbanization, specialization, and 
globalization; all of which have increased aggregate productivity and improved our quality 
of life.  

Today, trucking is the most important freight transportation mode in the US. It moves 1/3 
of all ton-miles and lifts 2/3 of all the value of trade (ATA 2013). In 2013, the trucking 
industry had revenues close to $642B, representing around 40% of all transportation related 
expenditures in the US (ATA 2013) 0F

1. This industry employed directly or indirectly 1 out 
of every 13 Americans working in the private sector. Because of its size, this industry 
interphases significantly with the public sector, contributing to 36% of all fuel tax revenues 
(ATA 2008) and causing around 40% of all pavement deterioration on US highways 
(March 1998). Furthermore, not only is this industry a significant contributor of GHG 
emissions, but it is proportionally an even greater emitter of other criteria pollutants in 
urban centers, such as particulate matter (PM) and NOx.   

The current approach taken by governments in the US to reduce GHG emissions from the 
freight transportation sector consists of requiring trucks to be retrofitted with certain Fuel 
Saving Technologies (FSTs). The FSTs that are currently market-ready include, for 
example: low rolling resistance tires, technologies that reduce the aerodynamic drag of 
vehicles, and low viscosity transmission fluids, among others (National Research Council 
2010). Targeting the trucking industry represents a reasonable way to reduce GHG 
emissions from freight transportation because it is the largest and fastest growing source 
of emissions in this sector (Nealer et al. 2012). Emission reductions from other freight 
transportation modes are possible, but they will be likely smaller and costlier to achieve. 
Therefore, this dissertation—as well as the present policy debate—focuses on studying the 
mitigation of GHG emissions from trucking.  

To accomplish this goal, there are other incentives-based interventions might be more 
desirable than the current regulatory approach. Additional investments in the FSTs can also 
be incentivized through: fuel taxes, differentiated mileage taxes, technology subsidies, 
cheap financing, etc. In contemplating these, governments should also keep in mind that 
changes in use of FSTs will likely lead to unintended impacts in how trucking companies 

                                                 
1 However, somewhat less than 40% of transportation research focuses on the trucking sector.  
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manage their vehicle fleets. There will be pressure on truck owners to retire trucks later in 
life to accrue additional fuel savings that justify the capital costs of the FSTs. This in turn 
will put downward pressure on the number of trucks that need to be purchased to supply a 
given demand from shippers (because existing trucks are used longer), reducing emissions 
from the manufacturing of those trucks. This often overlooked source of GHG emissions 
has been estimated to account for 11% of total trucking related emission in the US (Facanha 
and Horvath 2007).  

Governments should also consider that trucking companies cannot optimize their 
operations in a vacuum because they have to remain responsive to the demands of shippers. 
The quality and price of trucking will affect significantly how shippers design their supply-
chains, and therefore their demand for transportation services. Modeling these decisions 
and interactions in the aggregate is generally difficult, and requires very detailed datasets 
that are not publically available in the US. However, it is clear that neglecting to represent 
shippers in models of the trucking sector is short-sighted, and will lead to large biases in 
the estimation of changes in emissions.  

Another reason why governments should consider shippers is that they can be targeted 
directly with strategies that reduce their demand for transportation and/or incentivize them 
to use more sustainable modes. Some of these strategies include: time-of-day pricing, land-
use zoning changes, packaging reduction, intermodal infrastructure investment, etc. 
Strategies that target shippers might be desirable because many trucking are often 
constrained in responding to governmental interventions because of their low and volatile 
profits.  

Finally, governments should also consider the important role that the infrastructure plays 
in the trucking sector. Governmental interventions that improve highways and reduce 
congestion can help truck owners operate more efficiently and reduce fuel combustion. On 
the flipside, maintaining and rehabilitating highway infrastructure represents a large cost 
to the public sector, and is also a significant source of GHG emissions. This other often 
overlooked source of emissions has been estimated to account for 9% of all trucking related 
emissions in the US (Facanha and Horvath 2007). 

It is clear that the trucking sector has very important impacts on our economy and 
environment, and that the way this sector reacts to governmental interventions can be quite 
complex. To study and evaluate these interventions, governments need to have 
comprehensive models of this sector that consider the key incentives, constraints and 
tradeoffs underpinning the responses of trucking companies and shippers. These models 
should also account for various sources of GHG emissions (including those from vehicle 
manufacturing and pavement rehabilitation), and of other environmental externalities, such 
that unintended impacts can be foreseen and mitigated. This comprehensive modeling 
approach would allow governments to consider a wide-range of incentives-based and 
regulation-based strategies so that the most effective ones are pursued. It would also allow 
the government to identify and mitigate market failures in this sector by gaining an 
understanding of the how the current operations of the industry can be improved. However, 
as Section 1.3 details, models that permit this type of analysis presently do not exist, mostly 
because of limitations in the data that is publically available about the costs and operations 
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of this sector, and also because of gaps in the methodologies for modeling this sector 
comprehensively.   

The inadequacy of trucking sector models has limited the ability of policy makers to 
analyze more complex and sophisticated GHG mitigation strategies; which, in my opinion, 
has steered them towards preferring blunter regulation-based strategies that are likely less 
efficient. This dissertation seeks to provide policy makers with better methodologies for 
modeling this sector—that make the most out of the scarce data that is available—so that 
the best policies can be pursued in this critically important component of our economy.  

 

1.2 12BResearch Framework  

The trucking sector can be conceptualized as having three key distinct components. 
Shippers are the agents that demand transportation services because of the spatial 
dimensions of their businesses. These include wholesalers, importers, exporters, retailers, 
etc. Carriers are the agents that supply transportation services. In this case they are the 
truck owners and operators. The final component is the Infrastructure, which provides a 
platform on which carriers can supply transportation. In this case it consists not just of 
highways and urban roads, but also of ports, intermodal yards and Intelligent 
Transportation Systems. Of course, in reality the trucking industry is more complex, with 
many shippers owning trucks fleets or hiring third-party logistics companies, however 
these convenient definitions presented above help facilitate the following discussion. 

 

 

Figure 1: Framework of GHG mitigation in the trucking sector  
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As seen in Figure 1, the government can target shippers, carriers and the infrastructure in 
order to reduce GHG emissions of this sector. Carriers and shippers interact in a market for 
transportation services, which is brought to equilibrium by a prevailing market price. In 
consideration of these transportation costs, shippers optimize their Logistical Distribution 
System (LDS) by making decisions about the transportation modes used, the size of 
shipments and the location of warehouses, for example.  

On the other hand, carriers optimize their Fleet Management and Operations (FMO) in 
order to supply the quantity of transportations services demanded in the market. This 
includes decisions about truck purchases, truck retirements and truck utilization. Carriers 
also optimize their investments in FSTs to control fuel costs. The combination of FMO and 
FST decisions determines the market price of trucking observed by shippers and the level 
of GHG emissions from this sector. Emissions from the combustion and upstream 
production of the fuel are closely linked to the technology of the trucks (influenced by 
investments in FSTs), while FMO decisions affect the emissions from vehicle 
manufacturing. 

It is also important to consider the interactions between carriers and the infrastructure. An 
increase in trucking vehicle miles traveled (VMT), or in their axle loads, will speed up the 
deterioration of the infrastructure. This increases the costs and GHG emissions from its 
rehabilitation and maintenance. Carriers are also affected by the capacity and quality of the 
infrastructure. The prevalence of congestion and the free flow speeds of the road affect 
time-costs that are observed by carriers and subsequently by shippers. Also, the roughness 
of the pavement can affect vehicle wear and tear.  

Finally, the implementation of mitigation strategies should be reconsidered insofar as 
reductions in life-cycle GHG emissions from this sector meet policy targets.   

While Figure 1 was developed with the trucking industry in mind, it can be generalized to 
describe how governmental intervention can reduce GHG emissions in other transportation 
sectors. In future work this figure can also be expanded to include emissions from shippers’ 
supply-chains, such as warehousing, manufacturing, retailing, etc.  

Using this framework a wide range of GHG mitigation strategies can be classified as shown 
in Figure 2. A long-term objective of this research is to develop methodologies for 
evaluating how a promising subset of these strategies can lead to the desired outcomes on 
the right side of the figure.  

The strategies that are bolded represent those that have been implemented already.  
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Figure 2: Universe of GHG mitigation strategies and desired responses 

 

1.3 13BLiterature Review  

The state-of-the-art in modeling of the trucking sector is limited in its ability to evaluate a 
wide range of GHG mitigation strategies because the carrier responses of FMO and FSTs 
and the shipper responses of LDS have not been studied simultaneously. Many 
methodological gaps exist in the literature that prevent policy analysts from taking this 
more comprehensive modeling approach. Not much effort has been placed in the past on 
bridging these gaps because there have not been many instances of analysts wanting to 
simultaneously study the responses of shippers and carriers to a wide range of mitigation 
strategies. Past analyses of governmental interventions in this industry have focused on a 
single strategy (such as fuel taxation or infrastructure improvements) and thus could make 
various simplifying assumptions about the responses of the industry. However, to address 
the problem statement described in the previous section we need a model that does not 
make these simplifying assumptions, so that the analyses of different strategies are 
performed with consistent methodologies, leading their results to be comparable.    

 



 

7 
 

1.3.1 30BModeling of FST Responses  

The majority of the studies on GHG emissions mitigation in the freight transportation 
sector have only considered strategies that regulate the level of FSTs in truck fleets (Ang-
Olson and Schroeer 2002; Cooper et al. 2009; Frey and Po-Yao 2007;Vyas et al. 2002). 
These studies assumed that LDS and FMO remain unchanged, while carriers are forced to 
implement different FSTs. The effectiveness of each FST is found either through 
experimental tests, information from the manufacturers, computer simulation of engine 
loads or simply from previous studies. The results are presented as percent-increases in 
fuel efficiency for an average truck from the implementation of certain FSTs. Then, using 
aggregate measures of Vehicle Miles Traveled (VMT) by truck type, these studies calculate 
industry wide GHG emission reductions from the implementation of combinations of 
FSTs. Governments have used these results with activity forecasts to determine the amount 
of FSTs needed to be implemented to achieve certain emissions targets (CARB 2008b).  

While this approach is common in many studies and provides a useful first-order analysis 
of FST regulation strategies, it has several critical limitations. Foremost, the 
implementation of FSTs will affect the optimal FMO and LDS. Greater implementation of 
FSTs incentivizes carriers to change their FMO to retire trucks later in life. This occurs 
because carriers prefer to accrue more fuel savings throughout the life of the trucks (relative 
to the less fuel efficient trucks) to offset the higher capital costs of the FSTs. Having a fleet 
of older trucks will also affect the number of trucks that need to be purchased to meet the 
demands of the shippers. These responses of the trucking industry are interrelated in ways 
that have not been quantified in past research.  

An additional limitation of this common analysis approach is that the LDS is assumed to 
be fixed. Changes in the implementation of FSTs will affect the market rate for trucking 
(fuel accounts for 1/3 to 1/4 of trucking costs), and thus influence how shippers optimize 
their LDS. Important responses such as mode-shifts and shipment size changes are not 
considered in the existing analysis of FST regulations.  

Besides not capturing the responses of the industry fully, this basic analysis approach is 
also limited in not being able to evaluate incentive-based strategies. These strategies seek 
to tilt the economic tradeoffs that carriers and shippers face so that more sustainable 
decisions about FMO, FSTs or LDS are made at the margin. For example, increasing the 
tax on fuel or providing direct subsidies will incentivize greater investment in FSTs, and 
also change the optimal FMO and LDS. Modeling all these responses would allow the 
comparison of the effectiveness of regulations and incentives in reducing GHG emissions. 
There are also other strategies that affect FMO and LDS directly that would have secondary 
effects on the level of FSTs of truck fleets. These relationships have not been researched 
in the past.   

 

1.3.2 31BModeling of LDS Responses  

Several synthesis of research in freight transportation demand modeling have been 
performed (Chow et al. 2010; Harker 1985; Pendyala et al. 2000; Samimi et al. 2010) that 
categorized and highlighted the strengths and weaknesses of different modeling 
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approaches. The different approaches taken can be generally classified into: early spatial-
price equilibrium models, cost minimization network models and econometric 
behavioral models.  

One of the main limitations of these models as they apply to this present research is that 
they consider transportation costs to be fixed and exogenous. The LDS responses captured 
in these models needs to be combined with a model of carriers that considers FST and FMO 
responses as well. A second limitation is that there currently does not exist any publically 
available dataset in the US to estimate any of the disaggregate behavioral models that 
capture logistical decisions explicitly (de Jong and Ben-Akiva 2007). Current LDS models 
can be useful to study the trucking industry in European countries that collect detailed data 
on individual shipments, but not to study the trucking industry in the US. Aggregate models 
of freight transportation demand have been used in some cases in the US, but they have not 
modeled logistical tradeoffs explicitly (NCHRP Report 606). One of these models that has 
received much attention is the Commercial Transport (CT) module of the Oregon 
Statewide Integrated Model (SWIM2) developed by Parsons Brinckerhoff et al. (2010).  
This model estimates truck flows in Oregon by simulating over many decisions made by 
carriers and shippers given the observed distribution of these decisions. While decisions 
are simulated about mode choice, carrier type (private vs. for-hire), vehicle type and 
transshipment location, these represent exogenous inputs into the model and not results of 
the model. Such an approach can be useful in some circumstances, but it cannot be used to 
characterize the LDS responses of interest.    

 

1.3.3 32BModeling of FMO Responses 

FMO modeling in the literature has focused primarily on making recommendations about 
how individual firms should manage their vehicle fleets. This forms part of a larger 
literature in Operations Research that investigates the optimal utilization and replacement 
of machines under varying types of assumptions, conditions and objectives. Some of the 
phenomena studied includes: stochastic fluctuations of trucking demand (Hartman 2004), 
deterministic daily fluctuations in bus transit demand (Simms et al. 1982), random machine 
breakdowns (Christer and Scarf 1994; Scarf and Bouamra 1995; Suzuki and Pautsch 2005), 
stochastic deterioration of machines (Childress and Durango-Cohen 2005; Morse and Bean 
1998) and technological progress (Bethuyne 1998). The resulting optimization problems 
have been solved using dynamic programming with Bellman recursion (Stasko and Gao 
2012), two-stage approximate dynamic programming (Simms et al. 1982), network linear 
programming (Vemuganti et al. 2007) and integer programming (Karabakal et al. 1994).  
Even though most of the recent literature has focused on studying the effect of uncertainty 
on time-varying FMO decisions, some earlier work has considered steady-state solutions 
as a way of understanding the forces driving optimality (Smith 1957).  

To our knowledge only two papers have used these types of models to evaluate the effect 
of environmental policies on vehicle fleets. Stasko and Gao (2010) used an integer program 
to determine the optimal management of a bus fleet as a transit agency considers the 
purchase of buses with more energy efficient propulsion technologies in response to 
governmental regulations. The second of these papers was written by Figliozzi et al. (2011) 
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and used an integer programming model to find the composition of the personal vehicle 
fleet (considering cars with different propulsion technologies) that minimizes total costs 
that include the costs of GHG emissions.   

These Operations Research models have been designed to be used by single decision 
making units (such as a carrier or transit agency for example) to develop an optimal 
machine management strategy. Emphasis has been usually placed on providing a detailed 
accounting of costs under different uncertainties. However, for this research we are 
interested in modeling a whole trucking industry, which is composed of many firms, 
therefore the models need to be focused differently. Also, with a couple of exceptions, the 
approaches used rely primarily on numerical optimization techniques that do not provide 
many insights about the nature of the results because of the large dimensionality of the 
problems studied.     

A separate but much smaller set of literature has sought to model the behavior of vehicle 
fleets in the aggregate (Chen and Lin 2006; Greenspan and Cohen 1996). The focus of this 
research has been to estimate survival functions for vehicle fleets based on exogenous 
factors. The main limitation of using these models to describe truck fleets is that they 
require extensive time series data that are not publically available for this industry. 
Additionally, in following sections it is shown that treating truck retirement as a 
probabilistic event is not necessary for this research because the average retirement 
odometer of trucks contains enough information to approximate total costs well.    

Another approach used to model aggregate vehicle fleets can be found in the National 
Energy Modeling System (NEMS) developed by EIA (2012) and in the EMFAC2011 
model developed by CARB (2011b). The objective of the freight module of the NEMS 
model is to investigate how changes in macroeconomic conditions affect the energy 
consumption in the sector, while the objective of the EMFAC2011 model is to forecast the 
environmental impacts of the trucking sector in California. However, both of these models 
make the same assumption that FMO responses are exogenous. Essentially, an exogenous 
truck survival function is used to update the fleet of trucks from year to year, and truck 
purchases are determined exogenously by a separate macroeconomic model. Treating both 
of these variables exogenously and independently of each other represents a larger 
limitation in the NEMS model as it seeks to model the responses of the industry, not just 
forecast current operations. Another limitation of the NEMS and EMFAC2011 model is 
that they do not consider LDS responses.   

In addition to considering FMO responses (albeit indirectly), the NEMS model also 
considers FST responses because they matter greatly to the energy consumption of the 
industry. However, the penetration of FSTs in the truck fleet is assumed to follow an ad-
hoc function of their break-even fuel price. FST responses are therefore imposed on the 
model, as opposed to resulting from a cost minimization objective. Another limitation is 
that FMO decisions are assumed to be independent of FST decisions.  
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1.3.4 33BComprehensive Modeling of FMO, FSTs and LDS  

There has been much research into FMO, FST and LDS responses individually, but very 
little effort has been placed in modeling them jointly, in theory or in practice. Some 
researchers (Calthop et al. 2007; Parry 2008) have used simplified economic models to 
evaluate the implantation of incentives-based strategies in the trucking industry, 
considering both FST and LDS responses. However, these responses have been modeled 
through assumed elasticity parameters. While these models are conceptually a step in the 
right direction, they are inadequate for policy analysis.  

Theoretically, the FST and FMO responses of carriers and the LDS responses of shippers 
can be modeled either by (1) an econometric analysis of industry data, or (2) as an 
aggregate optimization problem.  

Econometric models are used often in many research fields to quantify the behavioral 
responses of agents from data about their past decisions. In freight transportation, this 
approach has been used to model the LDS decisions that shippers make (see Section 1.3.2), 
although in the last couple of decades there has not been enough publicly available data 
(especially of the disaggregate kind) to estimate this type of model in the US. Econometric 
models have also been used to represent some of the FMO decisions that carriers make by 
estimating survivability curves for truck fleets (see Section 1.3.3). However, these models 
also require datasets that are not publically available, and their results have not been very 
informative for policy making because they omit important variables such as the 
investment in FSTs and the amount of truck purchases.  

On the other hand, optimization models reduce significantly the data that the analyst must 
have access to by requiring her greater use of her judgment and expertise to formulate the 
model. In these models the market conditions are conjectured from economic theory and 
empirical evidence, and firms are assumed to seek to maximize profits. The profits are 
calculated using data obtained from the literature on the average costs and operations of 
the industry.  

Using aggregate average data to characterize an industry is easier and more defensible for 
trucking companies than for shippers because they are significantly more homogeneous. 
Companies that ship commodities come from all sectors of the economy and their shipment 
decisions result from the managing of supply chains that in many cases can be quite 
complex. As seen in previous sections, econometric models have been preferred to model 
shippers because they can capture a greater degree of heterogeneity than optimization 
models. On the other hand, trucking companies all operate essentially the same trucks, on 
the same infrastructure, and with similar objectives. The costs and operational constraints 
they face can be well characterized with industry wide averages. This is why optimization 
models have been used more often to represent the responses of carriers.  

In order to achieve the objectives of this dissertation, new modeling methodologies need 
to be developed that smartly combine econometric models and optimization models in 
order to provide the best representation of the trucking sector from the little empirical 
evidence available. 
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1.4 14BResearch Contributions and Dissertation Organization 

This dissertation develops of a comprehensive modeling framework for studying the 
responses of the trucking sector to various governmental interventions that skirts some of 
the data limitations that have restricted past research. The modeling approach is described 
as being comprehensive because it considers simultaneously the FMO and FST responses 
of carriers and LDS responses of shippers, and because it accounts for changes in life-cycle 
emissions from various sources, including: tailpipes, precombustion, vehicle 
manufacturing and infrastructure rehabilitation.   

Section 2 describes the Trucking Sector Optimization Model (TSO). This model considers 
the optimal decisions that carriers and shippers make throughout time, essentially modeling 
the transitional dynamics of today’s trucking sector in responses to time-dependent 
governmental interventions and changes in the business environment. As its name suggests, 
carrier’s decisions are modeled through the optimization of a dynamic mathematical 
program that is specified on the average costs observed for this industry. The costs 
considered includes: labor costs, fuel costs, capital costs, FST costs, salvage value, etc. 
Shipper’s decisions are represented with response elasticities obtained from the literature. 
The model is solved using a two-stage heuristic that provides satisfactory approximate 
results. The GHG emissions of the sector are then determined using methodologies from 
the life-cycle assessment literature. The main methodological contributions of this model 
are: (1) the simultaneous consideration of FST, FMO and LDS responses, (2) the modeling 
the transitional dynamics of aggregate truck fleets, and (3) the consideration of life-cycle 
GHG emissions.  

Because at the heart of the TSO model lays an optimization problem, its results can provide 
both normative and positive insights. The responses of the industry predicted by the TSO 
model give policy makers a sense of the magnitude and direction of the economic 
incentives caused by their interventions. This answers questions such as: by how much are 
average costs going to increase? how will the average truck be operated differently? and, 
most importantly, what will be the impact on life-cycle emissions? The predictive accuracy 
with which these questions are answered depends on how well the observed average costs 
represent the circumstances in the industry, and how well these are tweaked by the analyst 
according to her experience and judgment. The TSO model can also be used to identify 
inefficiencies in the trucking industry by proposing alternative ways of doing business that 
could lead to lower costs. Market failures can explain why carriers provide services at a 
higher cost than the TSO model suggests. In that case, governments should intervene to 
make sure that this industry operates closer to optimality, either by correcting the market 
failures at their root cause or by introducing corrective regulations.  

Section 3 then uses the TSO model to evaluate the effectiveness of seven different types of 
governmental interventions to achieve the GHG emissions target set in California by the 
Global Warming Solutions act of 2006. The strategies analyzed are: fuel taxation, mileage 
taxation, truck purchase taxation, FST subsidies, increases in truck size and weight limits, 
Low Carbon Fuel Standard and FST regulations. This case study demonstrates the 
usefulness of the TSO model in: (1) evaluating the responses of the sector to meet policy 
targets in the near-term, (2) comparing regulation-based strategies against incentives-based 
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strategies, (3) evaluating the impact of the phase-in schedule of strategies on the trajectory 
of emissions, (4) evaluating the impact of the existing truck fleet on the optimal decisions 
of carriers moving forward, (5) evaluating the penetration rates of FSTs, (6) evaluating the 
tradeoffs between different emission sources, and (7) finding ways to mitigate market 
failures in this industry. These insights are used in Section 3.4 to propose seven consecutive 
steps that policy makers in California should take to reduce emissions from this sector.  

The GHG mitigation strategies studied in Section 3 go a long way in realizing the vision 
presented in Figure 2. However, there are other important strategies that cannot be 
analyzed with the TSO model because of its simplifying assumptions. This limitation is 
addressed by the Trucking Sector Trip Segmentation Model (TSTS) introduced in Section 
4. The TSTS model improves on the TSO model in two key ways. First, truck retirements 
are modeled as probabilistic events such that the distribution of truck ages in the model 
matches better real-world observations. Secondly, the TSTS model represents 
endogenously the utilization of trucks throughout their service-lives, based on the spatial 
distribution of the demand for trucking and the mileage supply performance of the truck 
fleet. In contrast, in the TSO model trucks were assumed to follow an exogenous utilization 
function, where at a given age trucks provide a fixed and exogenous amount of miles per 
year. The introduction of these additional variables comes at a cost. The state-space of the 
dynamic optimization problem is increased significantly, making the solution approach 
used for the TSO model unworkable. Therefore, for now, only a stationary version of the 
TSTS model is presented, where all of the variables are assumed to be fixed throughout 
time. This essentially represents a long-run model that can be used to study the responses 
of the trucking sector once its operations have converged to optimality.  

Section 5 uses the TSTS model to evaluate how California’s heavy-duty truck fleet would 
respond to: improvements in the performance of trucking, mode shifts, and FST regulation 
to a subset of the truck fleet. These three interventions are demonstrated to reduce GHG 
emissions, but also affect other dimensions of how the sector operates.  

The ground-level understanding of the trucking sector provided by the TSO and TSTS 
models has the potential to significantly improve future research in this field in three key 
dimensions. (1) As mentioned in Section 1.3.4, welfare studies into the optimal level of 
implementation of FSTs have represented the responses of the trucking industry using 
elasticity parameters that are largely assumed, which detracts considerably from the weight 
of their conclusions. The models presented in this dissertation would allow future work on 
the economic efficiency of trucking sector interventions to be based on more realistic 
representations of industry responses. (2) The modeling of various sources of emissions is 
even more important for studying ways to mitigate Particulate Matter (PM) and NOx 
emissions, because these other pollutants are emitted more intensely in the manufacturing 
of vehicles and rehabilitation of pavements than for GHGs. The models presented in this 
dissertation are especially salient for understanding these types of tradeoffs. (3) With little 
modifications, the TSO model can be also applied to study the responses of other sectors, 
such as railroad, air or waterborne transportation. The economic tradeoffs faced in 
managing fleets of trains, airplanes and ships are not fundamentally different than those of 
managing fleets of trucks. In summary, there are many ways in which future research can 
benefit from the methodological contributions of this dissertation.  
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2 4BTrucking Sector Optimization Model (TSO) 

The first step of the TSO model is to segment trucks into fleets that can be modeled 
independently from each other. Each of these fleets should be composed of similar trucks 
that compete for the same type of demand from shippers (at one point or another in their 
service life). Trucks should always belong to the same fleet such that there are no 
interactions between fleets. For example, one fleet can be composed of Class-8 trucks that 
are purchased into intercity service and another one can be composed of Class-8 trucks that 
are purchased to provide drayage services at ports. The segmentation of truck fleets should 
be consistent with the data availability and scope of the study. Given that our objective is 
to model GHG emissions, the remainder of chapter assumes that the truck fleet being 
modeled is composed of Class-8 trucks purchased into intercity service, because they 
contribute to the bulk of emissions from trucking. However, other truck fleets could be 
studied as well in future research. In this dissertation, the terms trucking industry and 
trucking sector are used interchangeably to refer to shippers and carriers. 

The schematic shown in Figure 3 summarizes the different components of the TSO model. 
At its core, the model considers the supply-demand equilibrium between carriers and 
shippers. The carriers’ supply of transportation is modeled by assuming that they 
continuously optimize their operations to provide service at the lowest average cost. This 
is consistent with the assumption that the industry operates competitively in the long-run, 
which has been found to be a reasonable representation of this industry. Carriers have also 
been found to have constant returns to scale (Friedlaender and Spady 1981), which allows 
the trucking industry to be modeled as if all trucks are operated by a single carrier. Firms 
with constant returns to scale have average costs that do not change significantly with their 
size. The trucking industry fits this description well because the physical trucks and types 
of service provided by small firms are fundamentally the same as those provided by large 
firms. Trucking service is essentially modeled as a commodity.   
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Figure 3: Schematic of TSO Model 

 

The FMO and FST decisions that carriers make throughout time (age of truck retirements, 
truck purchase rate and technology investments) are modeled through the minimization of 
discounted costs over the study time horizon from operations, maintenance activities, fuel 
consumption and capital investments. This minimization is subject to the constraint that 
enough trucking miles are supplied to meet the transportation demanded by shippers at the 
market clearing price. The inputs used in this model are obtained from industry averages 
found in the literature; their selection and components are discussed in detail later in this 
section.  

Shippers’ demand for transportation is modeled through response elasticities found in the 
literature, from previous estimations of behavioral models. The difficulty of this approach 
is ensuring that these elasticities reflect the LDS responses of interest. To cope with this 
uncertainty, a large number of studies were surveyed and a sensitivity analysis was 
conducted.  

Government’s interventions are evaluated insofar as they affect the economic environment 
of shippers (shifting demand) and/or carriers (shifting supply), establishing a new market 
equilibrium that hopefully produces less GHG emissions.  

The TSO model considers the decisions that carriers and shippers make at every time-step 
of the analysis. This is important because the trucking industry will not respond to 
governmental interventions from a clean slate; the characteristics of the present truck fleet 
will influence the responses of carriers. Over time, the decisions that carriers make will 
converge to a long-run optimal, but this could take many fleet turnover cycles. If policy 
objectives are set in the short-term or medium-term (as occurs in the case study explored 
in Section 3), then modeling the transitional dynamics of the truck fleet is important. 
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Additionally, governmental interventions are likely to be phased in over significant periods 
of time; modeling this transition is of interest to policy makers.  

The TSO model is labeled as time-dynamic because all of the variables have to be defined 
at every time-step. However, before this model is described formally, this chapter 
introduces a simplified version of the TSO model where the operations of the trucking 
industry are assumed to be constant throughout time. This idealized model, which is labeled 
as time-stationary, allows us to gain several key insights about the mechanisms governing 
the decisions of carriers and shippers, by expressing the optimality conditions succinctly. 
Additionally, as explained in Section 4.3, the results of this model were used to reduce the 
dimensionality of the time-dynamic model so that solutions can be obtained more 
computationally efficiently.  

The time-dynamic model can be interpreted as a short-run model while the time-stationary 
model can be interpreted as a long-run model.  

 

2.1 15BTime-Stationary Model 

This section presents the analytical framework used to model the trucking industry. First, 
truck fleet utilization curves are introduced as a tool to describe the operations of a truck 
fleet. These curves are then analyzed analytically to derive a cost-minimization model that 
captures FST and FMO responses.  

 

2.1.1 34BTruck Fleet Utilization Curves  

Truck fleet utilization curves describe how carriers manage their trucks in the supply of 
transportation services to shippers. Each curve represents the operations of an individual 
truck. In Figure 4 we see an example of these curves (for the non-stationary case), where 
on the horizontal axis plots time ݐ and on the vertical axis plots the truck odometer ݔ 
(cumulative mileage since purchase). 
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Figure 4: Truck fleet utilization curves 

 

From these curves we can read the FMO information: 

1. Truck Purchase Rate: The start of each curve at ݔ ൌ 0 represents the time at which 
each truck is purchased and put into service. The rate at which trucks are being 

purchased (trucks/year) is defined as ܲሺݐሻ. The time between two truck purchases 

at ݐ	can be approximated by	1/ܲሺݐሻ. 
2. Truck Utilization: From the time of purchase trucks are driven at a certain rate (that 

can vary with age and time) that is described by the curves in the figure. Each of 

these curve is represented by a function ݔ ൌ ௧ܷሺݏሻ, where ݏ is the age of the truck 

and ݐ is the time of purchase.  
3. Service Lifetime: The maximum odometer reached by each curve is the point where 

the truck is scrapped. This is defined as ܺሺݐሻ, the retirement odometer of trucks at 

time ݐ. Note that trucks retiring at ܺሺݐሻ were purchased at ݐ െ ܵ, where ܵ is the 
retirement age.  

4. Mileage Supply: The aggregate supply miles by a truck fleet in any time interval 

 is the summation of the vertical distance covered by all truck utilization curves ݐ߂
in that time interval. The instantaneous rate of aggregate mileage supply is defined 

as ߰ሺݐሻ. 
 

2.1.2 35BCarrier Model 

By assuming time-stationary conditions we can exploit several analytical features of truck 
utilization curves to specify the trucking model succinctly. Figure 5 depicts a stationary 
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truck fleet in which trucks are purchased at a rate ܲ, utilized according to ݔ ൌ ܷሺݏሻ, and 
retired at ܺ. 

From Figure 5 it is clear that in a time interval 1/ܲ the truck fleet will supply ܺ miles in 
the aggregate. This result can be rearranged into  

 ߰ ൌ ܲܺ (2.1)

where the aggregate mileage supply ߰ can be found in the time units of ܲ [in years] and 
distance units of ܺ [in miles]. It can also be written alternatively as ߰ ൌ ܷሺܵሻܲ. A 
consequence of (2.1) is that the aggregate mileage supply is independent of the functional 
form ܷሺݏሻ, and only depends on the retirement odometer and purchase rate of trucks.  

Underpinning the truck fleet utilization curves observed in Figure 5 is the assumption that 
all trucks face the same economic conditions and therefore will be managed identically. 
This leads to the model to assume that truck retirements that are deterministic. However, 
data of real life operations show that trucks retire at different ages in the same time period. 
This reflects the fact that carriers are somewhat heterogeneous and use trucks to provide 
different types of service. The approach in Chen and Lin (2006) could be used to model 
this heterogeneity, but it would require significantly more data than is publically available.  

 

 

Figure 5: Stationary truck utilization curves 

 

To deal with this limitation, truck utilization curves are treated in this research as describing 
the average operations of a truck fleet, where the average itself is modeled 
deterministically. It can be shown analytically that if trucks retire at a random ܺ, along the 
same ܷሺܵሻ ൌ ܺ, then the supply of miles of the truck fleet is exactly equal to ߰ ൌ ܲ തܺ 
where തܺ is the average retirement odometer. This implies that modeling truck retirements 
randomly does not provide any additional information with regards to the supply of 
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trucking mileage than modeling the average truck retirement. However, because truck costs 
are a function of truck age, modeling the average truck retirement will result in a bias over 
modeling truck retirements as random events. This bias is likely to be small because, as 
will be seen, the bulk of trucking costs vary linearly with trucking mileage and because the 
bias both decrease and increase total costs, potentially canceling out much of the effect 
(maintenance costs increase with truck age but costs incurred by older trucks are discounted 
more heavily).  

Stationary truck fleets can be described further. The size of the truck fleet ܨ  [number of 
trucks] can be found from  

ܨ  ൌ ܲܵ (2.2)

when ܲ and ܵ have consistent time units. Dividing (2.1) by (2.2) provides a calculation of 
the average miles driven by each truck per year ߰/ܨ ൌ ܺ/ܵ. While (2.1) shows that truck 
mileage supply is insensitive to truck utilization, the size of the truck fleet is not because 
of ܵ in (2.2).  

Now, suppose that trucking carriers need to supply in aggregate ߰଴ miles per time period. 
Carriers will select an optimal FMO strategy by selecting ܲ and ܺ to meet this demand at 
the lowest average costs. In addition, carriers also choose to invest in FSTs to reduce the 
lifecycle costs of their truck fleet. Investing in FSTs reduces fuel costs throughout the life 
of the truck at the expense of higher capital costs. This investment decision is modeled 
using a variable ߛ ∊ ሾ0,1ሻ, representing the proportion of fuel saved by a cumulative 
investment in FSTs. It is assumed that carriers invest in the most cost-effective FSTs first. 
Details about the FSTs presently available and their cost effectiveness are included in Table 
2 in Section 3.1.5. 

The costs of a truck fleet can be divided into maintenance costs, operation costs, purchase 
costs and salvage value. The maintenance costs per mile are defined as ܯሺݔሻ such that 
ሻݔሺ′ܯ ൐ 0 and ܯ′′ሺݔሻ ൒ 0. This captures the reality that trucks become more costly to 
maintain as they get older. It is assumed that by incurring these maintenance costs the truck 
is kept at original operating conditions. Operational costs per mile are defined as ܱ ሺߛሻ such 
that ܱ ′ሺߛሻ ൏ 0. These are costs that increase linearly with truck mileage, and include driver 
wages, insurance, tolls, etc. A very reasonable assumption that can be made is that ܱ ′′ሺߛሻ ൌ
0, because ߛ  affects fuel costs linearly by definition. However, operational costs can also 
include the additional expenses associated with operating a truck with FSTs, such as 
training and new loading equipment. These are omitted from the model because they are 
comparatively not very large.   

The purchase cost of trucks is defined as ܣሺߛሻ, with ܣ′ሺߛሻ ൐ 0 and ܣ′′ሺߛሻ ൐ 0, such that 
there are diminishing returns to investing in additional FSTs. Note that the definition of ߛ 
it implies that lim

1→ߛ
ሻߛሺܣ ൌ ∞ and ܣሺ0ሻ ൌ  ௣, the purchase price of a truck. The salvageܣ

value of a truck is defined as ܸሺߛ, ܺሻ such that it is a non-increasing function of retirement 
odometer ܺ and a non-decreasing function of level of investment in FSTs corresponding 
to their worth at salvage.  
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Independent of whether stationary conditions are assumed, it is necessary to discount costs 
throughout time because they are accrued in different time periods. The effective discount 
factor ߚ can be used by the modeler to capture the subjective time preferences of firms, 
which are determined by the economic environment surrounding them. In the literature it 
is common to assume that there are two main forces driving this economic environment. 
First, the prices of the inputs, such as fuel and driver wages, increase according to some 
inflationary rate ݎ௜ሺݐሻ. For simplicity, in this model it is assumed that this rate is fixed 
throughout time at ݎ௜. The second driving force, which acts in the opposite direction, results 
from the ability of firms to make investments in external assets that provide some rate of 
return ݎ௟ሺݐሻ. This represents the reality that firms can cover a future cost of $10 by investing 
less than $10 today in safe assets. For simplicity, this rate is also assumed to be constant at 
 ௟, and is often assumed in the literature to be the US prime rate. The effective discountݎ
factor can be found to be ߚ ൌ ሺ1 ൅ ௜ሻݎ ሺ1 ൅ ⁄௟ሻݎ , where ߚ ൌ 1 implies no time discounting 
of money (Christer and Scarf 1994).  

While the financial decisions of firms can be modeled in more detail, the model described 
above is used because it constitutes the most common approach taken in the equipment 
replacement literature. Alternatively, previous researchers have not assumed an interest 
rate because of the short time horizons analyzed (Vemuganti et al. 2007), assumed a 
discount factor of unity by forcing the internal rate of return to equal the rate of inflation 
(Stasko and Gao 2010), assumed different rates of price inflation for different inputs 
(Simms et al. 1982), and allowed the discount factor to vary with time (Kobbacy and Nicol 
1994). Future work could consider the implications of these other assumptions on the 
results of this research.  

Returning to the stationary trucking model, if the revenue per mile is defined as ݕ, then the 
discounted lifetime profit of a single truck can be found by  

 
න ݏ݀ݕሻݏ௦ܷ′ሺߚ
ௌ

଴
	െ න ሻ൯ݏ൫ܷሺܯሻൣݏ௦ܷᇱሺߚ ൅ ܱሺߛሻ൧݀ݏ

ௌ

଴
െ ሻߛሺܣ

൅ ,ߛௌܸ൫ߚ ܷሺܵሻ൯ 
(2.3)

where the first term sums the lifetime revenue, the second term subtracts the lifetime 
operating and maintenance costs, the third term subtracts the purchase cost of the truck and 
the fourth term adds a salvage value. Note that the substitution ݔ ൌ ܷሺݏሻ is used to express 
the integrals more succinctly.  

To obtain a steady state solution now the discounted stream of profits of trucks purchased 
in ݐ ∊ ሾ0,∞ሻ are summed as 

 
π ൌ න ௧ܲߚ ൭න ݏ݀ݕሻݏ௦ܷ′ሺߚ

ௌ

଴
െ න ሻ൯ݏ൫ܷሺܯሻൣݏ௦ܷᇱሺߚ ൅ ܱሺߛሻ൧݀ݏ

ௌ

଴
െ ሻߛሺܣ

∞

଴

൅ ,ߛௌܸ൫ߚ ܷሺܵሻ൯൱݀ݐ 
(2.4)

The assumption that the trucking industry faces perfect competition in the long run implies 
that π ൌ 0. In other words, unlimited market entry and competition forces the market rate 



 

20 
 

ܵ݀/ݕ݀ to be minimized at [mile/$] ݕ ൌ 0 and ݀ߛ݀/ݕ ൌ 0. The first of these conditions 
can be expressed as 

 
݀
݀ܵ

ቌ
׬ ሻ൯ݏ൫ܷሺܯሻൣݏ௦ܷᇱሺߚ ൅ ܱሺߛሻ൧݀ݏ
ௌ∗

଴ ൅ ሻߛሺܣ െ ௌߚ
∗
ܸ൫ߛ, ܷሺܵ∗ሻ൯

׬ ݏሻ݀ݏ௦ܷᇱሺߚ
ௌ∗

଴

ቍ ൌ 0 (2.5)

which does not have a closed form solution for various functional forms tested, but it can 
be solved numerically easily. This expression indicates that trucks should be retired once 
the average cost of replacement (all lifetime purchase and operational costs divided by 
lifetime mileage output) equals the marginal cost of operating trucks an additional mile. 
This point is reached when it makes sense economically to purchase trucks more often and 
retire them more quickly to save on the more expensive maintenance costs of older trucks. 
Note that this way of deriving the optimality conditions produces (2.5) where the 
denominator, lifetime output, is discounted to the present. This is necessary to obtain a 
measure of average costs that is time consistent. Other researchers however have not taken 
this approach (Redmer 2009).   

Notice that ܲ cancels out of the expression because the model is constructed with constant 
returns to scale. The optimal ܲ∗can be found using (2.1) as 

 ܲ∗ ൌ ߰଴	/ܷሺܵ∗ሻ (2.6)

The optimal level of investment in FSTs can be found through ݀ߛ݀/ݕ ൌ 0 as  

 െන ݏሻ݀∗ߛሻܱ′ሺݏ௦ܷᇱሺߚ
ௌ

଴
ൌ ሻ∗ߛሺ′ܣ െ ௌߚ

ܸ݀൫ߛ∗, ܷሺܵሻ൯
ߛ݀

 (2.7)

Indicating that FSTs should be implemented until the marginal benefit of reducing fuel 
consumption equals the marginal cost of the investment.  

Equations (2.5), (2.6) and (2.7) represent the first order conditions of the stationary model.  

One of the key intuitions that can be derived from this model is that if ߚ ൌ 1	the truck 
utilization function ܷሺݏሻ drops out of the cost expression. This can be seen by substituting 
ܷᇱሺݏሻ݀ݏ ൌ  in (2.3), obtaining ݔ݀

ܺݕ  ൅න ሾܯሺݔሻ
ܺ

0
൅ܱሺߛሻሿ݀ݔ൅ ൯ (2.8)ܺ,ߛሻെܸ൫ߛሺܣ

Therefore in the situation where the ߚ is close to unity the optimal FMO and FST decisions 
are insensitive to ܷሺݏሻ. 

Some convenient functional forms are 
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 ܸሺߛ, ܺሻ ൌ ሻ݇ௗሺ1ߛሺܣ െ ݇௫ܺሻ  (2.9)
  

 ܱሺߛሻ ൌ ݌ ெ݂
	 ൅ ݇௢ ൅ ሺߠி ൅ ிሻሺ1݌ െ  ሻ݂ (2.10)ߛ

  
ሻݔሺܯ  ൌ ݇௠(2.11) ݔ 

 

where the salvage value is assumed to be a linear decreasing function of odometer reading 
by ݇ ௫ and starts with an instantaneous depreciation ݇ ௗ. The operational costs are a function 
of the mileage taxation ߠெ

	 , a fixed cost per mile ݇௢ (driver wages, overhead, etc), the fuel 
tax plus fuel price ߠி ൅ ி, and the after-FSTs fuel economy ሺ1݌ െ  ሻ݂. Maintenance costs	ߛ
are assumed to increase linearly based on data from CARB (2008a).   

Using cost functions (2.9), (2.10) and (2.11), and assuming ߚ ൌ 1, the first order conditions 
can be simplified to 

ሻ∗ߛᇱሺܣ  ൌ ሺߠி ൅ ிሻ݂ܺ∗ (2.12)݌

  

 	ܺ∗ ൌ ඥ2ܣሺߛ∗ሻ ݇௠⁄  (2.13)

  

 ܲ∗ ൌ ߰଴	/	ܺ∗ (2.14)

 
 
 

2.1.3 36BShipper Model  

A simple shipper model was developed to capture the LDS responses of interest. Unlike 
the carrier model, the shipper model does not utilize on a cost optimization approach, 
instead it relies on own-price elasticities that have been estimated previously in the 
literature. However, the literature contains many estimates of the elasticity of tons shipped 
w.r.t. trucking cost and ton-miles shipped w.r.t. to trucking cost, but not many for estimates 
for the elasticity of truck mileage w.r.t trucking costs, which is the key parameter input in 
the TSO model that captures LDS responses. This section discusses the assumptions that 
are necessary to obtain a reasonable approximation of this key parameter from the types of 
data found in the literature.  

Equation (2.15) represents a fundamental identity in freight transportation. For a particular 
commodity flow in an origin-destination pair ݏ, the demand for trucking ܦ௦ [miles/year] 
depends on the quantity of goods shipped by truck ܳ௦ [tons/year], the length of the truck 
trips ܮ௦ [miles/trip] and the size of the shipments ݒ௦ [tons/trip]. Here the variables ܳ, ܮ and 
  .represent the LDS decisions made by shippers ݒ

௦ܦ  ൌ
ܳ௦ܮ௦
௦ݒ

 (2.15)
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Changes in the RHS variables of (2.15) resulting from changes in trucking costs can be 

modeled with the own-price elasticities ݁ொ, ݁௅ and ݁௩. The notation ݁௩ ൌ
ௗ௩

ௗ௬

௬

௩
 is used to 

indicate the elasticity of variable ݒ with respect to market price y. The elasticity ݁ ொ captures 
the responsiveness of mode-shifts and final demand changes. The elasticity ݁௅ captures the 
spatial redistribution of demand. And the elasticity ݁௩ captures changes in the management 
of inventories. In the literature there are many estimations of ݁ ொ, but not of ݁ ௩ and ݁ ௅. There 
are also several estimations of the elasticity of ton-miles ܭ w.r.t. trucking costs, which we 
define as ݁௄, where ܭ	 ൌ  Note that using the definition of elasticities it can be shown .	ܮܳ	
that ݁௄ ൌ ݁ொ ൅ ݁௅.  

From the literature we have good sense of the magnitude of ݁ொ and ݁௄, but we do not find 
any studies that estimated ݁ ௩. Therefore we used a simple Economic Order Quantity (EOQ) 
model of inventories to provide a reasonable estimate of  ݁௩. By minimizing per-ton 
transportation plus inventory costs the optimal shipment size in each segment ݏ can be 
derived as ݒ௦∗ ൌ ඥݕ	ܮ௦2ܳ௦ ߶௦⁄ , where ߶௦ [$/year] is a measure of the time-costs of holding 
inventories. Using ݒ௦∗ yearly trucking mileage across all segments ܦ can be expressed as  

ܦ  ൌ෍ܦ௦

	

⩝௦

ൌ෍൬
ܳ௦ܮ௦߶௦
ݕ2

൰
ଵ/ଶ	

⩝௦

 

Solving for ݁஽ ൌ
ௗ஽

ௗ௬

௬

஽
, noting that 

ௗொೞ
ௗ௬

് 0, 
ௗ௅ೞ
ௗ௬

് 0, and using ݁ொ and ݁௅ results in 

 ݁஽ ൌ െ
1
2
൅
1
2
൫݁ொ ൅ ݁௅൯ ൌ െ

1
2
൅
1
2
݁௄ (2.16)

Expression (2.16) indicates that it is possible to obtain an approximation of ݁஽ from ݁௄ for 
heterogeneous truck fleets if ݕ is the same throughout all segments ݏ and ݒ is assumed to 
be determined through an EOQ model. While this represents a rough approximation of ݁஽, 
it allows us to gain a sense of its magnitude and better understand its determinants.  

Using (2.16) the demand function for trucking mileage can be derived as 

ሻݕሺܦ  ൌ ஻ܦ ൬
ݕ
஻ݕ
൰
௘ವ	

 (2.17)

2.1.4 37BEquilibrium  

Market equilibrium in the stationary model can be presented with a simple microeconomic 
framework. The shipper demand for transportation service is downward-sloping to reflect 
the disutility of the market rate. The carrier supply curve is horizontal because the industry 
is modeled as having constant returns to scale. This means that for any level of demand ܦ, 
the trucking rate will be the same at ݕ∗. This occurs because there are no economies of 
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scale in the trucking industry. Governmental strategies that change ݕ∗ will also lead to 
changes in latent demand in ܦሺݕ∗ሻ.  

 

2.2 16BTime-Dynamic Model 

The stationary trucking model provides useful insights into the key mechanisms governing 
optimal truck fleets; however its usefulness in modeling GHG mitigation strategies is 
limited in practical applications. In many circumstances an emissions target is placed in 
the medium-term, which does not allow enough time for the truck fleet to reach the steady 
state conditions required in the simplified stationary model. Additionally, the stationary 
model cannot be used to analyze the transition of the existing truck fleet or the phase-in of 
mitigation strategies. Steady state assumptions are also violated if the demand for trucking 
increases over time. To overcome these limitations a time-dynamic model is introduced in 
this section that considers how carrier and shipper optimize their operations throughout 
time in response to changes in the economic environment.  

 

2.2.1 38BCarrier Model 

Carriers are modeled as seeking to minimize the discounted costs of supplying trucking 
demand ܦሺݐሻ [miles] in a finite time horizon ݐ ∊ ሾݐ଴,  carriers make FMO ݐ ௙ሿ. In each yearݐ
decisions about: the number of trucks purchased ߏሺݐሻ, the level of FST investment in trucks 
purchased that year ߛሺݐሻ and the planned retirement age of the trucks ܵሺݐሻ. The optimal 
FMO decisions are found by discretizing the problem and formulating it as an integer 
program that can be solved numerically. However, because the present formulation is non-
convex and has a relatively large state-space, a solution was obtained using the heuristic 
described in Section 2.2.4.  

To reasonably reduce the state-space of the discretized mathematical program two 
assumptions from Jones et al. (1991) were used. First, the “no-splitting” assumption 
implies that trucks purchased in the same year (part of the same cohort) can be treated 
identically. It is not optimal to manage trucks in the same cohort differently. Second, the 
“old cluster replacement rule” implies that it is never optimal to retire a certain cohort of 
trucks without retiring all older cohorts first. Both of these assumptions where investigated 
by Jones et al. (1991) as they apply to the management of truck fleets owned by individual 
firms, but in this model they are invoked as a reasonable representation of the trucking 
industry.  

The notation of the model is the following: 

Indices 
݅  index of time  
݆ index of truck cohorts (all trucks purchased in the same time period belong 

to the same cohort) 
Variables  
 ݆ ௝ level of investment in FSTs in truck cohortߛ
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 ݆ ௝ quantity of trucks purchased into cohortߏ

௝ܵ  age of retirement of trucks in cohort ݆ 
 
Parameters  
 effective discount factor ߚ
  into cohort ݆ (see Appendix A) ߛ ሻ purchase costs of trucks with technologyߛ௝ሺܣ

௜ܱ௝ሺߛሻ operating costs per mile of trucks of technology ߛ in cohort ݆ at time ݅ 
 ݅ ௜௝ maintenance costs per mile of trucks in cohort ݆ at timeܯ

௜ܸ௝ሺߛሻ salvage value of trucks with technology ߛ in cohort ݆ if retired at time ݅ 
 ௜௝   utilization rate [miles/year] of trucks in cohort ݆ at time ݅. This can beݑ

approximated from ݑ௜௝ ൌ ܷ′ሺ݅ െ ݆ሻ. 
 

Three sets of the indices of ݅ and ݆ were used to express the mathematical program 
succinctly. Set ॶ identifies the indices of truck cohorts ݆ that are active at ݅ given their 
retirement age ௝ܵ. Set ॺ identifies the indices of truck cohort retirements. Set ॻ identifies 
the analysis time horizon ݅ ∊ ሾݐ଴,  ௙ሿ. Note that ௝ܵ needs to be an integer variable withݐ
intervals consistent with ݅ and ݆, which can be determined based on the desired precision 
of the results. 

 ॶ ൌ ൛	ሺ݅, ݆ሻ	ห		݅ െ ݆ ൑ ௝ܵ , ݆ ൑ ௙ݐ ൟ 
 

(2.18)
  

 ॺ ൌ ሼ	ሺ݅, ݆ሻ	|		݅ ൌ ݆	 ൅ ௝ܵ ሽ (2.19)

  
 ॻ ൌ ሼ	ሺ݅ሻ	|	ݐ௢ ൑ ݅ ൑ ௙ݐ ሽ (2.20)

  

 ሺ݆, ݅ሻ ∊ Ժ																 ௝ܲ ∊ Թା
௝ܵ ∊ Ժା ௝ߛ ∊ ሾ0,1ሻ (2.21)

 

The existing truck fleet at ݐ௢, where ൛݆ ൅ ௝ܵ ൒ ,	௢ݐ ݆ ൏  ௢ൟ, represents the initial conditionsݐ
of the model, and is considered by the predetermination of ߏ௝ and ߛ௝.  

Carriers face the constraint of meeting the demand for trucking mileage in each time period 
  ௜, which can be formulated asܦ

 
෍ ௜௝ݑ௝ߏ

	

௝∊ॶ|௜

൒ ݎ݋݂					௜ܦ ݅ ൌ ,଴ݐ ଴ݐ ൅ 1,… , ௙ (2.22)ݐ

Carriers face the objective of satisfying (2.22) by minimizing discounted costs 
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min෍ߚ௜ߏ௜ܣ௜ሺߛ௜ሻ
	

௜∊ॻ

൅ ෍ ௝ߏ௜ߚ

	

௜௝∊ॶ∩ॻ

௜௝ݑ ௜ܱ௝൫ߛ௝൯ ൅ ෍ ௝ߏ௜ߚ
௜௝∊ॶ∩ॻ

௜௝ܯ௜௝ݑ

െ ෍ ௝ߏ௜ߚ

	

௜௝∊ॺ∩ॻ
௜ܸ௝൫ߛ௝൯ 

(2.23)

The first term in (2.23) sums the discounted costs associated with truck purchases, the 
second term sums operational costs, the third term sums maintenance costs and the fourth 
term subtracts the salvage value of retired trucks.  

Optimization (2.23) can be modified trivially to capture additional realism, such as: 
investment of FSTs in existing trucks, technological progress where ܣ௜ሺߛሻ ൐  ሻ forߛ௞ሺܣ
݇ ൐ ݅ and time varying discounting ߚ௜. 

Note that  ܣ௜ሺ⋅ሻ,	 ௜ܱ௝ሺ⋅ሻ and ܯ௜௝ represent the primary inputs through which governmental 
strategies can impact the trucking industry in this model. These inputs can evolve 
throughout time to reflect the gradual implementation of strategies.  

Truck utilization enters (2.23) in two ways. First, the exogenous parameters ݑ௜௝ indicate 
the miles that a truck in cohort ݆ supplies in time period ݅. Noting that ݏ ൌ ݅ െ ݆, this can 
also be expressed as  ݑ௜௝ ൌ ܷ′ሺ݅ െ ݆ሻ. However, the modeler could allow truck utilization 
to change exogenously with time such that  ݑ௜௝ ൌ ௝ܷ

ᇱሺ݅ െ ݆ሻ. The second place where truck 
utilization enters into the formulation is in the construction of ܯ௜௝, which is derived as 
௜௝ܯ ൌ ݇௠ ௝ܷሺ݅ െ ݆ሻ  using (2.11). 

While in this section the optimization model was formulated as a discrete problem, and it 
was in fact solved as a discrete problem, in the remainder of the chapter continuous notation 
is used instead to simplify the discussions. The optimal FMO decisions are represented by 
ܵሺݐሻ and ܲሺݐሻ, while the optimal FST decisions are represented by ߛሺݐሻ. The economic 
environment faced by carriers, which summarizes the cost inputs of the model, is 
represented by a vector ܧሺݐሻ. The minimized nominal cost per year for carriers to supply a 
trucking mileage ܦሺݐሻ is defined as ܥሺݐሻ. 

Note that ܵሺݐሻ represents the retirement age of trucks purchased in ݐ, which can be mapped 
to the retirement odometer of trucks at ݐ by ܺ൫ݐ ൅ ܵሺݐሻ൯ ൌ ܷሺܵሺݐሻሻ.  

 

2.2.2 39BShipper Model 

The time-dynamic shipper model represents a generalization of the stationary model where 
the demand is observed at every time step. Equation (2.24) shows the effect of market rate 
changes from a baseline level of ݕ஻ሺݐሻ to ݕሺݐሻ on the time-series of baseline demand ܦ஻.  

,ݐሺܦ  ሻݕ ൌ ,ݐ஻ሺܦ ஻ሻݕ ൬
ሻݐሺݕ
ሻݐ஻ሺݕ

൰
௘ವ

 (2.24)
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Model (2.24) makes several assumptions on the time dependent equilibrium that occurs 
between carriers and shippers, which are discussed in the following section. 

 

2.2.3 40BEquilibrium  

The equilibrium between carriers and shippers can be specified in different ways depending 
on the assumptions made about the relationship between these two agents. A carrier’s 
ability to foresee changes in trucking demand and a shipper’s ability to foresee changes in 
the market rate (potentially caused by mitigation strategies) will affect how a medium-term 
equilibrium is reached. If both sides in this market have complete information about each 
other, a fixed long-run market rate could be agreed upon. In such a situation however the 
carrier may need short-term borrowing and lending given that the underlying costs of the 
trucking business might not be fixed over time. Profits and losses would need to add to 
zero in the long run. Because of this, the ability of carriers to borrow money also affects 
how market equilibrium is reached. Depending on the assumptions made about the 
industry, the model can be specified at either of the following extremes.   

 

2.2.3.1  Long-Run Equilibrium 

Under a long-run equilibrium carriers and shippers have perfect information about each 
other’s operations and have complete financial instruments. This allows both parties to 
negotiate a market rate that is fixed in real terms for the period of analysis. Mathematically, 
carriers estimate their real long-run transportation cost ݕത using (2.25) to meet a certain 
demand ܦሺݐ, ݐ ሻ for analysis time periodݕ ∊ ሾݐ଴,   .௙ሿݐ

 	න ݐሻ݀ݐሺܥݐߚ
௧௙

௧బ

න ݐሻ݀ݐሺܦݐߚ
௧௙

௧బ

൘ ൌ ത (2.25)ݕ

Shippers observe this single market rate and adjust ܦሺݐ,  ሻ per (2.26) until equilibrium isݕ
reached.  

,ݐሺܦ  തሻݕ ൌ ,ݐ஻ሺܦ ஻ሻݕ ൬
തݕ
஻ݕ
൰
௘ವ

 (2.26)

This equilibrium assumes that shippers demand for transportation in all time periods is 

affected in the same proportion by changes in 
௬ത

௬ಳ
	. On the other hand, carriers are assumed 

to charge the same rate in all time periods, absorbing supply shocks to an extent. If a 
mitigation strategy is implemented that increases near-term costs but decreased far-term 
costs then carriers would charge shippers a fixed rate for all time periods so that they end 
up with zero profits.   

These equilibrium assumptions make the model easy to solve (single supply and demand 
curves identify equilibrium), but are somewhat unrealistic in modeling real world 
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transportation markets. Also, this approach does not lend itself for modeling transitional 
effects.   

 

2.2.3.2  Short-Run Equilibrium 

Under a short-run equilibrium carriers possess information about future transportation 
demand, but do not have the financial capacity to operate losses or profits. Carriers charge 
shippers their minimized transportation costs in every time period, and shippers adjust their 
demand accordingly.  

ሻݐሺܥ  ⁄ሻݐሺܦ ൌ ሻ (2.27)ݐሺݕ

This equilibrium assumption leads the model to be more difficult to solve as there will exist 
as many equilibria as time periods, where each time period is essentially assumed to be 
independent from each other. To obtain a solution we iteratively solve (2.27) and (2.28) 
until convergence is achieved.  

,ݐሺܦ  ሻݕ ൌ ,ݐ஻ሺܦ ஻ሻݕ ൬
ሻݐሺݕ
ሻݐ஻ሺݕ

൰
௘ವ

 (2.28)

2.2.4 41BSolution Heuristic  

This section describes the procedure used to solve the dynamic TSO model to optimality. 
The time-stationary carrier model is represented by ܯ஼෪ሺܦ; ሻܧ ൌ ሾ ሚܵ, ෨ܲ, ,෤ߛ  ෤ሿ, such thatݕ
given a business environment ܧ and shipper demand ܦ, carriers will make FMO decisions 
( ሚܵ and ෨ܲ) and FSTs decisions (ߛ෤) in order to provide trucking service at minimized rate ݕ෤. 
The time-stationary shipper model is represented by ܯௌ෪൫ݕ෤; ,஻ܦ ,஻ݕ	 ൯ܧ ൌ  ෩. Mitigationܦ
strategies affect the equilibrium, between carriers and shippers by changing the economic 
environment ܧ. The time-dynamic model is represented by ܯ஼ሺܦ	ሺݐሻ; ሻሻݐሺܧ ൌ
ሾܵሺݐሻ, 	 	ܲሺݐሻ, ,ሻݐሺ	ߛ	  ሿ and the shipper model is represented by	ሻݐሺݕ	
;	ሻݐሺݕ௦൫ܯ ,ሻݐ஻ሺܦ ,஻ݕ	 ሻ൯ݐሺܧ ൌ   .ሻݐሺ	ܦ

The main complication in solving ܯ஼ሺ⋅ሻ, as formulated in (2.23) is that the problem is non-
convex because ܵሺݐሻ because appears in the limits of the summations. Therefore gradient-
descent approaches cannot be used to find the global minimum. Several non-convex 
optimization tools were tried, including genetic algorithms and branch-and-bound 
algorithms, but because of the “curse of dimensionality” in dynamic optimization problems 
none of these other approaches worked. To bypass this limitation, the optimal retirement 
ages obtained from the stationary model ሚܵ were used as exogenous inputs in the time-
dynamic model. This reduced the state-space of the problem and made the problem convex 
so that the optimal values of the other variables can be found easily. Breaking down these 
type of problems into several stages is a common approach taken in the literature (Jin and 
Kite-Powell 2000; Simms et al. 1982). This process is illustrated in the pseudo-code below.  
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Step1.  no-action business environment  ܧ଴ሺݐሻ 
Step2.  obtain baseline demand trucking ܦ஻ሺݐሻ 
Step3.  for ݐ iterating in analysis horizon 
Step4.   solve stationary carrier model ܯ஼෪ ሺܦ஻ሺݐሻ; ሻሻݐ଴ሺܧ ൌ ሾ ሚܵ, ෨ܲ , ,෤ߛ  ෤ሿݕ
Step5.   save approximate retirement ages  ሚܵሺݐሻ ൌ ሚܵ   
Step6.  end for 
Step7.    ܯ஼൫ܦ	ሺݐሻ; |ሻݐ଴ሺܧ ሚܵሺݐሻ൯ ൌ ሾ	 	ܲሺݐሻ, ,ሻݐሺ	ߛ	  ሿ  solve dynamic carrier	ሻݐሺݕ	

model given approximate retirement age ሚܵሺݐሻ  
Step8.  ݕ஻ሺݐሻ ൌ  save no-action baseline trucking rate		ሻݐሺݕ
Step9.  implement governmental strategy ܧଵሺݐሻ 
Step10. for ݐ iterating in analysis horizon 
Step11.  ܯ஼෪ ሺܦ஻ሺݐሻ; ሻሻݐଵሺܧ ൌ ሾ ሚܵ, ෨ܲ , ,෤ߛ  ෤ሿݕ
Step12.  ሚܵሺݐሻ ൌ ሚܵ  save approximate retirement ages  
Step13. end for 
Step14. select equilibrium assumption  
Step15. for number of iterations until convergence of ݕሺݐሻ	 
Step16.  ܯ஼൫ܦ	ሺݐሻ; |ሻݐ଴ሺܧ ሚܵሺݐሻ൯ ൌ ሾ	 	ܲሺݐሻ, ,ሻݐሺ	ߛ	  ሿ	ሻݐሺݕ	
Step17.  ܯ௦൫ݕሺݐሻ	; ,ሻݐ஻ሺܦ ,஻ݕ	 ሻ൯ݐଵሺܧ ൌ   ሻݐሺ	ܦ
Step18. end for  

Step19. ෨ܺ ቀݐ ൅ ሚܵሺݐሻቁ ൌ ܷሺ ሚܵሺݐሻሻ 

Step20. save equilibrium ܦ	ሺݐሻ and ݕሺݐሻ	and optimal	 	ܲሺݐሻ, ,ሻݐሺ	ߛ ෨ܺሺݐሻ and ሚܵሺݐሻ for 
 ሻݐଵሺܧ

 

 

2.3 17BLife-cycle GHG Emissions Accounting  

Research into the life-cycle GHG emissions of the trucking industry indicates that tailpipe 
emissions are responsible for roughly 70% - 80% of total emissions (Spielmann and Scholz 
2005; Facanha and Horvath 2007). The remainder comes from the manufacturing of trucks, 
upstream fuel emissions (pre-combustion) and infrastructure related emissions. This 
research tracks how mitigation strategies affect all of these emission sources, which is 
important because for some strategies the reductions of emissions from one source can be 
tempered by increases from another. For example, increasing the size of trucks will reduce 
the mileage of weight constrained trucks but increase loading on the infrastructure. Both 
of these responses will affect total GHG emissions in opposite directions, and it is unclear 
from the literature that one of them always dominates.  

The mathematical accounting of GHG emissions is shown for the time-stationary model 
for notational simplicity, but it can be generalized trivially for the time-dynamic model. 
Also, the parameter values are found assuming that the Class-8 intercity trucks fleet in 
California is being analyzed. 
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2.3.1 42BTailpipe Emissions  

Tailpipe GHG emissions are easy to calculate with a high degree of certainty directly from 
fuel consumption calculations. The tailpipe emissions per year ݃௫ are given by (29). The 
coefficient ܴ௫ is the stoichiometric equivalence between gallons of diesel combusted and 
GHGs emitted. This is found in the literature to be 22.2 [lbs CO2eq/gallon-diesel] (USEPA 

2005). The term ቀ1 െ ቁ	ߛ ݂ is the post-FST fuel efficiency of the trucks and ܺܲ is the 

amount of miles driven by the truck fleet per year.  

 ݃௫ ൌ ܴ௫ ቀ1 െ ቁ	ߛ ݂ܺܲ (2.29)

2.3.2 43BPrecombustion Emissions  

Precombustion emissions consider upstream fuel processes such as oil exploration, 
refining, fuel distribution, etc. Estimates of these emissions are obtained from a process-
based LCA performed by Facanha and Horvath (2007), which found that precombustion 
emissions are roughly 5.2% of tailpipe emissions.   

 ݃௣௖ ൌ 0.052݃௑ (2.30)

 

2.3.3  Vehicle Manufacturing Emissions 

Facanha and Horvath (2007) used an EIO-LCA to estimate that the manufacturing of Class-
8 trucks produces emissions of 20.6g/ton-mile of shipments. That study assumed that truck 
are salvaged at 290,000 miles and carry an average payload of 22.3 tons. With this 
information we can calculate the GHG emissions per truck purchase to be  ܴ௉ ൌ7.5*10-5 
MMTCO2eq/truck, and use this value to calculate these GHG emissions of the industry ݃௉ 
as  

 ݃௉ ൌ ܴ௉ܲ (2.31)

2.3.4 45BInfrastructure Emissions  

Facanha and Horvath (2007) estimated that pavement maintenance and rehabilitation 
activities account for 9% of total GHG emissions from trucking activities. In fact, trucks’ 
high axle loads cause at least 40% of the damage on highways (March 1998). Therefore, it 
is important to consider how changes in the weight of the vehicles and miles driven affect 
this significant source of emissions. In this analysis infrastructure emissions only consider 
those from highway pavement and rehabilitation.  

Sathaye et al. (2010) provide a description of the standard model of how truck mileage and 
weight affect pavement overlays. In this model a pavement structural number ܵ ܰ is defined 
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by the American Association of Highway Officials (AASHO) as a function of the 
engineered design of the pavement, including surface thickness, base thickness and subbase 
thickness. The ܵ ܰ parameter, which captures the structural qualities of the roadway, is then 
used according to Madanat et al. (2002) to estimate the number of Equivalent Single Axle 
Loadings (ESALs) between pavement overlays. 

The average ESALs per mile driven by a truck fleet is defined as ܧത and can be calculated 
using (2.32). This expression sums across different segments of the truck fleet that operate 
at different combinations of gross vehicle weight ܸܩ ௞ܹ and number of load-bearing axles 
ܽ௞. Each of these segments supplies a fraction ௞݂ of the total highway mileage supplied by 
the fleet. Because deterioration occurs predominantly from loaded axles, the tractor weight 
ܹܶ is subtracted from the total vehicle weight. Also, there is no need to distinguish 
between loaded axles because in a combination truck the load is roughly distributed equally 
among all 4 loaded axles (Sathaye et al. 2010).  

തܧ  ൌ෍ ௞݂ ൬
ܸܩ ௞ܹ െ ܹܶ
ܽ௞	18000 ݏܾ݈

൰
ସ	

∀௞

ܽ௞ (2.32)

Infrastructure emissions from pavement maintenance and rehabilitation increase linearly 
with ܧത (Sathaye et al. 2010). This occurs because the time between pavement resurfacings 
is inversely related to ܧത. This insight allows us to bypass the pavement failure calculations 
and use equation (2.33). In this expression an average emissions rate ܭூ (gramsCO2e/lane 
mile) found in the literature is scaled by the average ESALs of a truck fleet before 
governmental intervention ܧത଴ and after ܧതଵ. The emissions rate was estimated by Facanha 
and Horvath (2007) to be ܴூ ൌ 210.4gCO2eq/lane െ mile for highway infrastructure 
related emissions caused by Class-8 trucks. The scaled emissions rate is then multiplied by 
the amount of miles driven on rural highways by the truck fleet ܺܲݎ௛, where ݎ௛was 
estimated by Battelle (1999) to be 54.8% in California.  

Figure 6 shows different scenarios for how the distribution of truck weights on California’s 
highways would change with increases in the weight limits. The scenarios have been 
constructed such that the amount of goods shipped is the same between them. By assuming 
that the distances of the trips performed by trucks that weigh over 65,000lbs are the same 
(at this vehicle weight the scenarios differ from the baseline), the curves in this figure can 
be used as proxies for ௞݂ and ௞݂

଴, where each ݇ is a range of truck weights. This 
approximation is necessary given that there exists no data about the weights of individual 
shipments in the US. 

 ݃ூ ൌ ܴூ ቆ
തଵܧ

ത଴ܧ
ቇܺܲݎ௛ ൌ

ܴூܺܲݎ௛
ത଴ܧ

෍ ௞݂ ൬
ܸܩ ௞ܹ െ ܹܶ
ܽ௞ 18000 ݏܾ݈

൰
ସ

∀௞

ܽ௞ (2.33)
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Figure 6: Truck weight distribution under different weight limits (baseline data from 
Caltrans 2008) 

 

As the truck weight limit is increased the heavier trucks will cause higher infrastructure 
related emissions per trip, but it will also reduce the amount of trips required to transport 
weight constrained loads. The reduction in mileage demand is modeled by introducing a 
variable ܹ into the shipper demand function that scales down the amount of mileage 
demanded as seen in (2.34). By assuming that the average length of shipments does not 
change much with truck weight Figure 7 can be derived. Equation (2.35) provides a model 
for ܹ, where ܮܹܸܩ is the vehicle weight limit and ݇௪ ൌ 0.00042. 

 

ሻݕሺܦ  ൌ ஻ܹܦ ൬
ݕ
஻ݕ
൰
௘ವ

 (2.34)

  

 ܹ ൌ 1 െ ݇௪ሺܮܹܸܩ െ 80,000ሻ
ଵ
ଶ (2.35)

 

The methodology used to analyze the impacts of increasing truck weight limits represents 
the most detailed approach possible given that the basic unit of analysis is truck miles. If 
the unit of analysis is taken as quantity of goods shipped, then the differences between 
weight constrained and volume constrained shipments can be considered. This would allow 
for more detailed shipment weight distribution scenarios to be constructed. 

Finally, it is assumed that trucks have the same baseline fuel efficiency as the weight limit 
increases and the number of axles increases. This could be relaxed in future research. It is 
unclear how spreading the load over more axles affects fuel economy. If the weight limit 
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would be increased substantially to permit the operation of Turnpike Doubles or Triples 
then this would be a much more important consideration. 

 

 

Figure 7: Effect of increasing truck weight limit on VMT 
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3 5BCalifornia Case Study: TSO Model  

In California, the Global Warming Solutions Act of 2006 (AB 32) instructed the California 
Air Resources Board (CARB) to find ways to reduce economy-wide GHG emissions to 
1990 levels by 2020. To help meet this objective CARB seeks to intervene in the trucking 
transportation industry because it is expected to account for 8.1% of GHG emissions in the 
state in 2020 (see Figure 8). 

 

Figure 8: Forecasted CA GHG emissions in 2020 (CARB 2012) 

 

The Climate Change Scoping Plan prepared by CARB (2008c) identified some sources of 
economy-wide GHG emission reductions that achieve the target set by AB 32. The 
measures that affect the trucking sector are T-6 (goods movement system-wide efficiency 
improvements), T-7 (aerodynamic improvement of trucks) and T-8 (medium-duty truck 
hybridization). In 2020, measure T-6 is expected to achieve reductions of 3.5 MMTCO2eq, 
measure T-7 is expected to achieve reductions of 0.9 MMTCO2eq and measure T-8 is 
expected to achieve reductions of 0.5 MMTCO2eq. It is unclear how different freight 
transportation modes need to contribute to achieve the T-6 reductions, but it is probably 
safe to assume that most of them will have to come from the trucking sector because as 
seen in Figure 1 it is the largest emitter of GHGs. The measures outlined in the Climate 
Change Scoping Plan do not represent a policy roadmap, but rather a reasonable scenario 
under which the goals of AB 32 can be accomplished. Therefore, it is reasonable to infer 
from these figures that the heavy-duty trucking sector should contribute to 3 - 4 
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MMTCO2eq in emission reductions in 2020, regardless of how the reductions are 
achieved. This case study evaluates several ways of achieving this policy objective. 

In California and in the US most of the strategies considered to reduce freight 
transportation GHG emissions involve the regulation of truck fuel efficiency. CARB 
recently implemented a requirement that Class-8 tractor-trailers need to meet EPA’s 
SmartWay certification to operate in the state, which requires certain investments in Fuel 
Saving Technologies (FSTs), such as low rolling resistance tires and some aerodynamic 
improvements. In addition, the federal government recently introduced a heavy-duty truck 
fuel economy standard that starts in 2014 (EIA 2011). This regulation is similar to the 
CAFE standard currently in place for automobiles. Additional GHG mitigation strategies 
could be implemented in California that target carriers, shippers or the infrastructure (see 
Figure 1).  

The present chapter studies the responses of the heavy-duty truck fleet in California to the 
following mitigation strategies: fuel taxation, mileage taxation, truck purchase taxation, 
FST subsidies, FST regulations, increases in the allowed weight of trucks, and the Low 
Carbon Fuel Standard recently introduced in California. For simplicity, this truck fleet is 
called “Core T7” in the remainder of the chapter. This fleet is composed by combination 
trucks with Gross Vehicle Weight Rating (GVWR) of Class-8 that operate at least some 
portion of their mileage within California. This fleet includes trucks that provide intercity 
service as well as urban and non-port drayage services. The Core T7 truck fleet was 
designed to encompass the following truck types found in the EMFAC2011 mobile sources 
emissions model (CARB 2011b): Heavy-Heavy Duty Diesel, Non-Neighboring Out-of-
state Trucks (NNOOS), Heavy-Heavy Duty Diesel Neighboring Out-of-state Trucks 
(NOOS), Heavy-Heavy Duty Diesel Tractor Trucks (Tractor) and Heavy-Heavy Duty 
Diesel CA International Registration Plan Trucks (CAIRP). Combined, they are estimated 
to account for around 60% of trucking GHG emissions in California (4.8% of total 
California emissions) in 2020 (CARB 2012).  Other truck fleets that operate in California 
could also be modeled with the TSO model, but this case study focuses on this group of 
trucks because they account for the bulk of trucking emissions in the state.   

The mitigation strategies analyzed are fuel taxation, mileage taxation, truck purchase 
taxation, FST subsidies, truck weight limit increases, Low Carbon Fuel Standard (LCFS) 
and SmartWay FST regulation. In addition to analyzing these strategies, this case study 
also quantifies the economic incentives that carriers face presently without the 
implementation of any strategy.  

Because only 23.5% of Core T7 mileage is driven within California, some of the strategies 
implemented in California will affect only a fraction of the trucking costs, and also a 
significant amount of GHG emission reductions will occur outside California. This case 
study accounts for both of these effects. Issues relating to the political boundaries climate 
change mitigation have become more common and important in the US because of the 
decentralized of the policies adopted (Lutsey and Sperling 2008).  
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3.1 18BData Sources 

3.1.1 46BTrucking Costs  

The costs carriers face in operating trucks are a key input in the model. However, this type 
of data has been unavailable in a disaggregated basis since the deregulation of the trucking 
industry in the 1980s. Before this, carriers were required to supply detailed data about their 
operations to governmental agencies for regulatory reasons. Many studies used this data to 
estimate behavioral models of the industry, but after deregulation this data become 
confidential in order to encourage price competition.  

Present efforts to collect trucking cost data have seen mixed results. Samimi et. al (2011) 
used an online survey to obtain information about the latest shipment made by companies 
in the US, but found the response rate to be very small. Fender and Pierce (2011) conduct 
an ongoing survey of trucking companies in the US to estimates their marginal costs. Their 
latest results (found in Table 1) were used to approximate the fixed costs of trucking to be 
$0.647/mile, which includes costs that are assumed to increase linearly with the supply of 
truck miles such as: truck insurance, permits/licenses, tires, driver wages/benefits and 
overhead. The other values in Table 1 were used to corroborate the assumptions and other 
data sources used to estimate maintenance costs, fuel costs and capital costs.  

Table 1: Marginal trucking costs (Fender & Pierce 2011) 

 Dollars/Mile 
Motor Carrier Marginal Expenses 2008 2009 Q1 2010 

Truck Insurance Premiums 0.055 0.054 0.052 
Permits and Licenses 0.016 0.029 0.023 

Tires 0.03 0.029 0.026 
Driver Wages 0.435 0.403 0.404 

Driver Benefits 0.144 0.128 0.142 
Fuel & Oil Costs 0.633 0.405 0.465 

Truck/Trailer Lease or Purchase 
Payments 0.213 0.257 0.235 

Repair & Maintenance 0.103 0.123 0.12 
Tolls 0.024 0.024 0.024 

TOTAL 1.653 1.452 1.491 
 

 

3.1.2 47BFuel Costs  

From Table 1 it can be seen that fuel costs account for a large portion of trucking costs. 
Three diesel fuel price scenarios were set at $5.08/gallon, $4.21/gallon and $3.36/gallon 
based on forecasts made by CEC (2011). These values include a federal excise tax of 
$0.244, a state excise tax of $0.156, a state sales tax of 9% and a local sales tax of 1%.  It 
is not clear from the forecasts that the price of diesel fuel is expected to increase in real 
terms over time, each fuel price scenario is held constant throughout time. These scenarios 
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were adjusted by the fact that Core T7 trucks drive 76.5% of their mileage outside 
California, where diesel fuel is typically cheaper. The scenarios of the effective diesel fuel 
price observed by the Core T7 truck fleet are $4.87/gallon, $4.0/gallon and $3.15/gallon. 

Fuel costs also depend on the fuel efficiency of the trucks, which is expressed in the model 
as ሺ1 െ  ሻ݂. The parameter ݂ is the baseline fuel efficiency of trucks (in gallons per mile)ߛ
and ߛ is a decision variable indicating the level of investment in FSTs. The value of ݂ was 
determined based on the assumptions of the EMFAC2011 inventory as detailed in CARB 
(2008a). Here it can be found that the Core T7 truck fleet had a fuel efficiency of 5.61mpg 
in 2007 and that it is projected to change slightly throughout time with the tightening 
particulate emissions regulations.      

The EMFAC 2011 inventory agrees with Davis and Diegel (2007) in that Class-8 truck 
fuel economy has not changed much in the last 20 years. For example, from 1988 to 1995 
the average fuel economy averaged 5.8mpg while from 2000 to 2005 it averaged 5.6mpg. 
This data suggests that there does not to exist an organic upward trend in truck fuel 
economy. Other reasons could explain this observation, such as increased congestion or 
the operation of heavier trucks, but the effect would not be large over the medium-term.     

  

3.1.3 48BMaintenance Costs 

Based on Figure 9 maintenance costs were assumed to increase linearly with truck 
odometer. The proportionality constant was found to be 1.852*10-7 [$/mile-odometer] for 
the Core T7 truck fleet. It was assumed that maintenance expenses keep trucks operating 
at their original fuel economy, which is also assumed in the EMFAC2011 inventory.  

 

Figure 9: Maintenance cost data (CARB 2008a) 
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The analysis could be improved by having access to more detailed data about truck 
maintenance costs. Figure 9 contains too few data points, and they show a wide variability 
in costs. Also, it is also not clear what maintenance procedures are included in these costs. 
A more detailed study of truck maintenance is required to specify this part of the model 
with more confidence, however in the absence of such study the data in Figure 9 was used 
instead. Also, this value agrees with the estimates provided in Table 1 for common truck 
retirement odometers.  

 

3.1.4 49BCapital Costs  

CARB (2008a) estimates that the price ܣ௣ of a new tractor in 2008 with sleeper cab was 
around $130,000, and the price of a new tractor without sleeper cab was around $100,000. 
These are after tax prices. Note that ܣሺ0ሻ ൌ  ௣. From the Vehicle Inventory Use Surveyܣ
(VIUS 2002) it was found that 27% of all miles traveled by trucks registered in California 
in 2002 are driven by trucks with sleeper cabs, therefore the miles-weighted average capital 
cost of a Core T7 truck was calculated to be $108,000/truck. This value was then 
compounded at 5% yearly inflation to be $120,000 in 2010. 

At retirement trucks have a salvage value ܸሺܺሻ that was modeled using the convenient 
function (3.1), where ݇ௗ is the instantaneous depreciation of the truck at purchase and ݇௫ 
is the incremental depreciation of retiring a truck at a later odometer. The values of ݇ௗ 	ൌ
0.75 and ݇௫ ൌ 8 ∗ 10ି଻ approximate well the salvage value data found in CARB (2008a).   

Assuming a linear salvage value leads the model to have properties that are useful in the 
numerical optimization while reasonably modeling the observed behavior. If trucks are 
assumed to depreciate exponentially, under some conditions, the model will predict that 
trucks should be used indefinitely. This problem is avoided by using (3). 

 

3.1.5 50BFST Costs  

In order to achieve a certain level of fuel efficiency improvement ߛ (proportion of fuel 
saved) carriers need to invest in FSTs. The cost of these technologies is modeled through 
an abatement curve shown in Figure 10 that indicates the smallest capital expenditure 
required to achieve a given level of ߛ. The abatement curve is constructed using data about 
various FSTs found in Table 2 and theoretically represents the sequence of FST 
investments that a cost minimizing carrier should make. Most of these estimates of GHG 
reductions come from MSMC: Madanat, Shaheen, Martin and Camel (2010). Gaps in the 
information were supplemented with NAS: National Academies of Science by National 
Research Council (2010). Fuel economy improvements were scaled down if they would 
only reduce fuel consumption in rural highway operations vs. urban operations, because 
Core T7 trucks operate in both settings and we want the abatement curve to be 

 ܸሺߛ, ܺሻ ൌ ሻ݇ௗሺ1ߛሺܣ െ ݇௫ܺሻ (3.1)
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representative of both of them. Battelle (1999) estimated that 55% of miles driven by class-
8 trucks in California occur in rural highways. Also, the cumulative benefit from 
technologies was calculated using the methodology in National Research Council (2010) 
as 

The costs of the different FSTs were brought to the year 2010 using an inflation rate of 3% 
per year. These costs also consider the fact that there are 2.5 trailers per tractor on average 
(Schubert and Kromer 2008).  

The resulting abatement curve is plotted in Figure 10, and function (3.2) is used to model 
it. The parameters ݇ଵ and ݇ଶ have been estimated as 180,000 and 0.6 respectively.  

The main assumption that allows truck technology to be modeled in this way is that carriers 
have perfect information of all of the FSTs available and decide to invest in those that are 
most cost effective first. In reality it is likely that carriers do not have this type of 
information, skewing investment decisions. As the sequence of FST investments becomes 
less optimal the concavity of the abatement curve will decrease. Therefore governmental 
agencies should engage in an information dissemination campaign to ensure that carriers 
undertake optimal FST investments.      

 

 

Figure 10: Fuel consumption abatement curve ࢉሺࢽሻ 

It was assumed in the time-dynamic model that the abatement curve does not change in 
real terms over time. In other words, it is assumed that the costs of FSTs do not decrease 
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or increase once discounted. This is reasonable because FSTs are unlikely to benefit 
significantly from improvements in manufacturing (with the exception of hybrid 
propulsion) and be sold at lower prices in the future.  
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Table 2: Fuel Saving Technologies 
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Transmission  
Turbocharged, Direct Injection 
to Improved Thermal 
Management 

2 $1,576 4.70% 1.00 4.70% $1,576  4.7% 

Transmission  
Increased Peak Cylinder 
Pressures 

2 $2,251 4.00% 1.00 4.00% $3,827  8.5% 

Aerodynamic  Closing and Covering of Gap 1 $735 2.00% 0.55 1.10% $4,561  9.5% 

Aerodynamic  Aerodynamic Bumpers  2 $1,351 3.00% 0.55 1.64% $5,912  11.0% 

Rolling Resistance  Wide-base Tires 5 $6,431 6.98% 1.00 6.98% $12,343  17.2% 

Rolling Resistance  
Automatic Tire Inflation 
Systems 

1 $760 0.80% 1.00 0.80% $13,103  17.9% 

Aerodynamic  
Pneumatic Aerodynamic Drag 
Reduction 

1 $4,361 6.54% 0.55 3.58% $17,464  20.8% 

Aerodynamic  Wheel Well Covers 4 $1,891 2.00% 0.55 1.10% $19,355  21.7% 

Aerodynamic  
Trailer Leading and Trailing 
Edge Curvatures 

1 $1,407 1.26% 0.55 0.69% $20,762  22.2% 

Aerodynamic  
Planar Boat Tail Plates on a 
Tractor-Trailer 

2 $5,628 5.00% 0.55 2.74% $26,390  24.4% 

Aerodynamic  Trailer side skirts 2 $5,988 5.00% 0.55 2.74% $32,377  26.4% 

Weight Reduction 
Lightweight Materials 
(2,500lbs) 

1 $11,396 7.46% 0.55 4.08% $43,773  29.4% 

Hybrid Propulsion Hybrid Trucks 1 $28,138 5.66% 1.00 5.66% $71,911  33.4% 

Rolling Resistance  
Pneumatic Blowing to Reducing 
Rolling Resistance 

1 $4,924 0.99% 1.00 0.99% $76,835  34.1% 

Transmission  
Transmission Friction Reduction 
through Low-Viscosity 
Transmission Lubricants 

8 $9,724 1.00% 1.00 1.00% $86,560  34.7% 

 

 

3.1.6 51BTruck Utilization  

Truck utilization functions ݔ ൌ ܷሺݏሻ describe how trucks are driven throughout their 
service lives, where ݔ is the odometer reading of the truck and ݏ is the age. The functional 
form (3.3) was used to model these curves where its parameters were calibrated on data 
shown in Figure 3 to be ݇ଷ ൌ 1.4 ∗ 10ିଵଵ	 and ݇ସ ൌ 0.5. Truck utilization is assumed to 
be exogenous and invariant throughout time (this is also an assumption made in the 
EMFAC 2011 inventory model). 
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Figure 11: Core T7 truck utilization curve (observed from EMFAC 2011)1F

2 

 

3.1.7 52BExisting Truck Fleet  

The time dynamic model considers the response of the existing fleet of trucks as 
governmental GHG mitigation strategies are phased in. The initial conditions for this 
transition are provided in Figure 12, which shows the age distribution of the truck 
population of the Core T7 fleet in the year 2010.  

                                                 
2 Even though a better fitting model of  ܷሺݏሻ could have been used, it was found that the shape of this curve is not an important factor 
in modeling truck fleets.  
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Figure 12: Core T7 truck age distribution (EMFAC 2011) 

 

3.1.8 53BBaseline Trucking Demand 

Figure 13 shows the forecasted baseline trucking demand ܦ஻ሺݐሻ	for the Core T7 fleet. The 
lightly shaded region represents the total forecasted mileage demand while the dark shaded 
region represents the portion of the mileage demand within California. This is an important 
distinction because some strategies such as fuel taxation and mileage taxation will only 
affect the mileage occurring within California, while others such as the SmartWay FST 
regulation will affect all of the truck mileage.  

 

Figure 13: Forecasted Core T7 mileage demand (EMFAC 2011) 
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Trucking activity inside and outside California are tracked in this analysis because GHG 
emissions are a global pollutant that has the same climate change effect independent of 
where it is emitted. The implementation of mitigation strategies in California will affect 
trucks only partially in California, leading some GHG reductions outside the state. Whether 
or not these reductions should be accredited to California is a policy question beyond the 
present research.   

 

3.1.9  Shipper Elasticity Parameters 

LDS responses are modeled using elasticities that have been estimated in the literature. A 
review of the literature found that these estimated elasticities vary significantly with the 
type of model used, location of study, type of data used (aggregate vs. disaggregate), 
commodity grouping, demand specification (tons or ton-miles), trip type segmentation, etc. 
Ideally the elasticities used for this study should have been estimated for California or 
another area with similar characteristics. Unfortunately it was unclear that any particular 
study met this criterion. Instead, several elasticity values were selected and averaged based 
on an extensive review of the literature. Three scenarios for this parameter where used to 
analyze the different mitigation strategies in order to deal with this uncertainty.  

Various types of LDS elasticities have been estimated in the literature that provide different 
types of information. The most common elasticity shows the percent change in ton-miles 
shipped in response to a percent change in per-unit trucking costs. This elasticity type 
captures mode shifts, changes in the spatial distribution of demand, and sometimes final 
demand changes. However, it does not capture changes in shipment sizes. Other elasticity 
types show the percent change in tons shipped to changes in transportation costs, not 
capturing spatial responses. In this case study we are interested in the former.  

Oum et al. (1992) also finds that throughout the literature elasticities have been estimated 
using different microeconomic assumptions on whether shippers’ final output is assumed 
to be fixed or not. The ordinary elasticity captures changes in the quantity of goods shipped 
(in response to downward slopping consumer demand) in addition to changes in the LDS. 
On the other hand, conditional elasticities hold final output to be fixed.  

Graham and Glaister (2004) conducted an extensive survey of research into freight demand 
elasticities (focusing on ton-miles as the unit of demand) and found that they ranged from 
−0.5 to −1.5. They concluded that this wide range of results can be attributed in large part 
to different modeling methodologies. This finding agrees with Oum (1989) which found 
that the type of model used makes a critical impact on the estimation of elasticities, 
obtaining results ranging from 0 to -1.34 when common models (translog, linear and 
random utility) were applied to the same circumstance. Friendlander and Spady (1980) 
estimated elasticities for different commodity groups and for different regions in the US 
using a consistent methodology and found that they did not vary significantly, with an 
expectation of -1.12 a standard deviation of 0.2. On the other hand, Graham and Glaister 
(2004) also point out that the variability of elasticities estimated for different commodity 
groups with different modeling techniques can be smaller than simply the variability 
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between similar studies of the same commodity group. It is clearly important not to be 
overconfident in the predictive power of the elasticities found in the literature.  

Given the difficulties outlined above, three elasticity scenarios were used for the analysis. 
Graham and Glaister (2004) surveyed studies that estimated 143 elasticities under various 
types of assumptions and found an average of -1.07 (ton-miles) with a standard deviation 
of 0.84. Therefore, for this case study the analysis scenarios where set at	݁ொ ൌ
ሾെ0.65,െ1.07,െ1.49	ሿ, which correspond to + half a standard deviation of Graham and 
Glaister’s (2004) survey findings.  This corresponds well with FHWA’s estimate of -0.97 
(TRB 2010), Fiedlaender and Spady (1980) estimate of -1.12, and Chiang et al.’s (1981) 
estimate of -1.143, which are commonly cited studies.   

The elasticities ݁ொ discussed above correspond to the change in ton-miles shipped with 
increases in transportation cost. On the other hand, the literature surveyed did not contain 
estimates for ݁௩	 , which relates changes in shipment sizes with changes in trucking costs. 
This relationship exists because shipment sizes result from the optimization of 
transportation costs and inventory costs. However, both ݁ொ and ݁௩	  are needed to obtain the 
elasticity of truck mileage with trucking costs ݁ ஽, which is the parameter used in the model. 
By making the simple assumption that ݁௩	  can be modeled with an EOQ model, the 

relationship between these elasticities can be derived to be approximated by  ݁஽ ൌ െଵ

ଶ
൅

ଵ

ଶ
݁ொ (see Section 2.1.3). Using this, the three elasticity scenarios for trucking mileage 

become ݁஽ ൌ ሾെ0.826,െ1.035,െ1.245ሿ. 
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Table 3: Summary of cost parameters for Core T7 trucks 

Parameter  Notation  Value Units Source 

Fixed Operation Cost ݇௢ 0.647 $/mile Fender & Pierce 2011 

Fuel Price ݌ி 3.15, 4.0, 4.87  $/gallon CEC 2011 

Base-line Fuel Efficiency  f 0.169 gallons/mile EMFAC 2011 

Truck Purchase Costs ܣ௣ 120,000 $/truck CARB 2008a 

Salvage Value Instantaneous 
Depreciation 

݇ௗ 0.75 proportion Based on CARB 2008a 

Salvage Value Mileage 
Depreciation 

݇௫ 0.084 $/odometer Based on CARB 2008a 

Maintenance Costs Parameter ݇௠ 1.85*10-7  $/odometer-mile CARB 2008b 

FSTs Cost Parameter 1 ݇ଵ 180,000 $ Based on CARB 2008a 

FSTs Cost Parameter 2 ݇ଶ 0.6 unitless  Based on CARB 2008a 

Truck Utilization Parameter 1 ݇ଷ 1.4*10-11   

Truck Utilization Parameter 2 ݇ସ 0.6   

Baseline Toll  ߠெ 0 $/mile   

Baseline Additional Fuel Tax  ߠி 0 $/gallon   

 

 

3.2 19BModel Exploration   

3.2.1 55BReference Scenarios  

GHG mitigation strategies were compared against two important reference scenarios in 
which no strategies are implemented. The Continuation no Technology (CNT) scenario 
assumes that carriers do not make any investments in FSTs, but do optimize their FMO in 
meeting the forecasted trucking demand. This represents a continuation of current 
operations, as carriers are currently not observed to make investments to improve the fuel 
economy of their truck fleets. The mid assumption for fuel price and shipper response 
elasticity of this scenario provides identical VMT and emissions forecasts as the 
EMFAC2011 inventory model. It does not however provide similar estimates of FMO 
(service life and truck purchases) as the EMFAC2011. This is because the EMFAC2011 
inventory model does not utilize a cost optimization methodology to obtain its forecasts. 
Instead it relies on an exogenous truck retirement function that is applied to the truck fleet 
year-over-year, with new truck purchases determined exogenously from macroeconomic 
forecasts.  

On the other hand, the No Action Optimal Baseline (NAOB) scenario assumes that carriers 
optimize their investment in FSTs in addition to their FMO in meeting the trucking 
demanded by shippers, who then optimize their LDS through ݁஽. The FST, FMO and LDS 
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responses observed in this scenario identify the shipper-carrier equilibrium that is optimal 
according to the cost data found in the literature.  

Table 4 shows that optimizing the level of FSTs under the NAOB scenario makes a large 
impact on GHG emissions in 2020. The observed cost structure of the trucking industry 
suggests that it is optimal to invest significantly more in FSTs than is currently 
commonplace. In 2020 the optimal level of investment in FSTs without any mitigation 
strategy is ߛ ൌ 0.29, which corresponds to investing in many of the FSTs listed in Table 2.  

 

Table 4: 2020 GHG emissions under reference scenarios in CA (MMTCO2eq/year) 

 CNT NAOB 

Fuel Price and Elasticity 
Assumptions 

Low Mid High Low Mid High 

Tailpipe 21.95 24.51 26.51 16.98 18.81 20.51 

Pre-Combustion 1.14 1.27 1.38 0.88 0.98 1.07 

Infrastructure 1.96 2.19 2.37 2.20 2.36 2.48 

Vehicle Manu. 1.00 1.12 1.22 0.96 1.01 1.05 

TOTALS 26.06 29.09 31.48 21.03 23.16 25.12 
 

It is reasonable to expect that without mitigation strategies the trucking industry will 
operate in 2020 somewhere in between the results of the NAOB and CNT scenarios, 
probably closer to the CNT scenario. 

 

3.2.2 56BMarket Barriers to FST Investments  

The large differences between the NAOB and CNT scenarios can be explained by market 
barriers that are currently disincentivizing trucking companies from investing more 
vigorously in seemingly cost-effective FSTs. Many studies have quantified the nature and 
magnitude of these types of energy-efficiency barriers in other industries; for a recent 
survey of the literature see Gillingham et al. 2009. However, to our knowledge, there have 
only been two studies into the market barriers that might be preventing greater adoption of 
FSTs in the trucking industry. One of them, Aarnink et al. (2012), conducted a survey of 
European carriers and shippers in order to understand their attitudes towards vehicle fuel 
economy, to find explanations for the weak implementation of FSTs also observed in 
Europe. A second study, conducted by Vernon and Meier (2012), identified the portions of 
trucking operations in the US that likely have principal-agent problems, where one party 
absorbs the costs of certain decisions while another one absorbs the benefits.    

The following discussion draws from Aarnink et al. (2012), Vernon and Meier (2012), and 
from, the wider literature on “energy efficiency gaps” to provide explanations for why the 
‘optimal’ level of investment in FSTs predicted by the NAOB scenario is currently not 
observed in the US (CNT scenario). These barriers are categorized as either market 
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failures or non-market failures following the framework presented by Jaffe and Stavins 
(1994). Future research should investigate these barriers more precisely by surveying 
carriers and shippers in the US to obtain disaggregated data of their costs and constraints. 
Without this empirical legwork, we are left to hypothesize about conditions in this industry. 
Note that in this discussion the word ‘optimal’ refers to the market outcome that maximizes 
private benefits in the industry, not the market outcome that maximizes total benefits to 
society. This distinction is important because the ‘optimal’ market outcome from the 
NAOB scenario does not consider the externality costs of GHG emissions or other 
pollutants.  

Market failures occur when the allocation of resources is inefficient, that is, when there 
is conceivably another market outcome in which everyone is better-off. Strong arguments 
can be made that governments should intervene in these markets to achieve a more optimal 
allocation of resources that increases welfare. Principal-agent problems in the way that 
contracts are commonly structured represent significant sources of market failure in the 
trucking industry. These lead to split incentives where some agents in the industry do not 
see the full costs or benefits of their decisions. Vernon and Meier (2012) estimated that 
91% of drivers do not pay for fuel costs, and therefore they have little direct incentive to 
drive the truck efficiently or take care of FSTs. Several of the FSTs, especially those that 
improve the aerodynamics of the vehicle, require drivers to change how they operate the 
vehicles to avoid damaging them. This might lead drivers to prefer trucks without certain 
cumbersome FSTs, and dissuade trucking companies from investing in them because of 
the higher probability of damaged. Vernon and Meier (2012) also found that 23% of the 
trailers are owned by entities that do not pay for fuel costs, and therefore do not have a 
direct incentive to invest in FSTs to improve the aerodynamics or rolling resistance of 
trailers. These companies could still be indirectly incentivized to improve the fuel economy 
of trailers if shippers and carriers paid a premium for them, but this has not been observed 
in Europe (Aarnink et al. 2012), and is likely not to be the case in the US as well.   

In their surveys Aarnink et al. (2012) found other principal-agent problems in Europe’s 
trucking industry. An interesting finding of this study is that even though fuel surcharges 
theoretically do not represent a principal-agent problem, because carriers with lower fuel 
costs are still more profitable, they do tend decrease the importance that carriers place on 
fuel economy improvements. A manager that is juggling various priorities will be less 
likely to invest in FSTs if their fuel costs are being reimbursed according to some formula 
pre-agreed with shippers. Carriers indeed indicated that they monitored the fuel economy 
of their trucks regularly, but with the objective of tracking the performance of truck drivers, 
and further training those that performed poorly. This fuel economy information was not 
used to consider making investments in FSTs. Generally, carriers appeared to be more 
concerned with finding fuel economy improvements from the operations of the trucks than 
from improving their technology, perhaps because the former has much lower up-front 
costs.  

Another finding from Aarnink et al. (2012) that might apply to the US is that 73% of the 
European trucking companies surveyed (not a representative sample) indicated that they 
require financing to purchase new trucks. This in itself does not represent a market failure. 
However, lending institutions generally do not consider the technology of the truck when 
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determining the size of the loan, which does represent a market failure. Lending institutions 
are effectively disincentivizing carriers from purchasing more expensive trucks with 
greater amounts of FSTs. This is even more problematic for the 40% of trucking companies 
that routinely had difficulties obtaining any kind of financing (Aarnink et al. 2012). 
Trucking companies in the US are also likely to face budgetary constraints as 90% of them 
have 6 or less trucks (ATA 2012).   

The trucking industry also has market failures with regards to the availability of 
information. Aarnink et al. (2012) found that in Europe carriers were poorly informed on 
the off-the-shelf FSTs available. Even when companies were aware of particular FSTs, 
they did not have adequate or correct information about their effectiveness, maintenance 
costs and operational characteristics. This is predicted by theory as the existence of search 
costs will lead information about FSTs to be underprovided by the private sector (Jaffe and 
Stavins 1994). The government could benefit market participants by providing 
standardized and thorough information on the gamut of FSTs available. This is precisely 
the objective of the SmartWay program currently operated by the EPA, but there is 
significant opportunity for it to be expanded. Surveys should be conducted to assess the 
success of this program, and to find ways of strengthen it.   

Non-market failures can also represent barriers to investments in FSTs. These occur when 
firms objectively consider a wider range of costs and constraints than the analyst used to 
determine the theoretical ‘optimal’ implementation of FSTs. In a sense, non-market failures 
represent deficiencies in the model used to determine the ‘optimal’ market outcome, and 
therefore there is no rational for governments to intervene to fix them (Metcalf 1994). One 
of the most significant non-market failures is that FSTs are likely to have various costs that 
are hidden to the analyst. Aarnink et al. (2012) found that in Europe trucking companies 
were concerned about how FSTs might affect their day-to-day operations, interact with 
weather (especially with snow), and/or increase the unreliability of trucks. These 
uncertainties make carriers hesitant to invest in new technologies because they operate in 
a low-profit industry where unreliability is costly.  

In addition to responding to the hidden costs of FSTs, carriers also take into account 
uncertainties in the business environment when deciding whether to make these 
investments. The payback period of any FST depends on many factors, including:  fuel 
prices, inflation rates, interest rates, truck mileage accrual, etc. Carriers also face 
uncertainty in how long they will own particular trucks, and whether potential buyers in 
secondary markets might value FSTs. In making optimal decisions, carriers will consider 
the underlying uncertainty in all of these variables, because it represents a cost to doing 
business. Increases in the uncertainty will increase the effective discount rate of firms and 
lead to lower levels of FST investments (Jaffe and Stavins 1994). Carriers even gain an 
‘option value’ in postponing making irreversible investments until later in the future 
(Gillingham et al. 2009).  

The implementation of FSTs might also be impeded by the considerable heterogeneity of 
the industry. While FSTs might seem highly cost-effective on average, their actual returns 
to individual firms might vary greatly. If there are many firms for which FSTs are barely 
cost-effective, then they will adopt them at a slower rate, it at all.  
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If the efficiency gap between the CNT and NAOB scenarios is caused primarily by market 
failures, then governments should correct them by introducing new market mechanisms 
that remove the market failures and/or by introducing regulations that shift market 
outcomes closer to ‘optimality.’ On the other hand, if the apparent efficiency gap is caused 
by non-market failures, then we need to reevaluate our optimality model (NAOB scenario 
in this case) to consider additional costs and constraints that are important. However, all 
indications are that both market failures and non-market failures could be responsible, at 
least to some extent, for this efficiency gap, and therefore it is difficult to delineate 
appropriate policy recommendations. As mentioned earlier, empirical research needs to be 
conducted that surveys carriers and shippers, and utilizes proprietary disaggregate cost data 
sets, in order to establish the frequency and magnitude of market failures and non-market 
failures in this industry. In the absence of this, Section 3.3.8 argues that market failures are 
likely responsible for most of the efficiency gap. This reasonable assumption is backed by 
some evidence from current operations of the trucking industry.  

 

3.2.3 57BModel Dynamics 

A main contribution of the TSO model is the ability to study the dynamics of the trucking 
industry. This is important because often policies that are implemented in this industry 
need to be evaluated in the near term, not allowing enough time for the truck fleet to recycle 
and reach a steady-state. This is the case in California where Assembly Bill 32 set GHG 
emission targets for 2020 and 2050.  

 

Figure 14: Level of FST investment under different scenarios 

 

From Figure 14 it can be observed how the average fuel economy of the truck fleet 
increases throughout time as more fuel efficient trucks are purchased. Even though in this 
model carriers invest in FSTs for existing trucks, they do so at a lower level than for new 
trucks because old trucks have fewer miles left in their lives on which to accrue fuel 
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savings. Take for example the year 2020, the gradual penetration of FSTs in the truck fleet 
continues after this year, therefore an analysis that only considers the steady-state 
incentives of carriers will over-predict the fuel efficiency of the truck fleet at this time. If 
diesel taxation is evaluated earlier, assuming steady-state conditions would produce even 
more biased results. The cost minimization approach used in the TSO model to project the 
adoption of FSTs is more insightful and defensible than the ad-hoc approach adopted in 
the NEMS model developed by EIA (2012). 

The TSO model is also able to capture the effect that the characteristics of the present truck 
fleet have on the decisions of carriers moving forward. Figure 15 shows how the purchase 
rate of trucks jumps from year to year to accommodate the retirement of different segments 
of the existing truck fleet. This purchase rate is also increasing with time to supply the 
increasing demand for trucking. Figure 15 also shows how the relatively erratic truck 
replacement behavior in the first five or so years is smoothened out as the system stabilizes 
to long-run optimal conditions. This is the result of the model transitioning from the current 
truck fleet, which is not optimal according to the cost parameters, to a truck fleet that is 
optimal. In the beginning of this transition in the CNT scenario the size of the truck fleet 
is reduced significantly. This occurs because in this scenario carriers are not allowed to 
invest in the FSTs of their fleet, therefore they prefer to retire existing trucks quicker. In 
the NAOB scenario carriers can invest in the FSTs of the existing truck fleet, making them 
more economical to operate for longer. The basic intuition can be found in equation (2.13) 
where ݀ܺ/݀ߛ ൐ 0.	  

 

Figure 15: Truck purchases under different scenarios 

Figure 16 shows some aspects of the vehicle stock dynamics captured by the TSO model. 
In this figure, each line represents the cumulative contribution of trucks purchases in each 
year to the stock of trucks. The slopes of these lines can be interpreted as the rate at which 
trucks cycle through the fleet, which is a function of both purchases and retirements. The 
summation of these contributions at a point in time provides an estimate of the size of the 
truck fleet.  
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Figure 16: Evolution of Core T7 fleet composition 

At first, it might seem inconsistent that in Figure 15 the purchase rate is higher in the CNT 
scenario than in the NAOB scenario while in Figure 16 the stock of trucks is larger in the 
NAOB scenario. However, this can be explained by the fact that the size of the truck fleet 
 is a function of both the rate of truck purchase and their service lives. Let’s assume ܨ
stationary conditions to illustrate this point succinctly. By substituting the inverse truck 
utilization function into (2.2) we can express the size of the fleet as ܨ ൌ ܷܲିଵሺܺሻ. Using 

(2.1) we can rewrite this as ܷܲିଵ ቀట
௉
ቁ. Taking derivatives we find that 

ௗி

ௗ௉
൏ 0 when  

ቀట
௉
ቁ
ଶ
൐ ௞ర

௞య
 , which is overwhelmingly the case for any realistic values of ݇ସ and ݇ଷ. 

Therefore, from the stationary model we gain the intuition that reductions in truck 
purchasing ܲ should be associated with increases in the size of the truck fleet ܨ when 
demand		߰ is held constant. This result also generally applies to dynamic truck fleets as the 
scenario with a higher truck purchase rate also has steeper stock contribution curves 
(corresponding to a quicker retirement of trucks) and a smaller fleet size.     

The dynamics of the truck stock are also important in comparing regulation-based 
strategies to incentives-based strategies. Fuel taxation affects all of the trucks in the fleet 
to the same degree, incentivizing investments in FSTs in both new and old trucks. On the 
contrary, the heavy-duty truck fuel economy standards recently introduced in the US will 
only affect new trucks. Research has shown that the longstanding automobile fuel economy 
standards (CAFE) represent costly ways of achieving reductions in GHG emissions, in part 
because it only affects new cars purchases and the costs are not spread over time (Karplus 
et al. 2013). These problems will likely be more pronounced for the heavy-duty truck 
standard because of two reasons. Firstly, trucks have service lives that are much longer 
than those of automobiles, leading policies that only affect new vehicle purchases to take 
longer to have sector-wide effects. And secondly, unlike automobiles, the fuel economy of 
the existing truck fleet can be improved through investment in FSTs. Not taking advantage 
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of this opportunity to reduce near-term emissions would be a significant shortcoming of 
applying fuel economy standards to the trucking industry. The importance of these 
transitional effects can be well studied with the TSO model.  

Another reason for studying the dynamics of truck fleets is that fuel taxes, as well as other 
onerous strategies, are likely to be phased in to give carriers time to re-optimize their 
operations. The TSO model can be used to evaluate how the industry responds to different 
phase-in schedules, the effects of which can last many years after the strategy is phased in 
entirely.  

Another issue that merits more research is the role that political and institutional boundaries 
have on the outcomes of policy in the trucking industry. For example, an unprecedented 
fuel tax in California of $1.3/gallon would only increases the average mileage costs of the 
Core T7 truck fleet by 2.1%. This is because only 23.4% of the mileage driven by these 
trucks occurs inside of California, where the tax would affect fuel purchases. However, 
considering only averages potentially hides a significant amount of heterogeneity in 
trucking operations that would impact how trucks respond to a diesel tax that is only 
imposed in California. The Core T7 truck fleet is composed both by drayage trucks that 
operate exclusively in the State and transcontinental trucks that only operate in California 
on route to its busy west coast ports. Each of these would respond different to tax increases. 
There also exists the potential for leakage to other states of fuel purchases and even 
trucking activity if high fuel price differentials are created by the tax. Future research 
should further disaggregate the trucking fleet to analyze each segment more precisely.    

 

 

3.3 20BMitigation Strategy Analysis  

3.3.1 59BFuel Taxation 

Fuel taxation is widely recognized theoretically as the most efficient way to reduce GHG 
emissions from the transportation sector because it prices the externality directly. However, 
fuel taxation in the US and in Europe has been used primarily to collect revenues for the 
transportation system, not to mitigate its externalities. Presently fuel taxes in California are 
among the highest in the US, therefore further increases could incentivize leakage of 
economic activity to neighboring states that have lower energy costs.    

In the analysis of this strategy it was assumed that carrier observe the full impact of the 
fuel tax and are incentivized to make more sustainable decisions about their FSTs and 
FMO. In reality there exists a nationwide fuel surcharge program that allows carriers to bill 
shippers separately for their fuel costs above a certain threshold. Given that we are 
currently above that threshold, additional fuel taxes would simply be passed onto shippers 
and will not incentivize carriers to change their operations. For fuel tax increases to be an 
effective GHG mitigation strategy they need to be partially absorbed by carriers. In the 
analysis it was assumed that institutional and regulatory changes are made such that fuel 
tax increases are not passed onto shippers as a fuel surcharge.  
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Taxes on diesel fuel are assumed to be implemented in California following the standard 
phase-in schedule. Different levels of fuel taxation result in the reductions of GHG 
emissions shown in Figure 17. Here, the tailpipe source accounts for about 84% of the 
reductions. This fraction remains roughly constant for different levels of taxation. 
Infrastructure related emissions account for 8.5% of these reductions, precombustion 
accounts for 4.4% of these reductions and the remaining 3.1% of the reductions come from 
vehicle manufacturing. A fuel tax of $1/gallon causes GHG emissions reductions in 2020 
relative to the NAOB scenario of 0.51 MMTCO2e from the Core T7 truck fleet in 
California, and an additional 1.67 MMTCO2e of reductions elsewhere in the US. In the 
low scenario for fuel prices and LDS elasticity the total amount of GHG emissions under 
this strategy decreases by 9.2%, while under the high scenario it increases by 8.3%. These 
changes are roughly constant for the different sources of emissions from the trucking 
sector. 

 

Figure 17: Effect of fuel taxation on GHG emissions 
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Figure 18: Effect of fuel taxation on truck fleet characteristics in 2020 

 

Figure 18 shows that increasing fuel taxation has the predictable effect of increasing the 
market rate and decreases mileage demanded by shippers. On the carrier side, the level of 
FSTs increases to mitigate the higher fuel prices, which has the effect of increasing the 
average age of the fleet and decreasing truck purchases.  

The model predicts the response of the Core T7 truck fleet to these large and unprecedented 
(in the US) fuel taxes to be modest. The reason for this is that fuel taxes only affect the 
portion of the mileage driven within California. A fuel tax of $1.3/gallon implemented in 
California will have an average effect of $0.3/gallon for the whole Core T7 fleet. This 
represents an increase in mileage costs of only 2.1%. Even though the fuel tax seems large 
at face value, its effect on the costs of the Core T7 fleet is not very large. 

Another reason for the modest FST response is that under the NAOB scenario it is already 
optimal to invest significantly in FSTs at ߛ ൌ 0.29,  which from Figure 10 it can be seen 
that this value lies in a domain of the abatement curve ܿሺߛሻ that has a high ܿ′ሺߛሻ. The 
diminishing returns of the FSTs make achieving fuel economy improvements relative to 
the NAOB scenario expensive. Given that the trucking industry does not operate near 
NAOB conditions, fuel tax increases implemented currently should have a larger impact 
on ߛ. 

A key factor driving the average fuel economy of the fleet throughout time is the proportion 
of trucks purchased before the strategy is implemented. Even though carriers can invest in 
the FSTs for the old trucks, it is not optimal for them to do so at the same level as for new 
trucks because the old trucks have fewer miles left on which to accrue fuel savings. As new 
trucks replace old trucks the average fuel economy of the fleet increases. This continues 
until the point where all of the trucks in the fleet were purchased after the strategy is fully 
implemented, which does not occur until after the  
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Figure 19: GHG emissions after fuel taxation 

 

3.3.2  Mileage Taxation   

Mileage taxation can be implemented in a variety of ways. In the US the states of Oregon, 
Kentucky, New York and New Mexico require trucking companies to report the mileage 
driven in their states and pay a mileage tax accordingly. In Oregon for example, the tax 
increases with the weight of the vehicle so that a truck with a maximum Gross Vehicle 
Weight (GVW) of 74,000 lbs has to pay a tax of $0.147/mile, which is equivalent to a 
comparatively large fuel tax of $0.82/gallon for the average truck. 

Tolls also represent another way that mileage taxes can be implemented. Fender & Pierce 
(2011) estimated that the highest tolls in the US are found in the Midwest and Northeast, 
averaging $0.047/mile in these two regions, while the lowest are in the West and Southwest 
with an average of $0.011/mile. Therefore there exists some room for expanding tolls in 
California.  

In Europe trucks are tolled more extensively than in the US. Germany has a GSM/GPS 
system that charges trucks a mileage fee that exceeds $0.5/mile for the largest trucks. This 
has been found to incentivize trucking companies to retire old trucks and replace them with 
new trucks that are more fuel efficient (Aarnink et al. 2012). In Switzerland mileage taxes 
were increased five-fold from 1998 to 2005 to almost $1/mile, while truck weight limits 
were increase by 42% (McKinnon 2006). The combination of these two changes has been 
estimated to reduce the GHG emissions of the industry by 6% (SFOSD 2007).  

In the analysis of mileage taxation it is assumed that a system is put into place that charges 
a uniform tax on the Core T7 truck fleet for mileage driven within in California. Mileage 
taxes are assumed to be implemented following the standard phase-in schedule. This 
strategy reduces GHG emissions primarily by decreasing the demand for trucking by 
shippers, and therefore it is theoretically inferior to fuel taxation because it does not 
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incentivize additional investment in FSTs. This implies that trucking costs need to increase 
more with this strategy than with fuel taxation to achieve the same level of GHG reductions. 
However there are reasons for mileage taxation to be more desirable, leading to its wide 
utilization in Europe. 

 

Figure 20: Effect of mileage taxation on GHG emissions 

 

 

Figure 21: Effect of mileage taxation on truck fleet characteristics in 20203 
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The results of the analysis are shown in Figure 20. Note that a mileage tax of $0.3/mile is 
equivalent to a fuel tax of $2.6/gallon. Therefore, the levels of strategy implementation 
shown in this figure are quite large and unprecedented in the US, but in line with some of 
the European examples. For this strategy about 81% of the GHG reductions come from the 
tailpipe source, 10.5% from the infrastructure source, 4.2% from the precombustion source 
and 4.3% from the vehicle manufacturing source. A mileage tax of $0.3/mile should result 
in GHG reductions relative to the NAOB scenario in California of about 0.9 MMTCO2eq, 
with an additional reduction of about 2.9 MMTCO2eq elsewhere in the US. In the low 
scenario for fuel prices and LDS elasticity the total amount of GHG emissions under this 
strategy decreases by 10.2%, while under the high scenario it increases by 10.1%. 

Figure 21 shows that the changes in GHG emissions are primarily caused by reductions in 
the demand for trucking as the market rate increases substantially. It is also observed, as 
expected, that carriers are not incentivized to increase the technology of their truck fleets 
or use trucks for longer. This can be changed with the use of differentiated mileage taxation 
that creates similar incentives as fuel taxation. If a mileage tax of ߠெ

	 ൌ ሺ1ߠ െ  ሻ݂ isߛ
implemented, such that as the level of ߛ increases the mileage tax decreases, then 
effectively a fuel tax of ߠ  is being charged. In practice, a certification process could be 
created that classifies trucks in discrete ranges of ߛ, similar to the EPA’s SmartWay 
program, and a different mileage tax could be charged to each range. The analysis of this 
would be identical to the analysis of fuel taxation already performed.   

Another type of differentiated mileage taxation that has been described in the literature 
involves taxing older trucks. However, this is not worthwhile from a GHG emissions 
perspective because in the previous discussion it was shown that the fuel efficiency of 
trucks has not improved significantly in the last couple of decades (EMFAC2011 
corroborates this finding). The overall technology of trucks has improved in dimensions 
other than fuel efficiency. Also, properly maintained trucks have roughly the same fuel 
efficiency throughout their service life. Therefore, decreasing the average age of the fleet 
will not reduce tailpipe emissions, and will actually increase vehicle manufacturing 
emissions as the purchasing rate would have to increase. This type of differentiated mileage 
tax is not likely to be beneficial to reduce GHG emissions. A similar finding is also found 
in Kim et al. (2004) which concludes that programs that seek to incentivize the scrappage 
of old personal vehicles will likely reduce CO, NMHC and NOx emissions, but might 
actually increase CO2 emissions.  

 

3.3.3 61BTruck Purchase Taxation 

Taxation of truck purchases seeks to decrease GHG emissions by (1) reducing the amount 
of trucks being purchased, (2) increasing the truck retirement age which incentivizes 
greater use of FSTs, and (3) reducing shipper demand for trucking by increasing the market 
rate.  

For simplicity we assume that California has the ability to tax all truck purchases in the 
Core T7 fleet, which is somewhat unrealistic given that the majority of truck purchases 
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occur outside California. However, if California implemented a truck purchase tax within 
its borders only there will likely be a significant leakage of truck purchases to neighboring 
states that would not have this tax. This complication is avoided by assuming that 
California can implement a unit tax on all Core T7 truck. In practice the tax could be 
implemented on a yearly basis similarly to the nationwide Federal Heavy Highway Vehicle 
Use Tax, which is levied on all trucks and increases based on the maximum GVW.  

 

Figure 22: Effect of truck purchase taxation on GHG emissions 

 

 

Figure 23: truck fleet characteristics in 2020 

 

The analysis assumed that the tax is phased-in following the standard schedule. From 
Figure 22 it appears that only a small amount of GHG reductions would result from a 
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relatively large 30% tax on truck purchases, which amounts to more than $30,000 per truck. 
Nonetheless this tax is equivalent to an increase in mileage costs of less than 4.3%. 
Implementing this tax would reduce 0.62 MMTCO2eq in California and an additional 2.03 
MMTCO2eq elsewhere in the US relative to the NAOB scenario. In the low scenario for 
fuel prices and LDS elasticity the total amount of GHG emissions under this strategy 
reduces by 9.4%, while under the high scenario it increases by 8.6%. 

About 79% of the emission reductions from this strategy come from the tailpipe source, 
4.1% from the precombustion source, 12.5% from the infrastructure source and 4.3% from 
the vehicle manufacturing source.  In Figure 23 we observe that as the truck purchase tax 
increases the retirement odometer increases significantly, which further incentivizes 
greater use of FSTs and results in reductions of tailpipe emissions.   

 

3.3.4  FST Subsidy  

Subsidies of FSTs seek to increase the fuel efficiency of the truck fleet to decrease GHG 
emissions. It was assumed that the subsidies are available to all Core T7 trucks independent 
of their proportion of California travel and that they are implemented fully starting in the 
year 2013 for new trucks only. A separate phase-in schedule could also be analyzed in 
future research where the strategy is phased out after a certain period of time, making the 
subsidy temporary.  

 

Figure 24: Effect of FST subsidies on GHG emissions 
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Figure 25: Effect of FST subsidies on truck fleet characteristics in 2020 

 

Figure 25 shows that this strategy incentivizes significant investment in FSTs. This has the 
effect of lowering the market rate and therefore increasing the quantity demanded of 
trucking. As shown in Figure 24, the increase in fleet fuel efficiency more than offsets the 
latent demand response. Providing subsidies that reduce the costs of FSTs by 30% would 
result in GHG reductions of 0.72 MMTCO2eq in California and 2.34 MMTCO2eq 
elsewhere in the US relative to the NAOB scenario. These reductions occur despite a small 
increase in infrastructure and vehicle manufacturing emissions. In the low scenario for fuel 
prices and LDS elasticity the total amount of GHG emissions under this strategy reduces 
by 8.6%, while under the high scenario it increases by 7.8%. 

The subsidy of FSTs should be much more effective starting from the CNT scenario 
(current operations) than from the theoretical NAOB scenario, because the benefit-to-cost 
ratio of the technology improvements will be higher.   

 

3.3.5  Weight Limit Increases 

California’s truck size and weight limits are similar to those established by federal 
regulation, which limit trucks to a total Gross Vehicle Weight Rating (GWVR) of 80,000 
lbs with a single axle-limit of 20,000 lbs and tandem axle limit of 34,000 lbs. Higher truck 
weight limits are present in other Western states and in the Midwest. Increasing the truck 
weight limit in California could allow carriers to ship larger loads (particularly those 
originating from ports in California) and reduce the trucking mileage of weight constrained 
loads.  

Truck weight limits are significantly higher in Europe than in the US. The Netherlands and 
Finland have truck weight limits higher than 110,000 lbs and France, Italy, Denmark and 
Norway have limits above 88,000 lbs. In 2001 the weight limit in the UK was increased 
from 90,000 lbs to 97,000 lbs, leading to a decrease in GHG emissions of 0.65% 
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(McKinnon 2005). In this case much of the pavement deterioration was mitigated by 
increasing the number of axles of the trucks and greater use of air suspension.  

The analysis of this mitigation strategy considers increasing the truck weight limit from 
80,000lbs to 96,000lbs under two types of axle configurations: (1) carriers continue using 
5-axle trucks to transport the increased loads, or (2) carries use 6-axle trucks to transport 
heavier loads (extra axle in the trailer). This difference is important because the number of 
loaded axles on a truck has a significant impact on infrastructure deterioration and the GHG 
emissions of rehabilitating it. Other truck weight limits and axle configurations are possible 
(and common in Europe), but they were not analyzed because they entail a large departure 
from existing operations.   

 

Figure 26: Effect of weight limit increases on GHG emissions 

 

 

Figure 27: Effect of weight limit increases on truck fleet characteristics in 2020 
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Figure 26 shows the GHG emission reductions that occur if this strategy is implemented 
under the assumption of 5-axle trucks or 6-axle trucks. For the 5-axle case, the emission 
reductions from the decrease truck trips are almost offset by a 30% increase in emissions 
from infrastructure rehabilitation and maintenance. Additional rehabilitation and 
maintenance also carries a large cost that is not considered in this analysis. Increasing the 
axle limit to 6 for heavier loads can mitigate much of these additional costs and emissions. 
Changing the truck weight limit to 96,000 lbs for 6-axle trucks reduces GHG emissions by 
1.07 MMTCO2eq in California and 3.48 MMTCO2eq elsewhere in the US relative to the 
NAOB scenario. In the low scenario for fuel prices and LDS elasticity the total amount of 
GHG emissions under this strategy is reduced by 9.1% while under the high scenario it 
increases by 8.3%. Figure 27 shows that these reductions are driven primarily by the 
reduction of trucking mileage and truck purchasing rate.  

 

3.3.6  Low Carbon Fuel Standard  

The Low Carbon Fuel Standard (LCFS) implemented in California regulates the average 
carbon intensity of fuels. This has been estimated to impact the diesel fuel used for trucking 
as shown in Table 5. The third column in this table indicates the percent reduction in GHG 
emissions per gallon. The fourth and fifth columns contain estimates of the effect of the 
LCFS on diesel fuel prices estimated by CARB and by the California Trucking Association 
(CTA). These compliance cost estimates are very different from each other because they 
were calculated using different sets of assumptions. The effect of the LCFS strategy was 
analyzed under both of these estimates in order to avoid having to develop our own 
compliance costs estimate. By doing this we are not necessarily indicating that we consider 
both of these scenarios to be equally plausible.  
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Table 5: Effect of LCFS on diesel fuel (Andress et al. 2010; CARB 2011a, CTA 2012) 

year 

Diesel 
Carbon 

Intensity 
(gCO2e/Mj) 

Reduction 
From 

2010 (%) 

Compliance Costs $/gallon 

CARB 
Estimate 

CTA 
Estimate 

2010 94.23 0.00 0.00 0.00 

2011 94.47 0.25 0.00 0.00 

2012 94.24 0.50 0.04 0.06 

2013 93.76 1.00 0.02 0.11 

2014 93.26 1.50 0.08 0.19 

2015 92.34 2.50 0.10 0.41 

2016 91.40 3.50 0.17 0.46 

2017 89.97 5.00 0.24 1.11 

2018 88.55 6.50 0.23 1.20 

2019 87.13 8.00 0.22 1.31 

2020 85.24 10.00 0.20 1.47 

 

 

The LCFS will only affect the portion of mileage driven within California. The more 
expensive low carbon fuel will only be purchased within California and will result in GHG 
reductions mostly within the state. The LCFS will also result in GHG reductions outside 
California as the additional fuel costs will affect the FST, FMO and LDS responses of the 
fleet. Just as in the analysis of fuel taxation, it is assumed that the proportion of fuel 
purchased within California does not change as a consequence of this strategy.   

 

Figure 28: Effect of LCFS on GHG emissions 
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Figure 29: Effect of LCFS on truck fleet characteristics 

 

The analysis results of the LCFS strategy using the CTA and CARB compliance cost 
scenarios are presented in Figure 28. The strategy was implemented on the theoretical 
NAOB scenario, therefore the results in this figure do not represent forecasts from current 
conditions. It can be observed in this figure that the CTA scenario achieves more GHG 
reductions than the CARB scenario because the higher fuel costs of the CTA scenario leads 
to GHG reductions from FST, FMO and LDS in addition to the lower carbon intensity of 
the fuel. In a way, the LCFS strategy is analogous to a fuel tax where the tax revenues are 
used to reduce the carbon intensity of the fuel. From the NAOB scenario, the LCFS 
(CARB) strategy would result in a relatively large reduction of GHG emissions of 2.1 
MMTCO2eq within California and 0.5 MMTCO2eq from elsewhere in the US. In the low 
scenario for fuel prices and LDS elasticity the total amount of GHG emissions under this 
strategy is reduced by 9.2% while under the high scenario it increases by 8.3%. 

From Figure 29 it is clear that the higher fuel costs associated with the CTA scenario drive 
much of the changes. For the CTA scenario 93% of the reductions come from the tailpipe 
source, 5% from the precombustion source, 1.5% from the infrastructure source and 0.5% 
from the vehicle manufacturing source. For the CARB scenario 88.6% of the reductions 
come from the tailpipe source, 4.6% from the precombustion source, 5% from the 
infrastructure source and 1.8% from the vehicle manufacturing source.  

 

3.3.7  SmartWay Regulation  

CARB has recently implemented a regulation that forces tractor-trailers that travel within 
California (independent of registration location) to be SmartWay certified. SmartWay 
certification is part of a nationwide EPA program that incentivizes trucking companies to 
voluntarily invest in certain FSTs. Currently the certification requires about a 5% reduction 
in fuel consumption from aerodynamic improvements to the tractor, a 5% reduction in fuel 
consumption from aerodynamic improvements to the trailer and a 3% reduction in fuel 
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consumption from the use of low rolling resistance tires. Using data from Table 2 it was 
estimated that this regulation will results in a 11.1% reduction in the fuel consumption per 
mile of the Core T7 fleet at a capital cost of $14,560 per truck2F

4. CARB (2008a) estimated 
the impact of the SmartWay regulation using a different set of assumptions and data, 
therefore their results are not directly comparable to ours.  

 

Figure 30: Effect of SmartWay regulation on GHG emissions 

 

 

Figure 31: Effect of SmartWay regulation on truck fleet characteristics in 2020 

 

Implementing only the FSTs mentioned above would result in the GHG emission 
reductions shown in Figure 30. The emissions under the SmartWay regulation strategy are 
higher than under the NAOB reference scenario because the level of FSTs that is optimal 

                                                 

4 This is a fairly conservative estimate of life time costs (high) assuming 2.5 trailers per tractor and 
financing costs.  
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under the NAOB scenario is higher than what is mandated by this strategy. Overall, the 
SmartWay strategy is estimated to reduce total GHG emissions from the CNT scenario by 
2.04 MMTCO2eq in California and 6.63 MMTCO2eq elsewhere in the US. These values 
do represent forecasts as they are obtained in reference to the CNT scenario. In the low 
scenario for fuel prices and LDS elasticity the total amount of GHG emissions under this 
strategy is reduced by 9.2% while under the high scenario it increases by 7.0%. Figure 31 
shows that the decrease in the market rate should increase the demand for trucking.  

 

3.3.8  Interpretation of Results  

Section 3.2.1 provided various plausible explanations for why the ‘optimal’ level of FST 
investment predicted by NAOB scenario is not currently observed in the US trucking 
industry (CNT scenario). Barriers to the implementation of FSTs were categorized as either 
resulting from market failures (inefficiencies in the industry) or from non-market failures 
(deficiencies in the analyst’s model of the industry). Conceptually, the main difference 
between these types of barriers is that governments should attempt to fix market failures 
but not non-market failures. As explained in this previous section, it is difficult to 
determine the frequency and magnitude of either of these types of barriers without 
conducting an in-depth survey of carriers and shippers to obtain disaggregated information 
about how the industry operates in reality. However, despite this lack of concrete evidence, 
there are still several interesting and important conclusions that can be drawn from the 
work presented in the previous sections to inform current policy debates.    

First of all, this section argues that it is likely that the differences between the CNT scenario 
and the NAOB scenario are cause primarily by market failures. A key reason for this is that 
the decision to invest in FSTs is relatively simple in nature, and is definitely not any more 
complex than other decisions that carriers routinely make. Therefore, they are well 
equipped to judge the benefits and costs of FSTs, even in an uncertain business 
environment. In fact, Metcalf (1994) found that investing in energy-saving technologies 
helped firms hedge against uncertain energy costs, which in this case implies that carriers 
should invest in FSTs to counter uncertainty in diesel price. Section 3.1.5 shows that in the 
TSO model the capital and maintenance costs of the FSTs were estimated very 
conservatively, for example it assumes that the technologies have to be replaced several 
times throughout the life of the truck. This leads the NAOB scenario to already consider 
many of the potential hidden costs. Other sources of hidden costs mentioned before, such 
as drivers disliking FSTs, would be partially mitigated if principal-agent problems are 
resolved.  

Another reason why barriers to investments in FSTs are most likely driven by market 
failures is that non-market failures only disincentivize carriers at the margin, when in fact 
the differences between the CNT scenario and NAOB scenario are large. Carriers in the 
NAOB scenario invest $43,000 more in FSTs than in the CNT scenario. Considering non-
market failures, such as hidden costs and business uncertainty, would reduce this ‘optimal’ 
level of investment somewhat, but it would not explain why carriers are not investing in 
FSTs at all in the present trucking industry (CNT scenario). On the other hand, market 
failures lead to fundamental dislocations in the industry that can easily explain this large 
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efficiency gap. For example, carriers will not invest in any FSTs if they have no 
information about them (information asymmetry), are insulated from fuel costs (principal-
agent problem) or cannot borrow capital to purchase them (budgetary constraint). Market 
failure can readily explain why the trucking industry is not investing more vigorously in 
FSTs.  

Given that the differences between the CNT scenario and NAOB scenario are caused 
predominantly by market failures, we can now interpret the results of the strategy 
evaluations shown in the previous sections. These results were obtained by modeling the 
strategies in the idealized NAOB scenario; therefore they should not be interpreted as 
predictions of what would happen if the strategies were to be implemented in the present 
US trucking industry. Instead, the insights from these results are more subtle, but still 
interesting and useful in informing current policy debates.  

Jaffe and Stavins (1994) pointed out that one of the most critical steps in understanding 
energy efficiency gaps commonly observed in many industries is to clearly identify 
optimality, which in this research is accomplished by the NAOB scenario. The responses 
of the industry in this idealized scenario serve as benchmarks. The understanding of 
economic incentives at optimality should guide efforts by governments to implement 
regulations or market mechanisms to fix the market failures. Also, once market failures are 
mitigated and the industry operates closer to the NAOB scenario, the results from modeling 
mitigation strategies in the NAOB scenario can be interpreted as predictions.  

Analyzing governmental strategies in the NAOB scenario also provides an upper-bound 
for the responses of the industry because in this scenario carriers fully optimize their 
responses to strategies. Any market failure present would simply decrease the magnitude 
of these responses, because they prevent market participants from freely optimizing their 
operations. A lower bound could have been obtained by modeling the strategies in the CNT 
scenario, where truck technology remains unchanged.   

The results of evaluating strategies in the NAOB scenario can be best interpreted when 
comparing between strategies. Generally, differences in the responses of the industry will 
be driven more by the nature of the strategy than by the assumptions of the analysis 
scenario. This, of course, depends on the details of the strategies being analyzed, but it is 
likely to be true in most cases.  

The results of the previous sections are partially summarized in Table 6, which compares 
the levels of strategy implementation required to achieve certain amounts of GHG emission 
reductions relative to the NAOB scenario in 2020. This table shows the levels of strategy 
implementation that are equivalent form an environmental point of view. For example, in 
comparing mileage taxation and fuel taxation we find that mileage taxation has to increase 
trucking costs by 11 - 9% more than fuel taxation to achieve the same reduction of 
emissions. This table also shows that increases in the weight limit of trucks should be 
accompanied with increases in the number of axles to reduce pavement deterioration. The 
LCFS and SmartWay FST regulation strategies were not shown in this table because they 
were only analyzed at a single level of implementation.  
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Table 6: Effectiveness of mitigation strategies in 2020 relative to NAOB scenario  

Percent 
Reduction  

Emission 
Reductions in 

CA  
(MMTCO2eq) 

Fuel 
Taxation 
($/gallon) 

Mileage 
Taxation 
($/mile) 

Truck 
Purchasing 

Tax (%) 

FST 
Subsidy 

(%)  

WL 5-
Axles   
(Lbs) 

WL 6-
Axles   
(Lbs) 

0.9% 0.2 0.39 0.07 8.50% 9.09% 82,922 81,506 

1.7% 0.4 0.79 0.14 16.95% 17.44% 95,474 83,013 

2.6% 0.6 1.19 0.22 25.50% 25.15%  -- -- 84,519 

3.5% 0.8 1.61 0.29  -- -- 32.16%  -- -- 87,679 

4.3% 1.0 2.03 0.36  -- -- 38.38%  -- -- 92,903 

5.2% 1.2 2.46 0.43  -- -- 44.59%  -- --  -- -- 
 

Even though it is not shown in Table 6, each of these strategies would reduce emissions 
outside of California by 3.2 – 3.3 times more than they would reduce emissions inside of 
California. The SmartWay regulation currently being implemented would have similar 
results. The main reason for this is that the Core T7 truck fleet operates only about ¼ of its 
mileage within California, therefore the industry responses to strategies implemented only 
in California will also have impacts outside of the state. It is unclear whether California 
can or should take credit for emission reductions occurring outside of its political boarders. 
However, because GHGs are global pollutants, strong arguments can be made that they 
should.   

A sensitivity analysis was conducted to gauge how GHG emissions in the NAOB scenario 
in 2020 depended on the assumptions made about fuel prices and LDS response elasticity. 
The results of this sensitivity analysis for different levels of fuel taxation are shown in 
Figure 32. The high (low) emissions scenario was obtained by using the lowest (highest) 
estimate of fuel price and LDS elasticity. This represents the pessimistic (optimistic) 
scenario of emissions from the Core T7 truck fleet in CA in 2020.  The fuel price values 
used can be found in Table 3 and LDS elasticity values used can be found in Section 3.1.9. 
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Figure 32: Reduction of 2020 GHG emissions from fuel taxation under different 
LDS elasticity and fuel price assumptions (LOW=high fuel price and high LDS 

elasticity, HIGH=low fuel price and low LDS elasticity) 

 

Across the mitigation strategies, 81 - 84% of emission reductions come from tailpipe 
sources, 8 - 12% come from infrastructure sources, 4 - 5% come from precombustion 
sources, and 2 - 4% come from vehicle manufacturing sources. It is clear that GHG 
emissions from the trucking sector are dominated by the combustion of fuel. However, 
other criteria pollutants, such as NOx and PM, are emitted more heavily from vehicle 
manufacturing and infrastructure sources. Future research that studies the tradeoffs 
between emissions of different pollutants from the trucking industry would benefit greatly 
from the TSO model.  

 

3.4 21BPolicy Recommendations for California  

As explained in the beginning of this chapter, the Climate Change Scoping Plan prepared 
by CARB (2008) found that the GHG emissions of the heavy-duty trucking sector should 
be reduced by 3 to 4 MMTCO2eq in the year 2020. This does not represent a mandate, but 
rather an estimate that forms part of a reasonable scenario for economy-wide emission 
reductions that achieve the objectives of AB 32. The results and discussions presented in 
the previous sections provide a clear policy roadmap of achieving these emission 
reductions.  

 

3.4.1 67BStep 1: Regulation of FSTs 

A sensible first step that CA’s government should take is to use regulations to reduce the 
influence of market failures in this industry to make it operate closer to the NAOB scenario. 
This can be accomplished by regulating the level of FSTs that trucks need to have installed 
to operate in the state. CARB has recently adopted this approach by regulating that heavy-
duty trucks need to have installed FSTs of ߛ ൌ 0.11 (see Section 3.3.7) starting in 2014. 

2.0

2.1

2.2

2.3

2.4

2.5

2.6

0 0.5 1 1.5 2 2.5 3

In
fr

as
tr

u
ct

u
re

 G
H

G
s 

(M
M

T
C

O
2e

)

Level of Fuel Taxation ($/gallon)

0.86

0.90

0.94

0.98

1.02

1.06

1.10

0 0.5 1 1.5 2 2.5 3

V
eh

ic
le

 M
an

u
. G

H
G

s 
(M

M
T

C
O

2e
)

Level of Fuel Taxation ($/gallon)



 

70 
 

This would result in emission reductions of 2.04 MMTCO2eq of GHG emissions in CA in 
2020 relative to the CNT scenario. Note that these estimated emission reductions are higher 
than those achieved by the incentives-based strategies in Table 6, which represent upper-
bounds for these estimates because they were modeled in the NAOB scenario, where 
carriers respond fully to incentives.  

Also, because in the NAOB scenario ߛ∗ ൌ 0.29, there is evidence that further tightening 
of FST regulations would be beneficial. Given that the difference of emissions between the 
CNT scenario and NAOB scenario is over 6 MMTCO2eq, this could contribute greatly 
towards the objective of the Climate Change Scoping Plan.  

 

3.4.2 68BStep 2: Increase Truck Weight Limit  

The results presented in Section 3.3.5 provide a compelling argument for increasing the 
weight limit of heavy-duty trucks in California from 80,000 lbs to 90,000 lbs or even 
97,000 lbs, while simultaneously requiring these heavier trucks to have 6-axles. This would 
result in a reduction of weight constrained trips to neighboring states that already allow 
trucks heavier than 80,000lbs (USDOT 2004), especially of cargo originating from ports 
in CA. In practice this strategy might require CA and neighboring states to homogenize 
their truck weight and size limits, but it would likely lead to many benefits.   

A survey of shippers and carriers is required to have more certainty about how the industry 
would respond to this strategy, but the preliminary evidence is that the responses would be 
very positive. Increasing the truck weight to 97,000 lbs would reduce the VMT of the Core 
T7 truck fleet by around 5% and lead to reductions in emissions of 1.0MMTCO2eq in the 
state. Requiring 6-axle trucks to transport these heavier loads would reduce pavement 
maintenance and rehabilitation GHG emissions and costs. Even though this strategy does 
not target any market failure directly, its positive impacts on the environment and on the 
trucking industry makes it an important second step that government in California can take.  

 

3.4.3 69BStep 3: Introduce Demand Management Strategies 

Strategies that reduce the demand for trucking could be implemented at this point because 
their positive impact on emissions is not affected by the existence of market failures in this 
industry. These include reducing the packaging of goods, increasing the size of the 
shipments and shifting to more sustainable modes of transportation.  

 

3.4.4 70BStep 4: Mitigate Market Failures  

CA’s government should then attempt to fix the root causes of market failure in this sector. 
This can be accomplished by sponsoring information campaigns on the FSTs available, 
providing cheap financing for purchases of FST, modifying the present fuel surcharge 
program, and promoting the importance of fuel economy throughout the sector. These will 
help mitigate information asymmetries, budgetary constraints and principal-agent 
problems, respectively. These interventions are considered as GHG mitigation strategies 
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in the framework presented in Figure 2. The introduction of these mechanisms will allow 
for industry regulations of FSTs to be rolled back, as carriers will start to care more about 
fuel costs and reduce emissions. This step would reduce government’s burden to use 
regulation to manage aspects of this industry.  

  

3.4.5 71BStep 5: Replace FST Regulation with Incentives-based Strategies 

The correction of market failures paves the way for incentive-based strategies to be 
effective. If incentives-based strategies—such as fuel taxation and subsidies for FSTs 
purchases—are implemented currently, they will likely have a small impact for the same 
reasons that carriers are currently not seeking out significant improvements in fuel 
economy (difference between CNT and NAOB scenarios). The regulation of FSTs 
proposed in Step 1 (and currently being implemented in CA) will achieve substantial 
reductions of emissions, but it would not correct the market failures present in the industry, 
it simply overrides them. However, to implement the incentives-based strategies that are 
preferred by economists and by the industry these must be corrected first. 

 

3.4.6 72BStep 6: Implement Strategies Regionally  

One of the main reasons why they incentives-based strategies in Table 6 do not lead to 
more significant reductions in GHG emissions, or at least reductions of emissions 
comparable with the regulations-based strategies, is that they are only being implemented 
on the portion of trucking operations that occur within CA. The Core T7 truck fleet 
predominantly services interstate trucking demand, and as such only drive about ¼ of its 
mileage within CA. Therefore, a fuel tax implemented in CA will on average have an 
impact equivalent to ¼ of the fuel tax increase on the whole truck fleet.  

The openness of borders between states in the US necessitates that GHG mitigation 
strategies on the trucking industry be conceptualized regionally, if not federally. The first 
problem with implementing strategies at the state level is that there will be significant 
policy leakage, where economic activity and industry operations will be distorted by the 
fact that the business environment is different across state borders. For example, raising 
diesel taxes in CA further would greatly incentivize trucking companies to fuel outside of 
the state.  

Another pitfall of mitigating climate change at the state level is that it is unclear how to 
treat emissions reductions that occur in other states. Theoretically, because GHGs are 
global pollutants, emissions have the same impact on climate irrespective of where they 
came from. If a strategy implemented in California lead to reductions in emissions in 
Texas, then it should be able to take credit for them. However, if every state has their own 
set of GHG mitigation strategies, and they cause reductions of emissions throughout the 
US, then it is unclear how responsibility should be divided. This is a significant problem 
faced presently in California as the mitigation strategies studied in previous sections reduce 
emissions outside of California by 3.2 – 3.3 times more than they reduce emissions inside 
California.  
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In summary, developing an institutional and regulatory framework to mitigate GHG 
emissions are the regional level or at the federal level would: (1) increase the effectiveness 
of mitigation strategies, (2) reduce policy leakage and (3) improve accounting of benefit.  

 

3.4.7 73BStep 7: Implement Complementary Strategies  

At this point CA’s government should consider combining mitigation strategies in order to 
achieve emission reductions in a more balanced and effective way. As mentioned earlier, 
European countries have had many positive experiences combining complementary 
strategies. The combination of strategies that reward carriers (such as FST subsidies or 
increasing the truck weight limits) with those that are onerous to carriers (such as fuel 
taxation or technology regulation) represents a more balanced and politically palatable 
approach to achieving emission reductions. For example, the tax revenue from fuel taxation 
could be used to subsidize the purchase of FSTs or to cover the additional pavement 
rehabilitation costs of operating larger vehicles. Future work should use a welfare analysis 
to explore these types of complementarity between strategies can be exploited.  
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4 Trucking Sector Trip Segmentation Model 
(TSTS) 

4.1 22BIntroduction  

Many view that governmental interventions in the US trucking sector to reduce GHG 
emissions are necessary, because by several accounts, carriers have been investing in FSTs 
at a much slower pace than would seem cost-optimal. In the analysis above it was found 
that it is optimal for trucking firms presently to invest more than $40,000 in off-the-shelf 
FSTs, to achieve more than a 40% increase in fuel economy. These large investments, 
which would represent anywhere from 30 – 35 % of the average purchase price of a new 
heavy-duty truck (CARB, 2008a), are rationalized by the fact that fuel consumption is 
responsible for around a third of the costs that trucking firms face (Fender & Pierce 2011). 
Investing in technologies that reduce these large costs should be highly desirable. This 
conclusion is fairly common in the literature (National Research Council 2010). However, 
the fact remains that most trucking firms have not been making these types of investments, 
which is why there is currently growing interest in the public sector for finding ways of 
improving the efficiency of this sector. 

Many other industries have also been observed to have similar “efficiency gaps” (see 
Gillingham et al. 2009 for a review of this literature). Jaffe and Stavins (1994) explained 
that these gaps can be caused by various market failures and non-market failures that create 
barriers to investments in new technologies that improve energy efficiency. Some recent 
research has found that many of these failures have a strong influence on the European and 
US trucking sectors (Aarnink et al. 2012; Vernon and Meier 2012), causing them to operate 
less efficiently than is cost-optimal. While in the US there is no good publically available 
dataset to quantify these failures, they are manifested in the wide variety of trucks that 
currently operate on the highways, some of which have numerous FSTs, but most do not. 
How can all of these trucks, that have very different fuel economies, be competitive? 
Trucking is an industry that has low margins and a product that resembles a commodity 
(low opportunity for price discrimination). If this industry operates efficiently, simple 
economic analysis suggests that firms that do not make FST investments should be priced 
out of the market.   

Even though it is important, this chapter does not study the nature of market failures in the 
trucking industry; this will be a topic of future research. The objective of this chapter is to 
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describe a model of the trucking sector that incorporates some of this information about 
market failures, albeit in a simple way, in better characterizing how trucking firms make 
FST investments. Jaffe and Stavins (1994) suggested that some of the influence of market 
failures can be modeled through higher than normal discount rate, essentially capturing the 
higher uncertainty that firms face when making long-term investments. In this study, all of 
the results are presented as a function of this discount rate, as this value is difficult to 
ascertain and should be found empirically in future research for different market 
conditions.  

Only using a higher discount rate to model how trucking firms make investments in FSTs 
misses half of the story. In reality, these decisions are made simultaneously with other 
decisions about how many trucks to purchase, how to operate them throughout their 
service-lives, and when to retire them. Research has often assumed, implicitly or explicitly, 
that FST investments are made in isolation, and that these other variables that trucking 
firms control are fixed (National Research Council 2010; Guerrero et al. 2013). The 
Trucking Sector Optimization Model (TSO) contributed towards bridging this gap by 
modeling FST investments simultaneously with truck purchasing/retirement decisions.  

However, just like in most other models of the trucking industry, the TSO model assumed 
that the way trucks are utilized throughout their service-lives is exogenous. This refers to 
the types of services that trucks provide and the rate at which they accrue mileage. Chapter 
3 showed that this is a reasonable assumption if the discount rate is zero or small, because 
in this case firms are relatively indifferent about the timing of their operations, leading 
changes in truck utilization to have an indiscernible impact on their decisions.   

On the other hand, is trucking firms have large discount rates, which is likely the case in 
the US, the utilization of trucks influences significantly the tradeoffs involved in making 
FST investments. For example, slowing down the rate at which trucks make deliveries will 
lead them to operate longer in time (until the retirement odometer is reached), discounting 
more heavily their variable costs, and therefore increasing the relative importance of capital 
costs. This would incentive trucking firms to invest less in FSTs, because fuel savings 
accrued in the future will be worth less to them. Another example, if a firm’s rate of 
discounting increased because of new information or additional uncertainties, they will be 
incentivized to operate their trucks more intensely when newer, but retire them at a later 
odometer because maintenance costs are discounted more.  

These interactions between FST investments and the management of truck fleets have not 
been studied previously in the literature, even though they are likely central to how this 
industry operates, and therefore have significant environmental impacts. One of the reasons 
for this, as explained in detail in the next section, is that existing models of truck utilization 
cannot be readily used to study these interaction. These models have their roots in the 
machine management literature, which has focused more on issues of stochastic demand 
and machine breakdowns. While these issues are also present in trucking, they are not 
likely to be the most important factors determining the utilization of trucks.  

Instead, in this chapter truck utilization is modeled as resulting from carriers’ need to 
service the geographically scattered demand of shippers with a physically constrained truck 
fleet. In tangible terms, there is a certain amount of time that a truck requires to supply a 



 

75 
 

trip of certain characteristics (the performance of trucking), which is a function of the 
loading time, travel speeds, congestion, geography, etc. Hence, for a given spatial 
distribution of shipment demand, there exists a minimum amount of trucks that are needed. 
In the model, the shipment demand is segmented into “trip types” of common 
characteristics, and the truck fleet is segmented to service this demand, while operating 
differently, and optimally, in supplying each trip type. Accordingly, this model is called 
the Trucking Sector Trip Segmentation Model (TSTS). In contrast to the TSO model which 
specified the supply-demand equilibrium in terms of aggregate trucking mileage, the TSTS 
model specifies this equilibrium in terms of trips in particular segments. This increases the 
degrees of freedom of the problem, but it allows the responses of this industry to be 
captured more realistically.   

In this chapter the TSTS model is used to evaluate some GHG mitigation strategies that 
could not have been studied with the TSO model. First, we investigate the interrelations 
between the discounting of costs and optimal truck utilization behavior. This allows us to 
determine how changes to the truck performance function (reducing wait times or speeding 
up trucks) can affect how capital and variable costs are weighed, impacting decisions made 
about FSTs. Then, we quantify the impact of the spatial distribution of demand on the FMO 
decisions that carriers make—indicating the changes in emissions and truck retirements 
with changes in mode-shifts. This can be studied because in this model demand is specified 
spatially, while in the TSO model it was aggregated for the whole truck fleet. And finally, 
several policy scenarios for FST regulations with cutoffs based on truck yearly mileage or 
truck odometer are analyzed. This analysis is possible with the TSTS model because truck 
retirements are modeled probabilistically.  

 

4.2 Background 

Truck utilization affects costs in non-obvious ways. Truck utilization is a key determinant 
of the time-costs associated with operating trucks, because it indicates the different points 
in time (age ݏ) when particular costs are realized. This is important because many of the 
costs that carriers face increase with ݔ, leading truck utilization to have a large impact on 
how carriers discount operating cash-flows to the present. This trade-off between present 
costs and future costs has a pivotal effect on carriers’ investments in FSTs and on their 
truck retirement decisions. As mentioned before, the impact of truck utilization on these 
decisions will be very large if trucking firms discount the future heavily, which appears to 
be the case in the US currently. For example, decreasing truck utilization will spread the 
variable costs that increase with ݔ over more years (taking longer to reach a retirement 
odometer ܺ), leading them to be discounted more heavily and hence increase the relative 
importance of capital costs to carriers. This will directly incentivize them to invest less in 
FSTs, having significant environmental and economic impacts.  

Despite of it importance, few attempts at modeling truck utilization behavior were found 
in the literature. It is common for truck fleet models to assume that utilization behavior is 
exogenous and unchanging throughout time. Which is the case in California’s 
EMFAC2011 mobile emission sources model (CARB 2011) and the nationwide NEMES 
vehicle model (EIA 2012), two important models commonly used for policy analysis. In 
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these trucking models and in others (Vemuganti et al. 2007; Kim et al., 2004; Redmer 
2009), vehicle utilization behavior is determined empirically from surveys of how the 
industry currently operates. A common feature in all of the utilization functions adopted is 
that trucks are used less intensely as they age, more concretely that 0 ൏ ܷᇱᇱሺݏሻ.    

This observation is commonly explained in the literature (Redmer 2009) by pointing out 
that because older trucks are clearly costlier to operate (have higher maintenance costs for 
example) they should obviously be used less intensely than newer trucks. However, this 
argument not precisely correct. The economics of trucking indicate that a vehicle should 
be operated as long as it is profitable; that is, as long as the discounted sum of all of its 
revenues is greater (or equal) than the discounted sum of all of its costs. Carriers do not 
benefit from decreasing the utilization of trucks at any point in their lives because it would 
simply spread their costs and revenues into the future, gaining nothing in the process. In 
fact, any costs that increase directly with the size of the fleet should incentivize carriers to 
use trucks as intensively as possible.  

Now, a simple model of the trucking industry is used to illustrate the basic insight that the 
fact that older trucks are more costly to operate as they age should not directly cause them 
to be utilized less intensively. This model is set up similarly as Jin and Kite-Powell (2000), 
who used an optimal control technique to study the replacement and utilization of maritime 
vessels.  

Assume ݕሺݐሻ is the market price [$/mile] for trucking services, ߜ is the discount rate, 
ܿሾݑ. ܷሿ is the operations cost per time period [$/year], which is a function of both the 
utilization rate ݑሺ݇, ,ሻ [mile/yr] and the cumulative utilization ܷሺ݇ݐ  ݇ ሻ  [odom], of truckݐ
at time ݐ. Note that ݑሺݐሻ ൌ ܷ݀ሺݐሻ/݀ݐ. Also, assume the rate of truck purchases is ݌ሺݐሻ and 
the rate of truck retirements is ݖሺݐሻ. With these definitions, the objective of a trucking 
company can be specified as choosing ݑሺ݇,  ሻ in order to maximize profitsݐሺ݌ ሻ andݐሺݖ ,ሻݐ
over a time horizon ܶ . To express this succinctly, the indices of trucks ݇ that operate at ݐ 
can be described by two cumulative count variables, such that ݇ ∊ ሺ ௅ܰሺݐሻ, ுܰሺݐሻሻ. 
Therefore, the discounted lifetime profits of the firm can be summed as 

where the first term subtracts operating costs from revenues, the second term sums the 
salvage value of truck retirements, which for now is assumed to be constant at ܸ [$/truck], 
and the fourth term subtracts the capital costs of truck purchases, which for now is assumed 
to be constant at ܣ௣ [$/truck]. Using the maximum principle, as described in Jin and Kite-
Powell (2000), the above equation can be optimized over the variables of interest, finding 
that the optimal utilization of trucks can be described by 

 

න ቊන ሼݕሺݐሻݑሺ݇, ሻݐ െ ܿሾݑሺ݇, ,ሻݐ ܷሺ݇, ሻሿሽ݀݇ݐ
௄ಹሺ௧ሻ

௄ಽሺ௧ሻ
൅ ሻܸݐሺݖ

்

଴

െ ሻቋݐሺ݌௣ܣ ݁ିఋ௧݀ݐ 
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For a flexible cost function ܿሺݑ, ܷሻ ൌ ሻݑሾ݃ሺ	ݑ ൅ ݂ሺܷሻሿ, where ݃ሺ∙ሻ and ݂ሺ∙ሻ can be any 
functions that decompose the operational costs by its component that increases with 
utilization intensity ݑ (fuel costs, labor costs, etc.) and its component that increases with 
cumulative utilization ܷ (maintenance costs), expression (4.1) simplifies to 

This expression indicates that costs that increase with vessel odometer ݀ܿ/ܷ݀ ൐ 0 do not 
directly affect ݑ, and only have an indirect effect through ݀ܿሺݑ, ܷሻ/݀ݑ ൌ ሾ݃ሺݑሻ ൅
݂ሺܷሻሿ ൅ ݃′ሺݑሻݑ. However, if the discount rate is small, this indirect channel disappears, 
implying that truck owners do not gain any natural cost advantage from operating their 
vehicles less intensively as they age.  

Lastly, note that the TSO model implicitly assumed that ݀ ଶܿ ⁄ଶݑ݀ ൌ 0, which is reasonable 
for trucking. For ݀ଶܿ ⁄ଶݑ݀ ൐ 0, trucking costs would have to increase at an increasing rate 
with the yearly supply of mileage, which is hard to substantiate in the aggregate given that 
most of the costs that carriers face increase linearly with mileage. This mathematical 
exercise demonstrates that it is difficult to rationalize from a costs perspective the 
observation that currently in the trucking industry ݑሶ ൏ 0.  

A few papers have formulated models of optimal vehicle utilization (or utilization of 
machines in general) in situations where the demand fluctuates predictively or 
stochastically. Simms et al. (1982) found that the cost structure of bus operations did not 
warrant utilizing old buses at a lower intensity than new buses, except when the old buses 
can be used primarily to satisfy peaks in ridership throughout the day. Given that transit 
capacity shortfalls cause significant costs to society, operating older—more costly buses 
in this limited role is justified. An analogous story could be conjectured in the trucking 
industry, where old trucks are used predominantly to satisfy seasonal peaks in the demand 
of shippers, and therefore accumulate less mileage per year. Similarly, Hartman (2004) 
studied the optimal replacement and utilization of machines under stochastic demand, and 
concluded that it is optimal to keep some older more costly machines available to 
accommodate unexpected peaks in demand. This leads those machines to be utilized less 
intensely as they aged, because older more costly machines require more severe 
fluctuations in demand to justify postponing their retirement. Bethuyne (1998) also studied 
the optimal replacement and utilization of machines, although his conclusions are not 
readily applicable to the trucking industry because of the types of cost functions used.   

Aggregate truck utilization behavior can also be influenced by other factors that have not 
been studied so far in the literature. Carriers probably give priority to newer trucks when 
assigning long-haul trips, leading them to accrue more miles. The heterogeneity of 

ሶݑ  ሺݐሻ ൌ ቆݕሶሺݐሻ െ ߜ ൬ݕሺݐሻ െ
݀ܿ
ݑ݀
൰ െ

݀ଶܿ
ܷ݀ݑ݀

ݑ ൅
݀ܿ
ܷ݀

ቇ
݀ଶܿ
ଶݑ݀

൘  (4.1)

ሶݑ  ሺݐሻ ൌ ൭ݕሶሺݐሻ െ ߜ ൬ݕሺݐሻ െ
݀ܿ
ݑ݀
൰൱

݀ଶܿ
ଶݑ݀

൘ . (4.2)
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competency in the industry is also a factor; some carriers are more sophisticated and 
operate trucks at a high intensity while others are not as efficient in finding and satisfying 
shipments. Another factor could be that older trucks spend a greater proportion of their 
time getting serviced and maintained as opposed to fulfilling shipments.   

All of these factors, and others that could be conjectured, are similar in that they do not 
result from a cost-optimization of operations—equation (4.1) could not have predicted 
them. Instead, they result from understanding that carriers operate in a highly constrained 
environment, where they do not have much room to optimize. It is almost always the case 
that trucking is just one of the many components of complex supply chains, leading their 
priorities to come behind those of shippers.  

This research models truck utilization as resulting from the operational constraints that 
carriers face, which include the wait time between shipments, the loading time of trailers, 
the spatial and geographical characteristics of shipments, the time that trucks spend out-of-
service, the level of roadway congestion, and the Hours-of-Service regulations, among 
others. All of these represent constraints that carriers face in the supply of trucking service, 
and therefore are the critical determinants of how trucks are utilized. These constraints also 
vary considerably for different types of service.  

The TSO model provided a thorough representation of the costs that trucking companies 
face, but it expressed their constraints in the aggregate in a manner that did not provide 
much additional insights. The TSTS model seeks to build on the TSO model by specifying 
the constraints more realistically, considering the spatial distribution of shipment demand 
and the ability of physically constrained truck fleets to meet this demand. This 
methodological improvement allows truck utilization to be modeled endogenously, which 
in turn improves the modeling of inter-temporal investment decisions in this industry. 
Arguably the most important of which involves the purchase of FSTs, which significantly 
impacts the costs and emissions of trucking. 

 

4.3 23BModel Outline  

The schematic in Figure 33 outlines the various components of the TSTS model. At its 
core lies the same optimization framework used in the TSO model, where carriers select 
an optimal truck purchase rate ܲ∗, average truck retirement odometer തܺ∗, and level of 
investment in FSTs ߛ∗, in order to minimize discounted average costs ݕ∗. Just as in the 
TSO model, the sector is assumed to operate competitively in the long-run such that 
trucking services are priced by the market at the point where discounted average costs are 
minimized. In addition to these variables, in the TSTS model carriers also select an optimal 
utilization function ݔ ൌ ܷሺݏሻ.  These decisions in turn determine the fuel economy and 
LCA GHG emissions of the sector.  

The responses of the sector are modeled based on a vector ܧ	that summarizes the costs and 
regulations that carriers face; a vector ܶ ௝

	 that indicates the time it takes the trucking industry 
to supply a trip of type ݆; a vector ௝݊

஻ that indicates the baseline shipper demand for truck 
trips of length ݆, a vector ܮ௝

	  that indicates the length of trips of type ݆ (which is assumed to 
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be the most important characteristic differentiating truck trips); and a parameter ߝ that 
relates to the variance of truck retirements. This parameter is used in the TSTS model to 
capture some heterogeneity in truck retirements, which is an improvement over the TSO 
model which assumed that all trucks purchased in the same year retire at the same time. 
More details about all of these variables and parameters are presented in the following 
sections.  

 

 

Figure 33: Schematic of the TSTS model  

 

While the TSTS model (as described in the following sections) makes improvements of 
the TSO model by (i) modeling truck utilization endogenously, (ii) considering the spatial 
distribution of demand, (iii) considering trucking performance, and (iv) assuming trucks 
retire probabilistically, it has several limitations relative to the TSO model. The TSTS 
model (i) is a long-run model that does not track the dynamics of the vehicle stock, and (ii) 
assumes that mitigation strategies are applied to the whole truck fleet—disregarding issues 
of policy boundaries. It is theoretically possible to remove the first of these limitations, but 
because of the addition of new variables the state-space of the problem would have 
increased significantly beyond our computational capabilities. The problem would have to 
be reformulated differently, perhaps as a linear program, to be able to be solved. Also, it 
was not obvious how to model truck utilization in non-steady truck fleets that are changing 
throughout time to consider the dynamics of the stock of trucks. On the other hand, the 
second limitation can be eliminated trivially, but it was decided it would not add much to 
the results while complicating their presentation.  
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4.4 24BCarrier Model: Deterministic Truck Retirements  

First, the TSTS model is introduced with the simplification that trucks retire 
deterministically, that is, that all truck purchased in a given year retire at the same time. 
This is relaxed in the next section.    

Instead of specifying shipper’s demand for trucking services in the aggregate as ܦ 
[miles/year] as in the TSO model, the unit of demand is now defined to be the number of 
truck trips demanded in particular trip segment. Assume that the total demand for truck 
trips each year in a large area is denoted as ܰ. These trips occur unevenly between a large 
number of origin-destination pairs. Suppose that trips can be categorized into segments 
indexed by  ݆ ൌ 1,2, … ,݉ depending on common characteristics. In this analysis it is 
assumed that the single characteristic that distinguishes trips is their distance, which is 
defined as ܮ௝ [miles]. The number of truck trips demanded in each segment is ௝݊ 
[trips/year]. The set of ௝݊ and ܮ௝ captures the spatial distribution of trucking demand. By 
construction assume that ܮ௝ାଵ ൐  ௝. The demand for trucking mileage in each segment isܮ

௝ܦ  ൌ ௝݊ܮ௝			 (4.3)

Carriers meet this demand with a certain performance (time per trip) that is a function of 
the travel speeds of trucks, the delay due to congestion, the rest schedule of drivers, the 
waiting time between trip assignments, the loading time of trucks, etc. The performance of 
carriers is described with a simple function ܶ ሺܮሻ, that indicates the time [in years] required 
to complete a trip of length ܮ, including all waiting and overhead times. To simply the 
notation, ܶ൫ܮ௝൯ is replaced with ௝ܶ.  

The number of trucks  ܨ needed in segment ݆ to meet demand ௝݊ is 

௝ܨ  ൌ ௝݊ ௝ܶ			 (4.4)

noting that 1/ ௝ܶ is the number of trips of type ݆ that a single truck can supply per year. All 
downtimes are already included in ௝ܶ. The total size of the truck fleet can be found as ∑ܨ௝ 
and the total mileage demand can be found as ∑ܦ௝. 

A core assumption is that carriers operate trucks differently in each trip segment, 
essentially segmenting their truck fleet to match the segmentation of shippers demand. As 
shown in Figure 34, truck fleet segments are indexed by ݅ ൌ 1, 2, … ,݉	 were in this case 
݉ ൌ 3.	Truck operations are stationary (invariant with time), with trucks being purchased 
at ܲ [trucks /year] and retired at ܺ [odometer]. Trucks are purchased into segment ݅ ൌ 1, 
where they operate exclusively until they reach odometer ݔଵ, and transition to the next 
segment,  ݅ ൌ 2. This continues until ܺ ≡  ଷ, where trucks operate in their last segmentݔ
and are retired. The reasonableness of this characterization of truck fleets depends on the 
characteristics of the trucking industry being studied and the coarseness of the 
segmentation used by the modeler. These issues are discussed in the results section.  
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The intensity at which trucks are utilized in each segment is defined as ݑଵ [miles/year]. 
This figure shows the case where ݑ௜ ൐  ௜ାଵ, which conforms to the empirical evidence thatݑ
older trucks are driven less intensely. 

 

Figure 34: Stationary segmented truck fleet 

 

For this segmented stationary truck fleet the truck utilization function ݔ ൌ ܷሺݏሻ can be 
described by 

௜ݔ  ൌ ෍ݑ௞ሺݏ௞ െ ௞ିଵሻݏ

௜

௞ୀଵ

 (4.5)

where ݏ௜ is the age [years] at which trucks transition from segment ݅ to ݅ ൅ 1. Note that ݔ଴, 
଴ݏ ൌ 0, and that following previous notation the salvage age ܵ ≡  .ଷݏ

Using the logic in (2.1), the mileage supplied by segment ݅ of the truck fleet is 

 ߰௜ ൌ ሺݔ௜ െ ௜ିଵሻܲ (4.6)ݔ

and using the logic (2.2) the size of truck fleet segment ݅ is  

௜ܨ  ൌ ሺݏ௜ െ ௜ିଵሻܲ (4.7)ݏ

Truck fleet segments ݅ are assigned to demand segments ݆ assuming that newer trucks 
(lower ݅) operate in the demand segments with longer trips (higher ݆). This agrees with 
empirical evidence (VIUS 2002) which indicates that trucks typically start off their lives 
providing long-haul interstate service and then are demoted to shorter-haul services as they 
age. This explains why drayage trucks are on average older. Note that by construction the 
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number of fleet segments must equal the number of demand segments, therefore the 
correspondence identity can be expressed as 

  ݅ ൌ ݉ െ ݆ (4.8)

In their operations, carriers need to satisfy two constraints, (I) the demand for trucking 
mileage in each segment must be met and (II) this demand must be satisfied with a feasible 
number of trucks. Both of these are related but separate constraints.  

Constraint (I) can be formulated by equating (4.3) to (4.6), obtaining  

 ௝݊ܮ௝ ൑ ܲሺݔ௜ െ ௜ିଵሻ (4.9)ݔ

and constrain (II) can be formulated by equating (4.4) to (4.7), obtaining  

 ௝݊ ௝ܶ ൑ ܲሺݏ௜ െ ௜ିଵሻ (4.10)ݏ

where the index correspondence is provided by (4.8).  

Constrain (4.10) states that enough trucks need to operate in each segment to supply the 
required mileage, given that each truck can only supply 1/ ௝ܶ trips per year. Dividing (4.9) 
by (4.10) leads to  

௜ݑ  ≡
௜ݔ െ ௜ିଵݔ
௜ݏ െ ௜ିଵݏ

ൌ
௝ܮ
௝ܶ
 (4.11)

which allows us to determine the rate at which trucks need to be driven in each segment as 
a function of the inputs ܮ௝ and ௝ܶ. 

The truck utilization function ݔ௜ ൌ ܷሺݏ௜ሻ is represented by the parametric equations  

௜ݔ  ൌ ෍ ௝݊ܮ௝/ܲ	

௠ି௜

௝ୀ௠

							 ௜ݏ ൌ ෍ ௝݊ ௝ܶ/ܲ

௠ି௜

௝ୀ௠

 (4.12)

where ܲ is determined endogenously with the set of ݔ௜ and ݏ௜, and with the other variables 
that carriers control. To do this, the first order conditions for operating in this industry need 
to be derived.  

The stream of profits from operating this truck fleet for one cycle can be expressed as 
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π ൌ ܲ෍න ݏ݀ݕሺ௫/௨೔ା௦೔షభሻߚ
௫೔

௫೔షభ

௠

௜ୀଵ

െ ܲ෍න ሻݔሺܯሺ௫/௨೔ା௦೔షభሻሾߚ 	൅ ܱሺߛሻሿ݀ݔ
௫೔

௫೔షభ

௠

௜ୀଵ

	

െ ሻߛሺܣܲ ൅ ,ߛ௦೘ܸሺߚܲ ௠ሻݔ  

(4.13)

where the first term sums the discounted revenues from operating at a market price ݕ 
[$/mile] in all segments. The second term subtracts the discounted variable costs of 
maintaining trucks, which are represented by a function ܯሺݔሻ such that ܯ′ሺݔሻ ൐ 0 and 
ሻݔሺ′′ܯ ൒ 0, capturing the fact that trucks get more expensive to maintain as they age, and 
also subtracts the discounted variable costs of operating trucks, which are represented by a 
function ܱሺߛሻ such that ܱ′ሺߛሻ ൏ 0, where ߛ ∊ ሾ0,1ሻ is a scalar representing the proportion 
of fuel consumption saved by investments in FSTs. The third term subtracts the capital 
costs of trucks, which are represented by a function ܣሺߛሻ, where ܣ′ሺߛሻ ൐ 0 and ܣ′′ሺߛሻ ൐
0, such that there are diminishing returns to investing in additional FSTs. The purchasing 
price of a truck without FSTs is ܣሺ0ሻ ൌ  ௣. The final term sums the discounted salvageܣ
value of retiring trucks of technology ߛ at odometer ݔ௠, which are represented by a function  
ܸሺߛ, ܺሻ. 

Similarly as in the derivation of (2.5), the trucking industry is assumed to operate 
competitively in the long-run, such that carriers will operate at the point where discounted 
average costs are minimized, which can be found by equating to zero the partial derivatives 
of   

ݕ  ൌ
∑ ׬ ሻݔሺܯሺ௫/௨೔ା௦೔షభሻሾߚ ൅ ܱሺߛሻሿ݀ݔ ൅ ሻߛሺܣ െ ,ߛ௦೘ܸሺߚ ௠ሻݔ

௫೔
௫೔షభ

௠
௜ୀଵ

∑ ׬ ݔሺ௫/௨೔ା௦೔షభሻ݀ߚ
௫೔
௫೔షభ

௠
௜ୀଵ

 (4.14)

while making sure that constraints (4.9) and (4.10) are satisfied, and with ݏ௜, 	ݔ௜ and ݑ௜ 
coming from (4.12) and (4.11) respectively.  

Even though an analytical solution was not found for this problem using various 
specifications of ܯሺݔሻ, ܱሺߛሻ, ܣሺߛሻ and ܸሺߛ, ܺሻ, it can be solved numerically easily.  

Note that truck utilization enters into (4.14) through the discounting of the costs only. As 
explained before, truck utilization behavior does not affect costs if there is no discounting, 
however, there are good reasons to believe that trucking companies do discount the future 
heavily, especially for decisions that are made across decades, leading truck utilization to 
affect their operations significantly.   

The optimized ݕ∗ represents the long-run market price for trucking services.  
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4.5 25BCarrier Model: Probabilistic Truck Retirements  

The model presented in the previous section departs from reality in that it assumes that 
trucks retire deterministically. In reality, trucks purchased in the same year are observed to 
retire at different ages. This section describes a simple methodology for capturing some of 
this retirement heterogeneity using a survivability function in which trucks are assumed to 
retire following a log-logistic distribution. The survivability function   

 
߱ሺݔ; ,ߙ ሻߝ ൌ 1 െ

1

1 ൅ ቀߙݔቁ
ିఌ 

indicates the proportion of trucks that have retired at odometer ݔ, where ߙ and ߝ are 
parameters that can be fitted to data. However, in this model, parameter ߙ is determined 
endogenously from the carrier optimization of the average retirement odometer തܺ. Using 
the derivation for the expectation of log-logistic distributions, the survivability function is 
rewritten as   

 
߱ሺݔ; തܺ, ሻߝ ൌ

1

1 ൅ ቀ݇ఠ
ݔ
തܺቁ

ఌ (4.15)

where ݇ఠ ൌ ߨ ቀߝ ݊݅ݏ ቀగ
ఌ
ቁቁ⁄  .  

Figure 35 shows three truck survivability functions with different values for the parameter 
ߝ For the case where .ߝ → ∞ all the trucks purchased in a certain year retire at the same 
time, resulting in the same truck retirement behavior as in the TSO model. As ߝ decreases 
trucks will retire at a greater diversity of odometers. Note that survivability is specified to 
be a function of truck odometer and not age, because the underlying processes that 
determine when trucks are retired are assumed to correlate more strongly with their 
odometer.  

 

Figure 35: Truck survivability functions 
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Now, the truck survivability function can be incorporated into the model described in the 
previous section.  Constraints (4.9) and (4.10) can be rewritten as  

 ௝݊ܮ௝ ൑ ܲන ߱ሺݔ; തܺ, ݔሻ݀ߝ
௫೔

௫೔షభ

 (4.16)

and  

 ௝݊ ௝ܶ ൑ ܲሺݏ௜ െ ௜ିଵሻݏ ൭
׬ ߱ሺݔ; തܺ, ݔሻ݀ߝ
௫೔
௫೔షభ

௜ݔ െ ௜ିଵݔ
൱ (4.17)

respectively. The fraction within the parenthesis in (4.17)—which is always be lower than 
unity—captures the effect of truck retirements on the availability of trucks to satisfy 
demand. As ߝ → ∞ these equations collapse to (4.9) and (4.10) as expected.  

The discounted average costs in (4.14)(4.14)can be rewritten as  

 
ݕ ൌ

ሻߛሺܣ ൅ ∑ ׬ ሺ௫/ఝ೔ା௦೔షభሻߚ ൤߱ሺݔ; തܺ, ሻݔሺܯሻሾߝ ൅ ܱሺߛሻሿ െ
݀߱ሺݔ; തܺ, ሻߝ

ݔ݀ ܸሺߛ, ሻ൨ݔ ݔ݀
௫೔
௫೔షభ

௠
௜ୀଵ

∑ ׬ ;ݔሺ௫/ఝ೔ା௦೔షభሻ߱ሺߚ തܺ, ݔሻ݀ߝ
௫೔
௫೔షభ

௠
௜ୀଵ

 

 

(4.18)

where െ݀߱ሺݔ; തܺ, ሻߝ ⁄ݔ݀  represents the probability distribution of trucks retiring at 
odometer ݔ. Invoking the same assumptions used in the previous section, this trucking 
industry will operate at the point where ݕ is minimized, and constraints (4.16)  and (4.17) 
are satisfied.  

 

4.6 26BCarrier Performance  

Earlier it was stated that ௝ܶ can be derived from a performance function ܶ൫ܮ௝൯ that returns 
the time required to complete a trip of length ܮ௝, including all overhead times of assigning 
the truck to a shipment, loading it, etc. In this section we describe a simple model of 
trucking performance that can be used to describe this function.  

Truck performance is specified as the piecewise function 
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 ܶሺܮሻ ൌ ൞		
൬ݓௌு ൅

ܮ
ௌுݒ

൰ ௌுߪ/ ܮ ൑ ௘ܮ

൬ݓ௅ு ൅
ܮ
௅ுݒ

൰ ௅ுߪ/ ܮ ൐ ௘ܮ
 (4.19)

where ܮ௘ ൌ ሺݓௌுߪ௅ு െ ௅ுሻݓௌுߪ ቀఙ
ೄಹ

௩ಽಹ
െ ఙಽಹ

௩ೄಹ
ቁൗ 	, so that ܶሺܮሻ is continuous. ܮ௘ is a 

threshold distance that distinguishes shorter-haul operations from longer-haul operations, 
which captures the fact that the performance of short-haul trucking is likely to be 
fundamentally different to that of long-haul trucking. The waiting time ݓ is the fixed time 
per trip spent assigning a trip to a truck, loading a truck, etc. The trip speed ݒ is the on-
road speed at which trucks are driven, including congestion, intermediary stops, etc. 
Variable ߪ represents the proportion of a day that trucks are in operations. For long-
trucking this last parameter will be affected by the Hours-of-Service regulations that 
presently exist in the US. For short-haul trucking this variable would depend on whether 
trucks are utilized at night and on other constraints.  

 

4.7 27BShipper Model and Equilibrium  

In this model shippers are represented similarly as in the TSO Model (described in Section 
2.1.3).The main difference is that shipper response elasticities need to be specified for the 
unit of demand of this model, which is the number of truck trips demanded in different 
market segments.  

The number of truck trips demanded in each segment ௝݊ can be found through the identity  

where ܳ௝ is the quantity of goods shipped by truck [tons/year] and ݒ௝ is the shipment size 

[tons/trip]. The elasticity ݁௡
௝ , which indicates how the number of truck trips demanded in 

each segment ݆ changes w.r.t. the trucking market price ݕ, can be derived from (4.20) as 

where ݁ொ
௝  is the elasticity of changes in the quantity of goods shipped w.r.t. trucking costs 

and where ݁௩
௝ is the elasticity of changes in the shipment size w.r.t. trucking costs. There 

exist many empirical studies that attempt to estimate ݁ொ
௝  through various econometric 

techniques. However, there are much fewer, if any, empirical studies into ݁௩
௝. Therefore, a 

simple Economic Order Quantity (EOQ) model of inventories was used to provide a 
reasonable estimate of ݁௩

௝. By minimizing per-ton transportation costs and inventory costs 

 ௝݊ ൌ
ܳ௝
௝ݒ

 (4.20)

 ݁௡
௝ ൌ ݁ொ

௝ െ ݁௩
௝ 
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the optimal shipment size in each segment ݆ can be derived as ݒ௝
∗ ൌ ඥݕ	ܮ௝2ܳ௝ ߶௝⁄ , where 

߶௝ [$/year-ton] is a measure of the time-costs of holding inventories. Substituting ݒ௝
∗ into 

(4.20), ௝݊ can be expressed as  

Solving for ݁௡
௝ ൌ

ௗ௡ೕ
ௗ௬

௬

௡ೕ
 using ݁ொ and ݁௅ results in 

where ݁௅
௝ captures the effect of decreasing shipment sizes as the length of trips decreases 

with trucking costs. Using the fact that the elasticity of ton-miles is defined as ݁௄ ൌ ݁ொ ൅
݁௅, (4.22) can be rewritten as   

Therefore, the elasticity of trip demand ሺ݊ሻ can be approximated from estimates for the 
elasticity of tons shipped ሺܳሻ and elasticity of ton-miles shipped (ܭሻ, which are two 
parameters commonly estimated in the literature. 

Using this approximation, for reasonably small changes in trucking costs 	ݕ, the demand 
function for truck trips in each segment can be specified as 

The equilibrium between shippers and carriers is obtained by solving the carrier and 
shipper models iteratively as described in Section 2.1.4. 
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5 7BCalifornia Case Study: TSTS Model 

Three case studies are presented that demonstrate the ability of the TSTS model to analyze: 
(i) the interrelationships between FST investments and the management of truck fleets 
(FMO and LDS responses), (ii) the impact of mode-shifts on the optimal management of 
truck fleets (FMO and LDS responses), and (iii) the effectiveness of FST regulations with 
odometer cutoffs.  

The analysis in (i) is possible because the model represents how carriers make decisions 
about the utilization of their vehicles, which affects time related costs and intertemporal 
tradeoffs (FST investments); the analysis (ii) is possible because the model represents 
trucking operations and shipper demand spatially, which are affected differentially by 
mode-shifts; and the analysis (iii) is possible because the model represents some of the 
heterogeneity in truck retirements, and thus is able to capture better the proportion of trucks 
that fall under particular regulations. The TSTS model allows us to study aspects of the 
trucking sector that could not be studied with the TSO model. 

 

5.1 28BData Sources  

There are several types of data needed to furnish this model, including data on the costs 
that carrier’s face, data on the performance of truck fleets to supply trucking services of 
different types, and data on the spatial distribution of demand. Each of these types of data 
are discussed in detail in the following sections.  

 

5.1.1 74BSpatial Distribution of Demand 

As described in the previous section, the demand for trucking is now specified for each trip 
type ݆ as the number of trips demanded ௝݊ and the average driving distance of these trips 
 ௝. Data on particular truck trips is not available in the US, but it can be reasonablyܮ
approximated using data on the flow of commodities and the average truck payloads of 
shipping these commodities. The most complete commodity flow data publicly available 
in the US is the Freight Analysis Framework v2.2 (FAF2.2) prepared by Federal Highway 
Administration. This dataset, which builds on the Commodity Flow Survey dataset, 
contains an estimate of the tons and value of commodities shipped by truck (and other 
modes) between over one hundred zones in the US. However, all shipments to and from 
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California are aggregated in just 4 zones within the State. This makes it very difficult to 
use this dataset to study the characteristic of the demand for trucking in California. 
Fortunately, Cambridge Systems (2009) disaggregated these commodity flows to the 
county level using socioeconomic data. This enhanced dataset is used to develop a 
reasonable estimate of ௝݊ with refined spatial attributes.   

More precisely, the disaggregated FAF2.2 dataset provides an estimate of the tonnage ܶ	of 
commodities ܿ that is shipped from origins ݋ to destinations ݀ using various transportation 
modes. Just considering shipments made by truck to and from zones in California, the 
FAF2.2 dataset can be represented with parameters ܶ ௢ௗ௖. An external dataset was then used 
to obtain the distances between all of the origins and destinations in this survey; this 
information was represented with ܮ௢ௗ. Data from Alam and Rajamanickam (2007), shown 
in Table 7, was used to determine the average shipment size for different commodities, 
which is represented with ௖ܸ.  

 

Table 7: US average payloads for 5-axle combination trucks (Alam and 
Rajamanickam 2007) 

SCTG2 Commodities  
Average 
Payload 
(Tons) 

SCTG2 Commodities 
Average 
Payload 
(Tons) 

SCTG2 Commodities 
Average 
Payload 
(Tons) 

1 Live animals/fish 20.8 15 Coal 24.4 29 Printed prods. 17.8 

2 Cereal grains 24.8 16 Crude petroleum 21.5 30 Textiles/leather 22.0 

3 Other agricultural prod 20.9 17 Gasoline 27.0 31 Nonmetal min. prods. 23.9 

4 Animal feed 22.3 18 Fuel oils 26.0 32 Base metals 20.3 

5 Meat/seafood 21.8 19 Coal-n.e.c. 24.4 33 Articles-base metal 20.0 

6 Milled grain prods. 20.4 20 Basic chemicals 22.0 34 Machinery 18.8 

7 Other foodstuffs 21.8 21 Pharmaceuticals 15.6 35 Electronics 19.8 

8 Alcoholic beverages 21.9 22 Fertilizers 22.7 36 Motorized vehicles 18.2 

9 Tobacco prods. 21.2 23 Chemical prods. 22.8 37 Transport equip. 22.5 

10 Building stone 20.9 24 Plastics/rubber 19.1 38 Precision instruments 17.5 

11 Natural sands 23.6 25 Logs 24.8 39 Furniture 18.7 

12 Gravel 22.8 26 Wood prods. 21.7 40 Misc. mfg. prods. 23.6 

13 Nonmetallic minerals 23.9 27 Newsprint/paper 21.1 41 Waste/scrap 21.5 

14 Metallic ores 26.2 28 Paper articles 20.4 43 Mixed freight 19.5 

 

Many different types of trucks can be used to transport the commodity flows in FAF2.2, 
but we are only interested in those trucks that are part of the Core T7 fleet. Therefore the 
data shown in Figure 36 was used to determine the proportion of truck trips that are 
performed by this specific truck type. A variable ݌௛ሺܮሻ was defined that indicates the 
proportion of truck trips at a certain trip length ܮ that are performed by trucks of type ݄. 
Finally, data from Alam and Rajamanickam (2007) shows that the proportion of trips 
performed by class-8 heavy duty trucks that are empty is 	ݎ௘ ൌ .19. 
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Figure 36: Nationwide composition of truck type by trip length (Battelle 2011) 

 

The process to estimate  ௝݊ can be summarized by 

 ௝݊ ൌ ෍ ෍
1

1 െ ௘ݎ
௢ܶௗ௖݌௞ሺܮ௢ௗሻ/ ௖ܸ

	

∀௖

	

∀௢ௗ|௅೚೏∈௟ೕ

 (5.1)

where ∀ܮ|݀݋௢ௗ ∈ ௝݈ identifies set of origin-destination pairs ݀݋ that have a length ܮ௢ௗ that 
lies within the trip length segment ௝݈. By assuming trip length segments that are relatively 
fine (almost continuous) we can use the approach summarized in (5.1) to estimate the 
distribution of truck trips by trip length and distribution of trucking mileage by trip length. 
The cumulative distributions of both of these types of data are shown in Figure 37. From 
these two figures it is clear that while intercity trips within California are responsible for 
the bulk of numbers of trips made, that interstate trips account for most of the mileage from 
this truck fleet. In fact, the mileage demand for intracity trips in California (short-haul 
drayage) is almost insignificant.  
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Figure 37: Distributions of a) trip demand and b) mileage demand by trip distance 

To reduce the size of the optimization problem (to be able to run various policy scenarios 
with reasonable runtimes), the demand information shown above was discretized into three 
segments: trips shorter than 100 miles, trips longer than 100 miles but lower than 500 miles, 
and trips longer than 500 miles. These trips distances were selected because they represent 
soft thresholds across which trucking operations are different. Truck trips less than 100 
miles are most often drayage trips between ports, intermodal facilities, retail outlets, and 
regional distribution centers. These trips some shared characteristics. The second threshold 
was selected at 500 miles because this is the distance that trucks typically cover in 1 day, 
and because Figure 37  shows a kink at this distance. This discretization was also used to 
specify the shipper response elasticities. This three-level discretization produced similar 
result to finer ones for the circumstances of this study. 

 

5.1.2 75BCost Data 

The TSTS model uses the same cost data described in Section 3.1 and summarized in Table 
3. The only difference is that now truck fuel economy was assumed to improve at 1% per 
year.  

 

5.1.3 76BTruck Performance  

The parameters used to characterize the truck fleet performance function (4.19) were 
determined by starting off with averages calculated from the VIUS (2002) and then 
calibrating them to match the truck utilization behavior observed in the EMFAC 2011 
inventory model. The parameters selected are shown in Table 8. 

.  

Table 8: Parameter values of trucking performance 

Parameters Short-Haul Long-Haul 
Waiting time per trip ݓ [hrs/trip] 5.0 18.4 
Commercial speed  ݒ [mi/hr] 20.1 40.0 
Proportion of use  ߪ  [unitless] 0.5 0.4 
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The commercial speed of short-haul trucking is smaller than that of long-haul trucking 
because those trucks spend a greater proportion of their operations in urban centers, being 
slowed down by congestion and driving slower on arterial roads. Long-haul trucks still face 
some congestion, but trucks are able to average higher speeds on rural highways. Their 
commercial speed should consider the truck stops and weight checks that are not already 
captured explicitly by ߪ. Lastly, the waiting time per trip for short-haul trucking is smaller 
than for long-haul trucking because they are more often providing a recurring service 
(drayage operations), reducing the time for assigning trips and loading merchandise. Long-
haul trucking have longer wait times per trip, because trips are less frequent and usually 
not recurring. Also, shipments are likely to be larger, taking more time to load the truck.  

As described above, parameter ߪ represents the proportion of time that trucks are used 
throughout the day. Therefore, the values in Table 8Figure 8 imply that short-haul and 
long-haul trucks only make deliveries throughout the day time. Unless there exists a 
specific night delivery program—like the one that has been very successful in New York 
City—it is reasonable to assume that short-haul trucks do not operate at night. On the other 
hand, in the US, long-haul truckers have Hours-of-Service regulations that limit the number 
of hours that truckers can operate their vehicles. These regulations are somewhat complex, 
with various exemptions and rules, but the end result is that long-haul trucks can only be 
operated for about 40-35% of the time (with some exceptions). Therefore its value of ߪ 
was assumed to be 0.4.  

The truck fleet performance function described above represents a reasonable 
approximation of the ability of California’s heavy-duty truck fleet to service shipments. 
Future research could develop more complex truck fleet performance functions that 
incorporate information about local geography, local speed limits, local congestion and 
local trip assignment procedures, etc. These functions can also capture heterogeneity in 
trucking operations by specifying a distribution for the relevant parameters. Some 
information about the performance of truck fleets is available in the discontinued VIUS 
(2002) dataset. However, a new survey is required to better specify this part of the model, 
without it, these values suffice to demonstrate the methodologies. 

 

5.1.4 77BDispersion of truck Retirements  

As described in Section 4.4, one of the key advantages of the TSTS model is the ability to 
capture some heterogeneity in truck retirements by assuming that truck survival follows a 
log-logistic distribution.  This distribution of truck retirements has an expectation of തܺ, by 
construction, and a variance that is a function of both തܺ and a parameter ߝ. So, for any 
given variable തܺ (which is being optimized in the TSTS model), the variance of truck 
retirements is determined by ߝ. The analyst should calibrate and tweak ߝ, in conjunction 
with the truck performance parameters in Table 8, so that the model best predicts responses 
in the trucking industry.  

Figure 38 compares the operations of the operations of the trucking industry in the TSTS 
model under various assumptions of ߝ to the operations of the trucking industry in reality 
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as seen in the EMFAC 2011 model. The figure on the left shows the proportion of trucks 
remaining after a certain odometer and the figure on the right shows the utilization rate ߮ 
of trucks as they age. The TSTS model results were obtained using the cost parameters 
shown in Section 5.1.2 and performance parameters in Table 8. In this figure it can be seen 
how i) the TSTS model captures some of the heterogeneity in truck retirements currently 
observed (albeit not all of it)3F

5, and ii) is able to reproduce very accurately the truck 
utilization behavior currently observed. Further tweaking of  ݒ ,ݓ ,ߝ and ߪ should achieve 
even better results.  

  

 

Figure 38: Comparison between EMFAC 2011 model and TSTS model for different 
values of ε 

 

5.1.5 78BShipper Elasticity  

An understanding of how ݁௡
௝  varies with trip length can be developed by using the 

relationship ݁௡
௝ ൌ ݁ொ

௝ െ ݁௩
௝ shown in Section 4.6. Realistic values of ݁ொ

௝  should be negative 

while realistic values of ݁௩
௝ should be positive, because ݒ	∗ ∝ ඥݕ. A reasonable assumption 

that can be made is that ݁ொ
௝  is more negative for longer-haul trips than for short-haul trips, 

because: (1) in these trips there exist more opportunities for mode-shifts, especially to 
railroads, and (2) the trucking costs incurred in these trips are probably a larger component 
of total supply chain costs. On the other hand, it is likely that ݁௩

௝ is less positive for longer-
haul trips because a greater proportion of them will be weight constrained, as ݒ௦∗ ∝ ඥܮ௝.  

The shipper response elasticity parameters used in this analysis can be found in Table 9. 
These values were detemrined based on the qualitative understanding of shippers responses 
outlined above and engineering judgement. Future studies should invest more effort on 
attempting to estimate these paramters using behavioral data or on surveying the literature 

                                                 

5 The very sharp retirement of trucks in the EMFAC 2011 model seems implausible in reality.  



 

94 
 

to get more acurage values. However, the values in this table represent reasonable 
approximations that allow us to demostrate the usefulness of some of the more innovative 
components of the TSTS model.  

 

Table 9: Shipper Responsiveness in TSTS Model 

 ௝ Rangeܮ ݆
(mi) 

݁ொ
௝  ݁௩

௝ ݁௡
௝  

Short-Haul 0 - 100 0 0.3 -0.3 
Medium-Haul 100 - 500 -0.5 0 -0.5 

Long-Haul 500 + -1.0 0 -1.0 
 

These elasticities can now be used in equation (4.24) to characterize responses in the 
demand for truck trips with changes in the market price ݕ. Note that in this model all truck 
trips face the same market price ݕ [$/mile]. This represents an approximation because in 
reality it is observed that the per-mile price of long-haul transportation is different than that 
of short-haul transportation. This market price could also vary geographically and with the 
characteristics of the trucks. However, in this version of the model it is assumed that trucks 
are owned by only one carrier throughout their lives, and that carriers determine the market 
price for trucking services based on their anticipated operations of that truck throughout its 
life. Under these assumptions, carriers would not gain from varying the market price 
strategically by trip-type because they face all of the costs that the truck will incur.  

 

5.2 29BAnalysis of Mitigation Strategies 

5.2.1 80BImprovements in Trucking Performance  

This case study explores the effect that changes in the performance of trucking can have 
on their investments in FSTs, and ultimately on their GHG emissions. Most truck mileage 
(and fuel combustion) occurs on long-haul trips. Therefore, this case study focuses on the 
impacts of changing the long-haul portion of the performance function, which can occur 
by improving highways, reducing congestion, better coordinating shipments and reducing 
loading times. Operations are observed in the year 2020 because this represents a long-
term model of the sector. Figure 39 summarizes the impact of these changes on GHG 
emissions. As trucking performance improves, with either ݒ௅ு increasing or ݓ௅ு 
decreasing, the life-cycle GHG emissions of the sector decrease. Note that changes in ݒ௅ு 
are plotted on the left vertical axis and changes in ݓ௅ு are plotted on the right vertical axis. 
The results are shown for different discount factors, because as mentioned earlier, there are 
many indications that trucking companies discount the future heavily, impart because of 
existing market failures. Future research should attempt to quantify this discount factor 
empirically.  

Before delving into the reasons behind these responses, it is interesting to note that their 
magnitude as shown in Figure 39 is quite significant. The total GHG emissions in 2020 of 
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California’s HD truck fleet have been estimated to be 123.4 MMTCO2 (EMFAC 2011). 
Even modest changes in trucking performance reduce emissions by several percentage 
points.  

 

 

Figure 39: Reductions of GHG emissions from improvements in long-haul trucking 
performance in 2020 

As expected, Figure 39 clearly shows that if carriers discount the future more heavily 
(lower discount factor) the changes in trucking performance have a greater effect on 
emissions. This occurs because the time savings that result from improving trucking 
performance will affect trucking operations more as time becomes more costly. This figure 
also shows how the effect of improving ݒ௅ு is proportionally higher than improving ݓ௅ு; 
because of this, the remainder of this paper focuses only on improvements in ݒ௅ு.  

Changing ݒ௅ு will have the most direct impact on truck utilization. Figure 40 shows that 
indeed, increasing ݒ௅ு will allow trucks to supply more mileage per year, as they complete 
trips quicker. The utilization function in this figure has three discrete steps corresponding 
to the shipment demand discretization introduced earlier. Note that only the utilization 
intensity of trucks in the first segment increases, because these are the trucks involved in 
long-haul transportation that benefit from improvements in ݒ௅ு. For the other segments, 
the rate at which trucks can supply miles does not change. However, the ages at which 
trucks transition from one segment to another ݏ௜ do change, because at higher initial 
utilization rates trucks can meet the demand for trips sooner. 
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Figure 40: Effect of long-haul commercial speed on truck utilization 

 

Changes in truck utilization will affect the decisions that carriers make because future costs 
will be weighed differently. Figure 41 contains four contour plots that describe, for 
different discount factors, the effect that changes in ݒ௅ு  will have on (a) GHG emissions, 
(b) truck purchases, (c) average fleet fuel economy and (d) mileage demand. Through these 
plots three channels can be identified for how increases in ݒ௅ு  impact GHG emissions.  

First, it reduces the time-costs from discounting, because trucks can reach their optimal 
retirement odometer sooner in time. This results in a lower market price ݕ, which leads 
shippers to demand more trucking services as seen in Figure 41d. This ‘rebound’ effect 
will offset some of the reductions in emissions achieved through the other channels 
discussed below. The simple shipper model used assumes that shippers only care about ݕ, 
when in reality they also care about shipping times. In this respect, increasing ݒ௅ு will lead 
to even larger demand responses because shipping times are also being reduced at the same 
time that ݕ is being reduced. This additional channel should be explored in future research, 
because it could end up being very significant.   

The second and third channels have the effect of reducing emissions. The strongest of these 
relates to the increase in average fuel economy seen in Figure 41c. This occurs because 
speeding up the utilization of trucks leads carriers to value more the future fuel savings that 
can be achieved with investments in FSTs, because they occur sooner and are therefore 
discounted less heavily. On the other hand, the weaker channel that affects emissions, 
relates to changes in the truck purchase rate ܲ precipitated by changes in both the optimal 
average truck retirement തܺ and the demand for trucking ܦ, through the relationship ܲ ൌ
߰/ തܺ, were at equilibrium ܦ ൌ ߰. Both തܺ and ܦ are changing endogenously with ݒ௅ு, but 
have an indeterminate impact on ܲ because the fraction ߰/ തܺ can increase or decrease. For 
the cost parameters used in this model, this crossover of responses occurs at around ߚ ൎ
0.85.   
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Figure 41: Industry responses with improvement in long-haul speed 

 

The reduction of emissions shown in Figure 41a are of the order of magnitude of other 
strategies that have been considered in the literature. And in fact, based on data from Figure 
41c and Figure 41d it can be calculated that the latent demand responses offset from 40 - 
50% of the emission reductions that result from improvements in fuel economy. However, 
the value of these results goes beyond suggesting opportunities for reducing emissions. 
They also demonstrate the ability of the TSTS model to (i) predict responses in truck 
utilization, (ii) capture the effect of some market failures on the operations of the trucking 
sector, (iii) capture some heterogeneity in truck retirements, and (iii) link truck 
performance to long-term investment decisions. These represent significant improvements 
over the TSO model and over the broader research literature in general. 

 

5.2.2 79BMode shifts  

Shifting shipments from the truck mode to other modes (primarily rail) will also affect how 
carriers manage their truck fleets in two important ways, one obvious and one not so 
obvious. The obvious impact will be that the total demand for trucking will be reduced, 
decreasing truck VMT and GHG emissions from all sources. Mode-shifts will also cause 
secondary impacts on the truck fleet by changing the spatial distribution of demand. The 
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values in Table 9 summarize the understanding that mode-shifts are more likely to happen 
in longer trips. This is because trucking companies compete more directly with railroads 
for these types of shipments. Therefore, disproportionate reductions in long-haul trips vs. 
short-haul trips will change the distribution of trip types that trucks have to supply 
throughout their lives, which will change how carriers should use trucks optimally.  

First, we need to determine how the spatial distribution of demand will change with mode-
shifts. For this, we utilize the FAF2.2 dataset described in Section 5.1.1. This data allows 
us to compare the competitiveness of railroad transportation and trucking transportation 
for different OD pairs for each commodity. The simple approach taken here is to identify 
all of the commodity flows for which the mode-split of trucking is less than a certain value 
  ,௘ݎ

 
௢ܶௗ௖

ܴ௢ௗ௖ ൅ ௢ܶௗ௖
൏ ௘ݎ 						 ⩝ (5.2) ܿ݀݋

and shift these flows to rail. As  ݎ௘ is increased from 0 to 1 and competitive flows are 
identified, an estimate for how mode-shifts affect the distribution of trucking demand can 
be obtained. The main assumption of this estimate is that the first commodity flows to shift 
from truck to rail will be those that are most competitive. More elaborate methodologies 
could be used to generate mode-shift scenarios that are more realistic, but the approach 
described above suffices for the purpose of this dissertation. The resulting distributions of 
trip demand for four different mode-shift scenarios are shown in Figure 42. Here we can 
observe that, indeed, mode-shifts occur primarily in long-haul transportation.   

 

Figure 42: Trip distribution after different mode-shifts 

 

1.00E+00

1.20E+00

1.40E+00

1.60E+00

1.80E+00

2.00E+00

2.20E+00

2.40E+00

2.60E+00

2.80E+00

0 500 1000 1500 2000 2500 3000 3500 4000

C
u

m
u

la
ti

ve
 N

u
m

b
er

 o
f 

T
ri

p
s

Trip Distance (mi)

0%

3%

6%

10%



 

99 
 

The TSTS model is then used to evaluate how carriers might react to these different demand 
scenarios. The results are shown in Figure 43. The biggest responses that we observe is 
that the total mileage demanded ܦ of carriers will decrease substantially. At the point where 
10% of shipments made by truck are diverted to rail you see that aggregate trucking 
mileage has decreased by around 25%. This is because long-haul shipments are diverting 
more readily.  

 

 

Figure 43: Effect of mode-shifts on trucking operations 

 

From Figure 43 we also see that truck purchases decrease slightly more than the demand 
for trucking mileage. This can be explained by the fact that the changing distribution of 
trucking demand leads carriers to retire trucks at a higher average odometer തܺ than before. 
In Figure 44 we observe that trucks are spending more of their mileage providing medium-
haul trips which occur later in life.    

 

Figure 44: Proportion of mileage by trip type 
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5.2.3 81BRegulation of FSTs with Yearly Mileage Cutoff  

In California a regulation was passed recently that requires all Class-8 trucks that operate 
within the state to be equipped with a certain degree of FSTs starting 2014 (this was 
modeled after a nationwide voluntary program that is currently run by the EPA). For now, 
the required level of FST investments is roughly equivalent to ߛ ൌ 0.11. However, an 
exemption was added to the legislation such that trucks that are utilized less than 50,000 
mile per year are exempt from this requirement (this cutoff utilization was increased from 
a lower level after industry backlash).  

The TSTS model can be used to analyze the effectiveness of this policy because it considers 
explicitly the decisions that carriers make about truck utilization and models truck 
retirements with a survivability curve. Figure 45 shows how this model would predict the 
industry would operate under policy scenarios where the FST regulation takes values of 
0.11 and 0.25 and the yearly mileage cutoff takes values of 40,000 mi/yr and 72,000 mi/yr. 
This figure has four subplots that show how trucks are used at different points in their 
service lives ܷ′ሺݏሻ. Subplot a) is shows how the utilization intensity of the trucks (mi/yr) 
changes as the truck age and are used to supply shorter haul trips, accruing mileage less 
intensely. Subplot b) shows the proportion of trucks that have survived up to a given 
odometer; these curves follow the log-logistic function described previously. Subplot c) 
indicates the proportion of yearly mileage supplied by trucks of different odometer. Subplot 
d) shows the cumulative distribution of fuel consumption, which indicates the relative 
sources of tailpipe emissions and their totals.  

At first glance, this subplot might appear to conflict with subplots a) and b). At the 
beginning of a truck’s life before they start to retire (say <500,000 mi), the fraction of VMT 
supplied by trucks of the same odometer remains constant (horizontal lines in subplot c) 
despite the fact that individually each of them is driven less intensely as they age 
(decreasing slopes in subplot a). A casual observer might conclude that the contribution of 
trucks of a certain age to the supply of aggregate mileage will decrease with how intensely 
they are utilized. However, this is incorrect, as illustrated in Figure 45—the contribution 
of trucks towards aggregate mileage (subplot c) only depends on proportion of truck 
retirements (subplot b). A simple way of seeing this is to take the derivative of (2.1), 
resulting in ݀߰/݀ݔ ൌ ܲ, which clearly states that the rate at which mileage supply ߰ 
changes with truck age ܺ only depends on the number of trucks available ܲ. The role of 
the ܷሺݏሻ curves shown in subplot a) is simply to determine the size of the truck fleet 
operating in each segment ݀ݔ. 

The four vertical that intersect the four subplots indicate the odometer at which trucks stop 
having to abide by the FST regulation.  

The plots in Figure 45 shows that different FST regulations can have large impacts on how 
the industry operates. First, focus on jumping from an FST regulation of 0.11 to 0.25 
keeping the cutoff constant at 40,000 mi/year. The most immediate response would be that 
carriers will retire trucks later in life so that they can accrue more fuel savings to offset the 
increased capital costs. This can be seen in the horizontal shift to the right in subplot b). As 
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trucks are used later in life, now less trucks need to be purchased to satisfy the demand of 
shippers, per equation (2.1). In this particular case truck purchases ܲ decrease by 13.9% 
(not shown in figure). From equation (4.12), a reduction of ܲ will increase the ݔ௜ at which 
trucks transition from one demand segment to another, essentially stretching the curve in 
subplot a) to the right. The intuition for this is that as less trucks are being purchased, trucks 
need to remain in the same demand segment longer to supply the demanded mileage, 
therefore slowing the rate at which truck utilization decreases (less negative slope in 
subplot a).  

Continuing with this example, the increase of FST regulation will increase the proportion 
of VMT supplied by older trucks as shown in subplot c). This can have policy implications 
if this policy is combined with a truck retirement program. And finally, in subplot d) we 
observe how the increased FST regulation does indeed reduce total fuel combustion and 
therefore tailpipe GHG emissions.  

 

 

Figure 45: Effect of different FST regulations on (a) truck utilization (b) truck 
survival (c) distribution of VMT and (d) cumulative fuel consumption.  

a) 

d) 

b) 

c) 
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Figure 46 shows four contour plots that describe how the optimal operations of the industry 
will change in response to different combinations of FST regulation and yearly mileage 
cutoff. The circles in these plots represent the current regulation which mandates ߛ ൌ 0.11 
for trucks that operate more than 50,000 mile per year. The dark contours that pass through 
these circles represent the combinations of FST regulation and mileage cutoff that leave 
the industry unchanged relative to this existing regulation.   

In subplot a) we see that indeed as the FST regulation increases the total GHG emissions 
decrease, and that cutoff mileage decrease (more trucks have to abide by FST regulation)  
emissions also decrease. Both of these responses are expected, as they depend significantly 
on the average fuel economy of the truck fleet shown in subplot c). From this plot we see 
that if the mileage cutoff is set lower than 70,000 mi/year it does not affect emissions much. 
This is primarily because relatively few trucks are operating below that threshold, but also 
because truck purchase emissions increase, which offsets some of the tailpipe emission 
reductions. This is consistent with the results of Figure 45 which indicate that as the 
mileage cutoff increases trucks retire later in life in subplot b) and therefore have lower 
truck purchase rate.  

The reduction of emissions resulting from decreases in the mileage cutoff are also offset 
by increases the demand for trucking (subplot d). As the FST regulation is applied to more 
vehicles (the mileage cutoff is decreased), the costs of trucking will decrease because any 
FST investment in this range of ߛ will decrease total costs for carriers, therefore decreasing 
the equilibrium market price and eliciting shippers to demand more transportation services. 
As explained before, the existence of various market failures in this industry is preventing 
FST investments from being made, but there is strong indication that if they are forced 
through regulation that the trucking industry will operate at lower costs. If for political 
reasons the FST regulations cannot be extended to all vehicles, and exemptions to this rule 
need to be made, then the TSTS model can used to analyze the consequences of these 
exemptions.    
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Figure 46: Long-run percent changes in trucking industry from FST regulation with 
yearly-mileage cutoff 

These contour plots do not indicate the optimal amount of FST regulation or mileage cutoff 
that governments should pursue in California. The purpose of the results of these contour 
plots is to demonstrate the various unintended impacts (increase in truck purchase rate and 
latent demand) that apparently simple policy instruments—such as the yearly mileage 
exemption—can have in the trucking industry. These unintended impacts can reduce the 
effectiveness of policy.  
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Figure 47 shows the proportion of fuel combustion that is affected by the FST regulation 
given different values of yearly mileage cutoff.  

 

Figure 47: Proportion of GHG emissions under FST regulation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

105 
 

 

6 8BConclusions  

Governmental interventions that seek to reduce the GHG emissions of the trucking sector 
and improve its sustainability need to be designed very carefully—considering potential 
unintended responses and impacts—because the quality and efficiency of this sector 
fundamentally affects our economy. Interventions should also be designed in consideration 
of the potential market failures that might be causing this industry to operate less energy 
efficiently than is cost-optimal. To accomplish all of this, policy makers require models 
that capture the key incentives, constraints and dynamics of this industry—while making 
the most out of the scarce data available. This way both environmental and economic 
objectives can be achieved simultaneously.  

 

6.1 The TSO Model 

The TSO model introduced in this dissertation considers the optimal decisions that carriers 
and shippers make throughout time, essentially modeling the transitional dynamics of 
today’s trucking sector in responses to time-dependent governmental interventions and 
changes in their business environment. As its name suggests, carrier’s decisions are 
modeled through the optimization of a mathematical program that is specified on the 
average costs observed for this industry. The costs considered includes: labor costs, fuel 
costs, capital costs, FST costs, salvage value, etc. Shipper’s decisions are represented with 
response elasticities obtained from the literature. The model is solved using a two-stage 
heuristic that provides satisfactory approximate results. The GHG emissions of the sector 
are then calculated using methodologies from the life-cycle assessment literature.  

The main methodological contributions of the TSO model to the research literature are: (i) 
the simultaneous consideration of FST, FMO and LDS responses, (ii) the modeling of the 
transitional dynamics of aggregate truck fleets, and (iii) the consideration of life-cycle 
GHG emissions in modeling this industry. These represent substantial improvements over 
the EMFAC, NEMS and other trucking sector models that are currently being used to 
inform policy. More specifically, with the TSO model policy makers can: (i) evaluate the 
responses of the sector to meet policy targets in the near-term, (ii) compare regulation-
based strategies to incentives-based strategies, (iii) evaluate the impact of the phase-in 
schedule of strategies on the trajectory of emissions, (iv) evaluate the impact of the existing 
truck fleet on the optimal decisions that marries make moving forward, (v) evaluate the 
penetration rates of FSTs, (vi) evaluate the tradeoffs between different emission sources, 
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and (vii) find ways to mitigate market failures in this industry that are leading to inefficient 
outcomes. 

The TSO model was then used to study the cost structure of the Core T7 truck fleet in 
California (Class-8 combination trucks) and how this sector responds to the 
implementation of different GHG mitigation strategies. These strategies were evaluated in 
their ability to help meet the GHG emission reduction target set by AB 32 in California. 
Current policy scenarios indicate that the trucking sector should contribute around 3 – 4 
MMTCO2eq/yr in emission reductions in 2020.  

The analysis of the current cost-structure of trucking suggests that carriers should invest 
significantly more in FSTs beyond what is currently observed in the industry. Investing 
optimally in FSTs leading up to 2020 would save around 6 MMTCO2eq/year relative to 
continuing current levels of FST investment. This large efficiency gap suggests that there 
exist significant market barriers to these types of investments. Correcting these barriers 
would reduce emissions significantly and allow for incentives-based governmental 
interventions to have their full effect.  

The TSO model was then used to analyze the effect of various incentives-based strategies 
in an ideal world where market barriers have been corrected. Several discrete regulation-
based strategies were also analyzed, finding that the Low Carbon Fuel Standard would 
achieve reductions of 2.1 MMTCO2eq and the current SmartWay regulation would achieve 
reductions of 2.0 MMTCO2eq. Overall, incentives-based strategies achieve less emission 
reductions in an ideal world than regulation-based strategies can achieve currently. This 
has important implications on the prioritization of mitigation strategies.  

The above findings were combined with other analyses to formulate the following common 
sense steps that California’s government—or any other government in the US—could take 
to sensibly reduce emissions from the trucking sector.   

1) Regulation of FSTs achieves significant reductions in emissions while 
bypassing existing market barriers (current approach taken in California).  

2) Increasing truck weight limits up to 97,000 lbs. and increasing the number 
of axles of weight constrained trucks to 6 reduces emissions significantly 
while having a negligible impact on pavement rehabilitation. 

3) Introduce strategies that reduce the total demand for trucking, bypassing 
existing market barriers.  

4) Mitigation of market barriers achieves significant emission reductions. 
5) Correcting market barriers allows for FST regulations in (1) to be replaced 

with incentives-based strategies, improving the economic efficiency of 
achieving emission reductions. 

6) Implement strategies regionally to avoid policy leakage and other unintended 
substitution effects (truckers increasingly purchasing cheaper fuel outside 
the State, for example). 

7) Implement complementary strategies that provide carrots and stick, such as 
using fuel tax revenues to subsidize FST investments. 
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Overall it was found that across different mitigation strategies roughly 80-84% of emission 
reductions come from the tailpipe source, 8-12% come from the infrastructure source, 4-
5% come from the precombustion source, and 2-4% come from the vehicle manufacturing 
source. By assuming the low (high) scenario for shipper elasticity and fuel prices, 
emissions from tailpipes and precombustion change by -10% (+11%), emissions from 
infrastructure change by -7% (+5.5%), and emissions from vehicle manufacturing change 
by -5% (+5). These values where consistent across different mitigation strategies with some 
exceptions.  

 

6.2 The TSTS Model 

Carriers have to make many long-term decisions about how to manage their truck 
fleets, which includes determining how much to invest in FSTs. To do so, carriers have to 
weigh costs and benefits over planning horizons that can be quite long, and affected by 
many factors. The TSTS model is formulated to capture these long-term decisions made in 
this sector better than the TSO model by: (i) modeling endogenously how trucks are 
utilized throughout their service-lives, and (ii) capturing some heterogeneity in truck 
retirements. The first of these improvements is made possible by incorporating information 
on the performance of trucking (the ability of carriers to complete shipments) and on the 
spatial distribution of shipment demand. The second of these improvements is made 
possible by assuming that truck retirements follow a log-logistic function. Combining both 
of these methodological improvements with a parameterized discount rate provides 
analysts a more flexible model for studying the long-term decisions made in the trucking 
sector, especially regarding FST investments, which impact greatly emissions and costs. 

The TSTS model was then used to identify the cost-optimal decisions of carriers and 
shippers under different policy scenarios to predict their impact on GHG emissions. The 
first analysis indicates that improving the performance of trucking—the ability of carriers 
to complete shipments—can significantly incentivize investments in FSTs, and reduce 
GHG emissions. However, 40 – 50% of these reductions are offset in the aggregate by 
increases in shipper demand for trucking services precipitated by its lower market price. A 
second analysis found that mode-shifts also incentivize investments in FSTs because they 
distort the spatial distribution of shipments in ways that favor making greater capital 
investments because trucks are used more intensely and retired quicker. And finally, a third 
analysis found that implementing FST regulations that only apply to a subset of the truck 
fleet (as in California currently) also reduces emissions, but incentivizes other changes in 
how the industry operates. 

The TSO model is best suited for studying the dynamics and transitions of truck fleets in 
response to governmental interventions, while the TSTS model is best suited for studying 
long-run responses. Together, they allow policy makers and researchers to study a wide 
range of issues in the trucking sector, considering many interactions and responses that had 
not been adequately explored previously.   

The understanding of the trucking sector provided by the TSO and TSTS models has the 
potential to immediately improve future research in this field in four key dimensions. (1) 
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As mentioned in Section 1.3.4, welfare studies into the optimal level of implementation of 
FSTs have represented the responses of the trucking industry using elasticity parameters 
that are largely assumed, which detracts considerably from the weight of their conclusions. 
The models presented in this dissertation would allow future work on the economic 
efficiency of trucking sector interventions to be based on more realistic representations of 
industry responses. (2) The modeling of various sources of emissions is even more 
important for studying ways to mitigate Particulate Matter (PM) and NOx emissions, 
because these other pollutants are emitted more intensely in the manufacturing of vehicles 
and rehabilitation of pavements than for GHGs. The models presented in this dissertation 
are especially salient for understanding these types of tradeoffs. (3) With little 
modifications, these models could be also applied to study the responses of other sectors, 
such as railroad, air or waterborne transportation. The economic tradeoffs faced in 
managing fleets of trains, airplanes and ships are not fundamentally different than those of 
managing fleets of trucks. And perhaps more importantly, (4) they provide a rich 
theoretical framework on which to build future models of the trucking industry, which 
define explicitly their key assumptions and relationships.  
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Appendix A: Glossary  

  .Truck odometer, cumulative mileage ݔ
 Truck age (years) ݏ
ݔ ൌ ܷሺݏሻ Truck utilization function. Time ݏ for truck to reach ݔ odometer 
ܲሺݐሻ Truck purchase rate at time ݐ (trucks/year) 
ܺሺݐሻ Truck retirement odometer at time ݐ (miles) 
ܵሺݐሻ Retirement age of truck purchased at ݐ (years) 
  ݐ ሻ Level of Fuel Saving Technologies (FSTs) on trucks purchased atݐሺߛ
߰ሺݐሻ Aggregate rate of trucking mileage supply by carriers (miles/year) 
 ሻ Aggregate size of truck fleet (units)ݐሺܨ
 ሻ Aggregate rate of trucking mileage demanded by shippers (miles/year)ݐሺܦ
 ሻ Equilibrium market rate between carriers and shippers ($/trucking mile)ݐሺݕ
 captures effect of GHG mitigation strategies ,ݐ ሻ Economic environment atݐሺܧ
  (truck/$) ߛ ሻ Purchase cost of truck with technology	ߛሺ	ܣ

	ܸ ሺߛ, ܺሻSalvage Value of trucks of technology	ߛ sold at odometer ܺ 
 ሻ Maintenance costs ($/mile)ݔሺܯ
ܱሺߛሻ Operational costs as a function of ߛ  ($/mile) 
  Effective discount factor ߚ
ெߠ
	  Mileage tax ($/mile) 
 ி Fuel tax ($/gallon)ߠ
 ி Fuel price ($/gallon)݌
݂ Pre-FST fuel efficiency (gallons/mile) 
݇௢	 Fixed mileage trucking cost ($/miles) 

݇ௗ Instantaneous depreciation rate constant  
݇௫ Mileage depreciation constant  
݇௠ Maintenance costs constant  
ܳ Quantity of goods shipped (tons/year) 
 Trip length (miles) ܮ
 Shipment size (tons/trip) ݒ
݁஽ Elasticity of trucking mileage ܦ with respect to trucking rate ݕ 
݁ொ
	   Elasticity of commodity shipment demand ܳ with respect to trucking rate ݕ 
ܴ௫ GHG emissions rate from diesel combustion 

ܴ௉  GHG emissions rate from truck manufacturing  

ܴூ GHG emissions rate from infrastructure rehabilitation and maintenance  

  Equivalent Single Axle Loading ܧ

ܽ݇ Number of truck axles  

ܸܩ ௞ܹ Gross vehicle weight of truck weight range ݇  

ܹܶ Tractor weight  

௞݂ Fraction of highway mileage supplied by trucks in weight range ݇ 
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ܹ Proportion of trucking miles reduced by allowing higher truck weight limits  

 




