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Abstract
Despite recent advances in our understanding of the pathogenesis of ectodermal dyspla-

sias (EDs), the molecular basis of many of these disorders remains unknown. In the pres-

ent study, we aimed at elucidating the genetic basis of a new form of ED featuring facial

dysmorphism, scalp hypotrichosis and hypodontia. Using whole exome sequencing, we

identified 2 frameshift and 2 missense mutations in TSPEAR segregating with the disease

phenotype in 3 families. TSPEAR encodes the thrombospondin-type laminin G domain and

EAR repeats (TSPEAR) protein, whose function is poorly understood. TSPEAR knock-

down resulted in altered expression of genes known to be regulated by NOTCH and to be

involved in murine hair and tooth development. Pathway analysis confirmed that down-reg-

ulation of TSPEAR in keratinocytes is likely to affect Notch signaling. Accordingly, using a

luciferase-based reporter assay, we showed that TSPEAR knock-down is associated with

decreased Notch signaling. In addition, NOTCH1 protein expression was reduced in patient

scalp skin. Moreover, TSPEAR silencing in mouse hair follicle organ cultures was found to

induce apoptosis in follicular epithelial cells, resulting in decreased hair bulb diameter. Col-

lectively, these observations indicate that TSPEAR plays a critical, previously unrecog-

nized role in human tooth and hair follicle morphogenesis through regulation of the Notch

signaling pathway.
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Author Summary

Ectodermal dysplasias refer to a large group of inherited disorders characterized by devel-
opmental defects in tissues of ectodermal origin. The study of these conditions has been
instrumental in the discovery of biological pathways involved in the regulation of epithe-
lial tissue morphogenesis. In this report, through the delineation of the molecular basis of
a novel form of autosomal recessive ectodermal dysplasia, we identified a new key player
in ectodermal development. We detected a number of mutations in TSPEAR co-segregat-
ing with abnormal hair and tooth development in three families. TSPEAR encodes the
thrombospondin-type laminin G domain and EAR repeats (TSPEAR) protein, whose
function is poorly understood. TSPEAR was found to be strongly expressed in murine
hair and tooth. Using a reporter assay, we showed that it regulates Notch activity. Accord-
ingly, NOTCH1 expression was altered in patient skin, and NOTCH1, as well as many of
its known targets, was down-regulated in TSPEAR deficient keratinocytes.Moreover,
Tspear silencing in mouse hair follicle organ cultures was found to induce apoptosis in
follicular epithelial cells, resulting in decreased hair bulb diameter. Collectively, these
observations indicate that TSPEAR plays a critical, previously unrecognized role in
human tooth and hair follicle morphogenesis through regulation of the Notch pathway.
As such, these new data are likely to lead to further investigations aimed at characterizing
the role of Notch signaling pathway in other forms of ectodermal dysplasias as well as
acquired hair and tooth pathologies.

Introduction

Ectodermal dysplasias refer to a large clinically and genetically heterogeneous group of disor-
ders characterized by developmental defects affecting tissues of ectodermal origin [1]. These
conditions therefore feature various combinations of cutaneous, nail, hair, dental or limb
anomalies which demarcate the various subtypes of ED [1]. Over the past few years, the
molecular basis of many of these diseases has been deciphered, leading to the identification
of a number of signaling pathways responsible for regulating ectodermal tissue ontogenesis.
Among these regulatory systems, the ectodysplasin/EDAR signaling pathway, which regu-
lates NFkappaB activity and is critically involved in murine tooth and hair development [2],
is the best known and was shown to be involved in the pathogenesis of various clinical forms
of hypohidrotic ectodermal dysplasia [3,4]. Additional regulatory factors which were found
to be involved in the pathogenesis of ectodermal dysplasias include p63, DLX3, MSX1 and
WNT proteins [5–8]. Finally, structural proteins, such as connexins and desmosomal pro-
teins, have also been implicated in the pathogenesis of a number of ectodermal dysplasias
[9,10].
Although the concomitant presence of hair and tooth abnormalities is not unusual among

ectodermal dysplasias, as seen in hypohidrotic ectodermal dysplasia (MIM305100) [11], neo-
natal ichthyosis-sclerosing cholangitis syndrome (MIM607626) [12], p63 syndromes [13] and
alopecia-neurologicaldefects-endocrinopathy (MIM612079) [14], it is rarely seen in the
absence of other ectodermal or visceral defects. In the present study, we aimed at identifying
the molecular basis of a novel form of ectodermal dysplasia combining scalp hypotrichosis and
hypodontia.

Mutations in TSPEAR Cause Ectodermal Dysplasia
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Results

Clinical delineation of a novel form of ectodermal dysplasia

We studied two consanguineous families of Arab Moslem origin and one Jewish Ashkenazi
family, comprising together a total of 5 patients (Fig 1A). All affected individuals displayed
hypodontia (Fig 1B) as well as various degrees of scalp hypotrichosis more prominent on the
anterior part of the scalp (Fig 1C). The severity of the phenotype, including the degree of alope-
cia and hypondontia was mild in family C patient. Patients also shared subtle dysmorphic fea-
tures including a long oval face, square chin, down slanting of palpebral fissures, low insertion
of columella and thick lips. We also identified in one patient (family A, IV-4) body hypertri-
chosis over the chest while in other patients of family A and B, body hair was missing or sparse.
Follicular accentuation was most marked over bony prominences (Fig 1D). No visceral or neu-
rological additional features were identified. Audiometry performed in family A and family C
patients was normal (clinical information on all families is summarized in S1 Table). A skin
biopsy obtained from patient IV-4 (Family A) scalp demonstrated paucity of mature hair folli-
cles (Fig 1E). Scanning electronmicroscopy of patient hair samples showed abnormal structure
of the follicular cuticle (Fig 1F).

Mutation analysis

After having excluded by direct sequencing pathogenic mutations in the coding sequences of
WNT10A and TP63, which have been associated with a phenotype reminiscent of that dis-
played by the patients [13,15], DNA samples extracted from individuals IV-4, III-7, IV-3 and
III-5 of family A and individuals II-1, I-1 and I-2 of family C, were subjected to whole exome
sequencing. Data were filtered as detailed in Materials and Methods and scrutinized for muta-
tions in any single gene common to both families.
Using this approach, we identified three mutations in TSPEAR encoding thrombospondin-

type laminin G domain and EAR repeats, a member of the EAR family of proteins [16]. These
proteins feature EAR domains, which are likely to mediate protein-protein interactions [16].
All affected individuals of family A were found to carry a homozygous missense sequence vari-
ation, c.1726G>T, as well as a homozygous single base pair deletion in TSPEAR, c.1728delC
(Fig 2A), whereas individual II-1 of family C carried two heterozygous missense mutations:
c.1852T>A and c.1915G>A (Fig 2A). Individual III-1 of family B was subsequently found by
direct sequencing of TSPEAR coding sequences to carry c.1726G>T in a heterozygous state as
well as to be compound heterozygous for two heterozygous deletions, c.1728delC and
c.454_457delCTGG (Fig 2A).
Mutations c.1728delC and c.454_457delCTGG are both predicted to result in premature

termination of protein translation (p.K577Sfs�36; p.L152Wfs�28). Mutations c.1852T>A and
c.1915G>A are expected to result in two amino acid substitutions, p.Y618N and p.D639N,
respectively, affecting two highly conserved residues (Conseq scores 9 and 9, respectively;
range 1–9) located in two EAR domains of the protein (Fig 2B). Both c.1852T>A and
c.1915G>Awere foreseen to be pathogenic by two prediction software (Polyphen2 scores 1
and 1, respectively; range 0–1; SIFT scores 0 and 0.04, respectively; range 1–0). Sequence varia-
tion c.1726G>T is likely to be in linkage disequilibriumwith c.1728delC. c.1726G>T is pre-
dicted to result in a single amino acid substitution (p.V576F) whose significance is unclear
given conflicting results of prediction software (damaging according to PolyPhen and tolerated
according to SIFT). In addition, given the predicted effect of the adjacent frameshift
c.1728delC, the functional consequence of p.V576F is likely to be marginal.
Co-segregationof all four mutations with the disease phenotype was then confirmed by

PCR-RFLP (Fig 1A; see experimental details in Materials and Methods). Using the same assays,

Mutations in TSPEAR Cause Ectodermal Dysplasia
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Fig 1. Clinical and pathological features. (a) Family pedigrees are presented in the upper panels. Black symbols denote

affected individuals. PCR-RFLP assays, performed as detailed in materials and methods, were used in each family to confirm

co-segregation of the mutation with the disease phenotype (lower panels). Mutation c.1728delC is associated with the presence

of a 108 bp fragment in families A and B, while mutation c.454_457delCTGG results in a 514 and 256 bp fragments in family B;

in addition, both mutations c.1852T>A and c.1915G>A are associated with the presence of a 180 bp fragment in family C; (b-d)

Clinical features displayed by the patients include (b) hypodontia with conical teeth, (c) anterior scalp hypotrichosis and (d)

follicular accentuation; (e) A skin biopsy obtained from scalp skin of individual IV-4 of family A and stained for hematoxylin and

Mutations in TSPEAR Cause Ectodermal Dysplasia
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mutations c.1852T>A, c.1915G>A, c.454_457delCTGG and c.1728delC were excluded from a
panel of 476, 415, 294 and 309 population-matched healthy individuals respectively. We then
ascertained the ESP, NCBI, UCSC, HGMD, ExAc, 1000 genomes and Ensembl databases for
the presence of each of the 4 mutations. Among these, mutation c.1915G>Awas present in a
heterozygous state in 0.7% of a panel of control individuals (n = 35,626), suggesting that it may
be associated with a common phenotype in the general population such as hypondontia whose
prevalence ranges between 2% and8% [17–19]. Mutation c.454_457delCTGGwas absent in all
public databases while mutation c.1852T>Awas present in a heterozygous state in 2 individu-
als out of 60,136 tested. In addition, mutation c.1728delC was present in a heterozygous state
in 3 individuals out of 60,032 tested.

eosin, demonstrates paucity of rudimentary hair follicles; (f-g) Scanning electron microscopy (SEM) analysis of hair shafts

obtained from the scalp demonstrates flattened and partially absent cuticular scales (arrows) in the patient hair (f) as compared

with a healthy individual (g) (scale bar = 100 μm).

doi:10.1371/journal.pgen.1006369.g001

Fig 2. Mutation analysis. (a) Direct sequencing of TSPEAR revealed a homozygous missense transversion c.1726G>T and a homozygous

c.1728delC deletion in family A patients; heterozygous c.454_457delCTGG, c.1726G>T and c.1728delC mutations in family B patient; and

heterozygous c.1852T>A and c.1915G>A missense mutations in family C patient. Wildtype sequences are given below the mutant sequence for

comparison; (b) The predicted consequences of the 4 mutations are depicted along a schematic representation of the TSPEAR protein structure with

its different domains.

doi:10.1371/journal.pgen.1006369.g002
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Functional characterization of TSPEAR

Given the phenotype displayed by patients carrying biallellic mutations in TSPEAR and
because the role of TSPEAR in cutaneous tissues is unknown [16,20], we hypothesized that
TSPEARmay be involved in the regulation of human tooth and hair follicle morphogenesis. To
explore this hypothesis, we usedmicroarray analysis to compare whole exome expression pro-
files of primary human keratinocytes transfected with control or TSPEAR-specific siRNA (see
experimental details in Materials and Methods and S1 Fig). Pathway analysis of the data (fully
available in S2 Table) revealed down-regulation of NOTCH1 as well as abnormal expression of
numerous Notch signaling pathway-associated genes (Fig 3A and S3 Table). Quantitative
RT-PCR was used to validate these observations (Fig 3B). Interestingly, immunostaining of a
skin biopsy obtained from patient IV-4, family A, also revealed decreasedNOTCH1 expression
in the epidermis (Fig 3C and 3D), thus supporting the hypothesis that TSPEARmutations
exert a loss of function effectmediated throughNOTCH1.
To ascertain the possibility that TSPEAR regulates ectodermal ontogenesis by modulating

Notch signaling, we co-transfectedHaCaT cells seeded on DLL1-coated plate with a Notch
luciferase reporter construct and with a TSPEAR-specific siRNA or a control siRNA. Luciferase
activity in TSPEAR down-regulated cells was significantly decreased as compared with control
cells, supporting a role for TSPEAR in the regulation of Notch signaling (Fig 3E).

NOTCH1 has been associated with the regulation of dental epithelial stem cells differentia-
tion [21] and TSPEAR was found to be expressed in the enamel organ (S2 Fig). In addition,
NOTCH1 is essential for normal hair follicle postnatal development [22–26]. To investigate
the role of TSPEAR in hair follicles, we obtained skin biopsies from transgenicK14/H2B/GFP
mice which express green fluorescent protein (GFP) in hair follicle epithelium (see experimen-
tal details in Materials and Methods). Tspear was found to be expressed in murine hair matrix
keratinocytes, outer root sheath, inner root sheath, hair shaft and the hair follicle infundibulum
(Fig 4A). We then down-regulatedTspear expression using specific siRNAs. siRNA-mediated
down-regulation of Tspear in mouse skin organ cultures (Fig 4B) resulted in reduced hair bulb
diameter (Fig 4C–4F). This correlated with hair growth arrest as attested by decreased hair fol-
licle pigmentation (Fig 4G–4I) (HF pigmentation is closely linked to the growth phase of the
hair cycle (anagen) [27], and markedly elevated apoptotic activity both in the hair bulb (Fig 4J–
4L) and infundibular (Fig 4M–4O) hair follicle compartments, as measured by the TUNEL
assay. Tspear knock-down also resulted in decreasedNotch1 expression in murine hair follicle
organ cultures (Fig 4P).

Discussion

In the present report, we studied a novel form of ectodermal dysplasia characterized by oligo-
dontia, alopecia and facial dysmorphism and caused by mutations in TSPEAR. The physiologi-
cal functions of TSPEAR are essentially unknown to date. It belongs to a family of proteins
featuring EAR domains, which are predicted to form beta-propeller structures likely to mediate
protein-protein interactions [16]. Some of these proteins have been found to be associated with
various neurological conditions [16]. Mutation c.1728delC in TSPEAR has been reported to
cause congenital sensorineural deafness in a single family and to result in inhibition of TSPEAR
secretion [28]. However, this mutation was identified in the present study in a homozygous
state in 2 different patients with hypotrichosis, hypodontia and normal hearing (Fig 1A). This
observation coupled with the fact that we identified three other mutations in TPSEAR in addi-
tional patients with ectodermal dysplasia and normal hearing suggests the possibility that deaf-
ness in this previous single family [28] may have been due to co-inheritance of additional
genetic variants. In contrast, an association study recently demonstrated the presence of

Mutations in TSPEAR Cause Ectodermal Dysplasia
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Fig 3. Expression analysis. (a) A comparative analysis of gene expression profiles of primary keratinocytes

transfected with TSPEAR specific siRNA or control siRNA (left panel) revealed a number of differentially expressed

genes including NOTCH1 and additional genes encoding elements of the NOTCH1 regulatory network and/or known

to be involved in hair and tooth development. Pathway analysis (IPA software, see details in Materials and Methods,

right panel) revealed that TSPEAR down-regulation affects a NOTCH-associated regulatory network; (b) Gene

Mutations in TSPEAR Cause Ectodermal Dysplasia
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expression following siRNA-mediated TSPEAR down-regulation was assessed using qRT-PCR. Results are

expressed as percentage of gene expression in cells transfected with TSPEAR-specific siRNA relative to gene

expression in siRNA control-transfected cells ± standard error (two sided t-test; *p<0.05, **p<0.01). Results are

normalized to GAPDH RNA levels; (c,d) NOTCH1 expression was assessed by immunostaining (c) in skin biopsies

obtained from an affected individual (IV-4, family A; right panel) and from a healthy individual (left panel).

Immunostaining was significantly reduced in affected vs. normal skin (d) (scale bars = 25 μm; (e) HaCaT cells were co-

transfected with a NOTCH1-responsive luciferase reporter gene and TSPEAR-specific siRNA or control siRNA.

Luciferase activity was measured after 48 hours and normalized to Renilla luciferase. Results represent the mean of

three independent experiments ± standard error (two sided t-test; ***p<0.001).

doi:10.1371/journal.pgen.1006369.g003

Fig 4. Effect of Tspear down-regulation on murine hair follicles. (a) Tspear is expressed in mouse hair

follicles (HFs) in the hair matrix keratinocytes, outer root sheath, inner root sheath, hair shaft and the

infundibulum (scale bar = 50 μm); (b) Back skin tissue strips from K14-H2B-GFP mice were transfected with

Tspear siRNA or control siRNA. RNA was extracted from transfected HFs and Tspear RNA expression

levels were assessed by qRT-PCR. Results were normalized to Gapdh levels and are expressed as

expression levels relative to control samples. Data were pooled from three independent experiments (two

sided t-test; **p<0.01); (c-f) Z stacks optical sections of K14-H2B-GFP mouse HFs (c) obtained 24h

following transfection with control siRNA (d) or Tspear siRNA (e) were used to calculate average hair bulb

diameter. Three measurements were done for each HF in the bulb and proximal hair shaft (c, dashed white

lines) and an average diameter was calculated accordingly. Epithelial nuclei are marked with GFP (scale

bars = 100 μm). Data was pooled from three independent experiments (F, two sided t-test; **p<0.01); (g-i)

Melanin content was assessed by quantitative Masson-Fontana histochemistry in Tspear siRNA treated HFs

(h) compared to control (g). Data was pooled from two independent experiments (I, two sided t-test;

***p<0.001) (scale bars = 50 μm); (j-o) Apoptosis was assessed by the TUNEL assay (TUNEL, green;

DAPI, blue) at the hair bulb (j-l) and infundibular (m-o) compartments of HFs downregulated for Tspear (k,n)

compared to control siRNA treated HFs (j,m) (scale bars = 50 μm). Average number of TUNEL-positive cells

in hair follicles in the respective compartments. Data were pooled from two independent experiments (l,o,

two sided t-test; ***p<0.001) (scale bars = 50 μm). White dotted lines delineate the outer epidermal surface;

(p) RNA was extracted from Tspear siRNA and control siRNA transfected HFs and Notch1 RNA expression

level was assessed by qRT-PCR. Results were normalized to Rplp0 levels and are expressed as expression

levels relative to control samples. Data were pooled from three independent experiments (two sided t-test;

*p<0.05). E—epidermis; INF–Infundibulum; D—dermis; DP—dermal papilla; IRS—inner root sheath;

ORS—outer root sheath; HM—hair matrix; HS—hair shaft; TUNEL—terminal deoxynucleotidyl transferase

dUTP nick end labeling.

doi:10.1371/journal.pgen.1006369.g004
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genome-wide significant variations within the TSPEAR gene locus for sheep fiber diameter
[29], which is in line with the reduced hair bulb diameter caused by TSPEAR down-regulation
in mouse hair follicles (Fig 4F).
Although the detailedmechanism of action of TSPEAR during tooth and hair follicle morpho-

genesis remains to be fully delineated, our current data support the possibility that TSPEAR regu-
lates Notch signaling, a key biological pathway previously shown to affect the development of
many ectodermal tissues [23,30,31]. Although decreasedNotch expression due to nicastrin
mutations has been associated with perifollicular inflammation [32], overt inflammatorymani-
festations were not observed in patients carryingTSPEARmutations possibly due to the fact
nicastrinmay affect additional targets beyondNotch and/or Notch signalingmay be affected to a
lesser degree by TSPEARmutations as compared with nicastrinmutations. Supporting this possi-
bility is the presence of follicular accentuation in our patients (Fig 1D). Interestingly, a number
of known targets of NOTCHwhich were found to be affected by TSPEAR silencing in the current
study (Fig 3B), have previously been associated with disorders featuring abnormal hair and tooth
development including the oculo-dento-digital dysplasia syndrome (MIM257850), the odonto-
onycho-dermal dysplasia syndrome (MIM257980), the p63 syndromes (MIM604292) and the
tricho-dento-osseous syndrome (MIM190320) caused by mutations inGJA1,WNT10A,TP63
and DLX3, respectively [13,15,33–35]. Collectively, these data demarcate a group of inherited
disorders sharing both phenotypic and pathophysiological features.

Materials and Methods

Patients

All affected and healthy family members or their legal guardian provided written and informed
consent according to a protocol approved by our institutional review board and by the Israel
National Committee for Human Genetic Studies in adherence with the Helsinki principles.

DNA extraction

Genomic DNA was extracted from peripheral blood leukocytes using the 5 Prime ArchivePure
DNA Blood Kit (5 Prime Inc., Gaithersburg, USA) or fromOG-500 saliva collection kit (DNA
Genotek Inc., Ottawa, Canada) according to the manufacturer's instructions.

Exome sequencing

Exome sequencing of individuals IV-3, IV-4, III-5, III-7 from family A, I-1, I-2 and II-1 from
family C was performed by Otogenetics corporation using in-solution hybridization with Agi-
lent AV5 + UTR Exome (71Mb) version 4.0 (Agilent, Santa Clara, USA) followed by massively
parallel sequencing (Illumina HiSeq2000) with 100-bp paired-end reads. Reads were aligned to
the Genome Reference ConsortiumHuman Build 37 (GRCh37/hg19) using Burrows-Wheeler
Aligner (BWA)[36].
Duplicate reads, resulting from PCR clonality or optical duplicates, and reads mapping to

multiple locations were excluded from downstream analysis. Reads mapping to a region of
known or detected insertions or deletions were re-aligned to minimize alignment errors. Sin-
gle-nucleotide substitutions and small insertion deletions were identified and quality filtered
using the GenomeAnalysis Tool Kit (GATK) [37]. Rare variants were annotated using ANNO-
VAR[38] and identified by filtering the data from dbSNP138, the 1000 Genomes Project, the
Exome Variant Server, and an in-house database of sequenced individuals. Variants were clas-
sified by predicted protein effects using Polyphen2 [39] and SIFT [40]. S4 Table summarizes
exome sequencing details.

Mutations in TSPEAR Cause Ectodermal Dysplasia
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Mutation analysis

Genomic DNA was PCR-amplified using oligonucleotide primer pairs spanning the entire cod-
ing sequence as well as intron–exon boundaries ofWNT10A,TP63 and TSPEAR (S5 Table)
and Taq polymerase (Qiagen, Hilden, Germany). Cycling conditions were as follows: 94°C,
2min; 94°C, 40 sec; 61°C, 40 sec; 72°C 50 sec, for 3 cycles, 94°C, 40 sec; 59°C, 40 sec; 72°C 50
sec, for 3 cycles, 94°C, 40 sec; 57°C, 40 sec; 72°C 50 sec, for 34 cycles. Gel-purified (QIAquick
gel extraction kit, QIAGEN, Hilden, Germany) amplicons were subjected to bidirectional DNA
sequencing with the BigDye terminator system on an ABI Prism 3100 sequencer (Applied Bio-
systems, NY, USA).

PCR-restriction fragment length polymorphism (RFLP)

To screen for the c.1728delCmutation (families A and B), we PCR-amplified a 148 bp frag-
ment with Taq polymerase (Qiagen, Hilden, Germany) and the following primers 5`- CTCC
GTCATCTACGAGCTGAACGTGACCGCGCAGGCCTTTTT-3`and 5`- GATGAGCCTAA
CGGGGATTCC-3`. The mutation creates a recognition site for endonucleaseMseI (New
England Biolabs, Frankfurt, Germany). To screen for the c.454_457delCTGGmutation (family
B), we PCR-amplified a 770 bp fragment, with Taq polymerase (Qiagen, Hilden, Germany)
and the following primers 5`- TCTCACCACCTGTGCTCATC-3`and 5`- CACCTGTTCT
CGCCAATGTC -3`. The mutation creates a recognition site for endonuclease BglI (New
England Biolabs, Frankfurt, Germany). To screen for the c.1852T>Amutation (family C), we
PCR-amplified a 221 bp fragment, with Taq polymerase (Qiagen, Hilden, Germany) and the
following primers 5`- GTAGCTTCTGGCCAATCCCC-3`and 5`- GAAGCAAG GCTCTG
GGAGG-3`. The mutation creates a recognition site for endonucleaseMseI (New England Bio-
labs, Frankfurt, Germany). To screen for the c.1915G>Amutation (family C), we PCR-ampli-
fied a 220 bp fragment, with Taq polymerase (Qiagen, Hilden, Germany) and the following
primers 5`- GGATGGAAGAGGCTCAGATG-3`and 5`- AGATGAGG TAGGCACCAGCC
GTGGTGCTGAAGGCCTCCGAAT-3`. The mutation creates a recognition site for endonu-
clease EcoRI (New England Biolabs, Frankfurt, Germany). PCR cycling conditions were as fol-
lows: 94°C, 2min; 94°C, 40 sec; 61°C, 40 sec; 72°C 50 sec, for 3 cycles, 94°C, 40 sec; 59°C, 40 sec;
72°C 50 sec, for 3 cycles, 94°C, 40 sec; 57°C, 40 sec; 72°C 50 sec, for 34 cycles. PCR products
were incubated with the appropriate enzyme at 37°C for 16 hours followed by 20 min of inacti-
vation at 65°C. The digested PCR products were electrophoresed in ethidium bromide-stained
3% agarose gels.

Quantitative RT-PCR

For quantitative real-time PCR (qRT-PCR), cDNA was synthesized from 1000 ng of total RNA
using qScript kit (Quanta Biosciences, Gaithersburg,MD). cDNA PCR amplification for
TSPEAR and GAPDH (as a control) was performedwith TaqMan SNP expression assays #
Hs00376562_m1 and Hs02758991_g1 respectively (Applied Biosystems, Forster, CA, USA)
according to the manufacturer protocol. cDNA PCR amplification for other genes was carried
out with the PerfeCTa SYBR Green FastMix (Quanta Biosciences, Gaithersburg, USA) on a
StepOnePlus system (Applied Biosystems,Waltham, USA) with gene-specific intron-crossing
oligonucleotide pairs (S6 Table). Cycling conditions were as follows: 95°C, 20 sec and then
95°C, 3 sec; 60°C, 30 sec for 40 cycles. Each sample was analyzed in triplicates. For each set of
primers, standard curveswere obtained with serially diluted cDNAs. Results were normalized
to GAPDHmRNA levels. qRT-PCR results were analyzed by t-test statistical analysis.
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Cell cultures

Keratinocytes (KCs) cell cultures were established from skin biopsies after written informed
consent had been obtained as previously described [41]. Primary KCs were maintained in KC
Growth Medium (KGM) supplemented with 0.4% bovine pituitary extract, 0.1% human epi-
dermal growth factor (hEGF), 0.1% insulin, 0.1% hydrocortisone and 0.1% gentamicin/ampho-
tericin B. HaCaT cells were kindly provided by Dr. Dina Ron (Technion, Haifa, Israel). The
cells were maintained in MEMmedia supplemented with 10% fetal calf serum, 1% L-gluta-
mine, 1% streptomycin and 1% amphotericin (Biological Industries, Beit-Haemek, Israel).

siRNA transfection

KCs were cultured in 6 well culture plates at 37°C in 5% CO2 in a humidified incubator and
were harvested at 60% confluence. To down regulate TSPEAR expression, we used human
TSPEAR small interference RNAs (siRNA) (Santa Cruz; sc-62060) (5`-CCUUCUCGGUGAA
CAGUAUtt-3`, 5`-CAUUGCCGCCACCUAUUUAtt-3` and 5`-CACUCCUGACCUUUC
GUAAtt-3`). As control siRNA, we used Stealth RNAi Negative Control Duplex (Invitrogen,
Carlsbad, CA). Twenty five pmol of siRNAs were transfected into KCs using Lipofectamine
RNAiMax (Invitrogen). The transfectionmediumwas replaced after 6 hours with high calcium
(1.4mM)-containing KGM.

Gene expression microarray and pathway analysis

Total RNA (200 ng) was reverse transcribed and cRNA prepared using TargetAmp-Nano
Labeling Kit (Epicentre Biotechnologies,Madison,WI) according to the manufacturer's proto-
col. One and a half μg of biotinylated cRNA was hybridized to HumanHT-12 v4 Expression
BeadChip (encompassing more than 47,000 transcript targets), washed, and scanned on a Bea-
dArray 500GX Reader using Illumina BeadScan image data acquisition software (version
2.3.0.13). Quality control and quantile normalization of the microarray data was done by Bead-
Studio 3.0 software (Illumina). The scanning data of the three biological repeats (total of 12
data sets) were exported to JMP genomic Software (SAS, Cary, NC), log transformed and non-
expressed genes (detection p-value<0.01), transcripts with low expression (log2 value< 6.5)
or with low variation across all samples (variation< 0.05) were removed from the analysis.
The data was analyzed using two-way ANOVA and differently expressed genes (DEGs) were
defined as transcripts that were statistically significant at corrected p-value�0.05 using the
False Discovery Rate (FDR) with at least 0.75 delta differences. Pathway analysis to identify sta-
tistically significant functional categories in the data set was performed using Ingenuity Path-
way analysis (IPA 8.0, QIAGEN RedwoodCity, www.qiagen.com/ingenuity).

Immunostaining

For immunofluorescence analysis of skin biopsies, 5 μm paraffin-embeddedsections were kept
overnight at 37°C and de-paraffinizedusing xylene/ethanol. Antigen retrieval was done with
0.01M citrate buffer, pH 6.0 (Invitrogen, Carlsbad, CA) in a microwave for 25 min. Sections
were blocked with 2% bovine serum albumin (BSA) in phosphate-buffered saline (PBS) for 30
min at room temperature. Primary antibodies used: rabbit anti-TSPEAR primary antibody
(Abcam, Cambridge,MA, USA, 1:200 dilution); goat anti-NOTCH primary antibody (Santa
Cruz, Dallas, TX, USA, 1:75 dilution). Both antibodies were diluted in 2% BSA PBS and incu-
bated overnight at 4°C. RhodamineRed-X goat anti rabbit IgG (H+L) (Life Technologies/Invi-
trogen) and Alexa Fluor 568 donkey anti goat IgG (H+L) (Thermo Fisher Scientific)were used
as a secondary antibody and were diluted 1:200 with 2% BSA in PBS followed by incubation for
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45 min at room temperature. Coverslips were mounted in DAPI Fluoromount-G (Southern
Biotechnologies, Birmingham, AL). Negative controls consisted of slides processed similarly
while omitting the primary antibody. As a positive control for TSPEAR staining, we used nor-
mal placenta tissue[42]. Specimens were examined using either a Nikon 50I microscope con-
nected to DS-RI1 digital camera or a Zeiss LSM700 confocal microscope for fluorescence
image acquisition.

NOTCH1 reporter assay

HaCaT cells were seeded on hDLL1 (R&D Systems, Minneapolis, MN) coated 24 wells plate
(50,000 cells/well). Twenty four hours after seeding, cells were transfected with a Notch
response element-containing luciferase reporter construct, kindly obtained from Dr. David
Sprinzak (BiochemistryDepartment, The George S. Wise Faculty of Life Sciences, Tel Aviv
University) as well as a Renilla expression vector, and control siRNA (Stealth™ RNAi Negative
Control Duplex Invitrogen, Carlsbad, CA) or TSPEAR specific siRNA (sc-91435; Santa Cruz
Biotechnology, Santa Cruz, CA) using Lipofectamine2000 (Invitrogen, Carlsbad, CA). Forty
eight hours after transfection, luciferase activity was read using a dual luciferase assay (Pro-
mega, Madison, USA). Luciferase activity was normalized to Renilla luciferase.

Tspear knockdown in mice hair follicles

K14-Cre andH2B-GFP loxP mice were purchased from The Jackson Laboratory. K14-Cremice
contain a human keratin 14 promoter directing expression of Cre recombinase, while
H2B-GFPmice have a fusion H2B histone with a C-terminally attached eGFP. K14-Cre and
H2B-GFP loxP mice were crossed, heterozygous littermates interbred, and resulting pups geno-
typed. Homozygous K14 H2B-GFP+/+mice were selected for and used as breeding pairs. All
mice were kept at the University of California, San Diego (UCSD) animal facilities, and all ani-
mal experiments were approved by the UCSD Institutional Animal Care and Use Committees
and were conducted in accordance with the Guideline for the Care and Use of Laboratory
Animals.
Dorsal skin was isolated from K14-H2B-GFPmice and placed dermal side down into indi-

vidual sterile petri dishes containing 4 ml warmed supplementedWilliam’s E. Media (WEM)
as previously described[43],with the orientation of the hair parallel to the longitudinal axis.
Thin dorsal tissue strips were then sliced off, gently abrading to remove any loose hair.
Tissue strips were transfectedwith mouse Tspear siRNA (sc-270602; Santa Cruz Biotechnol-

ogy, Santa Cruz, CA) or control siRNA (sc-36869; Santa Cruz Biotechnology). All reagents
required for transfection were obtained from Santa Cruz Biotechnology (siRNA transfection
reagent, sc-29528; siRNA transfectionmedium, sc-36868). Transfection was performed as pre-
viously described [43] and following 7 hours of transfection, tissue strips were maintained in
6-well plate with 2 ml supplemented WEM for an additional 24 hours. Following 24 hours, two
tissue strips from each treatment group were used for average hair bulb measurement. In detail,
two hundred μl of 2% low melt agarose solution (Agarose II; Midsci, MO, USA) dissolved in
sterile Dulbecco’s phosphate buffered saline (DPBS) were used to coat the bottom of 6-well
glass bottom plate (MatTek, Ashland, MA). Dorsal tissue strips were positioned parallel to the
bottom of the plate, and embedded in agar. One ml of WEMwas gently added to the wells. The
6-well plate was then placed in a pre-warmed incubation chamber (37°C, 5% CO2) of a Zeiss
Axio Observer.Z1microscope. Axiovision software (4.8.2 SP3) was used to select and mark
multiple non-overlapping fields of view on each tissue strip covering a significant area of each
strip. Fluorescent images were captured using an automatic exposure time and an excitation
wavelength of 470 nm. Data were analyzed in a single blindedmanner. Raw data collectedwere
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given an alpha-numeric cipher and were subsequently analyzed by a blinded investigator
unaware of the conditions tested or grouping. In each hair follicle, three horizontal measure-
ments were done in the area of hair bulb and proximal hair shaft. The average of those three
measurements was calculated for each hair follicle from the two different treatment group and
was defined as average hair bulb diameter. Three independent experiments were done with 3
different mice. In each mouse, 2 skin samples from each of the two treatment groups (Tspear-
siRNA vs. control-siRNA) were used for average hair bulb measurement.
In addition, 3 strips from each treatment group were collected 24 hours following transfec-

tion for RNA isolation (RNeasy kit, Qiagen, Valencia, CA) and validation of Tspear silencing.
For reverse transcription, we used an iScript cDNA synthesis kit (Bio-Rad, Hercules, CA) with
1 μg of RNA as startingmaterial. The resulting cDNA was diluted 1:10 with nuclease free water
and 5 μl of the diluted solution was used as template for subsequent qPCR reactions.
Quantitative real-time PCR was performed on an Applied Biosystems 7300 using TaqMan

Universal PCRMaster Mix (Applied Biosystems, Carlsbad, CA), template cDNA, and TaqMan
primers. TaqMan primers were ordered from Life technologies;Tspear (Mm00455327_m1),
and Gapdh (Mm99999915_g1) which served to normalize data (Life Technologies/Invitrogen,
Grand Island, NY). To quantifyNotch1 expression, we used 2x SYBR Green qPCRMaster Mix
(Biotool, Houston,TX) and Primer bank ID 13177625a1 Notch1 primers while Rplp0 served as
an internal control (Forward primer 5’-GAGATTCGGGATAT GCTGTTGG-3’ and Reverse
primer 5’-CGGGTCCTAGACCAGTGTTCT-3’).
Finally, tissue strips from each treatment group were frozen in liquid nitrogen 48 hours

after transfection for immunohistochemistry studies. Seven μm-thick cryosectionswere pre-
pared and stored at −80°C until use. For Tspear protein expression, cryosectionswere first air-
dried for 10 min and then fixed in acetone at -20°C for another 10 min. After air drying, the
slides were washed three times for 5 min in PBS. Following 20 min incubation of cryosections
with 2% goat serum in PBS, cryosectionswere incubated overnight at 4°C with the rabbit anti-
Tspear monoclonal antibody (Abcam, Cambridge,MA) at 1:50 dilution with 2% goat serum in
PBS solution. This was followed by incubation with Alexa Fluor1 568 Goat Anti-Rabbit sec-
ondary Antibody (Life Technologies/Invitrogen) for 45 min at RT in 1:200 dilution with 2%
goat serum in PBS solution. Incubation steps were interspersed with three washes, 5 min each,
with PBS. Then sections were embedded and counterstained with DAPI for the identification
of cell nuclei.
For Masson-Fontana histochemistry, cryosectionswere air dried and fixed in ethanol-acetic

acid. The sections were washed in Tris-buffered saline (TBS) and distilledwater several times.
Cryosectionswere treated with ammoniacal silver solution (Thermo Fisher Scientific,Carlsbad,
CA) for 40 min at 56°C in the dark. After washing in distilledwater, the sections were treated
with 5% aqueous sodium thiosulphate (Sigma-Aldrich, St. Louis, MO) for 1 min. Then, the sec-
tions were washed in running tap water for 3 min and were counterstained with haematoxylin
for 45 seconds. After washing in distilledwater, sections were dehydrated and mounted in
Eukitt (Sigma-Aldrich, St. Louis,MO). Tspear immunoreactivity and melanin content by Mas-
son-Fontana histochemistrywere compared between test and control sections by quantitative
histomorphometry as previously described [43,44] using NIH IMAGE software (NIH,
Bethesda,MD, USA).
For apoptosis detection, a kit for DeadEnd Fluorometric TUNEL system analysis (Promega,

Madison,WI, USA) was used. Briefly, cryosectionswere air dried and fixed in 4% formalde-
hyde in PBS for 25 minutes. Following several washing steps in PBS, permeabilization step
with 0.2% Triton in PBS was conducted for 5 min. Following several washing steps in PBS, sec-
tions were equilibrated with equilibration buffer for 5–10 min and then incubated with TdT

Mutations in TSPEAR Cause Ectodermal Dysplasia

PLOS Genetics | DOI:10.1371/journal.pgen.1006369 October 13, 2016 13 / 17



reactionmix for 60 minutes at 37°C. Following stop reaction step and washing steps with PBS,
sections were embedded and counterstained with DAPI for the identification of cell nuclei.

Electronic databases

The URLs for data presented herein are as follows:
1000 genomes project, http://www.1000genomes.org/
ConSurf, http://consurftest.tau.ac.il/
dbSNP, http://www.ncbi.nlm.nih.gov/SNP/
Exome Variant Server (http://evs.gs.washington.edu/EVS/)
GenBank, http://www.ncbi.nlm.nih.gov/Genbank/
NHLBI Grand Opportunity Exome Sequencing Project, https://esp.gs.washington.edu/

drupal/
OnlineMendelian Inheritance in Man (OMIM), http://www.omim.org
PolyPhen-2, http://genetics.bwh.harvard.edu/pph2/
SIFT, http://sift.jcvi.org/
UCSCGenome Browser, http://genome.ucsc.edu/
Human GeneMutation Database, http://www.hgmd.cf.ac.uk/ac/index.php
ANNOVAR, http://annovar.openbioinformatics.org/en/latest/
Burrows-Wheeler Aligner, http://bio-bwa.sourceforge.net/
GATK, https://www.broadinstitute.org/gatk/
Ingenuity Pathway Analysis (IPA), www.qiagen.com/ingenuity
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S1 Table. Clinical features of ectodermaldysplasia in three families.Abbreviations: F,
female; M, male; N, normal, not known; aBody hypertrichosis in patient IV-3; bhypotrichosis
in lower limbs; cduring childhood.
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S2 Table. Effect of TSPEAR down-regulation in keratinocyteson gene expression.
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S3 Table. Ingenuity Pathway Analysis (IPA) of upstream regulators. (Global gene expres-
sion data from human primary KCs transfected with control siRNA or TSPEAR siRNA (pooled
from three independent experiments) were analyzed for upstream regulators using the IPA
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S4 Table. Exome sequencing data.
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S5 Table. Oligonucleotide sequencesused for DNA sequencing.
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S6 Table. Oligonucleotide sequencesused for qRT-PCR.
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S1 Fig. TSPEARmRNA expression in siRNA treated keratinocytes.TSPEARmRNA expres-
sion in human primaryKCs transfectedwith control siRNA or TSPEAR siRNA was ascertained
using qRT-PCR. Results are expressed as percentage of gene expression in primary KCs cells
transfectedwith TSPEAR-specificsiRNA relative to gene expression in siRNA control-transfected
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cells ± standard error (two sided t-test: ��p<0.01). Results are normalized toGAPDH RNA
levels.
(DOCX)

S2 Fig. Tspear expression in the enamel organ. (a) TSPEARmRNA expression was assessed
in mouse enamel organ. RNA was isolated from the enamel organ of four mice at postnatal day
10 and analyzed by RNA-seq. RNA-seq signal files were loaded into IGV (mm9) for peak visu-
alization. The IGV track in the upper panel shows the peaks corresponding to exons 4 to 7 of
Tspear. Note that Tspear is not annotated in IGV. Therefore we aligned the track to the corre-
sponding region in UCSC genome browser (lower panel) where Tspear is annotated; (b)
Immununohistochemical staining of longitudinal sections of rat mandibular incisors at P10
using anti-KRT5 (red) and anti-TSPEAR (green) antibodies. Nuclei are stained with DAPI
(blue). TSPEAR was detected at the secretion front of ameloblasts at the secretory stage and
persisted in the enamel matrix during the early maturation stages (white arrowheads). No
staining was not detected at the late maturation stage. KRT5 was detected both in ameloblasts
(above the white dotted lines) and in the papillary layer (below the white dotted lines).
(DOCX)
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