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Abstract. A new algorithm for region of interest evaluation in 
computed tomography has been developed. The new algorithm 
rep 1 aces the convention a 1 technique of repeated image recon­
structions with convolution of the projected regions and mul­
tiple vector inner products with the raw tomographic data sets. 
Quantitation of regions of interest is made without the need 
for reconstruction of tomographic images. The computational 
advantage of the new algorithm over conventional methods is 
between a factor of 20 and a factor of 500 for typical appli­
cations encountered in medical science studies. The greatest 
benefit of the new algorithm (and the motivation for its 
development) is the ease with which the statistical uncertainty 
of the result is computed. The entire covariance matrix for the 
evaluation of regions· of interest can be calculated with rela­
tively few operations. 

This work was supported in part by the Director, Offi'ce of Energy 
Research, Office of Health and Environmental Research of the U.S. 
Department of Energy under Contract No: DE-AC03-76SF00098 and in part by 
Public Health Service Grant No. HL25840, awarded by the National Heart, 
Lung and Blood Institute, Department of Health and Human Services. 
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1. Introduction 

'Computed tomography has gained recognition in the last·decade as a valu­
able tool for the noninvasive visualization of the interior of three­
dimensional objects. Examples of its use in medicine include CAT (com­
puter assisted tomography) scanning to image the distribution of x-ray 
linear attenuation coefficients, emission computed tomography to image 
radiotracer concentrations, and NMR (nuclear magnetic resonance) imaging 
of nuclear spin densities and relaxation times. 

Region of interest evaluation in computed tomography is a technique 
used to quantitate the tomographic imaging process throughout .a volume of 
particular significance to the investigator. It reduces statistical 
uncertainty and allows the investigator to analyze the properties of the 
region of interest at different times and under different physical con­
ditions. Conventional region of interest evaluation is a time.consuming 
process. It requires a tomographic reconstruction and the summation of 
the :contents of the picture elements (pixels) within the significant 
volume. 

In this paper we describe a new algorithm which requires no recon­
struction and ·evaluates the significant volume directly. The new algo­
rithm also gives the statistical uncertainty of the result and the 
covariance matrix if more than one region is ev~luated. 

2. Conventional Region of Interest Evaluation 

Region of interest evaluation of computed tomographic data is generally 
performed by reconstructing a transaxial image of the distribution of 
imaging agent. Region of interest evaluation consists of summing recon­
structed pixel values over ~redetermined regions of the image. 

Of the many algorithms for the reconstruction of tomographic images, 
the most widely used is the convolution method (Bracewell and Riddle 
1967, Ramachandran and Lakshminarayanan 1971). In the convolution method, 
data from each projection angle are filtered (convolved with a particular 
kernel) and backprojected to· form the image. The projection data can 
arise from either parallel beam or one of several fan beam geometries 
(Huesman et al. 1977). The algorithm is summarized in equation (1) 

km ~ km 
Bij = L Fij L Ck p~ = L Fij qkm , 

km ~ km 
(1) 

where p~ are the projection data at angle m and bin~' Ck~ is the con­
volution kernel, qkm are the convolved data, Fi/m ar.e the ~a~kprojection 
factors, and B;i are the reconstructed values for p1xel (l,J). The sum 
over~ is convo-lution in configuration space, and Ck~ corresponds to a 
ramp or modified ramp filter in Fourier space for parallel beam geometry. 
The sum over k and m is backprojection, and Fi/m corresponds to the 
projection of pixel ( i ,j) into projection bin 1< at angle m. Linear 
interpolation is usually used, and Fi/m is non-zero only at the two 
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nearest bins where the center of pixel (i,j) projects at angle m. Fijkm 
is a very sparse matrix and is calculated as needed rather than be1ng 
precomputed and saved. 

The region of interest evaluation is summarized in equation (2) 

Rex = I Bij ' 
i j e:a: 

(2) 

where a: refers to a set of (usually contiguous) pixels within the recon­
structed image. Rex is the sum of reconstructed pixel values, Bij' over 
the region specified by a:. 

Statistical uncertainty for Rex 1s difficult to calculate fn this 
formulati~ri~· While uncertainty for the individual pixel values, Bij' can 
be computed .in a straightforward ~anner (Huesman et al. 1977) the corre- · 
lation between neighboring pixel values is high. We know only of approx­
imate formulas for the statistical uncertainty of Rex (Budinger et al. 
1978). 

3. New Algorithm for Region of Interest Evaluation 

We have developed a new algorithm for the evaluation of regions of 
interest which obviates the need for reconstruction of the image and 
calculates the final solution directly~· The new formulation simplifies 
the problem rendering the statistical uncertainty trivial to calculate. 
The correlations between different regions are also straightforward to 
compute. 

We begin by substituting equation (1) into equation (2) to get 'the 
full equation for the number of events in the region of interest: 

· Rex = I I F~j I c: P ~ • 
ij e:a: km ~ 

Interchanging the order of summation and rearranging leads to 

where 

km 
ga: = I 

i j e:a: 

km F·. lJ 

F~fl) 
lJ 

( 3) 

(4) 

. ( 5) 

Notice that ga:km is the sum of backprojection factors of region a: for 
projection bin k and angle m. The elements of ga: are formed by the sum­
mation of pixels inside the region of interest along rays corresponding 
to each projection bin for each angle as shown in figure 1. In other 
words, ga: corresponds to the projections of the region of interest 
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containing unit weight per pixel. 
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Figure· 1. A region of interest is evaluated by projecting the uni­
formly weighted region at each angle. The projected region is con­
volved, and a vector inner product is formed with the raw tomographic 
data set. 

Further simplification is obtained by defining the vector haas 

(6) 

so that 

~ 
Ra = L ha p Jm • (7) 

~ 

Since the convolution kernel, ck.t, is symmetric in k and 1, ha is the 
convolution of ga as shown in figure 1. ck.t is independent of the 
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tomographic data, and ga depends only on the region of interest 
selected for analysis, so that ha can be precomputed. This results in a 
significant computational saving because· regions are usually evaluated 
for more than one data set. 

Knowledge of the boundaries of the region is all that is needed to 
perform the projection operation. Therefore, concept of a pixel can be 
discarded in the new formulation, sjnce the description of a region by a 
set of pixels is not necessary. In what follows, we retain the pixel 
approach and notation in order to maintain correspondence with the con­
ventional method of data analysis from regions of interest after 
reconstruction. 

4. Covariance Matrix for Regions of Interest 

Because of the particularly simple form of equation (7), we can write the 
covariance matrix for regions of interest as follows: 

covar{Ra,R~} = I 
.R.•m• 

.R.•m• .R. .. m .. 
I ha h ~ covar {p .R.•m• ,p .R. .. m .. } . 

.R. .. m .. 
(8) 

Since the projection data are generally statistically independent, the 
covariance matrix of the data is diagonal, and equation (8) simplifi~s to 

. ~ .Rm 
covar{Ra,R~} =I ha h~ var{p~}, 

.Rm 
(9) 

where var{p.Rm} are the diagonal elements of the covariance matrix of the 
measured data, covar{p.R.•m• ,p.R.nmn }. 

The diagonal elements of the covariance matrix of equation (9) are 
the variances of the evaluated regions and are given by 

var{Ra} =I [h~]2 var{p~}. (10) 
.R.m 

The calculation of the variance of an evaluated region or calculation of 
the entire covariance matrix is particularly simple and contains rela­
tively few operations. 

5. Application of the New Algorithm to Dynamic Data Analysis 

Dynamic emission computed tomography is a good example of a field which 
utilizes region of interest evaluation. For analysis of dynamic emission 
computed tomographic data, regions of interest are determined by inspec­
tion of a high-statistics emission image or a corresponding transmission 
image. Regions are drawn to include areas of physiological significance 
in order to determine the uptake and clearance of radiotracer. If possi­
ble, regions are also drawn over vascular areas to determine the amount 
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of radiotracer delivered or made available to the tissue. 

The time-course of the residue function (amount of radiotracer in 
the tissue) is evaluated by calculating the activity in the regions for 
multiple tomographic data sets acquired sequentially after the radio­
tracer is introduced. The input function (amount of radiotracer available 
to the tissue) is evaluated similarly, if possible, or is determined from 
serial blood samples. With measurements of the residue and input func­
tions (both as functions of time) model parameters can be estimated. The 
model parameters characterize blood flow and/or physiologic function of 
the tissue within the region of interest. 

The model parameters are most efficiently estimated if the statis­
tical uncertainties and correlations of the residue and input functions 
are known. Knowledge of the statistical nature of these functions also 
.allows us to calculate the covariance matrix for the model parameters, 
thus enabling us to quantify our confidence in the estimates of model 
parameters reflecting physiologic function of the tissue. 

To this end, a computationally efficient region of interest evalua­
tion and uncertainty determination is necessary. The new algorithm pre­
sented here satisfies this need. After regions of interest have been 
determined, the computations indicated by equations (5) and (6) are per­
formed, and ha for each region are· stored for later use. Regions of 
interest and the covariance matrices are then evaluated for each time 
point as indicated by equations (7) and (9), respectively. 

6. Computational Advantage of the New Algorithm 

We shall delineate the number of floating point operations (multiplica­
tion and addition).required for the new algorithm and compare it to the 
number of operations required for conventional region of interest evalu­
ation. The derivation of the total number of floating point operations 
for the new algorithm, the conventional method, and an accelerated con­
ventional algorithm are presented in the appendix. We shall assume that 
parallel beam geometry and linear interpolation are used. We also.assume 
that the projection data are statistically uncorrelated. The results can 
easily be extended to fan beam configurations. 

For dynamic data analysis, region of interest evaluation is per­
formed for a number of tomographic data sets using the same regions of 
interest. It is therefore interesting to evaluate the number of opera­
tions required to analyze all of these sequential data sets. If the num­
ber of data sets (time points) is denoted by T, then the number of oper­
ations required for the new algorithm to project and convolve the regions 
and to form the vector inner product of equation (7) is 

2K 2 
#On = M L [10Na + iN ~ + 2TK] , ( 11) 

a 

where Na is the number of pixels in each region of interest, N is the 
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number of pixels in the reconstruction region, M is the number .of pro­
jection angles, and K is the number of projection bins for each angle. 
The number of operations required for the conventional method to recon­
struct the image is 

#Oc =.TM [11N + 2K2], {12) 
' . 

and the number of operations necessary for the accelerated conventional 
method to reconstruct image pixels only within the regions of interest is 

2K 2 
#oa., = TM I [nNa: + IN ~J . 

. . . a: 
(13) 

Equations (12) and. (13) also· assume T data sets and multiple regions of 
1 

interest and are to be· compared to equation (11). The actual region of 
interest evaluation [equation (2)] is not included i~ equations (12) and 
(13) because the number of operations is small compared to the recon­
struction. Equations (11) through (13) are derived in the appendix . 

. l; 

As a· representative example to compare the new algorithm to the 
conventional method we take 10,000 pixels (100 x 100 array), 100 angles, 
100 bins per angl~, and 100 pixels in each regions of interest. Table 1. 
compares equations (11) through (13) for the combinations of T=20, 40, 
and 60 time poinfl·s and 1, 5, 10, and 20 regions of interest. 

Table 1. Number of Floating Point Operations ( X 10 S ) 
for Region of Interest Evaluationt 

Number Convolved Reconstructed Reconstructed 
of Projected Image Regions 

Regions ' Regions ~ 

I eqn ( 11) eqn (12) eqn (13) 
sl 
9 

T=20 T=40 T=60 T=20 T=40 T=60 T=20 T=40 T=60 

--
' 

1 t 7 11 15 2600 5200 7800 62 124 186 
5 . 35 ·55 75 2600 5200 7800 310 620 930 

10 70 110 150 2600 5200 7800 620 1240 1860 
20 '140 220 300 2600 5200 7800 1240 2480 3720 

t N = 10,000 pixels 
M = 100 angles 
K = 100 bins per angle 
N = a: 100 pixels in each region of interest 
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There is a substantial computational saving with the new algorithm 
which increases with 1 arger numbers of tomographic data sets and fewer 
regions. The computational advantage for this example varies between 19 
(for 20 regions and 20 data sets) and 520 (for 1 region and 60 data 
sets). What is perhaps more important, the statistical uncertainties for 
the resulting region of interest evaluation can be calculated with 
3 x 10 4 floating point operations for each time point and each region in 
this example. The remainder of the covariance matrix can also be calcu­
lated with 3 x 10 4 operations per matrix element. 

7. Conclusions 

A new fast algorithm for the eva 1 uation of regions of interest in com­
puted tomography has been developed. The conventional technique of 
repeated image reconstruct ion has been rep 1 aced by convo 1 ut ion of the 
projected regions and multiple vector inner products with the raw tomo­
graphic data sets. Reconstruction of the tomographic images is unneces­
sary as is the concept of pixels, since the projection operation can be 
performed once the boundaries of the region are known. The new algorithm 
will also find application in higher dimensional x-ray and NMR 
tomography, as similar computational efficiency will be found in the 
evaluation of three-dimensional regions of interest . 

. The computational saving of the new algorithm is substantial. There 
is ~ .20 to 500 fold red.uction in the number of floating point operations 
for typical applications encountered in medical science studies. The 
nature of the computations imbedded in the new algorithm make it readily 
amenable to hardwired implementation. Since the region of interest eval­
uation and the calculation of statistical uncertainty are both vector 
operations, implementation of the new algorithm on an array processor is 
also a logical choice. 

The greatest benefit of the new algorithm (and the motivation for 
its development) is the COITJputation of statistical uncertainty for the 
region of interest quantitation. This results in more efficient estima­
tion of model parameters in subsequent analysis of physiologic function 
from the dynamic data. 
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Appendix 

Derivation of the number of operations required for region of interest 
evaluation 

In this appendix we examine the number of floating point .operations 
required for region of interest evaluation using the new algorithm.· Com­
putational details of the new algorithm for region of interest evaluation 
can be separated into three steps: projection of the region [equation 
(5)]; convolution of the projected region [equation (6)]; and region of 
interest evaluation [equation (7)]. We shall delineate the number of 
operations (multiplication and addition) required for each of these steps 
and compare them to the number of operations required for conventional 
region of interest evaluation. We shall assume that parallel beam geome­
try and linear interpolation are used. We also assume that the projection 
data are statistically uncorrelated. The results can easily be extended 
to fan beam configurationsA · 

- Projection of a region of interest consists of determining the point 
of projection of each pixel onto the projection arrays at each angle: 

/ 

( A1) 

where z specifies the projection point in units of projection bin width; 
D is the size of a pixel in units of projection bin width; i and j refer 
to horizontal and vertical pixel location, respectively; m is the angle 
index; em is the projection angle; and Zorn is an offset. The quant.ities 
sin9m, cosem, and zorn are calculated once for each angle. Letting k be 
th~ integer part of z and using linear interpolation we get 

F~ll) = 1 + k - z lJ ' 
(A2) 

F~:1;m = z ~ k lJ (A3) 
t 

and all other F);for this choice of i, j, and mare zero. Therefore, 
equation (5) requires three multiplications and seven additions per pixel 
per angle for step #1, or 

#M1 = 3MNa 

#A1 = 7MN a 

where M is the number of projection angles, and Na is the number 
els in region a. 

of 

( A4) 

(A5) 

pix-

Convolution of a projected region consists of a standard digital 
convolution, but the projected region is of 1 imited extent, and the 
average number of projected bins can be estimated to be approximately 
equal to D times the square root of the number of pixels in the region. D 
is about equal to K/IN, where K is the number of projection bins for each 
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angle and N is the total number of pixels in the reconstruction region, 
so that 

#M2 
MK 2 

(A6) : MKD~ = IN" ~, 

#A2 = MK 2 
MKD~ = YN ~. (A?) 

Region of interest evaluation is completed by computing the vector 
inner pro~uct given in. equation (7), and the number of operations·is 

#M3 = ·MK , 

#Aj' ·= MK • 

(AS) 

(A9) 

. For dynamic data analysis, region of interest evaluation is per-
formed for a number of tomographic data sets .using the same regions of 
interest. We therefore evaluate the number of operations required to 
analyze all of these sequential data sets. If the number of data sets 
(time points) is denoted by T, then the number of operations required by . 
the new algorithm is 

K2 
#Mn . = M I [ 3N a: +. IN" ~ + TK ] , (AlO) · 

a: 

(All) 

Adding equations (AlO) and (All) gives the total number of floating point 
operations for the new algorithm: 

2k 2 
#On = M L [lONa: + IN" ~ + 2TK] . 

a: . 
(11) 

Notice that steps #1 and #2 need be performed only once for each region 
of interest, and· step #3 is performed for each region and each time 
point. 

The number of operations required for region of interest evaluation 
using the conventional method can be evaluated by insfection of equation 
(1) .. Convolution requires MK2 mul,tiplications and MK additions. Evalua­
tion of the back project ion factors [equations (Al) through (A3)] and 
backprojection require 4MN multiplications and 7MN additions. Therefore 
the number of operations required for the conventional method is 
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#Me = TM [4N + K2] 

#Ac = TM [7N + K2 ] 
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(A12) 

(A13) 

Adding equations (A12) and (A13) gives the total number of floating point 
operations for the conventional algorithm: 

#Oc = TM [11N + 2K 2 ] • (12) 

For the conventional method the entire image is reconstructed, even 
though the regions of interest generally occupy only a small part of the 
image. If only pixels within the regions of interest are reconstructed, 
only those need to be backprojected, and therefore only a limited number 
of bins of the convolved projections need to be calculated. Taking these 
factors into account, the resulting number of operations necessary for 
region of interest evaluation using an accelerated conventional method is 

il K2 
#Ma = TME2 [4Na + Iff ~] ' 

2a 

(A14) 

.. "':> K2 
#A a = TM 2 [7Na + iN' ~] (A15)'.· 

a 

Adding equations (A14) and (A15) gives the total number of floating point 
operations for the accelerated conventional algorithm: 

(13) 

The 'actual ,region of interest evaluation [equation (2)] is not included 
in equations (12) and (13) because the number of operations is small 
compared to the reconstruction. 

References 

Bracewell'RN and Riddle AC 1967 Astrophys. J. 150 427 
·< 

Budinger TF, Derenzo SE, Greenberg WL, Gullberg GT and Huesman RH 1978 J. 
Nucl. Med. 19 309 

Huesman-~.RH, Gull berg GT, Greenberg WL and Budinger TF .1977 Users Manual: 
Donner 'Algorithms for Reconstruction Tomography, Lawrence Berkeley Labo-
ratory, Publication PUB-214 · · 

Ramachandran GN and Lakshminarayanan AV 1971 Proc .. Nat. Acad ~ Sci. US 68 
2236 

10 

l· 

(I 



This report was done with support from the 
Department of Energy. Any conclusions or opinions 
expressed in this report represent solely those of the 
author(s) and not necessarily those of The Regents of 
the University of California, the Lawrence Berkeley 
Laboratory or the Department of Energy. 

Reference to a company or product name does 
not imply approval . or recommendation of the 
product by the University of California or the U.S. 
Department of Energy to the exclusion of others that 
may be suitable. 



~~ ........ _ ,;~ 

TECHNICAL INEORMATION DEPARTMENT 

LAWRENCE BERKELEY· LABORATORY 

UNIVERSITY OF CALIFORNIA 

BER~ELEY, CALIFORNIA 94720 

~~--...._,_:~:-~~ 




