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The cost of day-ahead solar forecasting errors in the United States 

Yuhan Wang a,b, Dev Millstein a,*, Andrew D. Mills a, Seongeun Jeong a, Amos Ancell a 

a Lawrence Berkeley National Laboratory, United States 
b University of California, Berkeley, United States  

A B S T R A C T   

As solar energy contributes an increasing share of total electricity generation, solar forecasting errors become important relative to overall load uncertainty and can 
add costs to electricity systems. We investigated the costs of day-ahead solar forecast errors across 667 existing solar power plants in the United States (years 2012 
through 2019). Our analysis was based on hourly real-time and day-ahead nodal prices. We analyzed two types of solar forecasts: persistence forecasts, a simple 
approach to forecasting, and a numerical weather prediction forecast, the North American Mesoscale Model (NAM), an improvement over persistence forecasts based 
on public data and modelling software. We modeled hourly energy forecasts using meteorological forecasts and plant specific characteristics. Hourly plant generation 
was modeled and debiased with multiple sources of generation records. NAM forecast errors had relatively low costs on average, at no more than $1/MWh in all years 
except 2016, when costs rose to $1.5/MWh. Even after these error costs, the value of solar was marginally higher when simulating solar participation in day-ahead 
markets versus participation only in real-time markets. On average, the premium for participating in the day-ahead market, based on NAM forecasts, ranged from 
− 0.5 to 5.2 $/MWh across years. Average error costs were higher in regions with higher solar penetration (i.e., California and New England) compared to regions 
with low solar penetration. However, California and New England had similar error costs despite higher solar penetration in California, indicating that error costs to 
date have been only loosely correlated with solar penetration levels.   

1. Introduction 

The share of electricity generated from solar power is growing in the 
United States and globally – solar power now accounts for roughly 20% 
of the electricity generated in California (Bolinger, Seel et al. 2020) and 
global solar generation more than doubled between 2015 and 2018 (EIA 
2021). That solar is a major source of electricity in some regions, and 
growing quickly in many others, means that solar forecast errors are, or 
may soon become, an important source of uncertainty to balancing 
electricity supply and demand. The growth of solar motivates questions 
about the impact of solar forecasting errors on regional electricity sys
tems. For example, what is the cost of forecast errors to the overall 
system, or the cost to plant operators? Can improved forecasts reduce 
costs? Understanding the answers to these questions may help smooth 
the integration of solar energy into the electricity grid, reduce the cost of 
electricity, and support decarbonization goals (as solar power is often 
considered a key component of pathway’s for electric sector 
decarbonization). 

Solar forecast errors, or any unanticipated change to load or supply, 
can cause real costs to energy systems because of inflexibility in demand 
and supply. For example, prior research suggests that improving short- 
term load forecasting accuracy by 1% would provide approximately 
$1.5 million of value per year to a typical U.S. utility with 5-gigawatts of 

peak load (Hong 2015). Short-term electricity demand is commonly 
inelastic, or almost inelastic, to real-time (RT) prices. Suppliers (types of 
generators) face varying physical limits to the rate at which they can 
turn on, off, ramp up, or ramp down. Because of this inflexibility in both 
demand and supply, a large over forecast in solar supply will likely force 
a different set of generators to react than the set that was originally 
scheduled. This new set of generators may be more dependent on less 
efficient, but faster reacting, generators, such as gas turbines. An under 
forecast of solar can cause transmission congestion, curtailment, and 
also force a change to the planned set of generators. Past research efforts 
have explored the impacts of solar forecast errors with a variety of 
techniques, for example, through econometric analyses of the German 
market (Gürtler and Paulsen 2018, Kulakov and Ziel 2021) and the 
California market (Woo, Moore et al. 2016), and through a simulation of 
solar forecasting impacts in Arizona (Wu, Botterud et al. 2015) and the 
New England region of the U.S. (Martinez-Anido, Botor et al. 2016). 

Other studies have investigated the costs of solar forecast errors, or 
the value of improving solar forecasts, at one, or a small group of, solar 
power plants (Kraas, Schroedter-Homscheidt et al. 2013, Luoma, 
Mathiesen et al. 2014, De Giorgi, Congedo et al. 2015, Ruhnau, Hennig 
et al. 2015, Kaur, Nonnenmacher et al. 2016, Antonanzas, Pozo-Vázquez 
et al. 2017, Cirés, Marcos et al. 2019). These studies universally found 
some benefit to improving forecasts. Antonanzas et al. (2017), for 
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example, showed that the best forecasting approach they tested pro
vided a value of 1.2 €/MWh over a simple ‘persistence’ forecast, for a 
single plant in Spain in 2010. Kraas et al. (2013) examined the forecasts 
for a concentrating solar plant in Spain, and found that forecast im
provements beyond persistence forecasts offer a roughly 50% reduction 
to penalties required by the system operator due to forecast errors. 
Luoma et al. (2014) examined the value of solar forecasts at 63 locations 
in California in 2010 and 2011. They found that forecasts from a nu
merical weather prediction model provided 96% of the benefits of 
having perfect foresight (on average, based on hourly nodal prices). 
Overall though, it is challenging to meaningfully compare the results 
across the studies because the studies cover different time periods, 
employ different methodology, and explore regions with varying com
positions of power plant type and varying regulations relevant to the 
treatment of solar forecast errors. 

Existing research leaves important questions unanswered. For 
example, how has the cost of solar forecasting errors evolved over time, 
or how has the cost of solar forecast errors varied by region? Existing 
empirical studies have focused on a limited time period (usually a year) 
and a single region. Thus, they provide limited insight into how the cost 
of forecasting errors has varied between years, evolved with additional 
solar penetration, or varied across regions. Additionally, most of the 
empirical studies cited explored the cost of forecast errors at one to ten 
total plants, perhaps obscuring variation within regions. 

This study aims to address these knowledge gaps. We investigate the 
cost of solar forecasting errors at 667 existing utility-scale photovoltaic 
(UPV) plants across five Independent System Operator (ISOs) regions in 
the United States. Our study period runs from 2012 through 2019. 

We estimate the cost of solar forecast errors using empirical prices 
from the RT and day-ahead (DA) energy markets in each ISO. Hourly 
price time-series for each solar plant were derived from locational 
marginal price (LMP) nodes closest to each plant (there are over 50,000 

LMP nodes in the United States from which to match to solar plants). 
With this scope we examine how the cost of forecasts errors has changed 
overtime and across regions, and examine the results in the context of 
the rapid solar deployment observed over the past decade. 

We compare two solar forecasting strategies, simple persistence (e.g., 
the solar forecast for 1 pm today = solar production at 1 pm yesterday), 
and a numerical weather prediction forecast (NAM, the North American 
Mesoscale model). The NAM forecast allows us to evaluate improve
ments to persistence forecasts without requiring proprietary data. RT 
generation is modeled based on individual plant characteristics and 
finely resolved meteorological data. Importantly, RT generation has 
been debiased with regional hourly generation records and monthly 
plant-level generation records, in order to provide an accurate repre
sentation of actual solar generation. 

In the Methodology section (2) we provide details on the models and 
empirical data used in the study, as well as additional contextual dis
cussion of RT and DA market prices and various forecasting techniques. 
In the Results and Discussion section (3) we first present national 
average results and then focus on results at the regional-level and at 
individual plants. We discuss how error costs are related to overall solar 
penetration in different regions and examine the value to solar of 
participating in the DA and RT markets versus participating only in RT 
markets. Finally, section (4) concludes the paper with a summary of the 
most important findings. 

2. Methodology 

2.1. Sample of utility-scale solar plants 

The cost of forecast errors was evaluated at plants across U.S. regions 
with regulated wholesale electricity markets. We excluded the regions of 
the Midwest Independent System Operator and of the New York Inde
pendent System Operator, because at the time of writing, we were un
able to debias generation records from those regions due to data 
limitations. For similar reasons, we have excluded plants from other 
regions, including states such as Nevada and Arizona. Plants were 
excluded if they began operating after 2018, if they were less than 1 MW 
in capacity, or if we were missing data needed for debiasing their his
torical generation records. After these exclusions, 667 utility-scale 
photovoltaic (UPV) plants remained and were included in our anal
ysis. We derived plant characteristics from EIA Form 860 (Energy In
formation Administration 2020a) and on the data set associated with 
Bolinger et al. (2020). The plants are located in five Independent System 
Operators (ISOs), or in some cases Regional Transmission Organizations, 
including the California ISO (CAISO), the New England ISO (ISO-NE), 
the Electric Reliability Council of Texas (ERCOT), the Southwest Power 
Pool (SPP), and PJM. Fig. 1 plots the locations of these 667 sample 
plants, colored by corresponding ISOs. 

Among the 667 UPV plants, 431 plants are in CAISO, together with 
122 in ISO-NE, 91 in PJM, 15 in ERCOT, and 8 in SPP. Our study period 
covered years 2012–2019. For plants completed after 2012, we began 
analysis when they commenced operation, as reported by the U.S. En
ergy Information Administration (EIA). Some plants were excluded from 
year 2019 due to missing data, so 617 out of 667 plants were included in 
2019 analysis. Fig. 2 shows the generation capacity included in our 
analysis each year. 

In 2018, our sample plants accounted for 16.4 GWdc generation ca
pacity in total, 44% of cumulative U.S. UPV capacity in that year 
(Bolinger, Seel et al. 2020). The majority of our sample resides in the 
CAISO market (76.9%, by capacity), followed by ERCOT (10.0%), PJM 
(8.9%), ISO-NE (2.6%) and SPP (1.6%). While the national-level results 
from our analysis is therefore largely driven by market conditions in 
CAISO, ISO-specific analysis and discussion will also be presented. 

Fig. 1. The geographic distribution of plants included in this study: 667 plants 
span 5 U.S. ISOs. 
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Fig. 2. UPV generation capacity included in this study by year.  
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2.2. Measuring the cost of forecast errors 

We define the cost of a solar forecast error by the reduction in rev
enue caused by the error, assuming that the plant uses forecasts to 
participate in the DA market. For example, if a plant forecasts it will 
generate 100 MWh in a particular hour the next day, we assume it will 
sell that amount in the DA market at the DA price. If the plant then 
generates only 90 MWh in that hour, it will be forced to purchase 10 
MWh (the amount that was under forecast) in the RT market at the RT 
price. If the DA and RT price are the same, the solar plant will be no 
worse off than had it correctly forecast 90 MWh in that hour. But if the 
RT price is higher than the DA price, the solar plant will have to buy the 
10 MWh in RT at a higher price than it sold its generation for in the DA 
market, leading to an incremental cost. The incremental cost is, in this 
case, the cost of the forecast error. Note that we only investigate DA 
forecast errors, and do not evaluate the costs of forecast errors on intra- 
day time periods. This is similar to the method applied by Luoma et al 
(2014) and Hong (2015). 

More generally, the revenue for any plant participating in a typical 
two-settlement DA and RT market (Rdart) is equal to: 

Rdart =

∑N
i=1

[
Pda∙Ef + Prt∙

(
Ea − Ef

) ]

∑N
i=1Ea

(1) 

where Prt is the RT market price, Pda is the DA market price, Ef is the 
energy generation forecast, Ea is the actual generation, and N is the 
number of hours in the year of interest. 

Eq. (1) can be reformulated as: 

Rdart =

∑N
i=1Pda∙Ea
∑N

i=1Ea
−

∑N
i=1(Prt − Pda)∙∊

∑N
i=1Ea

(2) 

where ∊ = Ef − Ea. In Eq. (2), the second term equals the cost of 
forecast errors, and this term goes to zero when the error is zero, leaving 
the 1st term as the full Rdart assuming there is no forecast error (i.e., Ea =

Ef). Note that the denominator in Eq. (1) and (2) is equal to the sum of 
recorded generation, so that the units of Rdart are $/MWh. 

An over forecast of solar (ε greater than 0) accompanied by a higher 
RT price, relative to DA (Prt > Pda), will see a reduction in Rdart relative 
to an accurate forecast. Similarly, an under forecast accompanied by an 
RT price below the DA price will reduce Rdart. Note there are two situ
ations in which forecast errors can increase Rdart, when an under forecast 
of solar (∊ less than 0) is accompanied by a RT price larger than DA price, 
or when those two conditions are reversed. In this situation, the error in 
the forecast leads to additional revenue, rather than a cost. We would 
expect forecast errors to result in additional revenue (rather than cost) 
for a portion of hours each year due to random chance, but we would 
expect the frequency of this outcome to decline in situations where 
deviations of RT prices from DA prices are more correlated with solar 
forecast errors. The majority of the paper will focus on the cost of solar 
forecast errors (defined as the second term of Eq. (2)). 

2.3. Benefit of participating in DA markets 

In many studies, the value of solar is estimated based on the RT price 
of energy at the time at which the solar generation is realized. Focusing 
on RT energy value ignores the potential value of participating in the DA 
market. 

To determine if solar plants would find it valuable to use forecasting 
to participate in DA markets, we calculate the Day-Ahead Premium 
(DAP). The DAP is the difference between revenues from participation in 
both the DA and RT market, Rdart, and revenues from selling solar energy 
only in RT market, Rrt. Note that the DAP depends not just on forecast 
accuracy but also any systematic differences in the Pda and Prt. 

We define revenue on a per unit basis such that Rdart, Rrt and DAP are 
all in the $/MWh-generated. Eq. (3) and (4) describe the calculation of 
DAP, which also build on Eq. (1) for Rdart. 

Rrt =

∑N
i=1Prt∙Ea
∑N

i=1Ea
(3)  

DAP = Rdart − Rrt (4) 

Below we note a few details related to the calculation of DAP. 
Although prices are positive in most situations, RT and DA wholesale 
market prices drop below zero on occasion, which is a signal of over
supply in energy markets. To account for that, it is assumed that nega
tive RT market prices will lead to economic curtailment, i.e. 
Ea = 0 if Prt < 0. However, the total energy generation in the de
nominators (not numerators) in Equations (3) and (4) above is based on 
total potential generation without curtailment. This is to avoid an in
crease in calculated value because of curtailment. In other words, Rrt 

represents total revenue after curtailment at prices below zero divided 
by the total generation possible (ignoring curtailment) given weather 
conditions and plant characteristics. A similar logic stands for Rdart. 

Additionally, the pricing in ERCOT markets include a specific 
mechanism named “Operating Reserve Demand Curve” (ORDC). The 
ORDC mechanism began in 2014. In addition to the standard pricing 
system (Locational Marginal Pricing, LMP), ERCOT’s ORDC is an 
administrative process to increase the raw RT prices during times of low 
reserves and help incentivize sufficient capacity to meet high net-load 
hours. The ORDC adder was added to the RT market prices when we 
calculated Prt for ERCOT plants. 

All nodal prices are reported by each ISO and gathered through 
ABB’s Velocity Suite data product. Nodes were matched to solar plants 
either within the Velocity Suite product, or based on proximity. ISOs 
generally have RT pricing with sub-hour time resolution. However, we 
used hourly average prices for our analysis for tractability. 

Finally, we note that the RT and DA energy markets do not cover all 
system costs, as discussed in prior literature (Luoma, Mathiesen et al. 
2014, Martinez-Anido, Botor et al. 2016, Antonanzas, Pozo-Vázquez 
et al. 2017). For example, we do not account for any regional specific 
regulations that might impact solar plants, such as the possibility of 
additional fees tied to missed forecasts, or other market details (e.g. 
settlement times, sub-hourly RT pricing, etc.). We also do not explore 
any impact of forecasting on capacity markets. Capacity markets exist in 
all regions we study (except Texas) and are separate from the energy 
markets. Capacity markets are designed to ensure that enough capacity 
exists to cover a small portion of the highest load hours (energy markets 
alone might not provide sufficient financial incentives for developers to 
build enough capacity to cover these particular hours). Our focus on 
energy markets will leave out any impact that uncertainty in solar 
output has on prices in capacity markets. That said, in most regions the 
capacity markets tend to provide much less revenue to solar plants than 
energy markets, and solar capacity revenue tends to decline with high 
solar penetration (Bolinger, Seel et al. 2020, Millstein, Wiser et al. 
2021). 

2.4. Error metrics 

To quantify forecast errors, we used the metric of normalized Root 
Mean Square Error (nRMSE). nRMSE is defined as the Root Mean Square 
Error (RMSE) normalized by the maximum actual generation (see Eq. 
5–6). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑N

i=1
(Ef − Ea)

2
√

(5)  

nRMSE =
RMSE
max
1≤i≤N

Ea
(6) 

where Ef is the energy generation forecast, Ea is the actual genera
tion, and N is the number of hours. 
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2.5. Hourly generation time-series 

Forecast errors are calculated as the difference between forecast 
generation and actual hourly generation. However, generation records 
are not publicly available at the plant and hourly level. To overcome this 
challenge, we developed a ‘debiased hourly generation profile’ for each 
plant. Fig. 3 summarizes the process we used to create the debiased 
generation profiles. The debiased hourly generation profiles were uti
lized as actual generation at sample plants in this study. 

Meteorological data was derived from the National Solar Radiation 
Database (NSRDB), which is widely used and provides three solar ra
diation measurements: global horizontal irradiance (GHI), direct normal 
irradiance (DNI), and diffuse horizontal irradiance (DHI) (Sengupta, Xie 
et al. 2018). A raw generation profile was modeled at each plant based 
on the NSRDB data using the System Advisor Model (SAM) (Blair, DiOrio 
et al. 2018). These profiles were then adjusted for curtailment where and 
when such data was available. An iterative debiasing process was per
formed, to ensure that the generation from each plant matched both ISO- 
level hourly generation and plant-level monthly generation. The itera
tive process contained two main steps. First, each plant’s generation was 
scaled so its hourly profile summed to match to its recorded monthly 
total. These totals were available from the U.S. Energy Information 
Administration (EIA) form 923 (Energy Information Administration 
2020b). In the second step, hourly scaling factors were developed for all 
plants in each region. Hourly total solar generation is reported by each 
ISO, and a single scaling factor for each hour is applied across all plants 
in a region so that the modeled hourly total matches the recorded total 
for each hour. These two steps are then repeated until the change in 
values between each cycle falls below a minimum threshold. Note that 

output is scaled within the physical limits possible for each plant (i.e., 
once a plant reached 100% of its output, it could no longer be scaled up, 
and other plants (or other hours, depending on the step of the iteration) 
would be scaled up instead. The debiasing process has been described in 
previous work (Wiser, Millstein et al. 2020, Wiser, Bolinger et al. 2020, 
Millstein, Wiser et al. 2021). 

2.6. Solar forecast techniques 

Forecasting techniques can be generally classified into three major 
categories: physical, statistical, and ensemble methods (Chaturvedi and 
Isha 2016, Sobri, Koohi-Kamali et al. 2018). Physical methods are based 
on knowledge of the underlying processes that link solar irradiance and 
physical conditions in the atmosphere (Lorenz, Heinemann et al. 2007). 
Meteorological models—either based on local measurements, satellite 
imaging, or both—are a fundamental part of the physical solar fore
casting methods. In contrast, statistical approaches are purely data- 
driven (Martín, Zarzalejo et al. 2010). These approaches seek to estab
lish a relationship between parameters and power output based on 
historical observations, and then use it for prediction. Machine learning 
methods, a large contributor to recent advancements in forecasting 
techniques, falls into the statistical category. Ensemble methods are 
combinations of both physical and statistical methods (Gala, Fernández 
et al. 2016). 

In this paper we compare the cost of forecast errors of a physical 
forecast method (NAM) to the costs of errors from persistence based 
forecasts (Fig. 4). Though there are many ways one could improve the 
physical forecast we use (it is simply based on publicly available mete
orological forecast data), optimizing forecasts to reduce error is not the 
focus of this paper. Instead, we are more interested in the costs of overall 
forecast errors, and how these change across regions and times. By 
bounding the maximum forecasts error costs with persistence forecasts 
and observing the cost reduction derived from using NAM forecasts, we 
are also able to gain insight into the benefits from improving forecasts. 

The physical forecast approach is based on the North American 
Mesoscale Forecast system (NAM) (NCEP 2020). NAM is a numerical 
weather prediction model that generates 12 km-resolution forecasts 4 
times every day on 00/06/12/18 UTC. It predicts weather and irradi
ance up to 84 h ahead, with hourly forecasts in the first 36 h. In this 
study, 24–29 h ahead NAM forecasts from each run were compiled as a 
continuous DA forecast time series at each sample plant. Then the Sys
tem Advisor Model (SAM) was used to translate NAM irradiance fore
casts into DA energy generation forecasts. We assume that plant owners 
will at least perform a basic bias correction before using NAM-based 
forecast for market bidding, therefore, we scale hourly NAM forecasts 

National Solar Radiation 
Database (NSRDB)

Hourly modeled 
generation profile

System Advisor 
Model (SAM)

Debiasing 
process

Debiased hourly 
generation profile

Recorded plant-level 
monthly generation

Recorded ISO-level 
hourly generation

Fig. 3. The approach used to estimate plant-level hourly RT generation data.  

Perfect Foresight

NAM-based 
Forecast

Persistence 
Forecast

Actual Generation Profile

Yesterday Actual 
Generation Profile

North America Mesoscale 
Forecast System (NAM)

System Advisor 
Model (SAM)

Bias Correction

Fig. 4. Preparation of NAM-based and persistence forecasts. Perfect foresight 
assumes forecast generation equals actual generation. 
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such that the total output forecast for each month matches the recorded 
monthly total at each plant (while maintaining physical limits to plant 
output in individual hours). This final time series is referred as a “NAM- 
based forecast”. 

Finally, the naïve one-day persistence model, assumes tomorrow’s 
solar energy generation equals today’s generation (i.e., generation in 
hour T + 24 equals generation in hour T). This is referred to as a 
“persistence forecast”. 

3. Results and discussion 

3.1. 2012–2019: Overall cost of forecast errors 

We define the cost of solar forecast errors as the cost of compensating 
for DA forecasts errors through purchasing or selling energy in the RT 
markets (this is the second term of Eq. (2)). Though it is possible for 
these transactions to have a positive value (for example, an over forecast 
in the case where DA price is greater than RT price), on average, these 
compensating transactions were costly. 

Fig. 5 shows the average costs of forecast errors across all plants in 
the study for NAM and persistence forecasts and for years 2012 through 
2019. NAM nRMSE varied between 13.4% and 20.8%. The cost of these 
NAM forecast errors varied by year, ranging from 0.3 to 1.5 $/MWh, 
though staying at 1 $/MWh or less in all years except 2016. The 
persistence forecast nRMSE ranged between 15.0% and 23.6% during 
the study period, and was larger than NAM nRMSE in all years. The 
average cost of these persistence errors was ~ 50% greater than the 
average cost of NAM errors, though this margin also varied significantly 
by year. The difference between the NAM and persistence forecasts 
nRMSE was relatively small, ~3% on average (e.g., in 2015 NAM 
nRMSE was 21% and persistence nRMSE was 24%). 

In 5 of 8 years, cost per % of nRMSE was larger for persistence 
forecasts than NAM forecasts. In those years, the results suggested 
diminishing returns to forecast improvements. That is, improvements in 
nRMSE produce smaller cost benefits as forecasts move closer and closer 
to being perfect. Data from three years (2012, 2013, and 2016) did not 
follow this pattern, and these exceptions are discussed at the end of 
section 3.2.1. The pattern of diminishing returns to forecast improve
ments is consistent with a study of forecast values in ISO-NE (Martinez- 
Anido, Botor et al. 2016). However, the results presented in Fig. 5 are in 
contrast to results from a previous study in Spanish markets, which 

suggested the relationship between market-defined forecast value and 
forecast error follows an almost linear fit (Antonanzas, Pozo-Vázquez 
et al. 2017). 

3.2. Cost of forecast errors by ISO in the context of growing solar 
deployments 

In 2019, CAISO and ISO-NE were the only two regions where solar 
accounted for more than 2% of total electricity generation. These two 
regions had, on average, higher costs to forecast errors than the other 
regions. For example, if we examine the recent years 2017 – 2019, the 
costs of NAM forecast errors in CAISO and ISO-NE ranged from 0.3 to 1.7 
$/MWh, and the cost of persistence forecast errors ranged from roughly 
1.5 to 2.9 $/MWh (see Fig. 6). For context, many recent U.S. utility-scale 
solar power purchase agreements (PPAs) have contracted at below $40/ 
MWh (Bolinger, Seel et al. 2020). In most other regions, the costs of 
forecast errors were of lower magnitude in most years. In 2019, the cost 
of NAM forecast errors was negative in SPP and ERCOT, and the cost of 
persistence errors was negative in PJM and SPP. Negative cost indicates 
that on balance, the errors would have increased solar plant revenue 
rather than imposed costs. We discuss ‘negative costs’ later in this 
section. 

In addition to interannual variation, the costs of forecast errors 
varied by plant. Fig. 7 shows the cost of NAM forecast errors at each 
plant in 2018 and 2019. The costs of NAM forecast errors varied across 
plants in CAISO and ERCOT more than across plants in other regions, 
and the costs of errors at individual plants in both regions ranged across 
positive and negative values. The variation across regions and plants 
indicates that the costs of forecast errors are somewhat stochastic in 
nature. 

We note the caveat that sample sizes for ERCOT and SPP are smaller 
than other regions, and thus we are cautious about the conclusions we 
make for these two regions. All plants in the ERCOT sample started 
operation after 2012, and we do not begin covering ERCOT results until 
2016–2019, when there were at least five plants in operation. PJM and 
SPP results start from year 2014 for the same reason. Additionally, 
CAISO and ISO-NE results for years 2012–2013 should be treated with 
appropriate caution as sample sizes in those years are limited. 

In one sense, the results shown in Figs. 6 and 7 are surprising: we 
expect there to be a cost to forecast errors but these figures show some 
examples of forecast errors increasing solar plant revenues. One expla
nation for the incidences of beneficial forecasting errors is that at low 
solar penetration, LMP prices are mostly independent from solar forecast 
errors. If prices were completely independent of solar forecasts, the 
impact to the cost of forecast errors would be random, occasionally 
positive and occasionally negative. All instances in Fig. 6 in which 
forecast errors increased revenue occurred in regions and years where 
solar penetration was equal to or less than 2% (implying that RT prices 
were relatively independent of solar). Specifically, solar accounted for 
1% or less of generation in SPP, PJM, and ERCOT through 2019, and 
solar penetration was less than 2% in ISO-NE through 2016, and in 
CAISO through 2012. Additionally, we note that sometimes, in low solar 
penetration regions, the higher nRMSE persistence forecasts can lead to 
lower error costs than NAM forecasts (e.g., ISONE in 2016 and ERCOT in 
2018). The explanation for this phenomenon is the same as for why some 
low penetration regions sometimes show benefits to forecasting errors, 
that is, prices in these cases are not particularly correlated with solar 
forecasting errors. 

A broader question, related to the more general concept of ‘solar 
integration costs,’ is, does the cost of forecast errors continue to grow 
with solar penetration? The growth of error costs would point to 
increasing costs associated with integrating higher levels of solar gen
eration into an electricity system. Generally, given a well-functioning 
market, the costs of forecast errors to solar plants should roughly 
equal the cost to the grid of balancing those forecast errors. Previous 
work indeed suggests error costs may increase with solar penetration. 
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For example, Martinez-Anido et al. (2016) simulate increasing levels of 
solar deployment within ISO-NE and find that the system-level marginal 
(per MWh) cost savings of improved solar forecasting rises with higher 
solar penetration. However, the amount of increased costs is sensitive to 
composition of a region’s electric grid. In regions with little flexibility, 
increased solar penetration may lead to high levels of solar curtailment, 
and in this case, solar forecast errors are often close to costless as they 
simply impact the amount of curtailment in RT. Wu et al. (2015) find a 
situation like this is possible in their simulation of a region with limited 
trade and relatively high nuclear capacity. 

A generalized argument can be made that the costs of solar forecast 
errors will likely grow with solar penetration: (1) When solar is over 
forecasted for a certain hour RT prices will rise, relative to DA prices, as 
more expensive generators must make up for the absence of forecasted 
solar. (2) In this case, most solar plants participating in the DA market 
will need to purchase RT energy to make up for their actual generation 
shortfall (the cost of the forecast error depending on their shortfall and 

the difference in DA and RT prices). Note that under forecasts can also 
lead to costs, as in this case, solar plants will sell additional solar gen
eration for possibly low RT prices. (3) As solar penetration grows, the 
impact of correlated forecasting errors across a region will have a larger 
impact on prices, and thus lead to larger costs to forecast errors. 

We can look to our results for evidence that penetration is impacting 
the cost of forecast errors. Specifically, we can compare results in CAISO 
and ISO-NE to the other regions, as CAISO and ISO-NE have notably 
greater shares of solar than the other regions. In CAISO, the share of 
electricity produced by solar grew from 15% in 2017 to 19% in 2019. In 
ISO-NE, the solar share grew from 3% to 4% over the same period. From 
2017 through 2019, we see NAM forecast errors are always less costly 
than persistence forecast errors in CAISO and ISO-NE. This is not the 
case in PJM, SPP, or ERCOT, in which there are instances during this 
time period when NAM errors were more costly than persistence errors. 
This suggests that the cost of forecast errors is more closely linked to the 
size of the error in the higher penetration regions of CAISO and ISO-NE 
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compared with the remaining low penetration regions. However, there 
was no indication that the higher penetration region CAISO sees more 
expensive errors than ISO-NE. 

3.2.1. Empirical relationship between solar forecast errors and RT-DA price 
differences 

One possible cause of the lack of differentiation between CAISO and 
ISO-NE forecast error costs is the minimal overall correlation between 
solar forecast errors and RT-DA price differences. This was true even in 
CAISO in 2019, despite the high penetration of solar. For example, Fig. 8 
shows the correlation between RT-DA price differences (RT minus DA 
prices) and CAISO reported net load forecast errors, and also RT-DA 
price differences and CAISO reported solar forecast errors. Note that 
the y-axis is the “(Prt-Pda)” part of the cost of forecast error term in Eq. 
(2) and that the x-axis is the ε part of Eq. (2), but aggregated for all plants 
in CAISO. The more positive the slope, the bigger the cost of forecast 
errors. It is clear from visual inspection that there is minimal correlation 
of RT-DA price differences to both netload forecast errors and solar 
forecast errors. A simple linear regression between the prices and the 
errors shows a coefficient of determination of 0.05 and 0.03 for the 
netload errors and solar forecast errors, respectively. Clearly, variables 
other than net load or solar forecast errors more strongly influenced the 
RT-DA price spread (for example, unexpected transmission interruptions 
or unexpected plant maintenance issues). 

However, despite the low coefficients of determination, there was 
clearly some impact of net load errors on price differences. For example, 
we see no major RT price spikes when solar power was under forecast by 
more than ~ 500 MWh, but we do see price spikes when there was an 
over forecast (or a small under forecast). Also, the linear regression for 
solar forecasts has a negative slope of 0.02 $/MWh2, implying that when 

Fig. 7. Costs of NAM Forecast Errors in year 2018 and 2019. Regional averages are included in paratheses under the region names. Note that negative costs indicate 
an increase in revenue associated with solar forecast errors. 

Fig. 8. Correlation between RT-DA price difference and net load forecasting errors (left) and solar forecasting error (right). Each point represents one hour in the 
local afternoon (between 21:00 and 2:00 UTC) in 2019. Prices are averaged across three hubs (SP, NP, and ZP), and solar and load forecasts are as reported by CAISO, 
and summed across regions to provide a CAISO-wide total. Data is derived from all hours. 
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actual solar generation is 1000 MWh below its DA forecast, RT prices 
rise by $20/MWh above the DA price. Similarly, the linear regression for 
netload forecasts has a positive slope of 0.01 $/MWh2, implying that 
when actual netload is 1000 MWh above its DA forecast, RT prices rise 
by $10/MWh. Solar forecast errors, of course, contribute to net load 
forecast errors. Currently, net load errors span a wider range than solar 
forecasting errors. For example, the maximum under forecast for solar is 
roughly 3000 MWh, while the maximum under forecast for netload is 
more than 4000 MWh. 

We can also examine the relationship between plant-level forecast 
errors and local nodal RT-DA price differences. In Fig. 1A (in appendix 
A), we present the average slope, across all plants, of the linear fit of RT- 
DA price differences to NAM or persistence errors. In all years, and for 
both types of forecasts, the slope is mildly positive. For example, in 
2019, a NAM over forecast equal to half the capacity of a plant would, on 
average, be associated with a $7/MWh increase in the RT-DA price 

difference. Another observation is that the slopes were increasing 
gradually over the study period. This gradual increase in slope values is 
generally consistent with the expected effects of increasing solar pene
tration over the study period. 

We note that in most cases NAM error slopes were lower than 
persistence error slopes with the exception of three years (2012, 2013, 
and 2016), the same years we highlighted as following a unique pattern 
in our discussion of Fig. 5. Though 2012, and even 2013, may be sen
sitive to the relatively low numbers of plants in our sample those years, 
2016 shows that even at higher sample sizes, it is possible for the NAM 
slopes to be steeper than the persistence error slopes. Whether RT-DA 
price differences were more sensitive to NAM or to persistence errors 
helps to explain the varying, non-linear, relationships we found between 
errors costs and error magnitude in Fig. 5. This raises the question, is 
there some fundamental process that would cause prices to be more 
sensitive to persistence errors than NAM errors in most years? One could 
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hypothesize that perhaps the relationship between error costs and RT 
prices is not linear, and so the wider range of errors found with persis
tence errors leads to generally steeper linear slopes. Or, one could also 
hypothesize other causes, such as that persistence errors may be more 
correlated across a region than NAM errors, leading to a higher price 
sensitivity. However, we will leave investigation of these issues to 
further research. 

Overall, both the CAISO-wide and plant-level observations suggests 
that solar forecast errors did cause a small increase to the RT-DA price 
spread, consistent with earlier research (Woo, Moore et al. 2016). As 
solar deployment continues, we expect the magnitude of region-wide 
solar forecast errors to become larger than the historical sample of 
region-wide net load forecast errors. One possibility is that much larger 
forecast errors could more clearly drive the RT-DA price spread, leading 
to larger costs to forecast errors. This is another question for future 
research, and a question that will be made more complicated, and 
interesting, by the deployment of energy storage. 

3.3. Benefit to solar plants of participating in DA markets 

In this section we raise the question of whether it is more attractive 
for a solar plant to participate in the DA market and be exposed to the 
cost of forecast errors versus just participating in the RT market. In 
general, we do not expect a large price premium in the DA market versus 
the RT market. If a predictable price premium existed, it would likely be 
quickly reduced through market trading. There is perhaps some incen
tive for a mild price premium in DA markets due to the value of reducing 
risk for certain parties. 

Our findings reflect these conditions, that is, mild price premiums for 
participation in the DA market. For example, Fig. 9 shows that with 
perfect foresight, and averaged across all solar plants in our sample, 
participation in the DA market afforded a small premium over the RT 
market in all years. This day-ahead premium (DAP) varied between $0.3 
to $5.9/MWh, depending on the year. Forecast errors degraded this DAP 
in all years. The value of the NAM-based DAP ranged from − 0.5 to $5.2/ 
MWh, depending on the year. Further degradation of forecasting accu
racy, represented by persistence forecast, eroded the annual DAP value 
to -$1.4 to $4.8/MWh. Thus, the range in DAP across years is larger than 
the range of the cost of forecast errors, and so, despite the reduction to 
DAP due to forecast errors, the NAM DAP was positive in all years except 
2016 and 2019. 

From 2012 through 2015, the average DAP was closely correlated 
with average wholesale prices (see Fig. 9). However, this correlation 
diminished after 2015, as the margin between average DA and RT 
collapsed in 2016, 2017, and 2019. Because our sample of plants is 
heavily weighted toward plants in California, these trends in DAP may 
not be perfectly representative of the situation in other regions. But, 
before we dive into regional results, there are important broad trends 
which can be illustrated here. While wholesale electricity prices can be 
driven by many factors, including thermal or other power plant re
tirements, regulations, and other factors, the cost of natural gas has been 
particularly important in driving wholesale prices over the last decade. 
Natural gas price increases drove electricity prices up from 2012 
through 2014 (EIA 2014, EIA 2015). Natural gas prices (and average 
electricity prices) then fell in 2015 and again in 2016 (EIA 2016, EIA 
2017), remaining at relatively low levels through the rest of the study 
period. However, one important exception to the low gas (and elec
tricity) prices occurred in July of 2018 in CAISO, when recorded elec
tricity demand and a brief spike in gas prices lead to the highest monthly 
electricity price observed in CAISO since 2009 (EIA 2019). This price 
spike in 2018 also corresponded to a peak in DAP for solar (and to an 
increase in the average margin between DA and RT prices). Below we 
delve further into the drivers of DAP variation, but the general context is 
that annual DAP is loosely correlated with electricity and natural gas 
prices, and DAP can drop to close to $0/MWh when electricity and gas 
prices are low and the average margin between the DA and RT markets 

collapses, and conversely, may spike when the opposite conditions are 
seen, especially if high electricity prices correspond to sunny times of 
year in solar heavy regions. 

DAP varies on a regional basis (see Fig. 10). Though the cost of 
forecast errors reduces the premium for participating in the DA market, 
regional and year-to-year variations in the DA to RT price spread have, 
to date, been larger than the costs of errors. The factors that drive these 
DA to RT price differences have little to do with solar and more to do 
with macro factors like gas prices, etc. With this context in mind, we 
summarize the regional differences in DAP below. 

CAISO DAP values were highest in 2014 and 2018. In 2019, DAPs of 
all three forecasts were negative, indicating that even with a perfect 
foresight, market conditions were unfavorable for participating the DA 
market that year. For other years (2012–2018), perfect foresight DAP 
values in CAISO were positive in the range of $1.1 - $6.2/MWh, while 
NAM DAP obtained 57% of this value on average, and persistence DAP 
obtained 46%. 

Compared to CAISO, ISO-NE exhibited less variable DAP values, 
especially in recent years. Since 2014, DAPs in ISO-NE were positive for 
both forecasting techniques (and perfect foresight). This implies solar 
energy could have consistently earned a premium—even with the least 
accurate persistence forecasts—through participating in the DA market, 
compared to participating only in the RT market. For ISO-NE, DAPs 
under perfect foresight in 2014–2019 ranged from $2.6 to $4.7/MWh. 
Quite similar to CAISO, NAM-based forecast obtained about 59% of 
perfect foresight DAP in ISO-NE, and persistence forecasts obtained 
about 43% of perfect foresight DAP in ISO-NE. 

In PJM and SPP, DAP values were generally lower than those in 
CAISO and ISO-NE. The cost of forecast errors in these regions was also 
lower (in some cases forecast errors increased revenue). Across all years, 
the NAM DAP ranged from roughly − 1 to 2 $/MWh in these regions. 
This is in contrast to ERCOT, which had relatively large DAP values in 
recent years. ERCOTs high DAP values coincided with larger-than- 
average price volatility, which was partially associated with ERCOT’s 
energy-only market design. The increasing price and volatility in 
2018–2019, in comparison with those in 2017, elevated the average 
DAP at ERCOT plants. An example of the pricing volatility occurred in 
August 2019, when record high energy demand drove RT power prices 
to reach their $9000/MWh price cap for a few hours (EIA 2020). Thus, in 
ERCOT, the difference between DA and RT prices can reach thousands of 
dollars per MWh. With such high differences between RT and DA prices, 
the daily DAP total can vacillate between large positive and negative 
values. Overall, the high volatility in ERCOT prices in 2018 and 2019 led 
to relatively high annual DAP values, and in comparison to DAP, the cost 
of forecasting errors in ERCOT was small. 

4. Conclusion 

In this paper we analyzed the cost of solar forecast errors and the 
benefit of participating in DA markets at 667 utility-scale plants across 
the U.S. Our study period covered 2012 – 2019 and costs were assessed 
based on hourly price differences between DA and RT market prices. We 
calculated the costs of forecast errors from two sources, first a publicly 
available meteorological forecast model (NAM forecasts), and second, a 
persistence algorithm. Nationally, the costs of NAM forecasting errors at 
solar plants averaged to no more than $1/MWh in all years except 2016 
when it rose to $1.5/MWh. In a majority, but not all years, the NAM 
error costs were substantially lower than persistence error costs despite 
relatively small improvements to nRMSE, suggesting diminishing 
returns to reducing forecast errors. 

We found some evidence that the relatively high solar penetrations in 
CAISO and ISO-NE led to increased costs of forecast errors in these re
gions. In CAISO and ISO-NE the cost of NAM forecasting errors was 
approximately $1/MWh (averaged over years 2017 – 2019). During that 
same period, the costs bounced around both sides of $0.0/MWh in SPP, 
PJM, and ERCOT. This indicates that there was no, or very little, cost to 
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NAM forecast errors in these low penetration regions, but modest costs 
in ISO-NE and CAISO. CAISO, however, has much greater solar pene
tration than ISO-NE (~20% versus ~4% in 2019). Thus, it is perhaps 
surprising that the costs of forecast errors are the same in these two 
regions. One explanation could be CAISO’s participation in the Western 
Energy Imbalance Market. Participation in this regional market means 
that CAISO can readily call on resources outside of its boundaries to help 
balance solar forecast errors. It is possible that this regionalization helps 
to reduce the costs of forecast errors in CAISO and helped minimize 
differences in the cost of forecast errors between CAISO and ISO-NE. 
However, the impact of regionalization on the cost of forecast errors is 
a complex topic and will need to be addressed in future research. 

We did find that the errors in solar forecasts that CAISO faced in 2019 
were of smaller magnitude than the overall net load forecast errors. In 
other words, there are many sources of uncertainty in RT net load, and 
solar is not to the point yet where it is dominating this uncertainty. In 
fact, we saw only a low level of correlation between RT and DA price 
differences with net load forecast errors. This indicates that there are 
other processes that cause swings in RT prices (relative to DA) beyond 
changes to net load. One can easily imagine that over the next decade 
solar forecast errors will begin to drive net load forecast errors, and may 
expand the total size of these errors. In this case, net load forecast errors 
will move beyond the magnitude that we observed historically. A 
modeling effort would be required to investigate the potential costs of 
solar forecast errors in this future state of the system. It would also be 
interesting to explore how expanded reliance on battery storage may 
impact forecast error cost in the future. 

Finally, we examined the question of whether it was more attractive 
for solar plants to participate in the DA market, despite the costs of 
forecast errors, versus just selling actual generation into the RT market. 
We found that there was indeed a small incentive for most solar plants to 
participate in the DA markets. When using NAM forecasting, the na
tional average premium for participating in the DA market ranged from 
− 0.5 to 5.2 $/MWh, depending on the year. The important drivers of the 
DA premium were regional and year-to-year variations in the systematic 
DA to RT price differences, factors that had little to do with solar and 
more to do with macro factors (e.g., gas prices). This lack of sensitivity to 
forecast error costs may change of course, if the costs of forecast errors 
increase in the future. 
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Appendix A 

Fig. 1A below shows the average, across all plants in the study, of the 
slope derived by a linear fit of RT – DA nodal prices and NAM or 
persistence forecast errors. The errors were normalized by plant ca
pacity, thus the units of the slope are simply $/MWh. A value of the slope 
of $10/MWh would imply that on average, the difference between RT 
and DA prices increased by $10/MWh if the output of a solar was over 
forecasted by 100% of a plant’s capacity. The relationship was fit 
separately each year based on hourly data. 
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