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A Mixture of Experts Model Exhibiting Prosopagnosia
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La Jolla, CA 92093
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Abstract

A considerable body of evidence from prosopagnosia, a deficit
in face recognition dissociable from nonface object recogni-
tion, indicates that the visual system devotes a specialized
functional area to mechanisms appropriate for face process-
ing. We present a modular neural network composed of two
“expert” networks and one mediating “gate" network with the
task of learning to recognize the faces of 12 individuals and
classifying 36 nonface objects as members of one of three
classes. While learning the task, the network tends to divide
labor between the two expert modules, with one expert special-
izing in face processing and the other specializing in nonface
object processing. After training, we observe the network's
performance on a test set as one of the experts is progres-
sively damaged. The results roughly agree with data reported
for prosopagnosic patients: as damage to the “face” expert in-
creases, the network's face recognition performance decreases
dramatically while its object classification performance drops
slowly. We conclude that data-driven competitive learning be-
tween two unbiased functional units can give rise to localized
face processing, and that selective damage in such a system
could underlie prosopagnosia.

Introduction

For years, researchers attempting to deduce the functional
architecture of the visual system have debated whether face
recognition occurs in a specialized “module” not used for
recognition of nonface objects. A considerable body of ev-
idence from prosopagnosia seems to indicate that faces are
processed by a more or less independent system. Prosopag-
nosia is a rare condition in which brain damage reduces a
person's ability to recognize faces. Although the condition is
almost always accompanied by other visual impairments, the
deficit can be remarkably specific to faces.

One possible explanation is that face recognition is in some
way more difficult than other types of recognition, so mild
damage to a general-purpose recognition system could af-
fect face recognition more than nonface object recognition
(Damasio, Damasio, & Van Hoesen, 1982; Humphreys &
Riddoch, 1987). However, recent experiments showing a
double dissociation between face and nonface object recogni-
tion provide evidence that some separable mechanism serves
face recognition better than object recognition and vice versa.

McNeil and Warrington (1993) report that W.J., a patient
with severe prosopagnosia but apparently normal recogni-
tion of famous buildings, dog breeds, car makes, and flower
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species, had acquired a flock of sheep and learned to recog-
nize the individuals from their markings. In a test with un-
familiar sheep of a breed unfamiliar to W.J., a control group
performed significantly better on recognition of human faces
than of the sheep faces, indicating the advantages humans
normally have in identifying human faces. But W.J. per-
formed significantly better on the sheep face task than on the
human face task. The unfamiliar sheep face recognition task
was in many ways as difficult in terms of complexity and con-
fusability as face recognition, yet W.J. performed well.

Martha Farah and her colleagues have performed two im-
portant experiments providing further evidence of a special-
ization for face processing. In the first, they constructed a
within-class discrimination task involving faces and visually
similar eyeglasses (Farah, Levinson, & Klein, 1995a). Nor-
mal subjects were significantly better at discriminating the
faces than the eyeglasses, but the prosopagnosic patient L.H.
did not show this effect. His face discrimination performance
was significantly lower than that of the control group, but
his eyeglass discrimination performance was comparable to
that of the controls. In the other experiment, the researchers
compared L.H.'s performance in recognizing inverted faces
to that of normals (Farah, Wilson, Drain, & Tanaka, 1995b).
The surprising result was that whereas normal subjects were
significantly better at recognizing upright faces than inverted
ones, L.H. performed normally on the inverted faces but was
actually worse at recognizing the upright faces than the in-
verted ones. This study indicates that normal face recogni-
tion not only utilizes some form of specialized processing,
but also that the face processing pathway is mandatory, even
after damage.

On the other hand, studies of several patients have shown
that visual object recognition can be impaired while face
recognition is spared. Feinberg et al. (1994), on the basis
of neuroanatomical assessment of such patients, argue that
complex object recognition largely depends on visual decom-
position into parts, for which the left hemisphere is superior,
whereas face stimuli do not require such decomposition. This
double dissociation between face and object recognition pro-
vides a strong argument that the visual system contains el-
ements specialized for face processing, although it does not
necessarily imply a distinct face “module” (Plaut, 1995).

In light of the double dissociation, we propose a simple
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Recognition of face-like stimuli and non-face-like stim-
uli is accomplished by specialized but possibly overlapping
mechanisms. A mediator, on the basis of a representation of
the stimulus itself, mixes the output of the two systems to
generate a final decision on the identity or class of the stimu-
lus.

For the current study, we implemented the model with the
mixture of experts neural network architecture (Jordan & Ja-
cobs, 1995), trained the network to perform a combined face
identification and object classification task, and found that
competitive learning between two identical “expert” modules
can result in a division of labor in which one expert domi-
nates in face pattern processing and the other dominates in
nonface object pattern processing. Furthermore, damage to
the “face™ expert disproportionately ablates the model's face
recognition performance, indicating that data-driven special-
ization of separate processors and the fact that faces require
fine within-class discrimination might play an important role
in the type of dissociation observed in prosopagnosia. After
describing the experiment and its results, we discuss the pos-
sible implications of these findings and directions for further
research,

Object
Recognition

Experimental Methods
Face and Object Data

This study utilized static images of 12 individuals' faces, 12
different cups, 12 different books, and 12 different soda cans.
See Figure 1 for examples from each class.

For the faces, we collected 5 images of each of 12 individ-
uals from the Cottrell and Metcalfe database (1991). In these
images, the subjects attempt to display various emotions,
while the lighting and camera viewpoint is held constant. We
then captured 5 images of each of the 36 objects with a CCD
camera and video frame grabber. For these images, we per-
formed minor, pseudorandom perturbations of each object's
position and orientation while lighting and camera viewpoint
remained constant. After capturing the 640x480 grayscale
images, we cropped and scaled them to 64x64, the same size
as the face images.

Image Preprocessing

In order to transform raw 64x64 8-bit grayscale images into a
representation more appropriate for a neural network classi-
fier, we preprocessed the images with a Gabor wavelet-based
feature detector and principal components analysis (PCA).
These preprocessing steps qualitatively resemble some of the
preprocessing done in early stages of the visual system.
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The Gabor Jet Feature Detector  We first transformed the
input image set by extracting Gabor “jet” features. The
wavelet resembles a sinusoid restricted by a Gaussian func-
tion, may be tuned to a particular orientation and frequency,
and is similar to the observed receptive fields of simple cells
in primary visual cortex (Jones & Palmer, 1987). A “jel” is
formed by combining the response of several filters with dif-
ferent orientations. As an image feature detector, the jet ex-
hibits some invariance to background, translation, distortion,
and size (Buhmann, Lades, & von der Malsburg, 1990).
The basic wavelet is;
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and k = |k| controls the wavelength or “scale” of the filter
function G, & is a point in the plane relative the wavelet's
origin, ¢ is the angular orientation of the filter, and o is a
constant. As in Buhmann et al. (1990), we let o = 7, let ¢
range over {0, %, %,3% 2 3z 3x Tx} and we let

pr
k= Tv’iz*, withi € {1,...,6}.
Since the input image size is 64x64, N = 64.
Again as in Buhmann et al. (1990), for each of the eight
orientations and six wavelengths, we convolve G'(k, Z) with
the input image I(F):

WD(E,5) = [ Gyl - )1(@)d
then normalize the response values across scales:
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With eight orientations and six scale factors, the process re-
sults in a vector of 48 complex values at each point of an
image (see Figure 2 for an example). We subsampled an 8x8
grid of these vectors and computed the magnitude of the com-
plex values to get a 3072-element vector representing the im-
age.

(TT)(k,%5) =

Dimensionality Reduction with Principal Components
Analysis The feature extraction method described above
produced 240 input patterns of 3072 elements. To reduce the
dimensionality of the input patterns, we first divided them
into a training set composed of four examples for each indi-
vidual face or object (192 patterns total) and a test set com-
posed of one example of each individual (48 patterns total).
Using the technique described by Turk and Pentland (1991),
we projected each pattern onto the basis formed by the 192
most-significant eigenvectors of the training set's covariance
matrix, resulting in 192 coefficients for each pattern. As a
final step, we normalized each pattern by dividing each of



Figure 1: Example face, cup, book, and can images

Figure 2: Original image and Gabor jets at six scales. Each pixel's intensity in the processed images represents the log of the
sum of the magnitudes of the filter responses in each of the eight directions.
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Figure 3: Modular mixture of experts network

its coefficients by its maximum coefficient magnitude so all
coefficients fell in the range [—1,1].

With the resulting representation, our networks exhibited
good training set accuracy and adequate generalization, so we
did not further reduce the pattern dimensionality or normalize
the variance of the coefficients. Note that with 192 patterns
and 192 dimensions, the training set is almost certainly lin-
early separable.

Mixture of Experts Network Architecture

We modeled the face and object recognition task with the
“mixture of experts architecture (Jordan & Jacobs, 1995).
Figure 3 shows a simple modular network. Each expert
network ¢ is a single-layer linear network that computes an
output vector O; as a function of the input vector x and a set
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of parameters #;.

We assume that each expert specializes in a different area
of the input space. The gating network assigns a weight g; to
each of the experts' outputs O;. The gating network deter-
mines the g; as a function of the input vector x and a set of
parameters w. The g; can be interpreted as estimates of the
prior probability that expert ¢ can generate the desired output
y, or P(i]x,w). The gating network is a single-layer linear
network with a softmax nonlinearity at its output. That is, the
linear network computes

&= zwi
J
then applies the softmax function to get

exp (&)
EJ’ exp {'E:}

Clearly, then, the g; are nonnegative and sum to 1. The final,
mixed output of the network is

0= Z 8i04.

Adaptation by Maximum Likelihood Gradient Ascent
For adapting the network's estimates of the parameters w and
#;, we used the gradient ascent algorithm for maximizing the
log likelihood described by Jordan & Jacobs. Assuming the
probability density associated with each expert is Gaussian
with identity covariance matrix, they obtain the online learn-
ing algorithms

Ab; = n.hi(y — 0;)x”



“Face expert” specialization
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Figure 4: Weights assigned to the face-dominant expert net-
work for each stimulus class. Error bars denote standard er-
ror.

and
Aw; =ng(hi — gi)x”

where 7, and 7, are learning rates for the expert networks
and the gating network, respectively, and h; is an estimate of
the posterior probability that expert ¢ can generate the desired
output y:

_ _giexp(—3(y —0)T(y —04))
"X, 9iexp (—3(y — 0;)T(y - 0j))

This is essentially a softmax function computed on the inverse
of the sum squared error of each expert's output, smoothed by
the gating network's current estimate of the prior probability
that the input pattern was drawn from expert ¢'s area of spe-
cialization.

As the network learns, the expert networks “compete” for
each input pattern, while the gate network rewards the win-
ner of each competition with stronger error feedback signals.
Thus, over time, the gate partitions the inpul space in re-
sponse to the experts' performance. We found that adding
momentum terms to the update rules enabled the network to
learn more quickly and the gate network to partition the input
space more reliably. With this change, if ¢ is a weight change
computed as above, the update rule for an individual weight
becomes Aw;(t) = ¢+ aAw;(t — 1). The next section de-
scribes how we chose the learning parameters 7, 7., a4, and
a, during the training process.

In these experiments, the network's task was to recog-
nize the faces as individuals and the objects as members
of their class. Thus the network had 15 outputs, corre-
sponding to cup, book, can, face 1, face 2, etc. For ex-
ample, the desired output vector for the cup patterns and
the face 5 patterns were [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]"
and [0,0,0,0,0,0,0,1,0,0,0,0,0,0,0]7, respectively.

Network Training

After removing one example of each face and object (48
patterns) from the training set for use as a validation set to
stop training, we used the following training procedure:

1. Initialize network weights to small random values.

2. Train each expert network on 10 randomly-chosen patterns
from the (reduced) training set. Without this step, both net-
works would perform equally well on every pattern and the
gating network would not learn to differentiate between
their abilities, because the gate weight update rule is in-
sensitive to small differences between the experts' perfor-
mance.

3. Repeat 10 times:

(a) Randomize the training set's presentation order.
(b) Train the network for one epoch.

4. Test the network's performance on the validation set.

5. If mean squared error over the validation set has not in-
creased (wo consecutive times, go to 3.

6. Test the network's performance on the test set.

The training regimen was sufficient to achieve near-perfect
performance on the test set (see Figure 5 results for 0% dam-
age), but we found that the a priori estimates (g; and go)
learned by the gate network were extremely sensitive to the
learning parameters 1,,7,, a,, and .. If the gate network
learns too slowly relative to the experts, they generally receive
the same amount of error feedback and the g; never deviate far
from 0.5. If the gate network learns too quickly relative to the
experts, it tends to assign all of the input patterns to one of the
experts. To address this problem, we performed a search for
parameter settings that partition the training set effectively.
For 270 points in the four-dimensional parameter space, we
computed the variance of one of the gate network outputs over
the training set, averaged over ten runs. This variance mea-
sure was maximal when 7. = 0.05,7, = 0.15, @, = 0.4, and
ay = 0.6.

Maximizing the gate output variance is a reasonable strai-
egy for selecting the model's learning parameters. It encour-
ages a fairly sharp partition between the experts' areas of spe-
cialization without favoring one partition over another. On
the other hand, it would have been preferable to include a
term penalizing low gate value variance in the network’s ob-
jective function, since this would eliminate the need for a pa-
rameter search.

Results

Figure 4 summarizes the division of labor performed by the
gate network over 10 runs with n, = 0.05,7, = 0.15,a, =
0.4, and a; = 0.6. The bars denote the weights the
gate network assigned to whichever expert emerged as face-
dominant, broken down by stimulus class, and the error bars
denote standard error. Figure 5 illustrates the performance
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“Face expent” damage effects
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Figure 5: (a) Face identification classification errors increase as damage to the face-dominating expert module increases. (b)
Object categorization classification errors increase as damage to the non-face-dominating expert module increases.

effects of damaging one expert by randomly removing con-
nections between its input and output units, Damaging the
face-specializing network resulted in a dramatic decrease in
performance on the face patterns. When the network not spe-
cializing in faces was damaged, however, the opposite ef-
fect was present but less severe, Clearly, the face specialist
learned enough about the object classes during early stages
of training (when the gating network estimates all prior proh-
abilities at about 0.5) to correctly classify some of the object
patterns.

Discussion

The simulation results show that the network is a good model
of the prosopagnosic effect: as damage to the “face” module
increases, the network's ability to recognize faces decreases
dramatically. From this we conclude that it is possible for
competitive learning between two unbiased functional units
lo give rise lo a specialized face processor. Since faces form
a fairly homogeneous class, it is reasonable to expect that a
unit good at identifying one face will also be good at process-
ing others. However, since the degree of separation between
face and nonface patterns in the model is not clean and is sen-
sitive to training parameters, additional constraints would be
necessary to achieve a face/nonface division reliably. Indeed,
such constraints, such as the prevalence of face stimuli in the
newborn's environment, different maturation rates in differ-
ent areas of the brain, and a possibly innate preference for
tracking faces, may well be at work during infant develop-
ment (Johnson & Morton, 1991).

Despite the lack of a strong face/nonface separation in the
network, damaging the “face expert” affects face recognition
accuracy disproportionately, compared with how damage to
the nonface expert affects object recognition accuracy. Al-
though we have not yet run the appropriate control experi-
ments, we hypothesize that requiring the network to perform
fine discrimination between members of a homogeneous class
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and gross classification of the other classes leads to the dif-
ference in damage effects.

Although we were not directly attempting to model visual
object agnosia, it is interesting to consider how object classifi-
cation performance degrades in Figure 5 (b). Even with 100%
damage to the “object expert,” the “face expert” alone is able
to correctly classify 62% of the object patterns in the test set,
compared with the object expert correctly classifying 19% of
the face patterns when the face expert no longer contributes.
This effect is most likely due to the fact that the face expert
receives some error feedback on the object patterns early in
training, when the gate network's prior probability estimates
are close to 0.5 for all patterns, and that the classification task
is relatively simple, involving only three classes. The face
expert's performance would most likely decrease markedly
on objects if the object classification task was more realistic,
involving more classes or within-class discrimination. But in
an interesting way, these results concur with the neuropsycho-
logical data on prosopagnosia. On the basis of a review of the
literature on agnosia, Farah (1991) observes that visual object
agnosia without prosopagnosia nearly always coincides with
alexia (an inability to recognize words), and concludes that
face recognition depends strongly on processing complex ob-
jects as a whole, word recognition depends strongly on break-
ing complex objects into parts, and nonface object recogni-
tion depends more on a mixture of the two mechanisms. Thus
selective damage to a “part decomposition” mechanism can
affect the processing of some object types more than others.
For our model, this hypothesis predicts that objects amenable
to processing as wholes will be more easily recognized by a
face specialist that objects in which discrimination requires
decomposition into parts.

Future Work

Building on this experiment, we will investigate several av-
enues of further research. The network's behavior indicates



that competitive learning is most likely not the sole factor in
development of a face specialist. de Schonen and Mancini
(1995) argue that innate organizational constraints play a role
in biasing the brain toward a functional specialization in face
recognition. We will investigate the types of constraints that
bias our model toward face specialization; one possibility is
that a low-resolution pathway involving units with large re-
ceptive fields will be better able to accomplish the discrimi-
nation required in the face recognition task, whereas a high-
resolution pathway involving units with small receptive fields
will be better able to accomplish the object recognition task.
Jacobs and Kosslyn (1994) have successfully applied this ap-
proach within the mixture of experts paradigm.

The hypothesis that face processing primarily depends on
holistic or configural information, whereas processing other
object types depends more on analyzing an object’s subparts,
is also testable in our model. We plan to explore the hypoth-
esis by constructing more realistic object recognition tasks
using a broader variety of objects and involving both within-
class discrimination and gross classification of objects (such
as words) requiring some level of “parts analysis™ for recog-
nition. We predict that these changes to the object recogni-
tion task will cause a clearer dissociation of object recogni-
tion from face recognition when damaging so-called object
experts.

Work on “covert” face recognition in prosopagnosics mea-
suring skin conductance during face recognition tasks (e.g.
Tranel & Damasio, 1988) and evidence for the mandatory
nature of the face processing system (Farah et al.,, 1995b)
seem to argue that the process of mediating between the face
and nonface object systems actually occurs before recogni-
tion. We plan to investigate ways to account for this data in
future models,

References

Buhmann, J., Lades, M., & von der Malsburg, C. (1990). Size
and distortion invariant object recognition by hierarchical
graph matching. In IJCNN International Joint Conference
on Neural Networks vol. 2 (pp. 411-416).

Cottrell, G.W., & Metcalfe, J. (1991). Empath; Face, gen-
der, and emotion recognition using holons. In Advances in
Neural Information Processing Systems 3, (pp. 564-571).

Damasio, A.R., Damasio, H., & Van Hoesen, G.W. (1982).
Prosopagnosia: Anatomic basis and behavioral mecha-
nisms. Neurology, 32, 331-341.

de Schonen, S., & Mancini, J. (1995). About functional
brain specialization: The development of face recognition.
Developmental Cognitive Neuroscience Technical Report
95.1, MRC Cognitive Development Unit, London, UK.

Farah, M.J. (1991). Patterns of co-occurrence among the as-
sociative agnosias: Implications for visual object represen-
tation. Cognitive Neuropsychology, 8, 1-19.

Farah, M.J., Levinson, K.L., & Klein, K.L. (1995a). Face per-
ception and within-category discrimination in prosopag-
nosia. Neuropsychologia, 33(6), 661-674.

Farah, M.J., Wilson, K.D., Drain, HM, & Tanaka, J.R.
(1995b). The inverted face inversion effect in prosopag-
nosia: Evidence for mandatory, face-specific perceptual
mechanisms. Vision Research, 35(14), 2089-2093.

Feinberg, TE., Schindler, R.J., Ochoa, E., Kwan, P.C., &
Farah, M.J. (1994). Associative visual agnosia and alexia
without prosopagnosia. Cortex, 30(3), 395-412.

Humphreys, G.W., & Riddoch, M.J. (1987). To See But Not to
See. Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Jacobs, R.A., & Kosslyn, S.M. (1994). Encoding shape and
spatial relations: The role of receptive field size in coordi-
nating complementary representations. Cognitive Science,
18(3), 361-386.

Johnson, M.H., & Morton, J. (1991). Biology and Cognitive
Development: The Case of Face Recognition. Oxford, UK:
Basil Blackwell Ltd.

Jones, J.P., & Palmer, L.A. (1987). An evaluation of the two-
dimensional Gabor filter model of simple receptive fields

in cat striate cortex. Journal of Neurophysiology, 58(6),
1233-1258.

Jordan, M.I., & Jacobs, R.A. (1995). Modular and hierarchi-
cal learning systems. In Arbib, M.A. (Ed.), The Handbook
of Brain Theory and Neural Networks. Cambridge, Mas-
sachusetts: MIT Press.

McNeil, 1.E., & Warrington, E.K. (1993). Prosopagnosia: A
face-specific disorder. The Quarterly Journal of Experi-
mental Psychology, 46A(1), 1-10,

Plaut, D.C. (1995). Double dissociation without modularity:
Evidence from connectionist neuropsychology. Journal of
Clinical and Experimental Neuropsychology, 17(2), 294-
3L

Tranel, D., & Damasio, A.R. (1988). Non-conscious face
recognition in patients with face agnosia. Behavioural
Brain Research, 30, 235-249.

Turk, M., & Pentland, A. (1991). Eigenfaces for recognition,
The Journal of Cognitive Neuroscience, 3, 71-86.

160



	cogsci_1997_155-160



