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RESEARCH ARTICLE

Assessment of genetic susceptibility 
to multiple primary cancers 
through whole‑exome sequencing in two large 
multi‑ancestry studies
Taylor B. Cavazos1, Linda Kachuri2,3, Rebecca E. Graff2,4, Jovia L. Nierenberg2,5, Khanh K. Thai4, Stacey Alexeeff4, 
Stephen Van Den Eeden4, Douglas A. Corley4, Lawrence H. Kushi4, Regeneron Genetics Center5, 
Thomas J. Hoffmann2, Elad Ziv5, Laurel A. Habel4, Eric Jorgenson6, Lori C. Sakoda4,7 and John S. Witte2,3,8* 

Abstract 

Background:  Up to one of every six individuals diagnosed with one cancer will be diagnosed with a second primary 
cancer in their lifetime. Genetic factors contributing to the development of multiple primary cancers, beyond known 
cancer syndromes, have been underexplored.

Methods:  To characterize genetic susceptibility to multiple cancers, we conducted a pan-cancer, whole-exome 
sequencing study of individuals drawn from two large multi-ancestry populations (6429 cases, 165,853 controls). We 
created two groupings of individuals diagnosed with multiple primary cancers: (1) an overall combined set with at 
least two cancers across any of 36 organ sites and (2) cancer-specific sets defined by an index cancer at one of 16 
organ sites with at least 50 cases from each study population. We then investigated whether variants identified from 
exome sequencing were associated with these sets of multiple cancer cases in comparison to individuals with one 
and, separately, no cancers.

Results:  We identified 22 variant-phenotype associations, 10 of which have not been previously discovered and were 
significantly overrepresented among individuals with multiple cancers, compared to those with a single cancer.

Conclusions:  Overall, we describe variants and genes that may play a fundamental role in the development of multi-
ple primary cancers and improve our understanding of shared mechanisms underlying carcinogenesis.

Keywords:  Multiple primary cancers, Pleiotropy, Whole-exome sequencing, Germline genetics
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Background
The substantial global burden of cancer coupled with 
increasing survival due to improved screening, surveil-
lance, and treatments has yielded a growing number of 
cancer survivors who are at risk of developing a second 

primary cancer in their lifetime [1, 2]. The prevalence of 
multiple primary cancers globally is estimated to range 
between 2 and 17%, with wide variation likely due to dif-
ferences in cancer registration practices, case definitions, 
population characteristics, and follow-up times [1, 2]. 
Cancer predisposition syndromes, such as Li-Fraumeni, 
Lynch, and hereditary breast and ovarian cancer, are 
known to increase the risk of multiple primary cancers; 
however, less than 2% of all cancers are attributed to 
hereditary cancer syndromes [1]. Genetic risk factors for 
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multiple primary cancers beyond known syndromes are 
not well understood.

Genome-wide association studies (GWAS) have impli-
cated many common, low penetrance variants in 5p15 
(TERT-CLPTM1L) [3], 6p21 (HLA) [4, 5], 8q24 [6], and 
other loci in the risk of several cancer types. Additional 
studies have investigated pleiotropy in these regions or 
characterized cross-cancer susceptibility variants [7, 8]. 
A pleiotropic locus has the potential to not only affect 
the risk of many different cancer types, but also increase 
the likelihood that a single individual develops multiple 
primary cancers. In our prior work, we discovered that 
the rare pleiotropic variant HOXB13 G84E had a stronger 
association with the risk of developing multiple primary 
cancers than of a single cancer [9]. This suggests that 
there may be increased power to detect pleiotropic varia-
tion in individuals with multiple primary cancers relative 
to those with only a single cancer. Identifying widespread 
pleiotropic signals is informative for understanding 
shared genetic mechanisms of carcinogenesis, toward the 
identification of informative markers for cancer preven-
tion and precision medicine.

In this study, we survey the landscape of rare and com-
mon variations in individuals with multiple primary can-
cers, single cancers, and cancer-free controls through 
whole-exome sequencing (WES) in two large, multi-
ancestry studies. We evaluate associations previously dis-
covered in studies of individuals with a single cancer and 
find novel pleiotropic variation in individuals with multi-
ple primaries.

Methods
Study populations and phenotyping
Our study included ancestrally diverse individuals with 
multiple primary cancers or no cancer from two large 
study populations, the Kaiser Permanente Research Bank 
(KPRB) [10] and the UK Biobank (UKB) [11]. It addi-
tionally included individuals with a single cancer in the 
UKB study population only. From the KPRB, we included 
individuals who were previously genotyped through the 
Research Program on Genes, Environment and Health 
(RPGEH) and the ProHealth Study. For the UKB, we spe-
cifically studied participants from the 200K release of 
WES data [11, 12].

For both study populations, ascertainment of cancer 
diagnoses has been previously described [7, 13]. Both 
studies included prevalent and/or incident diagnoses of 
malignant, borderline, and in  situ primary tumors [13]. 
ICD codes indicating non-melanoma skin cancer or 
metastatic cancer were not considered primary tumors. 
Cancers were primarily defined according to the SEER 
site recode paradigm [14]. However, for hematologic 
cancers, we incorporated morphology following WHO 

classifications [15], placing cancers into three major sub-
types: lymphoid neoplasms, myeloid neoplasms, and NK- 
and T-cell neoplasms (Additional file 1: Table S1). Cases 
were individuals with ICD-9 or ICD-10 codes for primary 
tumors at two or more distinct organ sites. In the KPRB, 
controls without a cancer diagnosis, at the last follow-up, 
were matched 1:1 to cases on age at specimen collection, 
sex, genotyping array, and reagent kit. In the UKB, con-
trols included all individuals without a cancer diagnosis 
at the last follow-up.

In both study populations, we excluded duplicates/
twins and first-degree relatives, retaining the individual 
from each related pair who had higher coverage at tar-
geted sites. Following quality control (QC) of WES data 
(described below), the KPRB and UKB study populations 
used in this project included 3111 and 3318 cases with 
multiple primary cancers and 3136 and 162,717 cancer-
free controls, respectively. The UKB also contributed 
29,091 individuals with a single cancer diagnosis. While 
our study was primarily unselected for cancer type, pros-
tate cancer cases were oversampled in the KPRB due to 
the inclusion of individuals from the ProHealth Study.

Genetic ancestry and principal component analysis
Genetic ancestry was defined using genome-wide, 
imputed array data that underwent extensive QC, as pre-
viously described [13]. Ancestry principal components 
(PCs) were computed using flashPCA2 [16] by project-
ing our study samples onto PCs defined by 1000G phase 
3 reference populations [17]. Individuals were assigned to 
the closest reference population using distance from the 
top 10 PCs. Individuals with ancestral PCs greater than 
five standard deviations from the reference population 
mean were excluded. The final analytic dataset included 
individuals of European, African, East Asian, South 
Asian, and Hispanic/Latino ancestry; however, the anal-
ysis was largely biased toward individuals of European 
ancestry as they were overrepresented (Additional file 2: 
Fig. S1). A total of N = 646 (10.2%) and N= 8739 (5.26%) 
individuals were of non-European ancestry in the KPRB 
and UKB, respectively (Table 1).

Whole‑exome sequencing and quality control
The Regeneron Genetics Center used the Illumina 
NovaSeq 6000 platform to perform WES for both study 
populations where the source of DNA was saliva for 
the KPRB and blood for the UKB. Sample preparation 
and QC were performed using a high-throughput, fully 
automated process that has been previously described 
in detail [18]. Briefly, following sequencing, reads were 
aligned to the GRCh38 reference genome and variants 
were called with WeCall [18] for the KPRB and DeepVar-
iant [19] for the UKB. WeCall is a fast, accurate algorithm 
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that jointly identifies and infers genotypes at sites relative 
to a reference genome. DeepVariant is a computationally 
scalable deep neural network approach to calling vari-
ants [20]. WeCall was first used to call variants in the ini-
tial 50K release of the UKB whole-exome sequence data 
and in our KPRB sequence data. Later, DeepVariant was 
applied to the 200K release of the UKB WES data we 
use here after we had processed the KPRB data. Regard-
less, both algorithms have high sensitivity and specificity 
for calling genetic variants, so their findings should be 
comparable across the two studies. Finally, samples with 
gender discordance, 20× coverage at less than 80% of tar-
geted sites, and/or contamination greater than 5% were 
excluded.

Additional QC was applied to filter low-quality variants 
and related individuals. First, genotype calls with low 
depth of coverage (DP) were updated to missing (DP < 
7 for SNPs and DP < 10 for indels). Then, sites with low 
allele balance (AB) were removed. Specifically, variants 
without at least one sample having AB ≥ 15% for SNPs 
or AB ≥ 20% for indels were excluded. Following previ-
ous studies [18], we excluded variants with missingness 
> 10% and HWE p-value < 10−15, computed across all 
individuals in each study population. After these steps, a 
total of ~3.51M high-quality sites were retained for the 
KPRB and ~15.92M were retained for the UKB; exclud-
ing singletons, there were ~1.36M and ~8.22M variants, 
respectively. In the UKB, the larger number of variants 
observed was due to rare variation present in the larger 
sample size; when restricting to common variants (MAF 
> 1%), there were ~186K and ~137K variants, respec-
tively, for the KPRB and UKB.

Association analyses in individuals with multiple cancers 
versus cancer‑free controls
Genetic association analyses of single variants and genes 
investigated the following cancer phenotypes: (1) diagno-
sis with at least two primary cancers across any of the 36 
organ sites (“any 2+ primary cancers”) and (2) groupings 
of individuals defined by a shared index cancer at one 
of 16 organ sites with at least 50 cases from each study 
population (“cancer-specific analyses”). Primary analyses 
compared multiple cancer cases to cancer-free controls. 
Within our cancer-specific analyses of 16 organ sites, 
there were cases shared across our index cancer group-
ings. For example, the set of individuals with at least one 
diagnosis of breast cancer overlaps with those having at 
least one ovarian cancer diagnosis.

Single-variant and gene-based association analyses 
were performed using REGENIE v2.2.4, a machine-learn-
ing approach for performing whole-genome regression to 
correct for cryptic population structure, as well as adjust 
for case-control imbalance by applying saddlepoint 
approximation when the standard case-control p-value 
is less than 0.05 [21]. We assessed single-variant associa-
tions for high-quality variants shared across both popu-
lations with minor allele count (MAC) > 2 across cancer 
phenotype cases and controls within each study. The 
number of variants tested in our single-variant analyses 
varied by cancer phenotype (~337K [other female geni-
tal cancer-specific analysis] to ~722K [any 2+ primary 
cancers]). WES variants were functionally annotated 
using SnpEff v5.0 [22] and dbNFSP v3.5 [23] accessed 
through ANNOVAR [24]. Missense variants were classi-
fied using five algorithms: (1) SIFT (“D”), (2) HDIV from 

Table 1  Characteristics of the Kaiser Permanente Research Bank and UK Biobank study populations by ancestry group. Cases are 
individuals with multiple primary cancers or a single cancer (for UK Biobank only). Controls are those without any cancer

Population: Kaiser Permanente Research Bank
Multiple-cancer cases Controls

Ancestry N Mean age Female (%) N Mean age Female (%)

AFR 99 70.5 33.3 100 70.4 32.0

EAS 95 69.7 49.5 91 69.5 49.5

EUR 2,786 72.8 43.0 2,815 72.9 43.3

LAT 131 69.5 46.6 130 69.5 45.4

SAS - - - - - -

Population: UK Biobank
Multiple-cancer cases Single-cancer cases Controls

Ancestry N Mean age Female (%) N Mean age Female (%) N Mean age Female (%)

AFR 29 55.9 51.7 426 56.5 51.4 3,292 51.8 60.4

EAS 10 58.8 80.0 88 55.2 76.1 1,009 52.6 66.9

EUR 3,249 61.9 51.7 27,902 59.4 57.5 154,047 56.6 54.6

LAT 5 63.8 80.0 273 56.0 59.7 334 51.8 62.6

SAS 25 58.2 60.0 402 57.6 58.7 4,035 53.3 47.0
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Polyphen2, (3) HVAR from Polyphen2, (4) LRT (“D”), 
and (5) MutationTaster (“A” or “D”). For our gene-based 
burden analyses, we restricted to rare variants with a 
MAF < 0.5%, including singletons, computed across all 
individuals within each study population. Following pre-
vious work, three gene-based models were evaluated and 
the model with the lowest p-value was selected [25]: (1) 
all rare variants with predicted loss of function (pLOF) by 
SnpEff, (2) pLOF and missense rare variants predicted to 
be deleterious by the above five classification algorithms, 
and (3) pLOF and missense rare variants predicted to be 
deleterious by at least one algorithm. In our gene-based 
and single-variant analyses, we adjusted for covariates 
including age, top 10 PCs, and sex (except for sex-specific 
index cancers of the breast, cervix, ovary, uterus, other 
female genital organs, and prostate). In the KPRB popu-
lation, we additionally adjusted for genotyping array and 
reagent kit, as they were used to perform case-control 
matching. In the UKB, we adjusted for flow cell (S2 vs 
S4), which differed for the initial 50K and subsequent 
150K release of WES samples.

Single-variant and gene-based burden analyses for each 
phenotype were combined across study populations in a 
fixed-effects meta-analysis using METASOFT [26] and 
metafor v3.0.2 [27], respectively. For our single-variant 
analyses, we report all suggestive, independent [linkage 
disequilibrium (LD) r2 < 0.2] associations with p < 5 × 
10−6. For our gene-based analyses, we report all associa-
tions adjusted for the number of genes tested (p < 2.65 
× 10−6 = 0.05/18,842). In both analyses, we report meta-
analysis p-values.

Distinguishing susceptibility signals for multiple cancers 
versus single cancers
We also evaluated whether the variants and genes asso-
ciated with the diagnosis of multiple primary cancers 
(versus non-cancer controls) remained associated when 
comparing individuals with multiple cancers to those 
diagnosed with a single cancer. These analyses assessed 
whether the variants or genes were pleiotropic for devel-
oping multiple cancers or general markers of susceptibil-
ity to a specific cancer. We undertook these analyses in 
the UKB sample only, since individuals diagnosed with a 
single primary cancer were not sequenced in the KPRB. 
Single-variant and gene-level analyses were implemented 
as described above. For each variant or gene of interest 
identified in our case-control analyses, we performed a 
case-case analysis comparing individuals diagnosed with 
multiple cancers to those diagnosed with a single cancer. 
For our cancer-specific analyses, we compared individu-
als diagnosed with the index cancer plus any other can-
cer to those diagnosed with the index cancer only. For 
example, for a finding discovered in our cancer-specific 

analysis of prostate cancer, we performed a case-case 
analysis comparing individuals diagnosed with prostate 
cancer plus any other cancer to individuals with only a 
prostate cancer diagnosis.

Results
Characterization of multiple primary cancer diagnoses 
in two large study populations
Our meta-analyses included 6429 cases with multi-
ple primary cancers and 165,853 cancer-free controls 
(Table 1). All cases had at least two independent primary 
cancer diagnoses, and 656 cases had more than two 
diagnoses (Additional file  2: Fig. S2). In the KPRB, the 
maximum number of cancer diagnoses for an individual 
was 6 (n = 1), and in the UKB, the maximum number 
was 5 (n = 2). Overall, 36 unique cancer sites were rep-
resented across multiple cancer cases in the two study 
populations, with 180 unique pairs of sites (e.g., breast 
and melanoma) and 298 unique ordered pairs of sites by 
diagnostic sequence (e.g., breast followed by melanoma) 
(Additional file 1: Table S2). Only 51 of the 298 ordered 
pairs had at least 25 cancer cases when grouping indi-
viduals by first and second cancer diagnosis (i.e., ignor-
ing any subsequent cancer diagnoses; Additional file  1: 
Table  S2, Fig.  1). The top ordered pairs represented in 
the combined study populations were prostate then mel-
anoma (N = 221), cervix then breast (N = 202), mela-
noma then prostate (N = 180), breast then melanoma 
(N = 174), and prostate then colorectal (N = 170). Pros-
tate, breast, melanoma, colorectal, and cervix were the 
most common sites of first cancer diagnoses (Fig. 1). The 
prevalence of each cancer pair was similar in the KPRB 
and UKB (Additional file 2: Fig. S3). As most individual 
cancer pairs were underpowered for downstream anal-
ysis, we considered all multi-cancer cases combined, 
as well as groupings of individuals with a shared index 
cancer (16 cancers) (Additional file 2: Fig. S4, Additional 
file 1: Table S3). Among those with multiple cancers, the 
cancers with the largest number of cases were prostate 
(N = 1977; oversampled in KPRB), breast (N = 1874), 
melanoma (N = 1443), colorectal (N = 1324), and uri-
nary bladder (N = 829).

Exome‑wide single‑variant association analyses
We found two independent, genome-wide significant 
associations (p < 5 × 10−8) and 20 suggestive associa-
tions (p < 5 × 10−6) between individual variants and the 
multiple cancer phenotypes (i.e., either any 2+ primary 
cancers or cancer-specific analyses) (Fig.  2, Additional 
file 1: Table S4). We found an additional two significant 
and two suggestive associations (Additional file  2: Fig. 
S5) in our cancer-specific analyses of lymphoid and mye-
loid neoplasms; however, we assumed them to represent 
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somatic alterations in the blood as they had low allele 
balance across our heterogenous samples (Additional 
file 2: Fig. S6) and occur in genes known to be impacted 
by clonal hematopoiesis of indeterminate potential 
(CHIP) [28]. Results were relatively homogeneous across 
the KPRB and UKB study populations (Additional file 1: 
Table  S4). When stratifying by sex, there were no clear 
material or statistically significant differences in the 
results; the associations remain in the same direction 

and were homogeneous across sex subgroups (Additional 
file 1: Table S4). Additionally, when restricting analyses to 
European-only individuals, we found 17 (of the 22) asso-
ciations had only minor changes (<10%) in their effect 
estimates and corresponding slight decreases in their 
p-values (Additional file 1: Table S4). Thus, a large major-
ity of our findings likely have similar effects across ances-
tries and including individuals of all ancestries improves 
statistical power. The five SNPs with ≥ 10% changes in 

Fig. 1  Cancer diagnosis pairs present in the combined study populations. Circos plot describing the pairs of first and second cancer diagnoses 
with at least 25 cases present in Kaiser Permanente Research Bank and the UK Biobank study populations combined. Each connection reflects the 
number of cases with both of the linked primary cancers, where the color of the line shows the first cancer site diagnosed
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their corresponding effects when restricting to the Euro-
pean population may have been driven in part by the 
non-European ancestry individuals.

Of our 22 findings, two variants were suggestively 
associated with any 2+ primary cancers, rs555607708 
(OR [95% CI] = 2.72 [1.79, 4.15], p = 3.10 × 10−6), a 
frameshift variant in CHEK2 known to be associated 
with risk at many cancer sites [29], and rs146381257 
(OR [95% CI] = 7.82 [3.28, 18.62], p = 3.45 × 10−6), a 
5′upstream variant in ZNF106. The risk-increasing allele 
for rs555607708 (CHEK2) was most commonly found 
among individuals with at least one breast cancer (41.9%), 
prostate cancer (30.6%), melanoma (22.6%), or cervical 
cancer (16.1%) (Fig.  2). For rs146381257 (ZNF106), fre-
quencies were increased in prostate cancer (33.3%), lung 
cancer (28.6%), breast cancer (28.6%), lymphoid neo-
plasms (23.8%), urinary bladder cancer (19.0%), pancre-
atic cancer (14.3%), and kidney cancer (14.3%).

An additional 10 of our findings were previously 
reported risk variants for a single cancer (Fig.  2). 

Notably, we detected an association with the MC1R vari-
ant rs1805008 for melanoma [30] (OR [95% CI] = 1.56 
[1.35, 1.81], p = 2.73 × 10−9), when comparing all indi-
viduals with at least one melanoma diagnosis plus any 
other cancer diagnosis to cancer-free controls. We also 
replicated the previously associated prostate-specific 
antigen (PSA) variant, rs17632542 [31] (KLK3, OR [95% 
CI] = 1.49 [1.28, 1.73], p = 3.87 × 10−7) in individuals 
with at least one prostate cancer diagnosis. In addition, 
we replicated associations between missense risk variant 
rs6998061 (8q24 locus, POU5F1B) and multiple tumor 
types in both our prostate cancer-specific analysis [32] 
(OR [95% CI] = 1.23 [1.13, 1.33], p = 4.39 × 10−7) and 
our colorectal cancer-specific analysis [33] (OR [95% CI] 
= 1.25 [1.15, 1.37], p = 1.06 × 10−7).

The remaining variants demonstrating associa-
tions with multiple cancer phenotypes were not previ-
ously associated with any single cancer (Fig.  2). They 
included a variant discovered in our breast cancer-
specific analysis, rs143745791 (NCBP1, OR [95% CI] 

Fig. 2  Germline single-variant association results for multiple primary cancers combined or grouped by organ site. Suggestive (p < 5 × 10−6) 
germline variant associations with multiple cancer phenotypes versus cancer-free controls (n = 165,853) following a fixed-effects meta-analysis of 
Kaiser Permanente Research Bank and UK Biobank WES data. Associations were detected for any 2+ primary cancers (n = 6429) and with groups of 
cases defined by a shared index cancer, at any time point, plus any other cancer diagnosis: melanoma + (n = 1443), prostate + (n = 1977), breast 
+ (n = 1874), head and neck + (n = 283), thyroid + (n = 198), urinary bladder + (n = 829), colorectal + (n = 1324), and lymphoid neoplasms + (n 
= 728). Variants that have been previously associated in single cancer studies have superscript (a). The heatmap reflects the number of carriers with 
the risk-increasing allele for each associated variant with the index (y-axis) and additional (x-axis) cancer over the total number of carriers, restricting 
to cancer cases. When the index and additional cancer are the same, the heatmap value represents all carriers with the specified cancer diagnosis 
divided by the total number of carriers. Abbreviations: SNP, single nucleotide polymorphism; EA, effect allele; OR, odds ratio
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= 5.95 [2.79, 12.67], p = 3.76 × 10−6), for which 16.2% 
of carriers, restricted to cases, had a breast and cervi-
cal cancer diagnosis, and a variant discovered in our 
urinary bladder cancer-specific analysis, rs141647689 
(SDK1, OR [95% CI] = 9.29 [3.63, 23.80], p = 3.45 × 
10−6), for which 14.3% of carriers also had prostate 
cancer (Fig.  2). Three variants found in our lymphoid 
neoplasm-specific analysis had increased frequencies 
in cases who also had a diagnosis of prostate cancer: 
rs535484207 (RANBP2, OR [95% CI] = 256.01 [26.82, 
2442.95], p = 1.46 × 10−6), rs139586367 (UFL1, OR 
[95% CI] = 284.06 [27.95, 2886.15], p = 1.79 × 10−6), 
and rs191064896 (ADGRB1, OR [95% CI] = 108.36 
[15.02, 781.08], p = 3.32 × 10−6), where 21.4%, 40.0%, 
and 25.0% of carriers for the risk-increasing allele, 
for each respective variant, had both cancers. The 
ADGRB1 variant was also present at increased frequen-
cies among individuals with a lymphoid neoplasm and 
breast cancer diagnosis (25.0%, Fig. 2). Additionally, we 
identified a single variant in our head and neck cancer-
specific analysis, rs12253181 (RTKN2, OR [95% CI] = 
1.99 [1.67, 2.37]). Colocalization analyses, within a 500-
kb region of the risk SNP, with ezQTL [34] detected 
a negative correlation between ARID5B expression 

in whole blood and effects on cancer risk (Additional 
file 2: Fig. S7). However, these findings should be inter-
preted with caution since R2 may not adequately con-
trol for LD between rare variants and only captures 
cis-eQTLs in coding regions.

Gene‑based analyses of multiple cancers
Out of 18,842 genes tested, we found 10 significant asso-
ciations (p < 2.65 × 10−6) across our analyses of any 2+ 
primary cancers and our cancer-specific analyses (Fig. 3, 
Additional file  1: Table  S5). An additional four CHIP 
genes (ASXL1, TET2, JAK2, and DDX41) were signifi-
cantly associated with myeloid neoplasms and are likely 
driven by somatic alterations (Additional file 2: Fig. S8).

In our analyses of any 2+ primary cancers and our 
breast cancer-specific analysis, we replicated associa-
tions for known pleiotropic genes, BRCA2 (pLOF, p = 
3.76 × 10−11 and 1.91 × 10−9) and CHEK2 (pLOF + 
missense, p = 2.95 × 10−11 and 1.67 × 10−8) (Fig. 3). 
BRCA2 also emerged in our ovarian cancer-specific 
analysis (pLOF, p = 1.91 × 10−9). We found associa-
tions between the known prostate cancer gene ATM 
and any 2+ primary cancers and in our prostate can-
cer-specific analysis (pLOF + missense, p = 9.84 × 

Fig. 3  Germline gene-based association results for multiple primary cancers combined or grouped by organ site. Burden tests were performed 
combining variants defined as pLOF with or without deleterious missense variants, defining deleteriousness by at least one (1/5) or all five (5/5) 
prediction algorithms used (Methods), at a MAF < 0.5%. Following a fixed-effects meta-analysis of Kaiser Permanente Research Bank and UK Biobank 
data, Bonferroni significant associations (p < 2.65 × 10−6 = 0.05/18,842) corrected for the number of genes tested were found for comparisons of 
cancer-free controls (n = 165,853) with all cases with any 2+ primary cancers (n = 6429) and with groups of cases defined by an index cancer for 
the following phenotypes: prostate + (n = 1977), breast + (n = 1874), and ovary + (n = 239). For each gene, the variant grouping with the smallest 
p-value was selected. The heatmap reflects the number of carriers of each associated variant, with the index (y-axis) and additional (x-axis) cancer 
over the total number of carriers, where the carrier is defined as having at least one alternate allele across all variants in a given gene, restricting 
to cancer cases. When the index and additional cancer are the same, the heatmap value represents all carriers with the specified cancer diagnosis 
divided by the total number of carriers. Abbreviations: OR, odds ratio; pLOF, predicted loss of function
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10−7 and 2.56 × 10−6). Additional associations were 
observed between SAMHD1 and SLC642 and any 2+ 
primary cancers (pLOF + missense, p = 2.40 × 10−7 
and p = 5.44 × 10−7, respectively). BRCA1 also sur-
faced in the breast cancer-specific analysis (pLOF, p = 
6.68 × 10−8).

Predicted loss of function variants in BRCA1 and 
BRCA2 were present at increased frequencies in indi-
viduals with a breast cancer diagnosis and ovary as 
an additional cancer site (Fig.  3), such that 28.6% and 
13.6% of individuals, respectively, were a carrier for at 
least one variant in the burden set. For BRCA1, there 
was also an increase of carriers with an additional mel-
anoma (9.52%) or lung cancer (9.52%) diagnosis. For 
BRCA2, there was an increase of carriers with an addi-
tional uterine (8.47%), lung (6.78%), or colorectal can-
cer (6.78%).

Comparison of mutation burden in individuals 
with multiple versus single cancers
Out of the 22 associated variants (Fig. 2), 10 remained 
associated when comparing individuals with multiple 
cancers to those with single cancers (Additional file 1: 
Table  S6; p < 0.05). Two of these variants were posi-
tively associated in our analysis of any 2+ primary can-
cers: rs555607708 (CHEK2; OR [95% CI] = 1.57 [1.09, 
2.25], p = 0.015) and rs146381257 (ZNF106; OR [95% 
CI] = 5.38 [1.07, 27.18], p = 0.042). The other eight 
variants were positively associated with the diagnosis 
of a specific index cancer plus any other cancer versus 
the specific cancer alone (Additional file  1: Table  S6). 
Two of these eight variants were associated in our 
breast cancer-specific case-case analysis: rs7872034, a 
missense variant in SMC2 (OR [95% CI] = 1.16 [1.05, 
1.27], p = 0.0025), and rs143745791, a missense vari-
ant in NCBP1 (OR [95% CI] = 3.71 [2.08, 6.61], p = 
8.37 × 10−6).

Of the 10 findings from the gene-level burden analyses 
(Fig. 3), eight remained positively associated with multi-
ple cancers in comparison with single cancers (p < 0.05; 
Additional file 1: Table S7). Five of these genes were dis-
covered in our case-case analysis of any 2+ primary can-
cers: SLC6A2 (OR [95% CI] = 1.86 [1.42, 2.41], p = 3.90 
× 10−6), ATM (OR [95% CI] = 1.42 [1.15, 1.77], p = 1.10 
× 10−3), CHEK2 (OR [95% CI] = 1.56 [1.23, 1.98], p = 
2.31 × 10−4), SAMHD1 (OR [95% CI] = 1.56 [1.14, 2.13], 
p = 5.34 × 10−3), and BRCA2 (OR [95% CI] = 1.86 [1.31, 
2.65], p = 5.42 × 10−4). ATM (OR [95% CI] = 1.82 [1.20, 
2.75], p = 4.64 × 10−3) was positively associated in our 
prostate cancer-specific case-case analysis, and the two 
remaining genes were positively associated in our breast 
cancer-specific case-case analysis: BRCA1 (OR [95% CI] 

= 2.38 [1.07, 5.30], p = 0.0340) and BRCA2 (OR [95% CI] 
= 1.97 [1.22, 3.18], p = 5.50 × 10−3).

Discussion
We investigated the genetic basis of carcinogenic plei-
otropy through whole-exome sequencing of individu-
als diagnosed with multiple primary cancers from two 
large, multi-ancestry study populations. Comparing 
individuals with multiple cancers to cancer-free con-
trols uncovered 22 independent, suggestively associ-
ated variants, ten of which remained associated when 
comparing individuals with multiple cancers to those 
with a single cancer. Across our multiple cancer phe-
notypes, we also recapitulated previously known gene-
based associations in ATM, BRCA1/2, and CHEK2 and 
found potentially novel associations in SAMHD1 and 
SLC6A2. These genes remained associated with mul-
tiple cancer diagnoses when comparing to individuals 
with a single cancer. These findings offer insights into 
germline exome variants that increase an individual’s 
risk of developing multiple primary cancers.

Compelling findings from our analyses of all individ-
uals with more than one cancer diagnosis include asso-
ciations with the rare variant rs146381257 in ZNF106. 
Carriers of the rs146381257 risk allele (C) were pri-
marily overrepresented in individuals with at least one 
prostate, breast, lung, or urinary bladder cancer and 
in individuals with lymphoid neoplasms. Carriers also 
demonstrated an increased risk of developing multiple 
cancers compared to individuals with a single cancer. 
ZNF106 is an RNA binding protein involved in post-
transcriptional regulation and insulin receptor signal-
ing. Although germline variation in ZNF106 has not 
previously been associated with cancer risk, a recent 
study found it to be associated with worse urinary blad-
der cancer survival [35].

Additional noteworthy findings from our analyses 
of all multiple primary cancers combined include can-
cer susceptibility signals in SAMHD1 and SLC6A2, 
both having a significantly higher risk being diag-
nosed with multiple cancers compared to single can-
cers. Germline SAMHD1 mutations are implicated in 
Aicardi-Goutieres syndrome (AGS) [36], an autosomal 
recessive condition that results in autoimmune inflam-
matory encephalopathy. Most cancer-related stud-
ies have focused on the role of somatic alternations in 
SAMHD1 [37]; however, a study of chronic lymphoid 
leukemia (CLL) proposed an oncogenic role of ger-
mline SAMHD1 variation mediated by DNA repair 
mechanisms [38]. Consistent with this hypothesis, we 
also found increased SAMHD1 variation in individu-
als with lymphoid neoplasms, as well as with pros-
tate, breast, colorectal, and lung cancers. SLC6A2, also 
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known as NAT1, has been found to be prognostic for 
colon cancer [39], and both in  vivo and in  vitro stud-
ies have linked expression to survival in many cancer 
types, including prostate [40] and breast [41]. Poly-
morphisms in SLC6A2 may also interact with smoking 
exposure to modulate the risk for tobacco-related can-
cers [42].

Because we compared multiple primary cancers 
with both cancer-free controls and individuals diag-
nosed with a single cancer, we were well positioned to 
explore patterns of pleiotropy and disentangle varia-
tion likely to be driven by single cancers. For exam-
ple, we identified two variants, rs7872034 (missense 
variant in SMC2) and rs143745791 (missense variant in 
NCBP1), suggestively associated with a diagnosis of at 
least one breast cancer (plus any other cancer) versus 
no cancer. These variants remained associated with a 
diagnosis of breast and another cancer when compar-
ing to individuals diagnosed with a single breast can-
cer. While rs7872034 is in high LD (r2 = 0.98) with a 
known breast cancer risk variant (rs4742903; SMC2 
intron) [43], it may also increase the risk of develop-
ing multiple cancers. Regarding rs143745791, germline 
variants in NCBP1 have not been previously associ-
ated with cancer; because it is rare (MAF < 0.2%), 
larger sequencing efforts may be necessary to identify 
variation in studies of individuals with a single cancer. 
Expression of this gene has been found to promote lung 
cancer growth and poor prognosis [44], and NCBP1 is 
overexpressed in basal-like and triple-negative breast 
cancers [45]. Similarly, BRCA1/2 germline variants are 
prevalent among these subtypes; however, in our study 
populations, BRCA1/2 carriers were more common 
among those with an additional ovarian cancer whereas 
NCBP1 carriers more frequently had an additional cer-
vical cancer.

In our prostate cancer-specific analysis comparing 
individuals with multiple cancers versus those with only 
a single cancer, we discovered a suggestive association 
with rs3020779, an eQTL for RNF123 (also known as 
KPC1), which is a gene involved in p50 mediation and 
downstream stimulation of multiple tumor suppressors 
[46]. In our analysis of head and neck cancer, we detected 
an association with rs12253181, located in the 3′-UTR 
of RTNK2. Integration of whole blood gene expression 
data at this locus determined that another nearby gene, 
ARID5B, may be a more likely candidate. Expression of 
ARID5B was negatively correlated with the cancer sus-
ceptibility signal in this region. While this gene has not 
previously been associated with head and neck cancer 
risk, germline variation in ARID5B has been implicated 
in acute lymphoblastic leukemia (ALL) [47], as well as 
treatment resistance and higher rates of relapse [48]. 

Genetic variants in ARID5B have also been linked to 
autoimmune diseases [49, 50], suggesting that immune 
dysregulation may be a plausible pleiotropic mechanism 
at this locus, especially given the infectious etiology of 
oropharyngeal carcinoma [51, 52].

Our findings have potential implications for improv-
ing our understanding of the shared mechanisms of 
carcinogenesis. With further replication, they may also 
enable prevention (e.g., smoking cessation) and screening 
strategies that prioritize individuals at risk for develop-
ing additional cancers. For example, women who carry 
the rare missense variant in NCBP1 (rs143745791) were 
estimated to have an approximately sixfold higher risk 
of developing breast and other cancers in comparison 
with no cancer and an approximately threefold higher 
risk in comparison with women diagnosed with breast 
cancer alone. If replicated, such findings suggest that 
the pleiotropic variants reported here could have clini-
cal significance for preventative cancer screening and 
early detection among individuals with a previous cancer 
diagnosis.

Limitations of our study included the identification 
of variants that were likely somatic in our analyses of 
hematologic cancers due to an expansion of hematopoi-
etic clonal populations with the same acquired mutation 
(i.e., CHIP). Confounding of germline testing by CHIP 
has been reported in TP53 [53] and TET2 [54], so care-
ful interpretation is critical to avoid unnecessary clinical 
intervention. An additional limitation of our, and other, 
studies are obtaining accurate effect estimates for rare 
variants and the reliance on available annotations for 
inclusion into gene-based tests. Although heterogene-
ity was minimal in our study, differences in effects across 
populations may reflect differences in population char-
acteristics and sample size. Replication of rare findings 
in larger cohorts and optimization of functional impact 
annotations could lead to more precise results. Also, our 
approach did not allow for formal replication, due to 
the limited sample size of each cohort. In order to iden-
tify signals for our largely understudied phenotype, we 
combined the two cohorts in a meta-analysis rather than 
undertaking underpowered replication. Finally, while all 
individuals with multiple cancers were included in our 
study regardless of genetic ancestry, individuals of non-
European ancestry were underrepresented; larger, more 
diverse cohorts will be needed to fully explore the genetic 
basis of multiple cancers.

Selection bias and phenotypic misclassification may 
also have biased our results. We combined prevalent and 
incident cancer cases together to maximize statistical 
power for detecting potential associations. The prevalent 
cases may include fewer individuals with worse prognosis 
since these individuals may be less likely included in the 
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study. If any pleiotropic variants reflect more aggressive 
disease, this could lead to underestimating their potential 
associations, and vice-versa. Also, the controls’ disease 
status is conditional on their being cancer free at the last 
follow-up. If some controls would eventually be diag-
nosed with cancer, then any associations would be under-
estimated. There is the potential that recurrences arising 
from the first cancer may have been misclassified as sec-
ond primaries. If so, this may overestimate pleiotropic 
associations. In our study, 10.3% and 17.6% of second 
primaries that occurred within 1 year of the index cancer 
in the KPRB and UKB respectively may represent recur-
rences. However, the average age at diagnosis between 
first and second cancers was 8.3 years (median = 7) in 
the KPRB and 9.5 years (median = 6.5) in the UKB, sug-
gesting that the majority of multiple cancer cases were 
most likely second primaries.

Strengths of this work include studying individuals of 
multiple ancestries who were largely unselected for spe-
cific cancer phenotypes. We also performed the first ever 
exome-wide study of genetic susceptibility to multiple 
primary cancers, using two large multi-ancestry study 
populations. Our study design allowed us to characterize 
variation across multiple primary cancers representing 36 
unique sites, as well as to conduct cancer-specific analy-
ses of 16 sites. Using this approach, we confirmed many 
known single-variant and gene-based findings, strength-
ening and supporting our novel results reported for indi-
vidual cancers through our cancer-specific analyses.

In summary, by undertaking an exome-wide survey of 
common and rare variations in two large study popula-
tions, we identified several variant and gene-based asso-
ciations that may increase the risk of developing multiple 
cancers within individuals. Future studies should aim to 
replicate our findings and undertake experiments that 
validate the functionality of the discovered pleiotropic 
variants. Combined with future research, our results have 
the potential to inform genetic counseling, improve risk 
prediction for multiple cancers, and guide novel treat-
ment and drug development.

Conclusions
This study examines the genetic underpinnings of mul-
tiple primary cancers in two large, multi-ancestry pop-
ulation-based cohorts. Analyses of single-variant and 
gene-level associations identified novel patterns of cross-
cancer pleiotropy and confirmed results in key cancer 
genes.
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