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Abstract: The increasing size of modern datasets combined with the difficulty of obtaining real
label information (e.g., class) has made semi-supervised learning a problem of considerable practical
importance in modern data analysis. Semi-supervised learning is supervised learning with additional
information on the distribution of the examples or, simultaneously, an extension of unsupervised
learning guided by some constraints. In this article we present a methodology that bridges between
artificial neural network output vectors and logical constraints. In order to do this, we present a
semantic loss function and a generalized entropy loss function (Rényi entropy) that capture how
close the neural network is to satisfying the constraints on its output. Our methods are intended to be
generally applicable and compatible with any feedforward neural network. Therefore, the semantic
loss and generalized entropy loss are simply a regularization term that can be directly plugged into
an existing loss function. We evaluate our methodology over an artificially simulated dataset and
two commonly used benchmark datasets which are MNIST and Fashion-MNIST to assess the relation
between the analyzed loss functions and the influence of the various input and tuning parameters on
the classification accuracy. The experimental evaluation shows that both losses effectively guide the
learner to achieve (near-) state-of-the-art results on semi-supervised multiclass classification.

Keywords: deep learning; semantic loss; generalized entropy loss; machine learning

1. Introduction

On the one hand, supervised learning uses labeled (marked) data to train a model that gives
accurate forecasts of data that the model has never seen before, e.g., classification and regression [1,2].
On the other hand, unsupervised learning takes unlabeled data as an input and prepares a model
based on the patterns or based on the dataset structure, e.g., dimensionality reduction, detecting
outliers, and clustering [3,4]. Semi-supervised learning is halfway between unsupervised learning
and supervised learning, i.e., there are both labeled and unlabeled data. Usually, it is assumed that
unlabeled data constitute the majority of the dataset [5]. Semi-supervised learning is assumed to be
supervised learning with additional information on the distribution of examples. Alternatively, it can
be also be an extension of unsupervised learning guided by some limitations or constraints [6,7].

Deep learning has attracted considerable attention in recent years [8], a relatively broad class of
machine learning (ML) techniques use (complex) artificial neural architectures for classification [9].
Such approaches encode nonlinear information through several hierarchical layers, thus, assimilating
problems at different levels of abstraction. In practice, one is more likely than not to face the curse
of “overfitting”. This problem is usually solved using regularization which is the process of entering
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additional information to manage this inevitable gap between a training error and a test error [10].
Regularization is often carried out by augmenting the loss function (e.g., mean square error or
cross-entropy error) by a so-called regularization term, which prevents the model from over-optimizing
the loss function estimated at a finite set of sampling observations. From a statistical point of view,
regularization is interpreted as a prior distribution that reflects our expert knowledge or belief regarding
a model. For example, this knowledge can take the form of a constraint (or sentence) in Boolean logic.
It can be as simple as an exactly-one constraint for one-hot output encodings, which is the way of
converting categorical data to numerical data in multiclass classification problems [11].

This constraint is ubiquitous in the multiclass classification tasks. This means that for a given
example exactly one binary class/label must be true. The ML community has made great progress in
this task by inventing various representations and their associated regularization terms [12]. In order
to maintain this progress and reduce the need for more labeled data, there is growing interest in using
unlabeled data to increase the predictive power of classifiers by incorporating a semantic loss function
for this task [6,7]. The semantic loss defined in this setting with respect to the exactly-one constraint
obtains a learning signal from a huge amount of unmarked data. The main idea is that the semantic
loss helps to improve classification of the unlabeled data. Therefore, the first main goal of this article
is to verify whether this simple addition to the loss function of standard deep learning architectures
provides significant improvements over if this new regularization term is not added (i.e., unlabeled
data is not utilized).

In the machine learning context, information and entropy are useful tools that serve as the basis
for a number of applications including selecting features, building decision trees, training artificial
neural networks and, more generally, fitting classification models [13]. Apart from the most commonly
used entropy in this context which is the Shannon’s entropy [14], one can distinguish the Rényi
entropy [15]. The definition of the Rényi entropy consist of a Q parameter (also called the generalization
parameter) which for special cases generalizes the Shannon’s entropy, the Hartley entropy, the collision
entropy, and the minimum entropy [16]. The Rényi entropy has found interesting applications [17,18]
including the parametric weighting of the probabilities that endows data analysis with additional
flexibility. In this context, the second main goal of this article is to examine, in the same spirit as the first
question, whether the addition of the generalized entropy loss function to the loss function provides
significant improvements over if this generalized regularization term is not added (i.e., unlabeled data
is not utilized).

To these two ends, we evaluate our proposed methods over an artificially created dataset and two
commonly used benchmark datasets (i.e., MNIST [19] and Fashion-MNIST [20]) with the expectation
that the following furthermore research questions can also be addressed:

• If the two analyzed regularization terms prove to be effective in semi-supervised classification
tasks, which loss function provides the best results?

• What is the relation between semantic loss function and generalized entropy loss function?
• What is the impact of the input and tuning parameter values on both proposed approaches on the

final results?

In summary, the goal of this article is to assess the performance of the generalized entropy and
semantic losses, and to highlight their effects, not to achieve a state-of-the-art performance in relation
to a specific problem. In order to do this, the adopted neural network architecture, in addition to
the loss term, must set up the baseline points (please see Sections 4.3 and 4.5) to the performance
of a semi-supervised method. In other words, to have a principled comparison, the adopted neural
network architecture shall be identical with the recent state-of-the-art baseline.

The remainder of this paper is organized as follows: Sections 2 and 3 provide an overview of
the similar research problems and the theoretical frameworks of the semi-supervised learning, the
artificial neural networks, and the two loss functions used in this article; in Section 4, the research
framework is outlined, including the details of numerical implementation, dataset characteristics, and
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model performance measures; Section 5 outlines the experiments and presents the discussion of the
results; and the paper ends with concluding remarks in Section 6.

2. Preliminaries

2.1. Semi-Supervised Learning

In many situations, marked data is missing. Labels are difficult to obtain because they require
human annotators, sophisticated devices, or expensive and lengthy experiments, and therefore
semi-supervised learning is very useful. In particular, its application includes the following
problems [3,5,21]: speech recognition, natural language parsing, spam filtering, video surveillance, and
image categorization. The algorithms are divided into the following categories [3,5,21]: self-training,
generative models, co-training, graph-based algorithms, and multi-view learning. In general, those
algorithms assume the following data properties:

• Manifold assumption, the data lie approximately on a manifold of much lower dimension than
the input space. This assumption allows the use of distances and densities which are defined on
a manifold;

• Continuity assumption, the algorithm assumes that (after transformed to a lower dimension) the
points which are closer to each other are more likely to have the same output label;

• Cluster assumption, (after transformed to a lower dimension) the data is divided into discrete
clusters and points in the same cluster are more likely to share an output label.

In traditional supervised learning tasks, we are presented with an ordered set of l marked
observations DL =

{
(xi, yi)

}l
i=1. Each observation (xi, yi) consists of an object xi ∈ Xp from a given

p-dimensional input space Xp and has an associated label yi, where yi is a real value for the regression
or (as in this article) a category for the classification task, i.e., yi ∈ {1, . . . , k}. On the basis of a set of
these observations, usually referred to as training data, supervised learning methods try to deduce a
function that can successfully determine the label y∗ of some previously invisible input x∗. However,
in many real classification tasks we also have access to a set of u observations, DU =

{
(xi)

}l+u
i=l+1, whose

labels are unknown.
Figure 1 provides further details on the use of unlabeled data for classification of an artificial

problem with two classes. Any supervised learning algorithm is likely to obtain a line presented on the
left-hand side of the figure as the decision boundary. However, this is far from the optimal decision
boundary. As presented on the right-hand side of this figure, the clusters that we infer from unlabeled
observations help significantly to determine the decision boundary.
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Figure 1. A toy example of binary classification in the presence of unlabeled data.

The primary objective of semi-supervised learning is to use unlabeled observations to develop
better learning procedures. However, this is not always easy or even possible [22]. As mentioned
earlier, unmarked observations are useful only if they contain relevant information for predicting



Entropy 2020, 22, 334 4 of 17

labels that are not included in the labeled data itself or cannot be easily extracted. To apply any
semi-supervised learning method in practice, the algorithm must be able to extract such information.

2.2. Deep Neural Networks

Deep learning is a subfield of machine learning that are concerned with algorithms inspired by
the structure and function of the brain, called artificial neural networks, along with representation
learning. Deep neural networks (DNNs) such as deep multi-layer perceptrons (MLPs), deep belief
networks (DBNs), long short-term memory neural networks (LSTMs), recurrent neural networks
(RNNs), and convolutional neural networks (CNNs) [9,23,24] have been applied to a variety of fields
including computer vision, speech recognition, natural language processing, audio recognition, social
network filtering, machine translation, bioinformatics, drug design, medical image analysis, material
inspection, and board game programs, where they have produced results comparable to, and in some
cases surpassing, human expert performance [25,26].

Importantly, multiple deep learning architectures exist and, as interest and research in this area
increases, the field will continue to flourish. However, fundamental to of all these methods is the
feedforward multi-layer perceptron (MLP). Feedforward MLPs consist of densely connected layers,
in which the input affects each subsequent layer up until the final output layer. Figure 2 presents an
example of MLP with six input neurons (features), one output neuron (target), and three hidden layers
consisting of nine, five, and two hidden neurons, respectively (with additional biases marked in blue).
There is no well-defined approach to choose the number of hidden layers and nodes, and hence they
effectively are the first of many hyper-parameters to tune. The choice of output layer is driven by the
modeling task. For example, for a binary classification task the output layer contains only one node
predicting the probability of success, while for a multiclass classification task the output layer consists
of the same number of nodes as the number of classes being predicted.
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A key element of a DNN is the activation process. In the human brain, a biological neuron receives
inputs from many adjacent neurons and when these inputs exceed a certain threshold, the neuron is
activated, which suggests there is a signal. The activation function is simply a mathematical function
that determines whether there is enough information in a node to raise a signal to the next layer. There
are many activation functions in DNN to choose from, for example, identity, sigmoid, softmax (please
refer to Section 4.2), but, currently, the most popular is rectified linear unit (ReLU) [27]:

f (x) =
{

0, x < 0
x, x ≥ 0

, (1)
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especially for rectangular data, such as for image classification.
During training a DNN selects a batch of observations, randomly assigns weights to all node

connections and predicts the results. The backpropagation process of the neural network is in place to
assess its own accuracy and to adjust automatically the weights for all node connections to improve
that accuracy. This process itself requires two things. First, one must establish a loss function L to
measure performance, i.e., this might be the mean square error (MSE) or cross entropy (please refer
to Section 3.2) [1]. Secondly, on each forward pass, the DNN measures its performance based on
the selected loss function. Then, the DNN works backwards through layers, calculates the gradients
of the loss in relation to the network weights, adjusts the weights slightly in the opposite direction
to the gradients, takes the next batch of observations to go through the model, flushes and repeats
until the loss function is (locally) minimized [13]. This process is also known as mini-batch stochastic
gradient descent with representatives such as adaptive gradient algorithm (AdaGrad), root mean
square propagation (RMSProp), or adaptive moment estimation (Adam) [28].

It should be noted that DNNs require that all feature inputs are numerical, i.e., they have to be
numerically encoded using, for example, one-hot encoded (target variable in our case) or integer label
encoded. Due to the data transformation process performed by DNN, they are very sensitive to the
individual scale of function values. Therefore, one should use normalized features in advance e.g.,
by standardization (i.e., zero mean and unit variance) or range normalization (i.e., all features are
transformed to between [0,1]). Unfortunately, the scaling problem also arises in the intermediate layers,
because the distribution of activations is constantly changing during the training. This slows down
the training process, as each layer has to learn to adapt to the new distribution at each stage of the
training. This problem is formally known as the internal shift of the covariable. Fortunately, in order to
overcome this problem one can use batch normalization which is a method that normalizes the inputs
of each layer [29].

DNNs can include local or global pooling layers to streamline the underlying computation.
Pooling layers reduce data dimensions by combining the results of neuron clusters at one layer into a
single neuron in the next layer. For example, max pooling uses the maximum value from each of a
cluster of neurons at the prior layer.

Finally, placing constraints on a model’s complexity (as a regularization) is a common way to
mitigate overfitting [13]. There are two common approaches, both of them are applicable in DNNs
in a similar manner to other methods such as Ridge or Lasso regression. One can use the L1 or L2

penalty to add costs proportional to the size of the node weights. Regularizing the weights forces
small signals (noise) to have weights almost equal to zero and allows only consistently strong signals
to have relatively higher weights. More specifically, for some hyper-parameter w, the new overall loss
becomes:

Loss function = existing loss + w∗regularization term. (2)

In addition to the abovementioned methods, one can distinguish other commonly used
regularization approaches such as dropout, data augmentation, or early stopping.

2.3. Propositional Logic

In order to formally define semantic loss (Section 3.1), first, the concept of propositional logic
should be introduced. Let upper case letters (X, Y) denote Boolean variables and lowercase letters (x, y)
denote their realizations (X = 0 or X = 1). Bold uppercase letters (X, Y) denote the sets of variables,
and bold lowercase letters (x, y) denote their joint realizations. A variable (x) or its negation (¬x) is a
literal. A logical sentence (α or β) is constructed in the usual way, from variables and logical connectives
(∧, ∨, etc.), and is also called a formula or constraint [6]. A state or world x is an instantiation to all
variables X. A state x satisfies a sentence α, denoted x � α, if the sentence evaluates to be true in that
world, as defined in the usual way [7]. A sentence α entails another sentence β, denoted α � β if all
worlds that satisfy α also satisfy β. A sentence α is logically equivalent to sentence β, denoted α ≡ β, if
both α � β and β � α [6,7].
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3. Theoretical Framework of the Semantic and the Generalized Entropy Loss Functions

3.1. Semantic Loss Function

The purpose of the semantic loss function is to fill in the gap between the continuous world of
feedforward DNNs and the symbolic world of propositional logic. The semantic loss Ls(α, p) is a
function of the sentence α in the sentence logic, defined by the variables Y =

{
Y1, . . . , Y j, . . . , Yk

}
and

probability vector p for the same variables Y [7]. Element p j is the predicted probability of the Y j
variable and corresponds to one node in the output layer of the neural network. For example, the
semantic loss between exactly one constraint α and the output vector p of the neural network shows
how close the prediction p has exactly one output set to true (1) and all false (0), regardless of which
output is correct [6].

In general, the semantic loss Ls(α, p) should be proportional to the negative logarithmic probability
of satisfying the constraint α when sampling the values of the variables in α according to p:

Ls(α, p) ∝ −log
∑
y�α

∏
j:y�Y j

p j

∏
j:y�¬Y j

(
1− p j

)
, (3)

where y � α means that the assignment of y to the Y variables meets the sentence α, and y � Y j means
that Y is set to true in the world y. In other words, this is the self-information about obtaining an
assignment that meets the constraint [7].

When the constraint over the output space is simple (for example, there is a small number of
solutions y � α), the semantic loss can be directly computed from Equation (4). Concretely, for the
exactly-one constraint used in k-class classification, the semantic loss reduces to:

Ls(exactly− one, p) ∝ −log
k∑

j=1

p j

k∏
m=1,m, j

(1− pm), (4)

where the value p j denotes the probability of class j as predicted by the neural network. The semantic
loss for the exactly-one constraint is efficient and imposes no noticeable computation overhead in this
study [7]. In general, for any given semantic loss, complex or simple, to achieve efficient computation,
one can first compile its constraint α into a certain class of logical circuits [30], and then the time spent
on computing the semantic loss is only linear in terms of the size of the circuit.

3.2. Generalized Entropy Loss function

Entropy is a well-known term in thermodynamics, statistical mechanics, and information theory.
Although the concepts of entropy have deep interconnections, it took many years to develop the theory
of statistical mechanics and information theory to make this connection visible. This article deals with
information entropy, the theoretical formulation of information entropy. Entropy of information is
sometimes called Shannon entropy in honor of Claude E. Shannon, who formulated many key ideas of
information theory [14].

Entropy is a measure of unpredictability of the state, or equivalently, of its average information
content. The intuition behind the quantification of information consists in measuring the amount of
surprise in a given event. Those events that are rare (i.e., with low probability) are more surprising,
and therefore have more information than those events that are common (i.e., with high probability).
Rare events are more uncertain or more surprising and require more information to represent them
than common events. In general, the concept of information entropy is defined as:

HS(p) = −
k∑

j=1

p j log p j, (5)
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where the above symbols are the same as for the semantic loss function. The value of the entropy
depends on the following two parameters: (1) disorder (i.e., uncertainty), which is maximum when
the probability p j for every Y j is equal and (2) the value of k. Shannon entropy assumes a tradeoff

between contributions from the main mass of the distribution and the tail. To control both parameters,
a generalization was proposed by Rényi [15] with the goal to provide a foundation for nonextensive
statistical mechanics:

HRQ(p) =
1

1−Q
log

 k∑
j=1

pQ
j

. (6)

With Shannon entropy, events with high or low probability have equal weights in the entropy
computation. However, using Rényi entropy, for Q > 1, events with high probability contribute more
than low probabilities for the entropy value. Therefore, the higher the value of Q, the higher the
contribution of high probability events is in the final result.

Each value of Q gives a possible entropy measure. All are additive for independent random
variables and, for each discrete random variable, HRQ is a monotone nondecreasing function of Q.
Assuming that all the probabilities p j are positive, then, HR0 is known as the maximum entropy or
Hartley entropy [31]. When Q = 1 we get the more familiar Shannon entropy (i.e., in this limit the
Shannon entropy is computed using Equation (5)). When the order Q is not specified, the default value
is 2. This case is also called collision entropy and is used in quantum information theory [32]. Finally,
in the limit as Q goes to∞, the Rényi entropy converges to the negative log of the probability of the
most probable outcome, i.e., minimum entropy.

3.3. Relation between Generalized Entropy and Semantic Loss Functions

With regards to the binary classification task, there are three commonly used loss functions in
machine learning algorithms, i.e., (1) Shannon entropy (Equation (5)), (2) Gini index of the form
Gini(p) = 1−

∑2
j=1 p j, and (3) the miss/classification error of the form MissClass(p) = 1−max(p1, p2).

The entropy is 0 if one class has a probability of 0, while the other class is 1, and the entropy is maximal
for uniform class distribution. Similar to entropy, the Gini index is maximal if the classes are perfectly
mixed. In practice, both losses yield very similar results. Furthermore, the miss/classification error is
less sensitive to changes in the class probabilities (see Figure 3).

Entropy 2020, 22, x FOR PEER REVIEW 7 of 17 

 

the probability 𝑝 for every 𝑌 is equal and (2) the value of 𝑘. Shannon entropy assumes a tradeoff 
between contributions from the main mass of the distribution and the tail. To control both 
parameters, a generalization was proposed by Rényi [15] with the goal to provide a foundation for 
nonextensive statistical mechanics: 

𝐻ோೂ(𝒑) = 11 െ 𝑄 log ቌ 𝑝ொ
ୀଵ ቍ. (6) 

With Shannon entropy, events with high or low probability have equal weights in the entropy 
computation. However, using Rényi entropy, for 𝑄  1, events with high probability contribute 
more than low probabilities for the entropy value. Therefore, the higher the value of 𝑄, the higher 
the contribution of high probability events is in the final result. 

Each value of 𝑄 gives a possible entropy measure. All are additive for independent random 
variables and, for each discrete random variable, 𝐻ோೂ is a monotone nondecreasing function of 𝑄. 
Assuming that all the probabilities 𝑝 are positive, then, 𝐻ோబ is known as the maximum entropy or 
Hartley entropy [31]. When 𝑄 = 1 we get the more familiar Shannon entropy (i.e., in this limit the 
Shannon entropy is computed using Equation (5)). When the order 𝑄 is not specified, the default 
value is 2. This case is also called collision entropy and is used in quantum information theory [32]. 
Finally, in the limit as 𝑄  goes to ∞, the Rényi entropy converges to the negative log of the 
probability of the most probable outcome, i.e., minimum entropy. 

3.3. Relation between Generalized Entropy and Semantic Loss Functions 

With regards to the binary classification task, there are three commonly used loss functions in 
machine learning algorithms, i.e., (1) Shannon entropy (Equation (5)), (2) Gini index of the form Gini(𝒑) = 1 െ ∑ 𝑝ଶୀଵ , and (3) the miss/classification error of the form MissClass(𝒑) = 1 െmax(𝑝ଵ, 𝑝ଶ). The entropy is 0 if one class has a probability of 0, while the other class is 1, and the 
entropy is maximal for uniform class distribution. Similar to entropy, the Gini index is maximal if 
the classes are perfectly mixed. In practice, both losses yield very similar results. Furthermore, the 
miss/classification error is less sensitive to changes in the class probabilities (see Figure 3). 

 

 
Figure 3. Relation between various classification errors for binary classification problem. 

In order to present the relation between various losses/errors for binary classification problem, 
Figure 3 is prepared. In this figure the horizontal axis presents the probability that for a particular 
observation the true value equals 1 (while having two classes 0 and 1). The vertical axis presents 
values of a particular error/loss function. For instance, in these settings the Shannon entropy can be 
calculated as follows (this approach holds for other errors as well). Let’s assume that the probability 
for the class 1 equals 0.7. Then, the probability for the class 0 equals 1െ0.7. Finally, error value equals 𝐻ௌ = െ(0.3 ∗ log 0.3 + 0.7 ∗ log 0.7) ൎ 0.88. The blue solid line presents misclassification error, the 

Figure 3. Relation between various classification errors for binary classification problem.

In order to present the relation between various losses/errors for binary classification problem,
Figure 3 is prepared. In this figure the horizontal axis presents the probability that for a particular
observation the true value equals 1 (while having two classes 0 and 1). The vertical axis presents
values of a particular error/loss function. For instance, in these settings the Shannon entropy can be
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calculated as follows (this approach holds for other errors as well). Let’s assume that the probability
for the class 1 equals 0.7. Then, the probability for the class 0 equals 1–0.7. Finally, error value equals
HS = −(0.3 ∗ log 0.3 + 0.7 ∗ log 0.7) ≈ 0.88. The blue solid line presents misclassification error, the
green solid line denotes Gini error, and the black solid line represents standard entropy loss (Shannon,
Equation (5)). The semantic loss is depicted by the red solid line while generalized entropy (Rényi) loss
is presented by the yellow and purple dashed lines for Q equaling 0.5 and 2.5, respectively. It should
be noted that the line for Rényi loss for Q = 1 would be the same as for Shannon entropy. The analysis
of Figure 3 reveals, on the one hand, that the semantic loss is less sensitive to the class distribution than
the standard Shannon entropy and the Gini index but, on the other hand, is more sensitive than the
miss/classification error. It is important to note that as the Q parameter for Rényi loss increases, its
sensitivity to the class distribution decreases (from yellow to purple line).

To obtain deeper insights into the relation between the semantic loss and the Rényi loss, we
simulate an artificial dataset with the probabilities for a 10-class classification problem. A similar
classification problem is analyzed in Section 5 where commonly used benchmark datasets with
10 classes are used. Probabilities are simulated from uniform distribution (runif function in R [33])
and they sum to 1. The final table consists of 100,000 rows (observations) and 10 columns (each for
one class). Then, for this table we calclate semantic loss (Equation (4)) and Rényi loss (Equation (6)).
For Rényi loss, we set the Q-parameter at 2, since according to Figure 3, for a two-class classification
problem those two curves (points to be precise) would have almost the same relationship to the class
probability distribution. The graphical relation between these two losses is presented in Figure 4.
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The horizontal axis presents the index of a particular observation while the vertical axis depicts
the Rényi and semantic loss values. Finally, the table with loss values is sorted in ascending order using
semantic loss (blue). This results in increasing curves for both loss functions. Error values for both loss
functions are relatively similar when both losses have relatively small values (up to approximately 0.5).
Then, after this point both curves diverge from each other. Interestingly, the Rényi loss (red dotes) is
bounded by the semantic loss, i.e., generalized entropy loss has values not less than semantic loss.

Next, Figure 5 presents the relation between both losses, but right now having values of these
errors on other axis.
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To quantify this relation, we estimate the polynomial regression using lm and poly functions in R
(red solid curve). After testing and fitting different degree polynomial regressions (we try order of the
polynomial from 1 up to 6 and we record R2 of each model) we select the one having the greatest R2

determination coefficient (to be precise if we change the degree from 5 to 6 there is no improvement in
accuracy). The ultimate model has the following formula (see also Figure 5):

Rényi = 17.191∗semantic5
− 29.84 ∗ semantic4 + 18.568 ∗ semantic3

− 4.561 ∗ semantic2

+1.4592 ∗ semantic2
− 0.0101.

(7)

All estimated parameters are statistically significant at α = 0.05. Other liner models’ assumptions
are met as well. In addition to uniform distribution, we also test normal distribution and the conclusions
remain the same. Moreover, we run this simulation for number of classes equal to 1, 3, and 5, and since
the conclusions are the same, we stay on this point.

4. Research Framework and Settings

4.1. Datasets Characteristics

In this article, we use two benchmark datasets requiring similar data preparation. Since the two
datasets are very similar, we are able to use the same structure for the deep network. The first dataset
is the Modified National Institute of Standards and Technology (MNIST) digit dataset [19]. The MNIST
dataset is divided into the following two subsets: The training dataset has 60,000 examples and the
test dataset has 10,000 examples. All examples are small square 28 × 28 pixel (values from 0 to 255)
grayscale images of handwritten single digits between 0 and 9.

The second dataset is Fashion-MNIST containing Zalando’s article images [20] which consists of
a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28×28 pixels
grayscale image associated with a label from 10 classes. It is intended to serve as a direct drop-in
replacement of the original MNIST dataset, as it shares the same image size and structure of training
and testing splits. Training and test examples are assigned to one of the following labels: 0-T-shirt/top,
1-Trouser; 2-Pullover, 3-Dress; 4-Coat, 5-Sandal, 6-Shirt, 7-Sneaker, 8-Bag and 9-Ankle boot.

4.2. Performance Measure

A proper evaluation is crucial for models built with any statistical learning algorithm. When
designing a model to perform a multiclass classification task, we want the model to choose only one
answer, e.g., the digit “8”. At the end of a deep network classifier, we get a vector of “raw output
values”, for example, x = [−0.8, 1.2,−0.1] if a particular network has three outputs corresponding to
each of the classes. However, we usually would like to convert these raw values into an understandable



Entropy 2020, 22, 334 10 of 17

format, i.e., probabilities. In order to derive the probability of each class, p j, the softmax function of the
form is applied:

p j = softmax
(
x j

)
=

ex j∑k
j=1 ex j

, (8)

producing inter-related outputs which are always in the range [0, 1] and add up to 1, and hence they
form a probability distribution. This means, if we are using a softmax, in order for the probability
of one class to increase, the probabilities of at least one of the other classes has to decrease by an
equivalent amount. In order to assign the final class label for a given observation, a simple assumption
is taken into account, i.e., the higher the probability the more likely the outcome:

Ĉlass = arg max
j

p j, (9)

where p j denotes the probability of class j being predicted by the deep network.
Eventually, to calculate the performance of any kind of predicting model for a multiclass

classification problem, the following confusion matrix of k× k dimension is prepared:
According to Table 1, the accuracy measure can be computed, which is the proportion of the total

number of predictions that are correct:

Accuracy =

∑k
j=1 True j∑k

j=1 # j
, (10)

where True j denotes the number of correctly classified instances belonging to the class j, and # j stands
for the number of instances in class j.

Table 1. A k× k confusion matrix for k-class classification problem.

Predicted Value

Class 1 Class 2 · · · Class k

Real value

Class 1 True1 False1 · · · False1
Class 2 False2 True2 · · · False2

...
...

...
. . .

...
Class k Falsek Falsek · · · Truek

4.3. Numerical Implementation

All the numerical experiments presented below are prepared using Python programming language
and TensorFlow [34] which is an end-to-end open source platform for machine learning. For comparison,
we add Rényi and semantic losses to the same base models used in ladder nets [35], which currently
achieve the state-of-the-art results on semi-supervised MNIST. The base model for both datasets
is a fully-connected multilayer perceptron (MLP), with layers of size 784-1000-500-250-250-250-10
respectively. After every three layers, features are subject to a 2-by-2 maxpool layer with strides of 2.
Furthermore, we use rectified linear unit (ReLu) as an activation function [27], batch normalization to
improve the speed, performance, and stability of the networks [29], and Adam optimization algorithm
that has been designed specifically for training deep neural networks [28] with a learning rate of 0.002.
Because MNIST and Fashion-MNIST share the same image size and structure, methods developed in
MNIST should be able to directly perform on Fashion without heavy modifications [6,7].

For the purpose of parameter tuning, from both original training sets we separate an additional
validation set containing randomly chosen 10,000 samples (i.e., training datasets have the remaining
50,000 observations). Finally, the estimates for the performance measures for the training, validation,
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and test sets are produced with 10-fold cross-validation [1]. All further results are presented as an
average over 10-folds.

4.4. Tuning of the Parameters

Our motivation in assessing the performance of the generalized entropy and semantic losses is not
to achieve the state-of-the-art performance in relation to a specific problem, but rather to highlight their
effect. For this purpose, we evaluate our method taking into account the following: (1) the problem is
difficult in terms of the output space where the model cannot be matched directly from the data, and
(2) deliberately use simple DNNs for evaluation. To answer the question about the effect of tuning
the investigated parameters in terms of the quality of predictions we perform a grid search checking
various combinations of the following parameters:

• Q-value ∈
{
1× 10−6, 0.25, 0.5, 0.75, 1 + 1× 10−6, 1.25, 1.5, 1.75, 2

}
—from the Equation (6);

• Weights ∈ {0.001, 0.005, 0.01, 0.05, 0.1}, which is the hyper-parameter associated with the Rényi
or semantic regularization term in Equation (2);

• Batch size ∈ {20, 50, 100},which is the mini-batch size needed for adaptive stochastic gradient
descent optimization algorithm;

• Number of labeled examples ∈ {100, 1000, 50, 000}, which is the number of randomly chosen
labeled examples from the training set with the assumption that the final set is balanced, i.e., no
particular class is overrepresented.

It would purely be an explanatory analysis, giving an insight into the investigated phenomena.

4.5. Benchmarking Models

In order to compare and assess the quality of our proposed methods, the following benchmark
algorithms are used in the experiment. The first one is the AtlasRBF algorithm, which uses
manifold-based kernel for semi-supervised and supervised learning [36] and based on this a classifier
learns from existing descriptions of manifolds that characterize the manifold as a set of piecewise affine
charts, or an atlas. The second algorithm is the deep generative model, which employs rich parametric
density estimators formed by the fusion of probabilistic modelling and deep neural networks [37].
The third algorithm is virtual adversarial training, which is a regularization method based on virtual
adversarial loss measuring local smoothness of the conditional label distribution for a given input [10].
The fourth algorithm is the ladder net model, which is trained to simultaneously minimize the sum of
supervised and unsupervised cost functions by backpropagation, avoiding the need for layer-wise
pretraining [35]. The fifth algorithm is ResNet, where the authors explicitly reformulate the layers
as learning residual functions with reference to the layer inputs, instead of learning unreferenced
functions [38]. Finally, the last baseline is the base model (denoted later as MLP) described in Section 4.4
which is trained without additional regularization term.

5. Empirical Analysis

In this section, we describe several experiments to test and to compare the performance (using
10-fold cross-validation) of DNNs with regard to semantic loss and generalized entropy loss functions
in terms of different settings of the tuned parameters. The comparisons are depicted in Figures 6 and 7,
for MNIST and Fashion-MNIST datasets, respectively, and these are prepared in the following manner.
On the left-hand side of each figure there are three buckles that denote the number of labeled examples
used for the supervised part of the learning.
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Figure 6. Accuracy on the test set of the MNIST dataset in terms of different combinations of the
tuned parameters.

At the top of each chart there are three buckles pointing to the batch size used for stochastic
gradient descent optimization algorithm. There are nine different tables (subfigures) inside the figure
for each combination of the aforementioned parameters. Each table on the horizontal axes has the
hyper-parameter value related to the regularization term (labels are at the top and values at the
bottom of the subfigure). On the vertical axes, there are different values of the Q-parameter used in
the Rényi loss function (labels are on the left and values are on the right of the subfigure). At the
intersection of the last two described parameters there are accuracy measures (Equation (10)) calculated
for the testing sample. Finally, we introduce a color palette for easier identification of promising
intersections. Dark gray denotes situations when accuracy is the highest while white indicates areas
with the lowest accuracy.

First, we consider Figure 6 with the results for the basic MNIST dataset. In terms of the
hyper-parameter for the regularization term, it can be seen that the worst results are obtained when w
equals 0.001. In general, while increasing this parameter, the accuracy is gradually improving, achieving
the best results when w is set to 0.1. This observation clearly supports our assumption that including
Rényi loss as a regularization term for semi-supervised task results in improved classification accuracy.
By comparing the w-parameter with the Q-parameter, one can distinguish an upper triangular matrix
(dark-gray color) with the highest possible accuracy results. This is observed in all nine subfigures for
w ranging between 0.0001 and 0.1 and Q ranging between 0.25 and 0.75. In terms of sample and batch
size, as one would expect, accuracy increases when both parameters increase. This means that the
average accuracy for 100 labeled training examples with a batch size of 20 is just over 97 (right upper
subchart), while that of 50,000 labeled examples with a batch size of 100 is above 98.
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Figure 7. Accuracy on the test set of the Fashion-MNIST dataset in terms of different combinations of
the tuned parameters.

Accuracy results for the Fashion-MNIST dataset present very similar characteristics as for the
basic MNIST dataset (please see Figure 7). However, there are two main differences. First, the accuracy
results oscillate around 83 and 89, which means that this dataset is not yet sufficiently worked out. The
second difference is that the results are more diverse with a larger range of variance.

In order to compare results for the semantic loss and the Rényi loss, Tables 2 and 3 are prepared
(together with results for other benchmark models described in Section 4.4). Both tables report the best
accuracy results obtained by the following procedure: (1) We derive accuracy for all combinations
of the tuning parameter for both losses, i.e., four parameters for the Rényi loss and three parameters
for the semantic loss (without Q-parameter) and (2) since these results are computed for training,
validation, and test sets, we chose the parameter combination having the best results for the validation
sets to report the best mean accuracy for the testing sets (sixth column for both tables). Both tables
report the mean accuracy obtained after 10-fold cross-validation together with the standard deviation
error of the estimates in the brackets.

As presented in Table 2, when labeled sample size is 100, the best results for both datasets are
obtained using weight w set at 0.005. In other situations, w is tuned to 0.1 for both losses. Since using
more samples in gradient computation usually gives better estimation, this parameter is tuned to 100
observations for all cases. According to the observations obtained after analyzing Figures 6 and 7
(regarding upper triangular matrix), the best results are associated with the Q-parameter set at 0.5
or 0.75.
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Table 2. Comparison of the best results for Rényi and semantic losses, along with benchmark models
on the MNIST dataset.

Sample Size Loss Q-Value Weight Batch Size
Mean

Validation
Accuracy

Mean Test
Accuracy

100

Semantic 0.005 100 98.02 (∓0.04) 97.98 (∓0.04)
Rényi 0.75 0.100 100 98.20 (∓0.02) 98.21 (∓0.03)
MLP 100 78.46 (∓1.94)

AtlasRBF 91.9 (∓0.95)
Deep Generative 96.67 (∓0.14)

Virtual Adversarial 97.67
Ladder Net 98.94 (∓0.37)

1000

Semantic 0.100 100 97.95 (∓0.05) 98.02 (∓0.03)
Rényi 0.50 0.100 100 98.27 (∓0.03) 98.25 (∓0.03)
MLP 100 94.26 (∓0.31)

AtlasRBF 96.32 (∓0.12)
Deep Generative 97.60 (∓0.02)

Virtual Adversarial 98.64
Ladder Net 99.16 (∓0.08)

50,000

Semantic 0.100 100 98.13 (∓0.03) 98.15 (∓0.04)
Rényi 0.50 0.100 100 98.29 (∓0.02) 98.29 (∓0.03)
MLP 100 98.13 (∓0.04)

AtlasRBF 98.69
Deep Generative 99.04

Virtual Adversarial 99.36
Ladder Net 99.43 (∓0.02)

ResNet 99.40

Table 3. Comparison of the best results for Rényi and semantic losses, along with benchmark models
on the Fashion-MNIST dataset.

Sample Size Loss Q-Value Weight Batch Size
Mean

Validation
Accuracy

Mean Test
Accuracy

100

Semantic 0.005 100 88.65 (∓0.11) 87.65 (∓0.07)
Rényi 0.50 0.100 100 89.62 (∓0.07) 88.89 (∓0.10)
MLP 100 69.45 (∓2.03)

Ladder Net 81.46 (∓0.64)

1000

Semantic 0.100 100 88.71 (∓0.06) 87.83 (∓0.07)
Rényi 0.75 0.100 100 89.54 (∓0.35) 88.80 (∓0.08)
MLP 100 78.12 (∓1.41)

Ladder Net 86.48 (∓0.15)

50,000

Semantic 0.100 100 89.26 (∓0.08) 88.49 (∓0.10)
Rényi 0.50 0.100 100 89.90 (∓0.06) 89.03 (∓0.06)
MLP 100 88.26 (∓0.18)

Ladder Net 90.46
ResNet 92.00

In line with the highlighted results in both tables (bolded values), we conclude that the Rényi
loss outperforms results related to the semantic loss (there is only one exception for the validation
set for the Fashion-MNIST dataset). The biggest difference for basic MNIST is observed for labeled
sample size equaling 100 and 1000, i.e., difference is 0.23. For the Fashion-MNIST dataset the biggest
difference is noted for the 100 labeled sample size (difference is 1.24).

Moreover, both tables compare both losses (i.e., Rényi and semantic loss) to a baseline MLP and the
state-of-the-art results from the literature. The baseline, in this case, is a purely supervised multilayer
perceptron, which makes no use of unlabeled data [6,7]. For example, given 100 labeled examples,
the DNN with semantic loss gains around 25% (MNIST) and 26% (Fashion-MNIST) improvement
over the purely supervised baseline. Finally, the DNN with Rényi loss function gains around 25%
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(MNIST) and 28% (Fashion-MNIST). Considering the only change is an additional loss term, these
results are encouraging.

6. Conclusions

Semi-supervised learning is often considered to be a key challenge for future deep learning
tasks. We have demonstrated that both semantic loss and Rényi loss provide significant benefits
in semi-supervised classification. Application of both losses to the feedforward neural network
architecture using unlabeled observations increase the predictive power of the classifiers. The main
advantage of both losses is that they only require a simple additional loss term. Without changing the
architecture of the DNN itself, it incurs almost no computational overhead. Conversely, this property
makes the proposed methods sensitive to the underlying model’s performance. Without the basic
predictive power of a strong supervised learning model, it is not expected to see the same benefits that
has been seen in this article.

With our analysis, we confirm that improving classification accuracy in semi-supervised
classification tasks using semantic loss function and generalized entropy loss is feasible and can
be achieved with reasonable accuracy as compared with the base models (first research question). This
statement is supported by the results presented in Tables 2 and 3. Interestingly, applying Rényi loss
provides classification improvement up to 28%. Our answers to the second research question regarding
the relation between semantic loss and generalized entropy loss reveal that the semantic loss is less
sensitive to the class distribution than the error measures (Shannon entropy and Gini index), but at
the same time is more sensitive than the miss/classification error. Additionally, as the Q-parameter
in Rényi loss increases, sensitivity to the class distribution decreases. After quantifying the relation
between these two losses, it turns out that the relationship is functional and can be approximated
by a fifth degree polynomial. We have also empirically confirmed that Rényi loss is bounded by the
semantic loss. Finally, we have showed that proper tuning of the input parameters improves the final
results. By intersecting the tuned parameters, we distinguish an upper triangular matrix with the
highest possible accuracy results.

Finally, we have chosen to investigate semantic loss and Rényi entropy in the same paper because
of the following reasons: Semantic loss has its roots in knowledge representation, while Rényi entropy
is more familiar to researchers doing statistical machine learning. In addition to functioning as a
regularization term, on the one hand, semantic loss is not invented to be a regularization term. On the
other hand, researchers almost always view Rényi entropy as a regularization term in the context of
learning. It is a fascinating fact that those two seemingly orthogonal things have very similar effects as
loss functions, achieving similar results in this setting.

In future work, we plan to investigate whether applying semantic and Rényi losses on different
DNN architectures would yield an even stronger performance improvement.
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