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A Connectionist Approach to High-Level Cognitive Modeling

Rainer Goebel
Department of Psychology, Gutenbergstr. 18
3550 Marburg, West-Germany

Abstract—In this paper a connectionist framework is outlined which combines the advantages of
symbolic and parallel distributed processing. With regard to the acquisition of cognitive skills of
adult humans, symbolic computation is stronger related to the early stages of performance whereas
parallel distributed processing is related to later, highly practiced, performance. In order to model
skill acquisition, two interacting connectionist systems are developed. The first system is able to
implement symbolic data structures: it reliably stores and retrieves distributed activity patterns. It
also can be used to match in parallel one activity pattern to all other stored patterns. This leads to
an efficient solution of the variable binding problem and to parallel rule matching. A disadvantage
of this system is that it can only focus on a fixed amount of knowledge at each moment in time.
The second system — consisting of recurrent back-propagation networks — can be trained to pro-
cess and to produce sequences of elements. After sufficient training with examples it possesses
all advantages of parallel distributed processing, e. g., the direct application of knowledge with-
out interpreting mechanisms. In contrast to the first system, these networks can learn to hold
sequentially presented information of varying length simultaneously active in a highly distributed
(superimposed) manner. In earlier systems — like the model of past-tense learning by Rumelhart
and McClelland — such forms of encodings had to be done “by hand” with much human effort.
These networks are also compared with the tensor product representation used by Smolensky.

1 Introduction

Parallel distributed processing seems especially well suited to model automatic, subconscious in-
formation processing. Symbolic computations for example variable binding, explicit rule following
and deliberate planning are much harder to achieve.

I think that for modeling high-level cognitive processing both styles of computation are necessary.
Considering the temporal dimension of learning a cognitive skill reveals that they are even intimately
related: early in acquisition, symbolic processing is very important because instructions (facts and
rules) must be stored and processed deliberately. The application of knowledge during this stage
is controlled, slow, effortful and generally serial but it has the great advantage that approximate
performance is achieved immediately through general interpreting procedures.

In later stages of practice the relevance of connectionist computation gradually increases: the
explicit, declarative knowledge is converted to more flexible, more robust and richer procedural
knowledge. The application of this knowledge is for the most part automatic, requires few atten-
tion, is fast and more parallel: it constitutes “expert knowledge”. This kind of directly applied
knowledge gradually emerges because subskills are automated: elementary processing steps are
associated together and activated as whole units.

According to this view, I propose a connectionist framework which considers the acquisition of
cognitive skills in terms of two interacting components (similar to Norman, 1986): one component
— capable of symbol processing — trains or ‘programs’ the other component. The first component
consists of ‘symbol-modules’ which efficiently implement essential aspects of conventional (von Neu-
mann) computers. The second component consists of ‘PDP-modules’ - recurrent back-propagation
networks — which possess all advantages of parallel distributed processing.

I will explain the basic features of the proposed system using a simple illustration task.
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2 The Illustration Task

The proposed framework addresses skill acquisition of adults or at least older children who suffi-
ciently master their native language. To explain the basic ideas of the approach, I use a very simple
illustration task: ‘Pig Latin’ (Harvey, 1985). Children often learn to speak Pig Latin as a “secret”
language. A word is translated into Pig Latin according to the following rule: take any consonants
at the beginning (up to the first vowel) and move them to the end. Then add “ay” to the end.
So CAT becomes ATCAY, TRUST becomes USTTRAY and IS becomes ISAY. To make things a
little bit more difficult, I added the following rule: if the word begins and ends with a vowel then
add “way” to the end. Thus EASY doesn’t become EASYAY but EASYWAY which also sounds
better. Note that Pig Latin is spoken, thus pronounciation is relevant for applying the rules. In the
following however the rules are applied to strings of letters. Despite the simplicity of these rules, it
requires some practice until one speak Pig Latin fluently!

After general remarks about the used networks the basic features of symbol-modules are explained.
Then it is outlined how a symbol module can explicitly follow the Pig Latin rules. Thereafter
PDP-modules are described and it is shown how a special module learns by example to behave as
following the rules. Finally it is outlined how both modules are integrated in such a way that the
symbol module trains the PDP-module to follow the rules.

3 Recurrent Networks: Handling Temporal Data

Cognitive processes evolve in time: sequences of elements (for example letters, phonemes or words)
must be processed and produced as output. Therefore both modules consist of (multilayered)
recurrent networks. Recurrent networks are well suited to handle temporal data because they
provide a kind of short term memory for retaining activity states over time. The system operates in
discrete time steps; the update scheme is as follows: layers are updated synchronously in ascending
order (as in feedforward nets). If unit 7 is updated at time step t and there are recurrent connections
(from the same or higher layers) to unit ¢, then the activity of the corresponding units at time step
t — 1 is used. Both modules use linear and semi-linear units.

PDP-modules are trained using the generalized delta rule. Back-propagation allows networks to find
themselves interesting internal representations, but is designed for feedforward nets only. Rumelhart
et. al. (1986) describe a technique which allows the application of back-propagation to arbitrary
connected networks: Every recurrent network operating in (discrete) time events can be “unfolded
in time” to a feedforward network with identical behavior. However this technique has some
disadvantages. Therefore I made some modifications yielding a system with high efficiency (see
Goebel, 1990)

4 Symbol-Modules: Explicit Rule Following

Symbol-modules are special architectures designed to store and retrieve distributed activation pat-
terns (symbols) reliably and immediately.

A basic assumption, also valid for PDP-modules, is that the activity of some units can serve as
target values for nearby output units. This allows one module to send teaching signals to other
modules.

In its simplest form a symbol module is composed of two parts (see figure 1). One part — consisting
of two equal width layers — acts as a ‘gate’ for symbols. Through this ‘symbol gate’ the module
can receive symbols from other modules or from input units. It also can send symbols through this
gate to other modules or to output units. At each time step one module can handle one symbol.
The other part consists of a (large) layer that acts as a sequence of ‘memory cells’. These ‘local
memory units’ are totally connected to the output units.
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4.1 Location-Addressed Retrieval

Assume that a sequence of symbols, for example the string TIME is to be stored in the symbol-
module of figure 1. Each (linear) local memory unit has a connection to its right neighbor with
weight 1. In this example the number of units N, that constitute a symbol is 5.

activation pattern of symbol E

input (target) units . O . O .

output units

symool gate

O—-C—~O—-0-0-0

local memory units

Figure 1: A simple symbol module

At the first time step the leftmost local memory unit is activated and the first distributed pattern —
representing T — appears at the target units of the symbol gate. Now learning takes place according
to the delta rule. The result is that the activation values of the target units are mapped to the
weights coming from the active local memory unit to the output units.

At the next time step the second local memory unit is active and the second symbol (I) appears
on the target units. Now these activation values are mapped to the corresponding weights etc.
Consider retrieving the sequence. Assume all local memory units are turned off. Now the leftmost
local unit is turned on and activation flows through the learned weights to the output units evoking
the first stored symbol T. At the next time step the next local unit is active evoking the second
stored symbol I and so on. This is location-addressed retrieval.

The delta rule changes the weights as follows:

woi(t + 1) = wor(t) + €ar(ar — a,)

The value of learning rate ¢ is 1. (The index [ stands for a local unit, o for an output unit and ¢ for
a target (input) unit.) Consider the weights between a non-active local unit and the output units:

woi(t + 1) = wei(t) + 0(a; — a,) = we(t)

This says that the weights between non-active local units and the output units are not affected by
the learning process. For the weights between the active local unit and the output units results:

wo!(t + 1) = wo!(t) - o 1(“! a2 ao) = won‘(t) +a; —a,

Note that a, is the value of a linear output unit: a, = ajwy(t). Because in the considered case
a; = 1 we have

woi(t + 1) = wo(t) + ar — wa(t) =

This means: regardless of the current weight between the active local unit and an output unit, the
new weight equals exactly the activation value of the corresponding target unit.

According to this learning scheme each distributed symbol is stored at a distinct location (has its
own weights) and is therefore not affected by other symbols in memory. The result is a dualistic
representation scheme: each symbol is represented both in a local and a distributed form.
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I have improved this simple symbol module in many ways, for example introducing ‘pointers’ to
control the activation of local memory units. This allows to build symbolic data structures like
stacks and lists. (The first larger system I have build wiht symbol modules is a simple LISP
interpreter.)

4.2 Content-Addressed Retrieval

Suppose that the layer of local memory units and the layer of output units are totally connected
in both directions. Symbols consist of 1,—1 patterns. The storing mechanism is as before but
each dictated weight change now operates in both directions yielding symmetrical connections:
Wol = Wio-

Such symbol modules can be used from two sides to retrieve stored symbols. In addition to location-
addressed retrieval (from the local units to the output units), content-addressed retrieval from the
output units (acting as input units) to the local memory units is possible.

Content-addressed retrieval works as follows: If symbol s;, for example M, is presented to the output
units, activation flows down to the local units. Because the weights to each local unit represent a
stored symbol, the current activation pattern s; is compared in parallel to all stored symbols! The
net input to local unit /; reflects the strength of match between s; and s;.

If each local unit has a threshold of N, — 2 the symbol(s) which ezactly matches s; become active.
If the local units are designed as a Winner-Take-All (WTA) network, the best matching symbol is
retrieved. Best match also allows pattern completion if some output units are clamped to 0.

The combination of content- and location-addressed retrieval can be used to bind values to variables.
Suppose the sequence ‘X,3,Y,5,Z,7’ is stored in a symbol module. Now to retrieve the value of
variable ‘Y’, one just has to present its pattern at the output units. This activates its corresponding
local memory unit. At the next time step its right neighbor is active producing the corresponding
value. Thus retrieving the value of a variable operates in constant time, independent of the number
of stored variables. I have enhanced this variable binding mechanism to bind sequences of elements
and to allow to retrieve the value of the value of a variable.

4.2.1 Parallel Rule Matching

On the basis of the described features of symbol modules, I have developed a simple production
system which processes the Pig Latin rules (see figure 2).

letter-pair workling memory
first first Rt IF (# c0) THEN #, storec
left letter| right letter consonant \’/Ioawzel R2: IF (# v O) THEN #. v, store 1
R3: IF (xy ) THEN vy
paraliel rule 1 matching R4: IF (" #c) THEN ¢, A, Y, #, stop
R5: IF (c # 1) THEN A, Y, #, stop
Lvule 1 l rule 2[ rule 3[ rule 4| rule sl ..... ] RB: IF (v # ) THEN W, A, Y, #, stop
Figure 2: The 'production system’ and the Pig Latin rules

This special symbol module has a larger symbol gate to represent two letters and some further
information (working memory). A condition is represented through one local unit. In this version
exact match is used. No (local) variables are yet established. If a local unit becomes active, it
activates its right neigbors constituting the action part. Actions can send symbols to a special
output module or store values in working memory. There is no conflict resolution yet implemented,
thus the rules must be defined such that the conditions exclude each other.

There are several ways to define the Pig Latin rules within the scope of this production system.
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Since no local variables are yet allowed, I have restricted the rules in the following way: only
three consonants (B, M, T) and two vowels (E, I) are used. Additionally, if a word begins with
a consonant, the next letter must be a vowel. For reasons which will become clear in the next
section a string is not presented as a sequence of letters, but in small chunks, consisting of letter-
pairs. Word-edges are indicated with the special symbol ‘#’. Thus the string # TIME# is actually
presented as the following sequence: #T, TI, IM, ME, E#.

The rules for the production system are shown in figure 2. The ‘c’ stands for a consonant, ‘v’ for
a vowel and ‘x’ and ‘y’ for a vowel or a consonant but not #. The letter f represents a flag in
working memory indicating that the first letter was a vowel. The ‘*’ indicates that the short term
memory may have an arbitrary value. Note that each rule is actually repeated several times with
local variables replaced with letters. Thus an actual rule as an instance of the first rule is: ‘IF (#
B 0) THEN #, store B’.

Consider as an example how the string #TIME# is processed. At first, #T is presented to the
output units. Now all conditons are compared in parallel against the data. The first rule matches,
sending # to the output module and stores T in the short term memory. Now the next pair TI
is presented and rule 3 matches, sending I to the output module. The next pairs IM and ME are
treated the same. Then the last pair, E#, is presented. Rule 4 matches, finally sending T, A, Y
and # to the output module.

5 PDP-Modules: Learning by Example

PDP-modules are ordinary (recurrent) back-propagation networks, thus possessing their main ad-
vantages: simultaneous consideration of many pieces of information, learning from experience and
generalization to novel situations. To exploit these features of parallel distributed processing, a
different approach to learn the Pig Latin rules is reasonable: present a whole input string at once
to an input layer and compute in one step, in parallel, the correct output string.

But there is a problem: how are strings — entities of varying length — represented with a fixed number
of units? One solution might be to use a buffer large enough to hold the longest string: the input
layer and output layer are divided in many parts (‘slots’), each representing one element (letter) in
successive order. But there are some problems with this position dependent representation (Mozer,
1988). The most important problem with regard to the Pig Latin task is that this representation
does not support proper generalization because it cannot handle word edges — the most critical
information — in isolation, independant from the length of the string.

Rumelhart and McClelland (1986) solved this problem within the scope of the past tense model
using a context-sensitive representation: each element (phoneme) is represented together with its
predecessor and its successor constituting a “Wickelphone”. To represent the word ‘represent’, it is
decomposed into the following set of triplets: #Re, rEp, ePr, pRe, rEs, eSe, sEn, eNt, nT#. Now
each Wickelphone represents a ‘slot’ (one input unit) and all words ending in the same phonemes
have the same slot active! This allows to extract the relevant regularities.

According to this representation scheme I have implemented a simple two layer network to process
strings according to the Pig Latin rules. To keep things simple only ‘Wickel-pairs’ are used. Of
course, letter-pairs aren’t well suited to represent strings distinctly (Also Wickelphones cannot
represent every string distinctly; see Pinker & Prince (1988) for a thorough criticism of the past
tense model). Therefore I have defined the additional constraint that no letter may appear twice.
This constraint together with those of the previous section lead to 39 letter-pairs (39 input and 39
output units) and 71 distinct strings.

The network learns the Pig Latin task quickly. After training with 50% of the strings it generalizes
well to almost all remaining strings (only three strings are processed incorrect).

This solution however has two serious drawbacks. First, if more letters are allowed to build strings,
there are quickly too many letter-pairs (this was the main reason to use ‘Wickelfeatures’ — a more
compact, distributed representation — in the past tense model). Second, a simple feedforward
network cannot handle sequentially presented data.
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What one would like is a network which combines elegantly the strengths of both parallel and serial
processing. Therefore I have developed a PDP-module which can sequentially process letter-pairs
and can hold the presented information simultaneously active in a highly distributed (superimposed)
manner.

In the following, the basic idea is described using local representations of the pairs in a pre-wired
simple network. Then it is outlined how the network can learn itself proper representations.
Figure 3 shows a small illustration network. The input layer and the output layer consist of two
‘slots’ each representing one of three elements (A, B or C). The hidden layer consists of six local
units representing letter-pairs. Now suppose the elements B and C are presented to the input layer.
They activate the pair unit BC which in turn activates the elements B and C of the output layer (see
figure 3). Each (linear) pair unit is self connected with a value of 4+0.8. Thus, the activity of the
active pair unit slowly decays as time proceeds and consequently the activity of the output units,
too. But this does not really happen because of recurrent connections from the left three output
units to the pair units. These output units have positive connections to pairs which ‘match’ the
output unit with its left side. The output unit representing B, for example, has positive connections
to all pairs Bz and zero weights to all other pairs.

OLEOHTY 000090

AB  AC BC BA

s}iele] Jelel & Jelo

Figure 3: A simple POP-module processing sequential data

(2]
@

o

A

Thus at the next time step the active output unit B activates the pair units BA and BC. This
prevents the pair unit BC from decaying to zero but BA gets some activity, too. However each pair
unit has inhibitory connections to other pair units with the same left element. This allows BC to
prevent BA from becoming active. In summary, the activity state of the pair units at time step
t+1 is the same as before. The active pair unit and the active output unit mutually reinforce each
other as time proceeds creating a stable ‘resonant state’ (Grossberg, 1987).

Why not using self connections of value +1? In this case no recurrent connections from the left
output units would be necessary. The basic trick however is that the same left output unit can
activate different units of the right output units depending on the stored pair units. Thus the system
acts as a ‘dynamic pattern associator’: the mapping function from left to right is modulated by the
activity of the pair units!

Now suppose the next letters C, A are presented; they turn on the CA pair unit which itself
activates the corresponding output units (see figure 3). Through resonance both pair units remain
active. Note, that from looking only to the output units one cannot decide whether B goes with
C and C with A or whether B goes with A and C with C! This is essentially the variable binding
problem (Smolensky, 1987). The right information is present in the hidden layer of pair units.
Retrieving that knowledge operates as follows: all left output units are clamped to 0 except the
unit in question. If for example A and C are clamped to zero, only the pair BC gets support from
B, CA starts to decay. Consequently the activity of the A-unit on the right side also decreases.
Thus only the left B and the right C remains active!

This small network was entirely “hand-wired” to explain the basic idea. Is it possible to make
a network learn the right weights on its own? The answer is yes, if the network structure is
restricted in some ways. PDP networks do generalize to novel inputs but there are often too many
generalization functions. A possible solution to this problem is to build some a priori (‘innate’)
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knowledge into the network, guided from the solution space the network might discover.

I have replaced the fixed weights in the described network with random weights but imposed the
following constraints: only positive connections are allowed from lower to higher layers and also
from the left output units to the hidden layer. Within the hidden layer only inhibitory connections
are allowed except the self-connections which are fixed at 0.8.

The network is trained with all pairs. At the first time step, two letters are presented to the network
and also used as target values for the output units. At the next time step, the hidden units gets its
own previous activations as target values. According to this training regime, the network tries to
find distributed representations ‘rLR’ in the hidden layer which must suffice three conditions: L +
R — rLR (input to hidden); rfLR — L 4+ R + r'LR (hidden to output and hidden to hidden); L +
r’AB — rAB (left output and (decayed) hidden to the same hidden as before). Note that only single
pairs are used to train the network but the imposed constraints strongly suggest generalization to
hold more than one pair active.

This network finds interesting distributed representations for the letter pairs. If strings are presented
sequentjally the distributed representations of the letter-pairs are superimposed upon each other.
The network has no fixed capacity to hold letter pairs but saturates gracefully with the number
of stored pairs. The capacity can be determined through the number of used hidden units (the
capacity depends upon the alphabet size and the number of units, see Rosenfeld & Touretzky,
1988). This is in contrast to the variable binding mechanism — the tensor product representation —
used by Smolensky (1987) which has a fixed capacity.

In summary, the final PDP-module processes sequences of letter pairs constructing a highly dis-
tributed representation which produces a corresponding representation of the output string. This
representation in turn can be decomposed to the elemantary letters. Thus it can handle sequential
input and output like the symbol module.

6 The Synthesis: Rules and Practice

In the last sections it was shown how the Pig Latin rules can be taught to symbol-modules and
PDP-modules. Both modules solve the problem exploiting their special advantages. To combine
the virtues of each module, they are finally integrated into a larger system which operates as follows

(see figure 4):
target
output
-
¥ {
target target
output ouiput
examples rules
PDP-Module Symbol-Module
practice instructions
I Input ] I Input i
rF s 1L
input
Figure 4: The Intagrated system

First, the Pig Latin rules are presented and successively stored in the symbol module. The system
is now able to process strings according to the rules. The resulting strings obtained by the symbol
module are send to the target units of the PDP-module. Therefore the PDP-module gradually
learns to mimic the behavior of the symbol module and extracting the underlying regularities.

Consider a more interesting case: The Pig Latin rules are presented to the symbol module but not
the special rule which handles strings both beginning and ending with a vowel. This case resembles
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more closely to real life situations where instructions cover only the most strong regularities but
not all subtle details. Now the symbol module operates correctly most of the time. Only if a string
beginning and ending with a vowel is to be processed the symbol module produces an incorrect
output string. In this case it is assumed that the environment provides an external teaching input
which is transferred to the PDP-module. Thus the PDP-module is trained from two sources: most
of the time from the symbol module (if it produces correct output) and sometimes from an external
teacher yealding finally to more accurate and fluent performance than the symbol module.

7 Conclusions

This paper presents a suggestive approach to high-level cognitive modeling: a connectionist sys-
tem learning both like traditional Al-systems, emphasizing rule-like knowledge, and also like PDP
models, emphasizing learning through experience.

The concrete realization of this idea poses many new questions about the interactions of the pro-
posed modules. The first results obtained are preliminary in nature but they promise that more
complex systems will lead to attractive psychological models of skill acquisition and also offer new
ways to escape the ‘brittleness’ of many conventional Al-systems.
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