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Abstract

Resting-state functional network connectivity (rsFNC) has shown utility for identify-

ing characteristic functional brain patterns in individuals with psychiatric and mood

disorders, providing a promising avenue for biomarker development. However, sev-

eral factors have precluded widespread clinical adoption of rsFNC diagnostics,

namely a lack of standardized approaches for capturing comparable and reproducible

imaging markers across individuals, as well as the disagreement on the amount of

data required to robustly detect intrinsic connectivity networks (ICNs) and diagnosti-

cally relevant patterns of rsFNC at the individual subject level. Recently, spatially

constrained independent component analysis (scICA) has been proposed as an auto-

mated method for extracting ICNs standardized to a chosen network template while

still preserving individual variation. Leveraging the scICA methodology, which solves

the former challenge of standardized neuroimaging markers, we investigate the latter

challenge of identifying a minimally sufficient data length for clinical applications of

resting-state fMRI (rsfMRI). Using a dataset containing rsfMRI scans of individuals

with schizophrenia and controls (M = 310) as well as simulated rsfMRI, we evaluated

the robustness of ICN and rsFNC estimates at both the subject- and group-level, as

well as the performance of diagnostic classification, with respect to the length of the

rsfMRI time course. We found individual estimates of ICNs and rsFNC from the full-

length (5 min) reference time course were sufficiently approximated with just

3–3.5 min of data (r = 0.85, 0.88, respectively), and significant differences in group-

average rsFNC could be sufficiently approximated with even less data, just 2 min

(r = 0.86). These results from the shorter clinical data were largely consistent with

the results from validation experiments using longer time series from both simulated

(30 min) and real-world (14 min) datasets, in which estimates of subject-level FNC

were reliably estimated with 3–5 min of data. Moreover, in the real-world data

we found rsFNC and ICN estimates generated across the full range of data lengths

(0.5–14 min) more reliably matched those generated from the first 5 min of scan time

than those generated from the last 5 min, suggesting increased influence of “late
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scan” noise factors such as fatigue or drowsiness may limit the reliability of FNC from

data collected after 10+ min of scan time, further supporting the notion of shorter

scans. Lastly, a diagnostic classification model trained on just 2 min of data retained

97%–98% classification accuracy relative to that of the full-length reference model.

Our results suggest that, when decomposed with scICA, rsfMRI scans of just 2–5 min

show good clinical utility without significant loss of individual FNC information of

longer scan lengths.

K E YWORD S

resting-state fMRI (rsfMRI), functional network connectivity (FNC), intrinsic connectivity
networks (ICNs), spatially constrained independent components analysis (scICA), schizophrenia

1 | INTRODUCTION

Resting-state functional MRI (rsfMRI) has been a valuable tool for

identifying and investigating brain networks and their functional inter-

actions, often referred to as resting-state functional network connec-

tivity (rsFNC), in both typical individuals and those diagnosed with

psychiatric and mood disorders. Clinically, rsfMRI offers several bene-

fits, namely that it is non-invasive, it is relatively easy to administer,

and imposes fewer demands on patients than other imaging tech-

niques or task-based fMRI paradigms, an important consideration for

clinical populations that may not be able to perform standardized

tasks in the scanner. Studies of rsFNC have also identified characteris-

tic and reproducible connectivity patterns capable of discriminating

between various diagnostic groups (Arbabshirani et al., 2013; Li

et al., 2020; Liu et al., 2008), as well as “fingerprinting” individuals and
predicting behavior (Finn et al., 2015).

While these benefits show promise for rsFNC to serve as a

potential biomarker and move towards precision diagnosis in the cur-

rently tangled landscape of psychiatric disorders, several factors have

prevented widespread clinical adoption of such methods. One such

challenge is the lack of standardized approaches for capturing imaging

markers, in this case individualized intrinsic connectivity networks

(ICNs), that are reproducible and comparable across individuals. Inde-

pendent components analysis (ICA) is a widely used data-driven

approach for extracting maximally spatially independent components

that share co-varying activation patterns from voxel-level fMRI data

(Calhoun et al., 2001; Durieux & Wilderjans, 2019; Esposito

et al., 2005; Gordon et al., 2017; Salehi et al., 2020). Though several

group ICA methods have been developed that enforce correspon-

dence between individual-level ICNs in a given group analysis

(Beckmann et al., 2009; Calhoun et al., 2001; Du & Fan, 2013), there

is no such guarantee of correspondence across different datasets or

studies. To address this challenge, spatially constrained ICA (scICA)

methods have recently been proposed (Du et al., 2020) that can

extract individualized ICNs guided by the spatial prior of an indepen-

dently derived and validated network template. The scICA approach is

fully automated and ensures the correspondence of ICNs across sub-

jects while maintaining individualized identification of components,

suggesting it can be of great use for precision biomarker

development.

In addition, there is currently debate in the field surrounding the

amount of rsfMRI data needed to generate robust estimates of func-

tional networks and the corresponding resting-state functional con-

nectivity (rsFC) between them. Typically, rsfMRI scans lengths range

from 5 to 15 min, but recent work has yielded conflicting results for

“optimal” scan lengths, suggesting as little as 5–6 min (Birn

et al., 2013; Braun et al., 2012; Van Dijk et al., 2010) or as much as

30–40 min (Gordon et al., 2017; Milham et al., 2021; Murphy

et al., 2007) of data are necessary to produce sufficiently reliable esti-

mates of individual rsFC. While shorter scanning sessions would be

more cost- and resource-efficient for clinical implementation, the ICN

and rsFC estimates from shorter time courses can possibly be more

susceptible to spurious noise; conversely, while longer scanning ses-

sions have the benefit of averaging across more data, the longer a

subject spends in the scanner the more susceptible they are to

fatigue, increased head motion, drowsiness, and fluctuations in vigi-

lance (Damaraju et al., 2020), which also contribute to noise. Further-

more, individuals with psychiatric or mood disorders can become

distressed in the MRI scanner and be unable to tolerate long acquisi-

tions, making the scan duration an increasingly important factor for

development of neuroimaging biomarkers with practical clinical utility.

Thus, the lack of consensus around an appropriate “minimally suffi-

cient” scan length for clinical applications of rsfMRI has left this an

open area of research.

Importantly, existing studies of scan length reliability have

focused mainly on atlas- and seed-based approaches. To the best of

our knowledge there has been no such examination of reliability using

a data-driven ICA approach, specifically scICA. We suggest that the

scan length required to achieve reliable results is at least in part

dependent on the methodological approach employed. Thus, a data-

driven method may produce results that differ from seed- and atlas-

based approaches. Moreover, we hypothesize that the regularization

provided by the spatial priors in scICA serve to stabilize the indepen-

dent component solution even when less data is used, providing

higher reliability at shorter scan lengths than what has been reported

for non-ICA approaches.
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Motivated by the lack of consensus in recommended scan lengths

for clinical applications, we investigate the robustness of both

subject-specific ICNs extracted via scICA and their resultant rsFNC

matrices with respect to time series length. As we are interested spe-

cifically in studying minimal sufficient scan lengths in the context of

clinical biomarker development, we also evaluate the robustness of

scan length to the identification of significant group differences in

rsFNC between, as well as classification of, schizophrenia and control

groups. To supplement the relatively short clinical scans and study the

effect of reference length on minimal sufficient scan lengths, we repli-

cate these experiments both in simulated 30-min rsfMRI time courses

as the reference, as well as in real-world 14-min rsfMRI scans of

healthy young adults from a subset of the Human Connectome

Project.

2 | MATERIALS AND METHODS

2.1 | Spatially constrained ICA

A spatially constrained ICA (scICA) approach called multivariate-

objective optimization ICA with reference (MOO-ICAR) was imple-

mented using the GIFT software toolbox (http://trendscenter.org/

software/gift) (Iraji et al., 2021). Briefly, the MOO-ICAR framework

estimates subject-level independent components (ICs) using existing

network templates as spatial guides (Du et al., 2020). The main advan-

tage of the scICA framework is the guaranteed correspondence

between the estimated ICs across subjects, but an added benefit is

the ability to customize the network template used as the spatial ref-

erence in the ICA decomposition, enabling a highly tailored analysis of

disease-specific networks or a more generalized analysis of canoni-

cally accepted functional networks suitable for global use across a

range of populations. In this work we focused on the latter approach

and utilized the NeuroMark_fMRI_1.0 template (described in detail in

Du et al., 2020 and available for download at https://trendscenter.

org/data/). This template consists of N = 53 high fidelity ICNs that

were identified and reliably replicated in two large scale datasets

(Figure 1) and have been categorized into seven major functional

domains: subcortical (SC), auditory (AUD), sensorimotor (SM), visual

(VIS), cognitive-control (CC), default mode (DM) and cerebellar (CB).

The NeuroMark_fMRI_1.0 template is considered a global template

and was generated using data from control individuals, but impor-

tantly this network template was also validated across six different

brain disorders including schizophrenia, autism, Alzheimer's disease,

mild cognitive impairment, bipolar disorder, and major depressive dis-

order. This validation confirmed that the ICNs defined in the Neuro-

Mark_fMRI_1.0 template did indeed capture clinically relevant

functional entities, and that the connectivity between these entities

was capable of identifying functional patterns characteristic of disease

(Du et al., 2020), thus suiting our purposes for this study.

The MOO-ICAR algorithm used to implement the scICA maxi-

mizes two objective functions—one function to optimize the overall

independence of the networks, and another to optimize the

correspondence of each subject-specific network to its template (Du

et al., 2020). Both objective functions, J Skl

� �
and F Skl

� �
, are listed in

the following equation, which summarizes how the lth network can be

estimated for the kth subject using the network template Sl as

guidance:

max
J Skl

� �
¼ E G Skl

� �h i
�E G vð Þ½ �

n o2

F Skl

� �
¼ E SlS

k
l

h i

8><
>:

s:t: wk
l

�� ��¼1

In this formulation, Skl ¼ wk
l

� �T �Xk represents the estimated lth net-

work of the kth subject, where Xk is the whitened fMRI data matrix of

the kth subject and wk
l is the unmixing column vector, to be solved in

the optimization functions. The function J Skl

� �
serves to optimize the

independence of Skl via negentropy. Here, v is a Gaussian variable with

mean zero and unit variance, GðÞ is a nonquadratic function, and E½�
denotes the expectation of the variable. The function F Skl

� �
serves to

optimize the correspondence between the template network (Sl) and

subject network (Skl ). The optimization problem is solved by applying a

linear weighted sum to combine the two objective functions, with

weights set at 0.5. Applying scICA via MOO-ICAR to each scan

extracts subject-specific ICNs corresponding to each of the

N network templates, along with the relevant time courses.

2.2 | Evaluation framework

A flowchart of our analysis framework is presented in Figure 2. We

began by partitioning the preprocessed rsfMRI data into incrementally

longer segments, beginning with the first 1 min, then 2 min, and so on

until the full length of the data was reached (due to the increased

temporal resolution in the HCP data, the rsfMRI time series were

parsed in 30 s increments). Next, we applied scICA via the MOO-ICAR

framework (Section 2.1) separately to each length of rsfMRI, extract-

ing subject-specific ICNs and their corresponding TCs. Results from

the full-length TC were considered the reference or “gold standard” in
our evaluation, thus the robustness of shorter data lengths was evalu-

ated with respect to the full-length TC. To evaluate the spatial map

stability of the scICA decomposition, as well as the rsFNC stability of

their respective TCs, we computed subject-level Pearson correlations

between full TC and partial TC experiments for both the spatial com-

position of the extracted ICNs and the resultant rsFNC matrices. We

utilized a robustness threshold of correlation ≥0.85 to the reference

(i.e., full-length TC), formerly proposed in Gordon et al. (2017), to

identify a “minimally sufficient” data length with respect to these met-

rics. Pearson's r was used to assess reliability rather than intraclass

correlation (ICC) to enable better comparison to, and use of the same

evaluation criteria of, this prior work.

In each experiment, subject-level static functional network con-

nectivity (sFNC) was computed via pairwise Pearson correlation

between time courses of all ICNs, resulting in an N � N sFNC matrix.
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Fisher's Z transform was applied to all sFNC matrices to improve nor-

mality. We computed group-average sFNC matrices for the schizo-

phrenia (SZ) and control (CON) groups (or groups A and B in the

simulated data) at each data length. We investigated group differences

in sFNC values between the SZ and CON (or Group A/B) populations

using two parallel approaches—two-sample t-test as well as univariate

multiple linear regression including age, gender, scanning site and head

motion as covariates. Significant group differences in sFNC were iden-

tified as relationships whose p-values survive FDR correction at

αFDR = 0.05. To further evaluate the stability of diagnostically relevant

rsFNC patterns as the length of fMRI data decreased, we computed

group-level correlations between the full TC and each of the partial

TCs for each of the mean SZ/CON sFNC matrices, t-test t-values, and

diagnosis term t-values from the multiple linear regressions.

We apply this evaluation framework to our discovery rsfMRI

dataset (M = 310 subjects) to examine scan length reliability as it

relates to SZ/CON group differences, as well as to our simulated data-

set (M = 100 subjects) and the HCP dataset (M = 98 subjects,

392 scans) to examine scan length reliability in longer time series

(Section 2.4).

2.3 | Group classification

We further investigate the robustness and clinical utility of scICA-based

estimates of rsFNC with a group classification task. Using our discovery

rsfMRI dataset as training data (M = 310 subjects; 150 SZ), we gener-

ated subject-level feature vectors for each data length by extracting

the upper triangular of the corresponding scICA-derived sFNC matrix.

Using the “fitclinear” function in MATLAB, we fit binary LASSO-

regularized linear SVM classification models separately for each data

length (1, 2, 3, 4, and 5 min) to classify each subject as SZ/CON. For

each model, the lambda parameter was tuned using five-fold cross vali-

dation. After obtaining the optimal lambda value, performance for each

of the five models was estimated with 500 rounds of bootstrap

resampled five-fold cross validation. The final five models were trained

on the full training dataset and tested on the held-out independent vali-

dation dataset (M = 129 subjects; 50 SZ) using the same bootstrap

resampling scheme (500 rounds) for external evaluation of classification

performance and generalizability at each data length.

2.4 | Data and preprocessing

2.4.1 | Clinical fMRI data

We utilized datasets from two existing projects in this study: the

FBIRN (Functional Imaging Biomedical Informatics Research Network)

dataset was used as our discovery dataset, and the COBRE (Center

for Biomedical Research Excellence) dataset was used as a validation

dataset in our classification experiments. We selected a subset of sub-

jects from each dataset that satisfy the following inclusion criteria:

F IGURE 1 NeuroMark network templates across eight functional domains used for spatially constrained independent component analysis
(ICA). Colors represent individual components within each domain. Domain abbreviations: subcortical (SC), auditory (AUD), sensorimotor (SM),
visual (VIS), cognitive-control (CC), default mode (DM), and cerebellar (CB).
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(a) data of individuals with typical control or schizophrenia diagnosis;

(b) data with high-quality registration to echo-planar imaging (EPI) tem-

plate; and (c) head motion transition of less than 3� rotation and 3-mm

translation in every direction (Fu et al., 2021). This data selection

resulted in an age- and gender-matched discovery dataset including

150 individuals with schizophrenia (SZ) and 160 controls (CON)

(Keator et al., 2016). FBIRN resting-state fMRI (rsfMRI) data were col-

lected with 3-T MRI scanners with a repetition time (TR) of 2 s, voxel

size of 3.44 � 3.44 � 4 mm, a slice gap of 1 mm, and a total of 157 vol-

umes. Subjects were instructed to keep their eyes closed during the

resting-state scan but not fall asleep. Additionally, the validation data-

set consisted of 50 SZ and 79 CON samples (Aine et al., 2017). The

COBRE rsfMRI data were collected with 3-T MRI scanners with a TR

of 2 s, voxel size of 3.75 � 3.75 � 4.55 mm, and a total of 145 vol-

umes. In the validation set, subjects were instructed to keep their eyes

open and passively stare at a fixation cross. Details on age and sex

demographics of subjects in both datasets are listed in Table 1.

Informed consent was obtained from each participant prior to scanning

and all studies were approved by the Institutional Review Boards of

the corresponding institutions (University of California: Irvine, San

Diego, Los Angeles; Stanford University, University of New Mexico,

University of Iowa, University of Minnesota, Duke University, Univer-

sity of North Carolina, Brigham and Women's Hospital, Massachusetts

General Hospital, Yale University). For both data sets, preprocessing

F IGURE 2 Analysis framework. Data preparation steps including extraction of partial time courses, as well as spatially constrained ICA and its
outputs are depicted on the top panel. Reliability evaluation steps including subject-level, group-level and classification reliability experiments are
depicted on the bottom panel. Abbreviations: time course (TC); blood oxygen level-dependent (BOLD); independent components analysis (ICA);
spatially constrained ICA (scICA); spatial maps (SMs); static functional network connectivity (sFNC); schizophrenia (SZ); control (CON); support
vector machine (SVM).
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included brain extraction, slice-timing, and motion correction steps.

Preprocessed data were then registered into structural MNI space,

resampled to 3 mm3 isotropic voxels, and spatially smoothed using a

Gaussian kernel with a 6 mm full-width at half-maximum (FWHM) on

a per-subject basis. Finally, the first five timepoints were trimmed from

the time course and all voxel time courses were z-scored.

2.4.2 | Simulated data

To supplement the relatively short data lengths available from our

clinical rsfMRI datasets, we simulated a set of longer fMRI time

courses using the SimTB toolbox (Erhardt et al., 2012) (freely available

for download at https://trendscenter.org/software/simtb/). Briefly,

SimTB utilizes a data generation model under the assumption of spa-

tiotemporal separability, meaning the simulated fMRI data can be

expressed as the product of time courses (TCs) and spatial maps

(SMs). These simulated data are modeled with realistic dimensions,

spatiotemporal activations, and noise characteristics typical of fMRI

datasets (Allen et al., 2012). For subjects i = 1, …, M, we model

C components, each consisting of a SM and corresponding TC. In our

simulation, we set M = 100 subjects and C = 29 components. SMs

have V = 148 � 148 voxels and TCs are T = 900 time points in length

with a TR = 2 s (totaling 30 min of data). The C = 29 components

used in our simulation are shown in Figure 3. In our simulation, indi-

vidual variability in component SMs is implemented as follows. SMs

are translated according to a bivariate normal distribution with mean

zero and standard deviation of 0.75 voxels and are rotated by nor-

mally distributed angles with mean zero and a standard deviation of

1�. SM size is also randomly varied, with the spread parameter, ρ, uni-

formly distributed between 0.85 and 1.15. Additionally, component

amplitudes, gic, are distributed normally with a mean of 3 and standard

deviation of 0.3, simulating individual TC variation.

We model two groups, A and B, that differ in four ways, modeled

after a similar experiment in (Allen et al., 2012) and described in detail

below. Each group has 50 subjects, for M = 100 subjects total. Group

differences are as follows. (1) Group A has larger amplitude for

component 7 than Group B. This is modeled by distributing gi7 as nor-

mal with mean 3.5 and standard deviation 0.3 for Group A, and mean

2.5, standard deviation 0.3 for Group B. (2) Groups A and B have dif-

ferent shapes for a network composed of components 5 and 10. The

network is modeled by assigning shared events between components

5 and 10 and setting the amplitude of unique events, Au = 0, creating

identical TCs. For Group A, the amplitude of component 5 is

gi5 = 0.7 � gi10, whereas for Group B gi5 = 1 � gi10. Thus, Group A

has a network where the component 5 node is weaker than the com-

ponent 10 node and Group B has two nodes of equivalent strength.

(3) Groups A and B have different shapes and different amplitudes for

a network composed of components 22 and 23. For Group A,

gi23 = 0.7 � gi22, where gi22 is distributed normally with mean 6 and

standard deviation 0.3. For Group B, gi23 = 1 � gi22, where gi22 is dis-

tributed normally with mean 3 and standard deviation 0.3. Thus,

TABLE 1 Subject demographic information.

Dataset Diagnostic group N Sex N

Age (years)

Mean ± SD Median (range)

FBIRN (discovery) CON 160 Male 115 37.26 ± 10.71 39 (19–59)

Female 45 36.47 ± 11.33 33 (19–58)

SZ 150 Male 114 38.74 ± 11.78 40 (18–62)

Female 36 39.06 ± 11.40 36 (21–57)

COBRE (validation) CON 79 Male 55 39.07 ± 12.43 38 (18–65)

Female 24 34.92 ± 10.23 34 (18–58)

SZ 50 Male 42 37.43 ± 15.05 32.5 (19–64)

Female 8 43.25 ± 12.78 40 (31–65)

Abbreviations: COBRE: Center for Biomedical Research Excellence; CON: control; FBIRN: Functional Imaging Biomedical Informatics Research Network;

SZ: schizophrenia.

F IGURE 3 Spatial map of the 29 components used in our
simulation study (corresponding to default components numbers 2–
30 in the SimTB software).
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Group A has a lateralized network where the left node is stronger

than the right and Group B has a bilaterally symmetric network. Fur-

thermore, the amplitude of the network for Group A is much larger

than the amplitude for Group B. (4) Group B has stronger FNC

between components 3 and 4 than Group A. This is modeled by first

designating shared events between components 3 and 4, then distrib-

uting Au as uniform between [0.5, 1.0] for Group A and between

[0.65, 1.15] for Group B.

2.4.3 | HCP data

Finally, we applied our evaluation framework on data from a subset of

M = 100 subjects from the Human Connectome Project (HCP) S1200

dataset (Van Essen et al., 2013). We utilized the HCP data as an addi-

tional real-world evaluation set for our reliability analyses, capitalizing

on the relatively long scan length (�15 min) of the rsfMRI acquisi-

tions. However, the “healthy control” nature of the HCP cohort pre-

cluded the possibility of group analyses, therefore we conducted the

HCP experiments for the purpose of supplemental validation of

subject-level scan length reliability. Each rsfMRI scan in the HCP data-

set consists of 1200 time points at a TR = 0.72 sec and a voxel size of

2 mm isotropic. Preprocessing of HCP data was identical to that of

the FBIRN and COBRE data sets described in Section 2.4.1. The HCP

data consisted of four rsfMRI scans per subject, two collected on the

initial visit (labeled REST1_LR and REST1_RL) and two on a follow up

visit (REST2_LR and REST2_RL). Two subjects from our initial subset

did not have complete data for all four scans and were excluded from

analysis, resulting in a final sample size of M = 98 subjects and

392 rsfMRI scans in total.

The inherent differences in spatial and temporal resolution in the

acquisitions of the FBIRN and HCP datasets have been shown to

result in considerable differences in spatial smoothness of ICN estima-

tions, namely resulting in smoother spatial maps in the FBIRN data

(Iraji et al., 2022). To mitigate the effects of these smoothness differ-

ences on our reliability estimates, we applied post-hoc spatial smooth-

ing to the HCP data at several levels (range FWHM = 3–10). We

computed a smoothness score, defined as 1—normalized average gra-

dient across the spatial maps of all 53 ICNs, at each level of smoothing

as well as for the original unsmoothed HCP and FBIRN datasets.

Finally, we identified the level of post-hoc smoothing in the HCP data

that most closely matched the smoothness of the FBIRN data for the

same scan time (FWHM = 3.53) (Figure S1), which was used for fur-

ther reliability analyses.

3 | RESULTS

3.1 | Subject-level estimates of ICNs and sFNC are
highly robust to data length

We evaluated the stability of subject-level estimates of ICN spatial

maps and sFNC matrices derived via scICA with respect to the length

of rsfMRI data (Figure 4a,b). We observed increasing variation in the

stability of subject-level sFNC estimates at shorter data lengths, but

comparatively little variation in the ICN spatial stability, likely owing

to the regularization provided by the spatial priors in the scICA

decomposition. Similarly, we found no discernible group differences

between SZ and CON in ICN spatial map stability, whereas the CON

group exhibited slightly higher stability in sFNC than the SZ group at

shorter data lengths. Results showed only 3 min of rsfMRI data were

sufficient to meet the robustness threshold for the subject-specific

ICN spatial maps and 3.5 min were sufficient for the corresponding

subject-level sFNC estimates.

3.2 | Group-level sFNC patterns can be reliably
estimated with less data

In addition to subject-level reliability of ICN and sFNC estimates, we

evaluated the reliability of group-level sFNC patterns across TC

lengths. Results showed the characteristic rsFNC signatures for the

SZ and CON groups were highly robust to the length of rsfMRI data

used (Figure 5a,b), indicating high group-level rsFNC stability. The

group-level sFNC matrices derived from even 1 min of data were

highly correlated to the full TC reference for both the SZ (r = 0.94)

and CON (r = 0.93) groups, and this relationship continually increased

as more of the rsfMRI time course was utilized.

We found significant group differences in sFNC patterns across

all experiments, both with the classic t-test and with multiple regres-

sion with added covariates (Figure 5c,d). Results showed near-perfect

concordance between these two parallel methodologies, with correla-

tions in t-values ≥0.99 in each experiment. We found only 2 min of

rsfMRI data were required to meet the robustness threshold (correla-

tion ≥0.85 to the reference) and reliably estimate the significant group

differences identified from the full TC (Figure 4c). Specifically, the

results showed that the group differences that were most robust to

data length were lower within-domain connectivity of the VIS domain

and higher cross-domain connectivity between SC-SM and SC-VIS

domains in the SZ group compared to that of the CON group.

3.3 | Simulation study suggests ICN and sFNC
estimates from relatively long rsfMRI can be reliably
estimated from very short TCs

To evaluate how reliability is affected with longer rsfMRI as the refer-

ence, we simulated 30 min of rsfMRI data designed to model two

groups with distinct activation and FNC patterns (Section 2.4.2). The

stability of subject-level estimates of ICN spatial maps and sFNC

matrices derived via scICA with respect to the length of the simulated

rsfMRI data is shown in Figure 4d,e. Somewhat contrary to results of

the SZ/CON data, we observed slightly larger variation in subject-

level spatial map stability at shorter data lengths compared to that of

subject-level sFNC. This could be due in part to the induced variability

in translation/rotation/size of the simulated ICN spatial maps. The
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results showed that the robustness threshold of mean correlation

≥0.85 to the reference was reached with 3 min of data for the spatial

composition of subject-specific ICNs and 4 min of data for subject-

level sFNC, corresponding well to the results from the clinical data

and suggesting individualized rsFNC features averaged across even

relatively long TCs can be reliably estimated from just a fraction of the

time series. Group-level mean sFNC was highly robust to data length,

and similarly we found 3 min of data were required to reach the

robustness threshold for significant group differences in sFNC

(Figures 4f and 6).

3.4 | Scan length reliability of ICN and FNC
estimation validated in real-world HCP data

As an additional validation in real-world rsfMRI with relatively longer

scan times, we performed reliability analysis on a total of 392 scans

from a subset of 98 subjects in the HCP. Results showed that FNC

estimates from 5 min of data and ICN spatial map estimates from

7 min of data were sufficient to reliably estimate the FNC and ICN

spatial maps from the full-length time series, here 14 min (Figure 7).

Comparison of the original and smoothed datasets showed that

smoothing did slightly improve the reliability of subject-level ICN

estimation and did not affect the mean FNC reliability, though it did

decrease the standard deviation of the FNC reliability scores com-

pared to the original data. These results suggest the information cap-

tured within the 14-min HCP scans could be reliably estimated even

with a 50%–64% decrease in scan length

The selection of the “gold standard” reference in reliability ana-

lyses is critical, as results can vary widely depending on the choice of

reference. One issue with longer scan lengths is the susceptibility of

fatigue, increased head motion, and drowsiness to pollute the signal,

especially at the tail end of the scan. Thus, the use of longer scans that

may be affected by these “late scan” noise factors as references could

artificially deflate reliability estimates compared to studies that use

shorter scans as reference. To evaluate the effects of both the refer-

ence length and end-of-scan drift, we repeated our reliability analyses

using just the first 5 min as well as the last 5 min as reference

(Figure 8). When the first 5 min of data were used as reference the

results show just 3 min of data were sufficient to reliably estimate

subject-level ICN spatial maps and FNC, concordant with the 5-min

FBIRN results (Section 3.1). In the case of FNC, the reliability

remained above the threshold across the full-length of the 14-min

time series, while ICN spatial map reliability fell below the threshold

at 9.5 min or more. Conversely, when the last 5 min of data were used

as reference, FNC reliability was not reached without a minimum of

F IGURE 4 Reliability results for clinical (a–c) and simulated (d–f) datasets. Subject-level measures (a and b, d and e) show mean (solid line)
and standard deviation (shaded area) across all subjects. Dotted lines indicate data lengths at which the measures meet or exceed the robustness
threshold (r ≥ 0.85; Gordon et al., 2017). CON, control; ICN, intrinsic connectivity network; rsFNC, resting-state functional network connectivity;
SZ, schizophrenia.
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12 min of data and ICN spatial map estimates did not reach reliability

with any portion of the time series. Furthermore, we found poor con-

cordance between FNC (Figure 8c) and ICN spatial map (Figure 8d)

estimates from the first 5 min and the last 5 min of data (r = 0.69,

0.55, respectively), suggesting a large discrepancy in the functional

information captured between early- and late-scan rsfMRI. It is

F IGURE 5 (a and b) Mean functional network connectivity (FNC) for patients with schizophrenia (SZ) (a) and typical controls (CON) (b) from
the full (5 min) and partial (1–4 min) fMRI time course. For experiments on partial time series data, Pearson correlation with FNC from the full
data is reported. (c and d) Group differences (SZ-CON) in FNC. Values are plotted as �log10(p-value) � sign(t-value), where statistics are
obtained via t-test across diagnosis groups (c) or from the diagnosis term in univariate multiple regression (MLR) models (d). For experiments using
partial time series data, t-value correlation with full data experiments is reported.
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possible that these discrepancies could be attributed to brain dynam-

ics, indicating for example a transition between functional states. In

fact, such functional dynamics are likely occurring throughout the

time series on a subject-to-subject basis; however, the linear trend

across time for both FNC and ICN reliability is instead more indicative

of a stronger global phenomenon across all subjects of the steadily

increasing influence of “late scan” noise and fatigue. This trend held

when the last 4, 3, 2, and 1 min of the scan were used as reference as

well, further supporting this premise (Figure S2).

Overall, the results of our HCP analyses suggest that the informa-

tion collected within relatively long and temporally granular rsfMRI

time series can be reliably estimated from just the first �20%–50%

(3–7 min) of data. Furthermore, these results indicated decreased reli-

ability of functional estimates generated from late-scan data across

the full range of data lengths (0.5–14 min) compared with early-scan

data, likely due to increasing noise as a function of scan time and fur-

ther supporting the notion of minimized scan times.

3.5 | Classification accuracy remained stable as
less rsfMRI data used for prediction

The results from our classification experiments showed highly stable

classification accuracy for models fit across the range of 2–5 min, with

the model trained on 2 min of data attaining a relative performance to

that of the full TC reference model of 98% in the internal cross valida-

tion (0.73 vs. 0.74) and 97% in the external validation (0.68 vs. 0.70)

(Figure 9a). A full report of mean classification performance metrics

including accuracy, AUC, sensitivity and specificity is listed in Table 2.

Notably, the results showed that 4 min of data had a relative perfor-

mance of 97%–100% compared to the reference TC across all four

classification metrics, followed by 95%–100% for 3 min of data, 94%–

100% for 2 min of data, and 79%–90% for just 1 min of data. These

results suggest that in addition to being robust on an individual level,

sFNC features derived from scICA decomposition of rsfMRI data cap-

ture clinically relevant patterns of rsFNC, even from very short scan

F IGURE 6 Group differences in rsFNC between Groups A and B in the simulated dataset across various data lengths. Values are plotted as
�log10(p-value) � sign(t-value).

F IGURE 7 Reliability of FNC (a) and ICN (b) for both original and smoothed (FWHM = 3.53 mm) HCP data. Means are computed across all
subjects and sessions (n = 392 scans).
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F IGURE 8 Reliability results using the first 5 min (top row) and last 5 min (bottom row) of data as reference.

F IGURE 9 (a) Classification performance of linear SVM models trained at each data length. (b) FNC edges in the top 20% of SVM feature
weights shared among all five models.
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lengths, and yield diagnostic classifications that are highly robust to

data length.

For each of the five models we also extracted the most influential

sFNC edges, defined as the top 20% of features with the highest mag-

nitude weights. We found 31 sFNC edges were commonly included

among the top feature weights across all five models (Figure 9b),

which mainly belonged to the subcortical (SC), visual (VIS) and sensori-

motor (SM) domains. These results align with the significant results of

our group differences analysis and involve domains that have previ-

ously been implicated in relation to schizophrenia in the literature

(Damaraju et al., 2014; Ma et al., 2020).

4 | DISCUSSION

There is increasing agreement within the psychiatric field that current

behavioral diagnostic criteria are likely insufficient to properly disen-

tangle the complex and blurred boundaries between psychiatric disor-

ders as they are presently defined. In light of this, much research is

focused on the identification and development of biomarkers for psy-

chiatric disorders, with considerable attention on neuroimaging-based

methods, such as rsfMRI (Arbabshirani et al., 2013). Resting-state

fMRI approaches are well suited for clinical biomarkers, not only

because of their non-invasive nature and relatively high spatial and

temporal resolution, but also due to the low demand placed on

patients during resting-state acquisitions, which is especially impor-

tant for use in psychiatric populations that may experience difficulty

performing structured cognitive tasks in the MRI scanner. Another

key consideration in the development of psychiatric rsfMRI bio-

markers is the duration of image acquisition required. Minimizing the

time in the scanner is critical, both for maximizing the comfort of

patients, many of which cannot tolerate prolonged containment

within the MRI scanner, and for resource efficiency of high-demand

MRI equipment. However, lack of consensus for a minimally sufficient

rsfMRI scan length has factored into the delayed adoption of

neuroimaging biomarkers in clinical settings. Previous reports have

produced conflicting results, proposing that as little as 5–6 min (Braun

et al., 2012; Van Dijk et al., 2010) and as much as 30–40 min (Gordon

et al., 2017; Milham et al., 2021; Murphy et al., 2007) are necessary to

produce robust and reliable estimates of individual rsFNC, with most

recent works advocating for longer acquisitions (Noble et al., 2019).

Here, we contribute to this debate by providing an evaluation of

reliability of both subject- and group-level measures of rsFNC for

individuals with schizophrenia and controls with respect to the length

of rsfMRI data used for analysis. Our work differs from existing stud-

ies mainly in our use of a spatially constrained ICA approach, which

leverages existing network templates as spatial priors to guide the

spatiotemporal decomposition of the fMRI data. The data-driven

nature of scICA enables individualized identification of ICNs while

simultaneously ensuring their correspondence to a validated set of

functional networks of interest and automatedly discarding noise

components. We hypothesized that the additional regularization pro-

vided by the use of network templates in scICA may serve to enable

robust and reliable estimation of rsFNC at shorter scan lengths than

those previously reported in when utilizing atlas- or seed-based ana-

lyses. Beyond regularization, the scICA has several additional benefits

that are favorable for use in clinical settings. Firstly, scICA is

completely automated, negating the need for any manual annotation

of relevant brain regions from noise components. Secondly, scICA

provides crucial correspondence in components between subjects,

allowing it to directly patch into any downstream steps in the bio-

marker algorithm without the need for intermediary steps such as

computation of spatial overlaps. Thirdly, scICA is fully parallelizable

and can be applied to each patient's scans independently without the

need for group analysis. Lastly, scICA can be used with any custom-

ized spatial templates that contain ICNs of interest, allowing for addi-

tional tailoring to specified networks deemed relevant for any given

diagnosis. Though, it is worth noting that the NeuroMark template

used in this study is a global template appropriate for use across a

range of adult populations, and has been validated to capture

TABLE 2 Classification results.

Internal five-fold CV results (500� bootstrap) External validation results (500� bootstrap)

Accuracy AUC Sensitivity Specificity Accuracy AUC Sensitivity Specificity

Obs. Rel. Obs. Rel. Obs. Rel. Obs. Rel. Obs. Rel. Obs. Rel. Obs. Rel. Obs. Rel.

5 min 0.74 - 0.83 - 0.71 - 0.78 - 0.70 - 0.78 - 0.70 - 0.70 -

4 min 0.73 0.99 0.82 0.98 0.69 0.97 0.78 1.00 0.70 0.99 0.78 1.00 0.69 0.99 0.71 1.00

3 min 0.74 1.00 0.81 0.97 0.70 0.99 0.78 1.00 0.68 0.98 0.76 0.97 0.67 0.95 0.71 1.00

2 min 0.73 0.98 0.80 0.97 0.67 0.95 0.78 1.00 0.68 0.97 0.74 0.94 0.67 0.96 0.68 0.97

1 min 0.63 0.85 0.69 0.83 0.56 0.80 0.70 0.90 0.57 0.82 0.65 0.82 0.56 0.79 0.60 0.85

Note: The relative accuracy is reporting the accuracy of the reduced data models to that of the full data model, i.e. the accuracy of the full 5 min model in

the CV is 0.74 and the accuracy of the reduced 4 min model in the CV is 0.73, thus the relative accuracy of the 4 min model is 0.73/0.74 = 0.99. We

italicized these values to provide a clear visual distinction between observed and relative metrics.

Report of the mean classification accuracy, area under the receiver operating characteristic curve (AUC), sensitivity and specificity for both internal cross

validation (CV) and external testing experiments for SVM models trained on features derived from all data lengths (1–5 min). We report both the observed

(Obs.) values as well as the relative (Rel.) values compared to that of the full-length reference time course (5 min).
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disease-specific patterns in several cohorts with psychiatric or neuro-

logical conditions (Du et al., 2020).

There are a few key themes that emerged from the results of our

reliability analyses. First and foremost, our results show that the same

fundamental subject-level functional information can be estimated

from half as much data (or less) when scICA is used. Across the board,

we found that less than 10 min, and often just 5 min or less, of rsfMRI

data was sufficient to reliably estimate both ICN spatial maps and pat-

terns of FNC generated from longer “full-length” reference scans

ranging from 5 to 15 to 30 min in length. This result is in concordance

with other works that found 5–10 min of data resulted in stable esti-

mations of ICNs and FNC (Braun et al., 2012; Tomasi et al., 2017; Van

Dijk et al., 2010). In the case of our HCP analyses, our results closely

relate to those reported by Tomasi et al., who evaluated reliability in

the same dataset using various FC metrics and found between 4.5

and 12 min of data were required for stability, depending on the FC

metric used for evaluation (Tomasi et al., 2017). Moreover, their find-

ing that more data was required to achieve reliable estimates of ICA-

based spatial maps than was required for estimates of functional con-

nectivity was also replicated in our results (Figure 7). This repeated

finding indicates that higher order summaries of the data, such as

FNC, are stable at even very short scan times and is especially impact-

ful for development of FNC-based classifiers, which we show can also

perform well with relatively short scans, that can be used in clinical

decision support.

On the other hand, there are many studies which posit signifi-

cantly longer scan times (10–30 min or more) are necessary to gener-

ate sufficiently reliable estimates of ICNs and connectivity. This

connects to the second major theme of our results; the critical role

reference length plays in studies of fMRI reliability. Figure 10 summa-

rizes the findings of several recent studies of fMRI reliability, specifi-

cally minimum recommended scan length as a function of reference

time course length. Though reliability is evaluated differently across

this set of studies, the trend is clear: minimum reliable scan lengths

are often recommended to be about half the length of the reference

time course. Further, all studies that concluded minimum reliable scan

lengths to be >10 min evaluated reliability against reference time

courses >25 min (Birn et al., 2013; Gordon et al., 2017; Mueller

et al., 2015; Murphy et al., 2007). These studies were all designed

under the assumption that a prolonged rsfMRI scan (or the concatena-

tion of several long rsfMRI time courses collected on different days)

would provide a good “gold standard” approximation of individual

rsFNC. However, considering the well-documented increase of

drowsiness, fatigue, and head motion as a function of scan time

(Wang et al., 2017), it is unclear whether this assumption is correct.

Our evaluation of the HCP data indicated that (1) the correspondence

between ICN and FNC estimates from the first 5 min and last 5 min

of the time series were low, (2) estimates generated from the first

5 min were more representative of the FNC and ICN estimates over

the full range of scan lengths than those generated from the last

5 min, and (3) the positive linear trend in concordance of the “full”
scan to the last 5 min reference estimate as a function of “full” scan

length (Figure 8c,d) suggests the discrepancy between scan-start and

scan-end estimates can more likely be attributed to increasing “scan-
ner fatigue” effects common across all subjects rather than functional

brain dynamics, which would be assumed to occur in unique patterns

and at various timescales across subjects and therefore be averaged

out in the group mean. This idea is further corroborated in our supple-

mental analyses that used FNC and ICN estimates from the last 1, 2,

3, and 4 min of scan time as the reference, which show poor concor-

dance to corresponding estimates generated throughout the scan

duration and is particularly evident in reliability of ICN estimates. The

“optimal” amount of data for generating the most reliable ICN esti-

mates is currently an open area of research, and our results align with

other work in this space that suggest the highest reliability may be

achieved when the tail end of the scan is not included (Iraji

et al., 2022).

Relatedly, the final theme of our results is the consideration of

the motivation or context within which reliability is being defined and

studied. In the case of Gordon et al., as with many of the reliability

studies discussed above, the goal was to identify the amount of data

required to identify a reliable individual FNC “fingerprint” that was

stable across a large amount of data, specifically across several scans

collected over several days or weeks. The goal of our work was some-

what different, in that we sought to test how much a single short

(or relatively long, in the case of the HCP analyses) scan could be fur-

ther reduced and still provide reliable estimates of rsFNC and individ-

ual ICNs, specifically in the context of clinical utility and identification

of group differences. Therefore, in addition to individual-level reliabil-

ity we also evaluated robustness of group-level metrics as well as

diagnostic classification performance, directly studying scan length

reliability in the context of clinical utility. We found that even less

data was required to reliably approximate significant group

F IGURE 10 Summary of minimum recommended scan lengths as
a function of the reference length used in recent studies of fMRI
reliability. Dashed line shows trend (y¼ x

2). (*) denotes reference time
series was comprised of two or more concatenated scans.
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differences in rsFNC than at the subject level (2 min vs. 3.5 min in

clinical experiments, 3 min vs. 4 min in simulated experiments), which

is expected due to the benefit of group averaging. Surprisingly, we

also found high reliability in classification performance at very short

lengths, achieving a relative diagnostic accuracy of 97% compared to

the full-length reference TC with just 2 min of data. This result was

somewhat unexpected, as classification of individuals is a much more

difficult task than identifying group differences in aggregate. How-

ever, we found that even if overall rsFNC robustness was not reached

with just 2 minutes of data, the rsFNC features that are generated at

this very short scan length do indeed capture clinically relevant pat-

terns of subject-level rsFNC and yield diagnostic classifications that

closely resemble those of the full reference TC.

This study is limited by the acquisition protocols of the clinical

SZ data sets used in the analyses, which consist of relatively short

(�5 min) one-time scans of individuals. While HCP data was

included for supplemental validation in longer and more temporally

granular data, the nature of the healthy control cohort precluded

the evaluation of the group analyses, which were the main interest

of this work. We also note that while our results highlight important

differences in rsFNC between individuals with SZ and controls that

can be identified even in very short fMRI scans, the results should

be interpreted with caution given the history of medication in the

schizophrenia group. To address these limitations, one focus of

future work might be collection of (1) slightly longer (�10 min

vs. 5 min) fMRI scans in the clinical population to conduct a

more robust evaluation of minimum clinical scan length, or (2) pre-

diagnostic/ pre-intervention fMRI scans of those with suspected

psychiatric conditions to ascertain the strength of possible medica-

tion effects with the added benefit of evaluation across a possible

range of diagnoses. Furthermore, the results of the simulation study

are expectedly limited in (1) the spatial dimensionality, simulating a

single axial slice rather than a three-dimensional full brain,

(2) strength of engineered group differences, and (3) ability to accu-

rately simulate the properties of true fMRI data. However, the effi-

cacy of the SimTB software has been extensively studied and has

shown utility for reliably modeling multi-subject fMRI datasets

(Allen et al., 2012; Erhardt et al., 2012). Additionally, we only con-

sider the results of scICA with a single network template generated

using only control subjects (Du et al., 2020). While most existing

reliability studies consider only one brain atlas, a more thorough

examination of scICA in the context of reliability and data reduction

in the future could include various templates, such as customized

templates for certain diagnostic groups or global templates gener-

ated with a higher model order (i.e., more granular spatial scale; Iraji

et al., 2022). Finally, we acknowledge that the identification of a

minimum scan length is dependent upon the metrics of interest, or

the evaluation framework used. For example, as our work produced

differing results for the evaluation of group-level vs. subject-level

rsFNC reliability, future studies that examine other metrics, such as

graph theoretic measures of rsFNC (i.e., modularity, global effi-

ciency, etc.), could result in minimum scan recommendations that

differ from those in this study.

Our results support the idea that when scICA is employed, a mini-

mally sufficient scan length may exist in the 2–5 min range that could

be favorable for use in clinical settings, both in maximizing clinical effi-

ciency and patient comfort while retaining diagnostic efficacy. How-

ever, more work is still required to validate these results in larger (and

longer) data sets, as well as in other diagnoses for which rsFNC bio-

markers may be useful. Also, though we found short scans to show

promise for clinical utility, we note that when possible, longer scan

durations could be beneficial for maximizing information capture.

Future work may also focus on the benefits of using scICA in the

study of time-resolved, or “dynamic” FNC (dFNC). The added regulari-

zation afforded by the spatial priors in scICA may help stabilize sliding

window estimates of dFNC, potentially increasing the resolution at

which dFNC can be studied with the use of smaller window sizes and

increasing the reliability of dFNC results overall.

5 | CONCLUSION

Due to the lack of consensus for minimum fMRI scan length recom-

mendations, specifically for clinical biomarker applications, we studied

the robustness of ICN and rsFNC measures with respect to scan

length. We found just a fraction (2–7 min) of the full-length time

series was necessary to sufficiently approximate ICNs and rsFNC at

both the subject- and group-level. These findings were consistent

across experiments in both shorter clinical data and longer simulated

data. Overall, our results suggest clinical rsfMRI scans, when decom-

posed with scICA, could possibly be shortened to just 2–5 min with-

out significant loss of rsFNC information or classification performance

of longer scan lengths.
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