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ABSTRACT

Acclimation and evolution in a changing climate:
Integrating physiology, transcriptomics, and genomics of a thermal specialist

By
Maria Tonione
Doctor of Philosophy in Environmental Science, Policy, and Management
University of California, Berkeley

Professor Neil D. Tsutsui, Chair

Climate change is one of the top causes of biodiversity loss. Organisms will experience many
pressures associated with climate change, one of the most obvious being increased temperature.
It is therefore important to understand how animals will react to this stress. Ectotherms, such as
ants, are especially sensitive to the climate as they rely on environmental temperature for
everything from optimal foraging to development time. In this dissertation, I explore the
individual and population level reactions to thermal stress of a cold-specialist, the winter ant,
Prenolepis imparis. 1 also identify the role past climatic fluctuations have had in shaping this
species’ current distribution.

In my first dissertation chapter, I conducted a RNA-seq analysis to identify stress-
induced genes in P. imparis individuals at the transcriptome level. To identify candidate genes
involved in the stress response, I induced stress by placing the ants at a low or high temperature.
Then, I sequenced the transcriptome of these stressed individuals. The genes that show an
increase during transcription are candidates for allowing individuals to recover from the stress. I
identified a total of 709 differentially expressed genes. In the cold-stressed ants, I did not identify
a strong response, indicating that the temperature we chose for trials was not cold enough.
Conversely, I found a strong response to the heat. Those transcripts we found highly induced
include protein folding genes, heat shock proteins, proteins associated with heat shock proteins,
Ca?" ion transport, and a few unknown genes. I also found functional categories relating to
protein folding, muscles, and temperature stimulus increased in the heat-stress response.

In my second dissertation chapter, | measured the short-term acclimation ability of high-
and low-elevation populations of P. imparis across California. In addition, I also characterized
the thermal environment both above and below ground. I found that the high-elevation sites
showed increased tolerance and reduced capacity in acclimation ability relative to the low-
elevation counterparts at their lower limits, suggesting an evolutionary trade-off between
tolerance and acclimation ability. In addition, I found less acclimation capacity across all
populations in their upper limits. I also found that the high-elevation sites experience cooler
temperatures both above and below ground. The greater acclimation response at lower limits in
high-elevation populations could suggest that they are better physiologically prepared to survive
cooler temperatures.



In my final dissertation chapter, I used phylogenetic and population genetic analyses to
identify population genetic structure and historical demographic patterns across the range of P.
imparis. 1 relate the genomic patterns to those expected as seen with in situ diversification, or
maintained connectivity. I recovered five well-supported genetically isolated clades across the
distribution. I also investigated gene flow between these major genetic clades and did not find
evidence of gene flow between clades. High support for five major geographic lineages and lack
of evidence of contemporary gene flow indicate in situ diversification across the species’ range,
probably influenced by glacial cycles of the late Quaternary.

Overall, the results from this dissertation give insight into plasticity as well as the
evolutionary processes that have shaped this species. My results suggest molecular pathways by
which phenotypic plasticity will allow individuals to overcome heat-stress: the candidate genes
provided here are a valuable resource in understanding pathways and proteins necessary for
survival at unfavorable temperatures. I also report that individuals from different populations
show different levels of thermal tolerance and plasticity. All the populations show less tolerance
and reduced plasticity to the heat. This is troubling in the face of climate change, this limited
acclimation response at the upper thermal limits suggests evolutionary constraints in heat
tolerance, so major changes at the molecular level will be needed for these populations to persist
in warmer environments. Finally, the entire range of this species has been profoundly affected by
climatic fluctuations during the Quaternary. These fluctuations led those individuals to have
separate evolutionary histories and raises the possibility that there are several unique species of
P. imparis.
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Chapter 1 RNA-seq reveals expression signatures of
genes involved in temperature stress in a thermally
sensitive ant, the winter ant (Prenolepis imparis)

1.1 Introduction

Humans have had a profound impact on the natural world; we are altering the environment in
ways that are devastating for global biodiversity. Climate change is among the top drivers of
biodiversity loss (Sala et al., 2000), and extinctions will likely increase with continued climatic
changes. Stressed species will need to either adapt, migrate, or face extinction once subjected to
these conditions. If unable to migrate, populations must manifest evolutionary adaptations to the
thermal conditions they experience or respond to these new conditions via phenotypic plasticity
(Chevin, Lande, & Mace, 2010; M. B. Davis, Shaw, & Etterson, 2005). Evolution and
phenotypic plasticity can work in concert to enable persistence during environmental change
(Chevin et al., 2010; DeBiasse & Kelly, 2016). Transcriptomics (RNA-seq) has emerged as a
powerful tool in discovering the plastic responses of pathways and genes associated with
survival under stressful conditions (C. D. Kenkel, Meyer, & Matz, 2013; Carly D. Kenkel &
Matz, 2016). With these gene expression analyses, we can understand, at a molecular level, the
influence of both abiotic and biotic stressors on individuals and populations (Colinet, Lee, &
Hoffmann, 2010b; DeBiasse & Kelly, 2016; Koo, Son, Kim, & Lee, 2015).

Environmental stress causes proteins to misfold, denature, or form aggregates, and this
can result in impaired organismal function. In a diverse array of organisms, we see a similar heat
shock response (HSR) to combat environmental stress, which typically includes physiological
adjustments in gene expression (DeBiasse & Kelly, 2016; Gleason & Burton, 2015; Lockwood,
Sanders, & Somero, 2010). The HSR involves upregulation of genes that encode for “heat shock
proteins” (Hsps), chaperones or co-chaperones of Hsps, or other genes associated with
maintaining proteostasis (i.e. Feder & Hofman, 1999; King & MacRae, 2015; Kurzik-Dumke &
Lohmann, 1995; Lancaster et al., 2016). Most organisms are capable of producing Hsps in
response to heat or other stressors. Heat-shock protein 70 and Hsp90 are among the most
conserved proteins (Lindquist & Craig, 1988), while proteins from the Hsp40, Hsp60, and Hsp70
families make up the most prolific proteins in the HSR (Fink, 1999). Some studies suggest that
upregulation of genes expressed during physiologically stressful times helps those individuals
overcome those scenarios (Barreto, Schoville, & Burton, 2015; M E Feder, Cartaio, Milos,
Krebs, & Lindquist, 1996; Gong & Golic, 2006; Kalosaka, Soumaka, Politis, & Mintzas, 2009;
Schoville, Barreto, Moy, Wolff, & Burton, 2012). Alternatively, this response could be a panic
or “emergency response,” and researchers have associated higher levels of Hsps with reduced
knockdown resistance (Jesper G Serensen, Dahlgaard, & Loeschcke, 2001). Other studies have
noted no upregulation of Hsps with temperature stress (Barshis et al., 2013; Bradley A. Buckley
& Somero, 2009; Franssen et al., 2014), suggesting an organismal response to heat stress can be



more nuanced than simply overall upregulation of Hsps, and other genes can play an important
role. Testing expression levels of specific Hsps suggests that ants from a warmer environment
(Cataglyphis) induce Hsps at a higher temperature than ants from a cooler environment
(Formica) (Gehring & Wehner, 1995). Identification of genes in a diverse array of organisms is
of importance to understand the response to environmental stress; however, we are unaware of
any studies that characterize the transcriptomic response to thermal stress in ants.

In general, ants have proven to be extremely useful model systems for monitoring
environmental impacts: they are abundant, widespread, important to ecosystems, sensitive to
environmental stress, and relatively easy to collect (Ribas, Campos, Schmidt, & Solar, 2012).
For ants, the environmental conditions constitute a primary force in determining seasonal
activities (Dunn, Parker, & Sanders, 2007) and so, are typically constrained by temperature
(Netherer & Schopf, 2010). In this study, we use RNA-seq to identify the stress response at the
level of gene expression in a thermally sensitive ant, the winter ant (Prenolepis imparis).
Activity of P. imparis is often reduced during the warmer months and instead is increased in the
cooler months when most other ant species have reduced foraging (early spring and late fall)
(Dunn et al., 2007). They are found from sea level up to high-elevation (www.antwiki.com), are
associated with cooler microhabitats in mesic forests (Cuautle, Vergara, & Badano, 2016; Frye &
Frye, 2012; Wheeler, 1930) and respond negatively to warming (Stuble et al., 2013).
Understanding the underlying mechanisms for survival to temperature stress is particularly
relevant for populations of the winter ant given that studies have found that ants which have
lower warming tolerances and which occupy warmer, mesic forests are physiologically
susceptible to warming temperatures (Diamond et al., 2012).

The overarching goal of this research was to reveal candidate genes or biological
functions necessary for recovery from temperature stress. To do this, we examined the
transcriptomic response to short-term temperature stress in P. imparis. We hypothesized that at a
cold or hot temperature, P. imparis will experience physiological stress and, accordingly, will
modulate the expression of genes necessary to survive these stressful conditions. The analyzed
data provide an overview of the genes and processes involved in response to stress in P. imparis.

1.2 Methods

Sample collection and stress exposure

Ants were collected from a population in Berkeley, California in June 2014. After the ants were
collected, they were immediately placed at one of three separate thermal conditions: (1) a walk-
in cold room at approximately 5°C (cold-stress), (2) on a room-temperature bench-top
approximately 21°C (a mid-temperature control), and (3) in an incubator (Fisher Scientific
Isotemp Model 650D Large 600 Series Incubator CAT# 11-690-650D) at 35°C (heat-stress).The
heat- and cold-stress temperatures were chosen after initial trials at higher or lower temperature,
respectively, produced mortality. During initial heat-stress trials, ten ants were placed at 37°C in
the incubator for three hours and allowed to recover for two hours. After the two hour recovery,
four had died. We reduced the temperature by 2°C and placed ten more individuals in the
incubator for three hours and allowed them to recover for two. After the recovery, all survived,
so we choose this as the temperature to induce heat-stress without incurring mortality. For the
initial cold-stress trials, we placed ten ants in 1.5mL Eppendorf tubes in ice for three hours. After
a two hour recovery, five had died. We then placed ten different ants at 5°C and allowed them to
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recover for two hours. After this recovery, none had died, so we chose this as the temperature to
induce cold-stress without incurring mortality. During these initial trials, ants were collected on
separate days. We collected all ants sequenced in this study at the same time and placed them in
their separate temperature treatments immediately after collection. All three groups remained in
those conditions for a total of three hours and given only water to ensure expression was not
confounded by dietary changes. During a two-hour recovery phase, they were given a 30% sugar
water solution. A two-hour recovery was used because previous studies have found that genes
implicated in stress recovery have a maximum peak response two hours after the stress (Colinet
et al., 2010b).

RNA isolation and mRNA sequencing

After the two-hour recovery phase, ten whole ants from each temperature condition were ground
in TRIzol (Invitrogen) using a disposable pellet mixer and cordless motor (VWR #47747-370)
until homogenized (approx. 15 seconds). RNA extraction was performed according to Rio et al.
(2010), with the following changes: 1) we used 0.1mL of BCP Phase separation reagent
(Molecular Research Center) for every mL of TRIzol and 2) each sample was re-suspended in
28uL RNAse-free water. All materials and surfaces used were treated with RNase AWAY
(Thermo Scientific). Based on Nanodrop concentration estimates, we chose three samples that
had roughly the same RNA concentration from each condition to continue library production, all
samples used in library preparation were ~35ng/uL in concentration. The integrity and yield of
the RNA extractions were checked by a Bioanalyzer 2100 (Agilent Technologies, Cedar Creek,
Texas). All samples had an RNA integrity number (RIN) > 7.0, which indicated quality
sufficient for poly(A) selection and cDNA library preparation. 0.5-2ug of the mRNA isolated
was used as the template for cDNA library construction according to manufacturer’s
recommendations in the TruSeq RNA Sample Preparation Kit v2 (Illumina: RS-122-2001). The
RNA was sheared for eight minutes during the poly(A) selection. To increase the heterogeneity
of the cDNA libraries, we split the reaction in half and combined them after enriching the
samples for ten cycles. Library quality was assessed using qPCR, the Qubit dsSDNA High
Sensitivity Assay Kit on a Qubit fluorometer, and Bioanalyzer 2100. All nine samples were
pooled to 13pM equal molar and sequenced using one lane of a 150-bp paired-end Illumina
HiSeq2500 run (Vincent J. Coates Genomics Sequencing Laboratory, UC Berkeley).

P. imparis de novo transcript assembly and annotation

A total of nine individuals were sequenced and aligned to create a de novo transcriptome.

Raw fastq reads were filtered using Cutadapt (Martin, 2011) and Trimmomatic (Bolger, Lohse,
& Usadel, 2014) to remove low quality reads and adapter sequences. Exact duplicates were
eliminated using Super Deduper (https://github.com/dstreett/Super-Deduper). After quality
trimming and adapter trimming, reads from all individuals were merged and assembled together
using Trinity 12014-07-17 (Grabherr et al., 2011) on XSEDE (Couger et al., 2014). The resulting
de novo assembly served as a reference with only the longest isoform per gene retained. This
reference assembly was annotated against 8 different reference protein databases: Camponotus
floridanus, Cardiocondyla obscurior, Harpegnathos saltator, Linepithema humile,

Pogonomyrmex barbatus, Solenopsis invicta, Atta cephalotes, and Acromyrmex echinatior
(Bonasio et al., 2010; Elsik et al., 2016; C. D. Smith et al., 2011; C. R. Smith et al., 2011; Suen



et al., 2011; Wurm et al., 2011). The initial round of annotation was done by using BLASTX
(Stephen F Altschul et al., 1997) with an e-value of 1e-10 and a minimal percent mismatches of
50. The reading frame of each of the matched blast hits were then defined by Exonerate (Slater &
Birney, 2005). For each reference-specific annotation, when more than one transcript fragment
matched against a reference protein, these transcripts were joined together with Ns based on their
relative BLAST hit positions to the reference. The resulting annotation from each species was
then merged together to purge redundancies. Namely, when the same transcript was annotated
with a protein ID from a different reference, only one of the protein IDs was kept. This
annotation was used for the Gene Ontology (GO) analysis (see below).

Read mapping and quantification

We also used the quasi-mapping approach implemented in the program Salmon (Patro, Duggal,
Love, Irizarry, & Kingsford, 2017). In this case, the cleaned and trimmed individual reads were
quasi-mapped to our de novo assembly produced in this study. To filter out nonexpressed genes
or genes with low expression, only genes harboring a TPM value of > 1 in all the samples were
considered.

Gene expression analysis

Count data were normalized using DESeq2 1.18.1 (Love, Huber, & Anders, 2014). We ran two
tests: (1) cold-stressed ants (5°C) versus control ants (21°C) and (2) heat-stressed ants (35°C)
versus control ants (21°C). Transcripts were considered to be differentially expressed transcripts
(DETs) if they had an adjusted p-value < 0.01 and the absolute logoFoldChange > 1.0 (Benjamini
and Hochberg adjusted false discovery rate [FDR]<0.001). From the logoFoldChange value, we
were then able to calculate the relative fold-change (FC). The software package ErmineJ 3.0.2
(Lee, Braynen, Keshav, & Pavlidis, 2005) was applied to evaluate the biological pathways
associated with each differentially expressed GO term. The analysis was run with the following
options: gene score resampling (GSR), a maximum gene set of 100, a minimum set of 20, a
maximum iteration of 200,000, and full resampling. GO terms with GO adjusted p-values < 0.05
were semantically summarized and visualized with REViGO with an allowed similarity of 50, in
order to substantially reduce our categories (Supek, Bo$njak, Skunca, & Smuc, 2011).

1.3 Results

In this study, we generated nine P. imparis transcriptome libraries to identify differentially
expressed genes during temperature stress. From the 9 libraries, the Hi-Seq 2500 run produced a
total of 296 million reads of 150bp in length. Libraries ranged from 29,924,670 to 37,698,086
sequences, with means of 32,082,531, 33,846,271, and 32,745,831 sequences for the 5°C, 21°C,
and 35°C treated ants, respectively. The data showed no significant differences in the number of
sequences between the three datasets (AMOVA, p=0.83). After trimming, we obtained a total of
31.25 Gb of cleaned sequences for further downstream analyses (Table 1.1). We then assembled
a de novo transcriptome to which we aligned the sequences from the nine P. imparis libraries.

Gene identification and annotation



We performed BLASTX to annotate the winter ant transcriptome assembly and inform
downstream differential gene expression analysis. After BLASTX annotation, a total of 13,324
contigs had a significant BLAST hit to a gene from one of the previously annotated eight unique
ant genomes with an e-value cutoff of 1E-5. To obtain a complete annotation, we carried out the
same BLASTX with the SwissProt database and NR database. Altogether, 11,219 (84%) were
annotated in the NR and SwissProt databases. Of these, 7,011 (62%) contigs matched the GO
annotations, and 4,600 (41%) contigs aligned to the KEGG database. Because of the lack of
genome information for P. imparis, only a fraction of contigs with hits from the ant genomes
were annotated for genes, GO terms, and KEGG numbers (4,580; 38%). An additional 2,113
(16%) were not functionally informative because they did not match any known genes from the
NR or UniProt databases. They were assumed to be unique hits for further analyses and treated
as individually expressed transcripts.

Identification of differentially expressed transcripts

A total of 8,934 transcripts were tested for differential expression after filtering for low TPM
values. To summarize our treatments and control we performed hierarchical clustering across all
transcripts. The resulting tree clustered the cold-stressed and control ants together, while the
heat-stressed ants were in their own cluster (Fig. 1.1 & 1.2). Our PCA analysis revealed that
most of the variation (60%) was between the heat-stressed individuals and the other two
treatments together, the cold-stressed and control individuals. For the two tests performed (cold-
stressed versus the control ants and hot-stressed versus the control ants), there was a total of 709
unique transcripts that showed significant differential expression (Fig. 1.3, Supplemental Table
A.1). Nearly all of these transcripts (706 of 709) showed differential expression in response to
the heat treatment. Of these, 14 had an expression response =10 fold-difference, 457 were
upregulated, and 249 were downregulated. In contrast, only three transcripts were differentially
expressed between cold-stressed and control ants, and none of these had an altered expression
>10-fold difference (Table 1.2). Of the three transcripts that had different expression during the
cold-treatment, two were upregulated and one was downregulated (Table 1.3).

Gene set enrichment and pathway analysis

We explored the enriched gene categories by performing a gene ontology (GO) analysis. Using
the transcripts obtained through our DESeq analysis with a FC > 2, and FDR < 0.01, we filtered
GO terms for p-value to determine significantly overrepresented gene categories using Ermine].
In the heat-stressed ants, we found increased expression in eight biological functions, which can
be summarized in five GO categories after removing redundant GO terms in REViGO (Table
1.4). We found decreased expression in 44 biological function categories, which can be
summarized in 13 categories (Table 1.4). In the cold-stressed ants, we found increased
expression in two biological functions that can be summarized as coenzyme biosynthetic
process, and one category with decreased expression: DNA integration (Table 1.5).

1.4 Discussion

The maintenance of thermal homeostasis is of fundamental importance for all organisms, and the
mechanisms for tolerating both high and low temperatures are obvious targets for natural
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selection. Adaptations to the thermal environment define some of the most important features of
an organism’s biology including activity patterns (e.g. circadian and seasonal), range limits,
niche, competitive outcomes, and many others. In addition, the growing threat of climate change
has placed additional emphasis on understanding how species will respond to increasing
temperature.

In this study, we examined the genes, biological processes, and genetic pathways used by
the winter ant (Prenolepis imparis) to tolerate both heat- and cold-stress. We found that cold-
stress produced virtually no changes compared to room-temperature controls, indicating that this
temperature was not extreme enough to produce a strong physiological response. In contrast,
heat-stress treatment resulted in altered expression of >700 transcripts, and some of these
transcripts displayed enormous changes in the magnitude of expression. Many of these genes
have been implicated in thermal stress response in other species (see below), and are thus likely
involved in the physiological response of winter ants to heat. These data provide a useful model
for how invertebrates in general may respond to thermal stress under future climate regimes.

Response to heat stress

Because of the stress that heat puts on proteins, it is not surprising we see the enrichment of gene
functional categories for response to temperature and protein folding. The relative amounts of
Hsps vary between organisms (Martin E Feder & Hofman, 1999). In this study, we found the
highest levels of expression changes in a gene from the protein lethal(2)essential for life (12(efl)).
The product of this gene has been associated with upregulation in a HSR (Lancaster et al., 2016)
and crowding response (King & MacRae, 2015) and downregulation during pathogen stress
(Guo et al., 2015). In our study, expression levels of this gene were increased 165-fold for the
temperature treated ants relative to the control. Based on the high levels of /2(elf) we detected
during heat-stress, it appears to be one of the most important genes in recovering from this stress.
Transcripts in this protein were also found in high abundance during the HSR in a damselfly
(Lancaster et al., 2016).

In this study, we detected an increase in Hsp70 expression almost 23-fold higher during
heat-stress. No other Hsps were detected in the de novo transcriptome (data not shown),
presumably they were not transcribed by any of the individuals, and so accordingly, we were
unable to test for differential expression at any of the other Hsps. It is also a possibility that these
genes were not conserved enough between the annotated ant genomes available and this species,
and so remain unknown. Hsp70 has been implicated in other studies as a HSR (Gleason &
Burton, 2015; Lancaster et al., 2016; Nguyen et al., 2017; Rinehart et al., 2007; Jesper G
Serensen et al., 2001) as well as cold-stress response (Rinehart et al., 2007; J. G. Serensen &
Loeschcke, 2001). In addition, it has been shown to protect organisms during other stresses such
as crowding, viral infections, and energy depletion (Martin E Feder & Hofman, 1999; Kregel,
2002; J. G. Serensen & Loeschcke, 2001). Though we did not detect upregulation of other Hsp
genes, we did detect a 10-fold increase in aryl hydrocarbon receptor nuclear translocator (ARNT)
protein, a protein that forms a complex with Hsp90 (Peng et al., 2017; Perdew & Bradfield,
1996).

Bcl-2-associated athanogene (BAG)-family proteins are a multifunctional group that
perform in a range of physiological processes that include cell cycle, apoptosis, and stress
response (Doong, Vrailas, & Kohn, 2002; Kabbage & Dickman, 2008). In this study, we found
differentially expressed transcripts (DETs) with substantially elevated levels of a gene in the



BAG domain-containing protein Samui in individuals under heat-stress. This is not surprising
given that Samui has been shown to interact with Hsp70 to regulate their activity (Doong et al.,
2002; King & MacRae, 2015). Other studies have found a homologous gene, Starvin (Stv)
associated with both heat-stress and cold-stress, muscle maintenance, and food uptake (Arndt et
al., 2010; Colinet & Hoffmann, 2010; Coulson, Robert, & Saint, 2005; Lancaster et al., 2016;
Sima, Yao, Hou, Wang, & Zhao, 2011; Telonis-Scott, Clemson, Johnson, & Sgro, 2014). Samui
was the only BAG family protein found to be upregulated in this study.

In addition to reduced fitness and impaired function caused by damaged protein structure
or protein aggregates, heat-stress can also cause oxidative stress on the cellular level, creating
transcription errors (Finkel & Holbrook, 2000; Nover & Scharf, 1997). Histones are crucial in
overcoming this DNA damage (Bungard et al., 2010; Debec, Courgeon, Maingourd, &
Masonhaute, 1990; Foster & Downs, 2005). In our study we saw greater than a 10-fold increase
of expression levels of Histone H2B and Histone H2A indicating that these proteins are integral
to the stress response in P. imparis.

During the heat-stress, we also found that expression of ubiquitin-associated-like domain-
containing protein 2-A (UBA2A) increased greater than 10-fold. This protein has been
implicated in targeting proteins for degradation and shuttling them to the proteasome for
degradation (Heinen, Acs, Hoogstraten, & Dantuma, 2011; Schwartz & Hochstrasser, 2003).
Upregulation of such pathways is one expected physiological response to heat stress, as
misfolded or otherwise damaged proteins may begin to accumulate.

In response to heat, we also noted a large expression difference in a gene relating to
calcium ion transport, calcium-transporting ATPase type 2C member 1 (ATPC21).

Calcium signaling has been suggested as a rapid response to low temperatures: calcium signals
begin the temperature-hardening pathways, inducing a number of physiological changes
implicated in stress response including energy metabolism and apoptosis (Teets & Denlinger,
2013). Genes relating to maintenance of calcium ion homeostasis have been found upregulated in
response to heat-stress (Barshis et al., 2013) and Truebano et al. (2010) found that genes
involved in Ca?" signaling were increased in the Antarctic bivalve (Laternula elliptica) during
cold stress, indicating the calcium ions could be biomarkers of the physiological state of the
individuals during heat-stress as well as cold-stress. The high levels of ATPC21 that we observed
in heat-stressed winter ants suggest that it might play a key role in initiating the physiological
response to heat and inducing a heat-hardening pathway.

We also observed the induction of gene functional categories relating to muscular
components, including actomyosin structure organization, cellular component assembly involved
in morphogenesis, and striated muscle cell development. Because heat stress can cause osmotic
shock, the heightened expression of these genes may indicate attempts to restore osmotic balance
(B. A. Buckley, Gracey, & Somero, 2006; Di Ciano et al., 2002). As the ants’ cells work to
overcome stress-related issues, we can expect other biological processes to be put on hold.
Indeed, we see gene functional categories relating to metabolism (isoprenoid metabolic process,
pigment biosynthesis process, DNA integration, and dicarboxylic metabolic process), the
immune response (lymph gland development), and aggression (inter-male aggressive behavior)
downregulated during recovery from this stress. Surprisingly, we also see downregulation of
gene functional categories we might expect would be necessary to escape a thermal stimulus
(detection of stimulus, and visual perception). In addition, we see less expression for gene
functional categories in apoptotic related proteins (apoptotic process involved in development),
which is surprising because damage to DNA, as happens with heat-stress, will often induce an



apoptosis response. Though Barshis et al. (2013) also found downregulation of genes involved
in apoptosis and apoptosis regulation in addition to others that were upregulated during heat-
stress.

Finally among the top upregulated genes, we found five transcripts that were either
uncharacterized or hypothetical and an additional transcript linked to a protein with unknown
function: mantle protein-like. To our knowledge, mantle protein-like does not have any
hypothesized functions and, has not been implicated in stress. Additional work is needed to
understand the function of the mantle protein-like and other unknown proteins found here and, in
particular, why they are recovered with such large expression differences in the heat-stressed
individuals.

Response to cold stress

Similarly to heat-stress, cold-stress can also cause denatured or misfolded proteins, leading to
harmful aggregates and impaired function. We can also expect cold-stress to cause ion
imbalance, impairment of cellular metabolism, depletion of cellular ATP, and buildup of toxic
metabolic end products (Teets & Denlinger, 2013). Therefore, we expected transcripts relating to
these processes to be over-expressed in cold-stressed individuals. Our results, however, show the
cold-stressed individuals and control individuals exhibited very few differences as depicted by
the PCA, heatmap, and DETs. This could indicate our experimental temperature was not low
enough to elicit a strong physiological response. Both the PCA and heatmap show the cold-
stressed individuals and control clustering together or within the same group. Additionally, we
only found three DETs with minor expression changes. Transcripts from the two genes that were
upregulated were laccase-3 and peritrophin-1. Previous studies have linked peritrophin-1 and
other members of the peritrophin class of proteins as integral to the peritrophic matrix (PM)
lining the midgut of insects. This lining forms a protective barrier that prevents invasion by
pathogens as well as maintaining gut homeostasis and gut integrity (Du et al., 2006; Narasimhan
et al., 2014). Within the midgut PM, Lang et al. (2012) also found laccases and linked them to
oxidation of toxic materials in preparation for excretion. Interestingly, proteins necessary for gut
osmoregulation have been implicated in other stress responses including cold-stress (mucin gene
in damselfly) (Lancaster et al., 2016) and heat-stress and cold-stress (Frost gene in Drosophila)
(Colinet, Lee, & Hoffmann, 2010a) indicating that gut homeostasis could be integral to cold-
stress survival.

The one gene that was downregulated during cold-stress was transcription termination
factor 2 (MTERF?2). The MTERF2 protein plays a role in the regulation of transcription including
termination of transcription and initiating transcription and in mtDNA replication (Bonasio et al.,
2010). At present, it is unclear if these DETs found in the cold-stressed individuals are related to
temperature-stress, and more work is necessary to understand the role these proteins may play in
cold-stress.

Conclusions

Our annotations provide a valuable resource for investigating the role of biological pathways and
proteins necessary for surviving unfavorable temperatures. However, because these individuals
are all from the same population, the geographic variability of the plastic response to temperature
stress is unknown. Other studies have found differences in expression levels in geographically
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distinct locations (Gleason & Burton, 2015; C. D. Kenkel et al., 2013; Telonis-Scott et al., 2014),
associated with the leading edge of an expansion (Lancaster et al., 2016), and in populations
originating from high- and low- temperature environments (Jesper G Serensen et al., 2001). The
ant species in our study, P. imparis, occurs across the United States and into Mexico, from sea-
level to high-elevation (5 — 2,286m; www.antwiki.com) and so would be an excellent candidate
for looking at expression differences across elevations and temperatures.

The molecular mechanisms behind recovery from temperature stress are complex. In this
study, we looked at gene expression levels over the entire ant body at one time-point. Other
studies have noted that different organs have different expression patterns (Liu et al., 2013; Yu et
al., 2014), which can even vary over different time-points (Bradley A. Buckley & Somero, 2009;
Colinet et al., 2010b) and development stages (Yu et al., 2014). Therefore, a productive next step
would be to investigate the responses of these genes and others at multiple time points, either by
RNA-seq or a quantification method such as qPCR (quantitative PCR). In addition, testing the
different life stages and castes of the winter ant to determine which life stage or caste is the most
vulnerable to temperature stress will be crucial to predict the species’ responses to climate
change.

Although our analysis has revealed a clear pattern of transcriptome change in response to
heat stress, it would be interesting to follow up with physiology tests and correlate that with
expression. Previous studies have used RNA interference (RNA1) to suppress the expression of a
candidate gene and then compare the resulting phenotype with the unmanipulated phenotype
(Barreto et al., 2015; Clements et al., 2017). By doing this, we can examine the role of genes
putatively involved in local adaptation. It is unclear from our study if these expression changes
are an adaptive response or a large transcriptomic response is actually signal of more stress
(Auld, Agrawal, & Relyea, 2010; DeBiasse & Kelly, 2016; Fraser, 2013). Future studies should
focus on a functional link between the candidate genes proposed here and thermal tolerance.

Hymenopteran genomes are characterized by gene fragments scattered throughout the
genome and multiple episodes of gene family expansions resulting in multiple putatively
functional genes and also pseudogenes (Simola et al., 2013). Our analyses uncovered multiple
copies of genes (see Supp. Table A.1) from different transcripts and so are assumed to be
functional and from unique gene copies. The levels of gene or gene family duplication events
were not accessed, and so we can only relate our results to transcript levels.

Our transcriptomic analysis provides an investigation of the gene expression profiles in
heat-treated P. imparis compared with a control. The transcriptomic analysis has identified many
heat-regulated genes that are key components of necessary biological functions and pathways.
The DETs and pathways identified here could further facilitate investigations into the detailed
molecular mechanisms and provide a foundation for future studies of response to heat-stress in
P. imparis.
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1.6 Figures

Figure 1.1. Principal Component Analysis (PCA) of all annotated transcripts used in differential
expression analysis for P. imparis. Circles represent individuals and are color coded according to

treatment.
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Figure 1.2. Hierarchical clustering and heatmap of all transcripts tested for differentially
expressed genes based on transcript levels. Individual clustering is based on the distance matrix
of the similarities between samples. Colors indicate magnitude of change of expression indicated
by the z-score calculated from individual transcript levels per gene. Downregulation of a gene is
indicated in green, and upregulation is indicated in orange. Individuals are listed at the bottom of
the heat map and color coded to indicate their treatment: red = heat-stressed, blue = cold-
stressed, black = control.
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Figure 1.3. Hierarchical clustering and heatmap of differentially expressed genes (fold-change >
2, FDR <0.01) during heat-treated individuals. Individual clustering is based on the distance
matrix of the similarities between samples. Colors indicate magnitude of change of expression
indicated by the z-score calculated from individual transcript counts per gene. Downregulation of
a gene is indicated in blue, and upregulation is indicated in red. Individuals are listed at the
bottom of the heat map and color coded to indicate their treatment: red = heat-stressed, black =
control.
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1.7 Tables
Table 1.1. Reads obtained for each P. imparis transcriptome sequenced, before and after
trimming.
Number Number Average
Total
of raw Read of reads length
sample ID  treatment . . bases after
reads, length, bp after trim, after trim, .
oys - trim, Gb
million million bp
Toni036 21°C 30.51 150 24.28 136.3 3.31
Toni038 21°C 30.40 150 24.14 118.3 2.86
Toni039 21°C 35.34 150 27.83 132.3 3.68
Toni046 5°C 36.36 150 29.31 143.8 4.21
Toni047 5°C 30.23 150 24.53 125.2 3.07
Toni048 5°C 34.95 150 28.12 142.9 4.02
Toni057 35°C 30.61 150 23.38 132.6 3.10
Toni060 35°C 37.70 150 29.90 127.0 3.80
Toni061 35°C 29.92 150 24.03 133.3 3.20

13
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Table 1.3. Proteins that have been differentially expressed based on transcript counts in
individuals of P. imparis after cold-stress relative to control.

Best matcllled FC Direction Protein GO Term’
gene ID Name
copper ion binding
ENSCFLO19140 3.70 Upregulated Laccase-3 (GO:0005507);hydroquinone
(GO:0052716)
ENSCFLO15808 5.47 Upregulated Peritrophin-1 chitin binding (GO:0008061)
ATP binding
Trmmedy o (GO:0005524);DNA binding
ONSCELONGAE AT  Dovmemibd  Gemrmmion COOUEETIHDINAGE s
factor 2 ATPase activity

(GO:0008094);helicase activity
(GO:0004386)

!Contig name based on BLASTx annotation
?Based on the biological process
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Table 1.4. GO enrichment for the 706 DETs during heat-stress.

Summary Biological function GO term Direction
actomyosin structure actomyosin structure GO:0031032 Usrergikiad]
organization organization
gellular component asseml?ly gellular component asseml?ly GO:0010927 Upregulated
involved in morphogenesis involved in morphogenesis
protein folding protein folding GO:0006457 Upregulated
response to temperature stimulus response 'to temperature G0:0009266 Upregulated
stimulus
myofibril assembly G0:0030239 Upregulated
muscle cell development GO0:0055001 Upregulated
striated muscle cell development .
B e GO:0055002 Upregulated
development
striated muscle cell )
differentiation GO:0051146 Upregulated
__programmed cell death G0:0010623 Downregulated
involved in cell development
nurse cell apoptotic process G0:0045476 Downregulated
apoptotic process involved in apoptotic process involved in GO:1902742 Downregulated
development development
gonad development GO0:0008406 Downregulated
development of primary GO:0045137 Downregulated
sexual characteristics
axon midline choice point
L . . . GO:0016199 Downregulated
axon midline choice point recognition
recognition EEQICTES) o GO:0016198 Downregulated
recognition
detection of stimulus detection of stimulus GO0:0051606 Downregulated
dicarboxylic acid metabolic dicarboxylic acid metabolic GO:0043648 ]
process process
DNA integration DNA integration GO0:0015074 Downregulated
establishment of tissue polarity estabhshmeqt e GO:0007164 Downregulated
polarity
inter-male aggressive behavior aggressive behavior GO0:0002118 Downregulated
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inter-male aggressive
behavior

multi-organism behavior

isoprenoid metabolic process
isoprenoid metabolic process
terpenoid metabolic process

antimicrobial humoral
response

lymph gland development lymph gland development

humoral immune response

pigment biosynthetic process pigment biosynthetic process

R3/R4 cell fate commitment

larval somatic muscle
development

post-embryonic hemopoiesis

larval lymph gland
hemopoiesis
regulation of imaginal disc-
derived wing size

R3/R4 cell differentiation

R7 cell development

eye photoreceptor cell fate

commitment

compound eye photoreceptor

fate commitment
photoreceptor cell fate

commitment

establishment of ommatidial

planar polarity

regulation of imaginal disc-
derived wing size

R7 cell differentiation

neuron fate commitment

establishment of planar
polarity
compound eye photoreceptor
development

larval development

eye photoreceptor cell
development
morphogenesis of a
polarized epithelium
photoreceptor cell
development

somatic muscle development somatic muscle development

GO0:0002121

GO:0051705

GO:0006720

GO:0006721

GO:0019730

GO0:0048542

G0:0006959

GO0:0046148

GO:0007464

GO0:0007526

GO:0035166

GO:0035167

G0:0044719

G0:0048056

GO0:0045467

G0:0042706

GO0:0001752

GO:0046552

G0:0042067

G0:0045466

G0:0048663

GO0:0001736

GO0:0042051

GO:0002164

G0:0042462

GO0:0001738

GO0:0042461

GO0:0007525

Downregulated
Downregulated
Downregulated
Downregulated
Downregulated
Downregulated
Downregulated
Downregulated
Downregulated
Downregulated
Downregulated
Downregulated
Downregulated
Downregulated
Downregulated
Downregulated
Downregulated
Downregulated
Downregulated
Downregulated
Downregulated
Downregulated
Downregulated
Downregulated
Downregulated
Downregulated
Downregulated

Downregulated



visual perception

sensory perception of light
stimulus

sensory perception of

visual perception . .
p p chemical stimulus

detection of stimulus
involved in sensory
perception

GO0:0007601

G0:0050953

GO0:0007606

G0:0050906

Downregulated

Downregulated

Downregulated

Downregulated

18
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Table 1.5. Biological categories found to have significantly changed expression patterns during
cold-stress of P. imparis.

Summary Biological category GO term Direction
coenzyme biosynthetic GO-0009108 Upregulated
coenzyme process
biosynthetic process pyridine nucleotide GO:0019362 Upregulated

metabolic process
DNA integration DNA integration G0O:0015074 Downregulated
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Chapter 2 Thermal acclimation ability varies at
lower limits between high- and low-elevation
populations of Prenolepis imparis

2.1 Introduction

One of the top drivers of biodiversity loss is climate change (Sala et al., 2000). When these novel
climatic conditions are physiologically stressful, species will need to either adapt via genetic
change, migrate, face extinction, or persist via plasticity (Fuller et al., 2010). Migration to a new
suitable habitat will prove to be difficult for most species, though it is possible (Parmesan &
Yohe, 2003). Of the potential outcomes stressed species will face, adaptation and plasticity are
the only options which do not involve local extinction. Though there are examples of rapid
heritable genetic changes in populations from climate change (Bradshaw & Holzapfel, 2008),
most organisms’ life-spans are too long and climate change is happening too fast for the
evolution of adaptive heritable traits. In this case, an organisms’ susceptibility to these new
environmental conditions can be buffered by plasticity in fitness-related traits (Huey et al., 2012;
Seebacher, White, & Franklin, 2015; Somero, 2010). In order to understand how species will
respond to these changing conditions, we need a better understanding of how plastic fitness-
related traits, such as thermal tolerance, are in natural populations (Bozinovic, Calosi, & Spicer,
2011; Fuller et al., 2010; Seebacher et al., 2015).

Populations of a species are likely to be occupying a heterogeneous environment, thus
they are expected to have evolved novel physiological adaptations, tolerances, and
acclimatization capacities, especially those occupying ecological gradients such as those found
along latitudinal and altitudinal transects (Bozinovic et al., 2011). Though patterns of plasticity
in populations of organisms will be important in understanding responses to climate change, the
drivers behind the evolution of phenotypic plasticity are unclear. One hypothesis is that climate
variability is expected to increase thermal tolerance (climate variability hypothesis; CVH)
(Addo-Bediako, Chown, & Gaston, 2000; Bishop, Robertson, Van Rensburg, & Parr, 2017;
Bozinovic et al., 2011; Pither, 2003; Shah, Gill, et al., 2017; Shah, Funk, & Ghalambor, 2017,
Sunday, Bates, & Dulvy, 2011) and thermal plasticity (Véazquez, Gianoli, Morris, & Bozinovic,
2017). Sites along latitudinal and elevation transects are typically temperature gradients (Korner,
2007) with populations at high elevation and high latitude experiencing more daily and seasonal
variability (A. A. Hoffmann, Chown, & Clusella-Trullas, 2013). An analysis of previous studies
done by Gunderson and Stillman (2015) found plasticity in cold thermal tolerance can be
associated with seasonality. This pattern is not the same for both upper and lower limits. This
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same study was unable to relate plasticity in heat tolerance with latitude or seasonality. In
addition to being influenced by climate, plasticity might be an evolutionary trade-off, that is, the
evolution of thermal tolerance has been done at the expense of plasticity of this tolerance,
especially for those organisms already close to their thermal limits (Calosi, Bilton, Spicer,
Votier, & Atfield, 2010; A. A. Hoffmann et al., 2013; Stillman, 2003; Sunday et al., 2011).
Ectotherms, such as ants, will be especially affected by climate change as many basic
biological functions rely on temperature such as growth, reproduction, and foraging. Ants are
also ecologically dominant and useful as models to study effects of climate change because they
are typically constrained by temperature and are sensitive to the climate (Netherer & Schopf,
2010). Models based on physiological thermal tolerances in ants predict that tropical ants have
lower warming tolerances and hence are at the most risk from climate change (Diamond et al.,
2012). Hoffmann et al. (2013) noted that insects from mid-latitudes (20° to 40°) are particularly
susceptible to stress from warmer temperatures. Gunderson and Stillman (2015) found that
plasticity in thermal tolerance should be able to mitigate effects of climate change. Though in
terrestrial ectotherms, upper limits have less variation (Bishop et al., 2017; Sunday et al., 2011)
and lower plasticity (A. A. Hoffmann et al., 2013). There have been a few studies on the
acclimation capacity of thermal tolerances in ants (Angilletta et al., 2007; Chown, Jumbam,

Sarensen, & Terblanche, 2009; Clusella - Trullas, Terblanche, & Chown, 2010; Diamond,

Chick, Perez, Strickler, & Martin, 2017; Jumbam, Jackson, Terblanche, McGeoch, & Chown,
2008; Oms, Cerda, & Boulay, 2017). However, none of these studies look at an ant that is
sensitive to high temperatures and thus expected to be at risk from climate change.

The winter ant (Prenolepis imparis) is particularly well suited for studying the response
to temperature changes. It is found across a large elevational gradient in California and thus
provides an opportunity to study adaptations in a variety of different natural populations. Worker
ants are usually found in high abundance when colonies are actively foraging (Fellers, 1989;
Lynch, Balinsky, & Vail, 1980). Prenolepis imparis is sensitive to high temperatures — workers
are rarely seen at temperatures exceeding 26°C. At the same time, P. imparis is adapted to cold
temperatures — workers are able to forage during the cooler months, when other ants decrease
activity (Tschinkel, 1987). The workers can even be seen foraging at near-freezing temperatures
(Talbot, 1943). They are typically seen above ground in high numbers between the months of
October and April. All other times of the year, they are rarely found above ground (Tschinkel
1987). These unique physiological requirements and broad geographic range make the winter ant
a good candidate to study plastic responses to thermal stress.

In this study, we examine populations of P. imparis for evidence of localized patterns of
thermal tolerance and plasticity. We used slower knockdown time and faster chill-coma recovery
in individuals of P. imparis as indicators of hot or cold tolerance respectively (Maysov &
Kipyatkov, 2009). Plasticity can be non-reversible (developmental plasticity) or occur over a
short time (reversible acclimation) (Piersma & Drent, 2003). Here, we will use a short-term
reversible acclimation as a plasticity measurement to test the two non-mutually exclusive
hypotheses: (1) the CVH, which predicts that populations which experience more variable
temperatures (such as will be experienced by high-elevation populations) will have a greater
thermal tolerance and acclimation ability relative to those populations that occur in more stable
environments (low-elevation) (2) the trade-off hypothesis, which predicts that increased thermal
tolerance will come at the expense of acclimation capacity. An additional hypothesis is that we
will see less variation and lower plasticity in upper thermal limits across populations. Besides
testing these hypotheses, we will also characterize some environmental thermal characteristics
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the populations encounter to ask the question, are there any environmental differences
experienced between the high- and low-elevation sites that we can detect? To do this, we will
compare the values for the 19 bioclimatic variables available from WorldClim at our sites (Table
2.1) (Fick & Hijmans, 2017; Hijmans, Cameron, Parra, Jones, & Jarvis, 2005). Bioclimatic
models typically use macroclimate (M. Austin, 2007) and so might not necessarily reflect the
actual temperatures the populations experience. In order to characterize the microclimate, we
will employ dataloggers both above and below ground and look for localized differences.

2.2 Methods

We chose populations of P. imparis for physiology tests based on their elevation. We wanted
populations from both high and low elevation across California, which should reflect high and
low temperature variability respectively. Ants were collected from four low elevation sites (71—
388m) and from four high elevation sites (973—1442m). Elevation and GPS coordinates were
taken at all locations using a Garmin GPS (model, WGS1984; Table 2.2).

Field temperatures

In order to assess the thermal environment at both high- and low-elevation, we collected both
macroclimate and microclimate data. For the macroclimate, indices of environmental
temperature were calculated from 30 years of average monthly data (1970 — 2000) available from
WorldClim. We obtained these 19 bioclimatic variables using the latitude and longitude we
collected at the sites with the highest resolution available, approximately 1km (30 arc-seconds)
(Fick & Hijmans, 2017; Hijmans et al., 2005). However, remotely sensed environmental data do
not necessarily reflect the conditions experienced by ants, so we also collected temperatures
locally to better represent those temperatures experienced by the ants. The microclimate was
collected at a subset of localities (Table 2.3 & 2.4). At these sites, we measured ambient air
temperatures and underground temperature once per hour from January 2015 to August 2017. To
do this, we placed iButtons (Maxim Integrated, DS1922L) in the field two meters above the ants’
nests and at least 60cm underground at the sites used in this study, as this is the minimum depth
we expect to find nesting chambers (Tschinkel, 1987). With these data, we extracted the
minimum and maximum temperature at each month for those sites which had available data for
every month in a year. We were then able to calculate most of the analogous bioclimatic
variables underground and just above the ants’ nests. Because we did not have precipitation data,
we could not create those variables which included precipitation as a factor (Bio8, Bio9, Biol2 —
Bio19). We created these variables using the minimum and maximum temperatures for every
month over a year using the dismo package (Hijmans, Phillips, Leathwick, & Elith, 2010) in R
version 3.3.1 (R Core Team 2016) in RStudio 0.99.473 (RStudio Team 2015) (Table 2.1,
Supp.Table B.1). In addition to these data, we also looked at the daily mean temperatures
between the low- and high-elevation sites for an entire two years (2015 & 2016).

Physiology trials
Only non-replete foragers were collected for use in physiology experiments. To acclimate these

individuals to a constant temperature, they were divided into two separate 20cm diameter plastic
tubs containing a dish of 20% sugar water solution and two nesting chambers. Each tub
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contained approximately 125 ants when the collection numbers allowed. One plastic tub was
placed in an incubator (Fisher Scientific, CAT# 11-690-650D) at 27°C (warm-acclimated) and
the other was placed in a Conviron CMP3246 growth chamber at 10°C (cold-acclimated). Both
treatments were kept in the dark for the entire acclimation time. To reduce positional effects of
acclimation temperature, ant tubs were periodically rearranged within the chamber or incubator.
Dead ants were removed and sugar water changed every three days. The ants were kept in these
conditions for at least seven days, after which we performed thermal tolerance assays.

We measured chill-coma recovery time (CCRT), which is the time required for ants to
resume an upright position after exposure to a chill-coma inducing temperature (Macmillan,
Williams, Staples, & Sinclair, 2012). We entombed ants in ice for three hours, which, in
preliminary trials is the amount of time it took to ensure all individuals were in chill-coma, but
not long enough that they were unable to recover. To do this, ants were placed in a glass petri
dish, which was then placed on ice in a Styrofoam cooler. Ice was then placed on top of the glass
petri dish, and the cooler lid was closed. After the designated time, they were removed and
immediately placed on their backs on a piece of paper in a 140mm Petri dish. CCRT was
recorded for each ant. Approximately five replicates of ten ants each were repeated for each
population when collection numbers allowed (Table 2.2). Ants that did not recover within 20
minutes of being returned to room temperature were considered to have incurred chill injury
(Castaneda, Lardies, & Bozinovic, 2005), these data were recorded as twenty minutes, with a
delta of 1 and flagged as being right-censored (see Data analysis, below). Approximately five
replicates of ten ants were recorded for each population (Table 2.1).

For heat tolerance assays, we placed replicates of ten ants on a 140mm Petri dish with
Insect-A-Slip (BioQuip, CA, USA) coated sides. The Petri dish was floated in a pre-warmed
water bath (Fisher Scientific Isotemp digital-control water bath). The surface of the Petri dish
was continuously monitored with a self-adhesive thermocouple (SA1-T-SRTC, Omega, CT,
USA), and temperature kept at 43° + 1°C. This temperature was chosen for heat stress because,
in preliminary trials, ants at this temperature did not die immediately and experienced
knockdown before fifteen minutes (data not shown). The time it took for ants to experience loss
of coordination (knockdown time) was recorded for each ant. Approximately five replicates of
ten ants each were recorded for each population (Table 2.1).

After thermal testing, all ants used for CCRT and knockdown trials were frozen on dry
ice and preserved in 100% ethanol. The dry weight of these samples was taken after evaporating
the ethanol in a drying oven for at least one hour.

Data analysis

All data were analyzed in R version 3.3.1 (R Core Team 2016) in RStudio 0.99.473 (RStudio
Team 2015). We used accelerated failure time models to analyze both knockdown and chill-
coma trials in the survival package (Therneau, 2016; Therneau & Grambsch, 2000). For our data,
“survival” corresponded to “remaining standing” or “remaining in chill-coma”. We included in
the model “delta” which corresponds to survival after the temperature trial. This model was
chosen over the more commonly used over Cox Proportional Hazards (PH) in order to overcome
the violation of proportionality of hazards rates (C. M. Williams et al., 2014). To choose the
most parsimonious model, we pooled populations according to elevation, then we compared
exponential, Weibull, Gaussian, logistic, lognormal, and loglogistic error distributions. We
simplified the model by removing nonsignificant interactions and conditions until no further
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simplification was possible. Using a training set, we selected the model where Akaike
information criterion (AIC) was smallest (Lebreton, Burnham, Clobert, & Anderson, 1992). To
account for the skewed distributions of knockdown and CCRT, we report the predicted means
for the survreg object as calculated by the predict function in the survival package (Therneau,
2016). These means were then used to calculate the amount of plasticity. Similar to Gunderson
and Stillman (2015), we calculated the plasticity (or acclimation response) as the change in
knockdown or recovery time with a given change in acclimation temperature. However, these
numbers are not comparable to values calculated by Gunderson and Stillman (2015) because
they are not change in critical thermal limits with a given change in acclimation temperature
(Table 2.5).

2.3 Results

Approximately 250 worker ants were collected from each test population via aspirator primarily
during the months of January, February, and March 2015. Samples from one population (Mt.
Diablo) were collected March 2017. Average dry weight of the individuals ranged from 0.78 —
1.28mg (Table 2.2). Dry weight of the individuals did not differ between high- and low-elevation
(t=-0.707, df = 4.034, p-value = 0.519).

For each of our temperature datasets (macroclimate, above ground, and below ground)
we used a t-test to test for differences experienced between high- and low-elevation populations.
Significance was evaluated using Bonferroni-corrected p-values. Our tests indicate there were no
differences detected between any of the 19 environmental variables calculated from WorldClim
(Table 2.6). For our above ground microclimate data, we were able to calculate 9 bioclimatic
variables for the Berkeley, Whittier, Stebbins, Quail Ridge, Castle Rock, Mt. Diablo, and
Palomar sites (Table 2.3 & 2.4, Supp. Table B.1). After Bonferroni-correcting for non-
independence between our temperatures, we did not detect any differences between the high- and
low-elevation populations. For our underground microclimate data, we calculated the same 9
bioclimatic variables for the Berkeley, Whittier, Quail Ridge, Castle Rock, Mt Diablo, and
Palomar populations (Table 2.3 & 2.4, Supp. Table B.1). In this case, we detected differences
between the annual mean temperature and the mean temperature of the coldest quarter (Bio 1 &
Bio 11) between the high- and low- elevation populations (Table 2.6). In both cases, the high-
elevation sites experienced cooler temperatures (Supp. Table B.1). During 2015 and 2016, the
mean daily above ground field temperatures differed significantly between the low- and high-
elevation sites (t = 12.236, df = 1298, p-value < 0.001). The mean daily temperatures for the
low-elevation sites ranged from 5.2°-30.3°C (mean 17.3+4.9°C) and the high-elevation sites
experienced average daily above ground temperatures of -3.3°-29.7°C (mean 13.4+7.1°C). In
addition, the mean daily below ground field temperatures differed significantly between the low-
and high-elevation sites (t = 20.288, df = 1298, p-value < 0.001). The average daily below
ground temperatures for the low-elevation sites ranged from 12.6°-22.6°C (mean 17.3+3.0°C)
and the average daily below ground temperatures for the high-elevation sites ranged from of
5.1°-19.1°C (mean 12.5+4.0°C). The high-elevation sites were cooler above ground 809/907
days of the overlapping recorded days and 904/907 days below ground.

Chill-coma recovery
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After three hours of ice-entombment, all ants were in chill-coma. Ants that were acclimated to
the lower temperature recovered from the chill-coma faster than the ants acclimated to the high
temperature (z = -42.59, p <0.0001, Table 2.2). The most parsimonious model for CCRT was
the Weibull error distribution. The ants from high-elevation sites recovered faster than the ants
from low-elevation sites after warm-acclimation (z-score = 5.93, p<0.0001). The mean CCRT of
the individuals from the low-elevation sites was 173s (cold-acclimated) 739s (warm-acclimated)
while the mean CCRT of the individuals from the high-elevation sites was 142s (cold-acclimated
and 606s (warm-acclimated) (Fig. 2.1a, Table 2.2).

The acclimation response for CCRT was much larger than knockdown reaction norms
(see below), indicating more plasticity in this phenotype. For the low-elevation populations, the
individuals from the Berkeley, Stebbins, and Whittier sites took the longest to recover and
showed the most plasticity in recovering from the cold. While individuals from the high-
elevation sites, Mt Diablo, Palomar Mtn., Yosemite, and Castle Rock as well as individuals from
the highest of the low-elevation populations, Quail Ridge, recovered faster and showed less
plasticity (Fig. 2.2, Table 2.5).

Knockdown trials

Ants acclimated to a lower temperature succumbed to the heat much faster than they did after
they were acclimated to a high temperature (z-score = -9.09, p<0.0001). The most parsimonious
model for the knockdown trials was the lognormal error distribution. The mean knockdown time
for individuals from the four low-elevation populations was 49s (cold-acclimated), whereas they
took 105s when warm-acclimated. The mean knockdown time of the individuals from the four
high-elevation populations was 57s when cold-acclimated while they took 121s to knockdown
when warm-acclimated (Fig. 2.1b, Table 2.5). There was no statistical difference between the
time it took for individuals from low- and high-elevation sites to succumb to the heat (z = -1.42,
p=0.16).

The difference in knockdown times created by acclimating the individuals indicate
relatively low levels of plasticity: acclimation increased the ants’ ability to withstand the heat by
a relatively small amount across all populations. Except for individuals from the Yosemite
populations, all other ants lost coordination at roughly similar times. Overall, the Yosemite
population seems to be an outlier. The individuals from this population resisted the heat much
better than the other populations after both acclimation temperatures (Fig. 2.2, Table 2.5).

2.4 Discussion

The ability of an organism to survive rapid temperature changes will depend on their ability to
buffer these changes via adaptive responses such as thermal plasticity (Gunderson & Stillman,
2015; Huey et al., 2012; Somero, 2010). There are two main hypotheses that explain patterns
seen in thermal tolerance and acclimation ability. One, the climate variability hypothesis (CVH)
posits that organisms from more variable climates will be under greater selection for thermal
acclimation ability than those from stable environments (Bozinovic et al. 2011; Sunday et al.
2011). Another one, the “trade-off hypothesis” predicts that organisms that evolve high levels of
thermal tolerance do so at the expense of the acclimation ability (Stillman 2003; Hoffmann et al.
2013, Calosi et al 2010). We did not find evidence to support the CVH at either upper or lower
limits. Instead we found that the high-elevation sites showed increased tolerance and reduced
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capacity in acclimation ability relative to the low-elevation counterparts at their lower limits,
suggesting an evolutionary trade-off between tolerance and acclimation ability. We also found
that both above and below ground, ants from the high-elevation sites experienced cooler
temperatures. This exposure to constantly cooler temperatures allows individuals from high-
elevation sites to be better physiologically prepared to survive the cold even after exposure to
high-temperatures. This could suggest these individuals have the ability to rapidly acclimate to
these temperatures as has been suggested by a study of cane toads in cool-climates (McCann,
Kosmala, Greenlees, & Shine, 2018). This also suggests cold tolerance is physiologically costly
and could be selected against in warmer conditions (Gibert, Moreteau, Pétavy, Karan, & David,
2007).

Finally, we hypothesized we would find less variation and lower plasticity at the upper
thermal limits of the populations. This appears to hold true for our populations. With the
exception of individuals from the Yosemite population, all the other individuals succumbed to
heat at similar times. In addition to responding to heat in a similar way, all the populations had
lower plasticity relative to the amount of plasticity experienced at the lower thermal limits. A
pattern of lower acclimation capacity to the heat as we have found here, has also been found in
other studies which suggests that acclimation and adaptation to high temperatures is more
challenging than low temperatures (Addo-Bediako et al., 2000; Garcia-Robledo, Kuprewicz,
Staines, Erwin, & Kress, 2016; Gunderson & Stillman, 2015; Overgaard, Kristensen, Mitchell, &
Hoffmann, 2011). This is particularly troubling in the context of climate change as the
vulnerability of a taxon to rising temperatures will also depend on their ability to acclimate
(Gunderson & Stillman, 2015). The winter ants might have been able to avoid extensive
exposure to the heat thus far by remaining underground during the hottest temperatures, but as
the climate heats more, they will have to spend more time underground and this could limit their
ability to forage successfully.

It is still unclear how thermal tolerance of the workers correlates with overall fitness of
the colony or of the queen and how this relationship of tolerance and activity plays out in natural
populations. These ants should be able to exploit their small size and use the thermal
heterogeneity in the environment. Hemmings and Andrew (2017) found that ants in
environments that exceed their thermal tolerances can maintain lower body temperatures than the
surrounding temperatures suggesting they are using unknown behavioral or physiological
methods to regulate their body temperature.

The localized patterns of plasticity in populations of P. imparis could be due to
microclimate differences, genetic differences, or maternal affects. Our experimental design does
not allow us to distinguish the processes behind the patterns. The importance of these factors
could be resolved using a common garden experiment, in which multiple generations are reared
under controlled lab conditions (A. Hoffmann & Sgro, 2017; Kawecki & Ebert, 2004).

Here, we have shown that individuals from our high-elevation sites experience cooler
temperatures both above and below ground and show greater thermal tolerance but lower
plasticity to the cold, while all populations display less tolerance and reduced plasticity to the
heat. This is troubling in the face of climate change, this limited acclimation response at the
upper thermal limits suggests evolutionary constraints in heat tolerance, so major changes at the
molecular level will be needed for these populations to persist in warmer environments. Low-
elevation populations might be particularly vulnerable if they are unable to buffer rapid
temperature changes.
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2.6 Figures

Figure 2.1. Survivorship curves for low-and high-elevation populations of P. imparis. Each line
represents the combined totals of four populations. (a) Chill-coma recovery times of high-
elevation (black lines) and low-elevation sites (gray lines) after acclimation to both low (dashed
lines) and high (solid lines) temperature. (b) Knockdown times of the high-elevation (black lines)
and low-elevation sites (gray lines) after acclimation to both low (dashed lines) and high (solid
lines) temperature.
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Figure 2.2. Mean chill-coma recovery times (CCRT) and knockdown times for populations of P.
imparis (+ SE). Each line represents the predicted average from all individuals tested. (a) CCRT
acclimation response at 10°C and 27°C. (b) Knockdown acclimation response times at 10°C and
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2.7 Tables

Table 2.1. A listing of the 19 climatic variables found in the WorldClim dataset.

abbreviation environmental variable

Biol! Annual mean temperature

Bio2! Mean diurnal temperature range (mean of monthly maximum temperature minus minimum temperature)

Bio3! Isothermality (Bio2/Bio7 * 100)

Bio4! Temperature seasonality (standard deviation of monthly temperature)

Bio5' Minimum temperature of the coldest month

Bio6' Maximum temperature of the warmest month

Bio7! Temperature range (maximum temperature of the warmest month minus minimum temperature of the
coldest month)

Bio8 Mean temperature of wettest quarter (i.e. mean temperature of four consecutive wettest months)

Bio9 Mean temperature of driest quarter

Biol0' Mean temperature of warmest quarter

Bioll' Mean temperature of coldest quarter

Biol2 Annual precipitation

Biol3 Precipitation of wettest month

Biol4 Precipitation of driest month

Biol5 Precipitation seasonality (standard deviation of monthly precipitation)

Biol6 Precipitation of driest quarter

Biol7 Precipitation of wettest quarter

Biol8 Precipitation of warmest quarter

Biol9 Precipitation of coldest quarter

! These environmental variables are calculated irrespective of precipitation
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Table 2.5. For each locality, chill-coma recovery times (CCRT) and knockdown times after a
10°C and 27°C acclimation are reported. Units for CCRT and knockdown are reported in
seconds as calculated from predicted means. The amount of plasticity found in populations of P.
imparis 1s also reported. Plasticity was calculated as the change in CCRT or knockdown per
degree of temperature change.

CCRT knockdown
locality I.OOC . 2.7°C . plasticity I.OOC . 2.7°C . plasticity
acclimation acclimation acclimation  acclimation
Berkeley 174 744 33.50 41 87 2.71
Whittier 180 768 34.60 60 127 3.98
Stebbins 189 807 36.43 50 106 3.30
Quail Ridge 149 636 28.63 46 98 3.07
Castle Rock 137 583 26.27 47 101 3.16
Mt Diablo 144 616 27.75 48 102 3.18
Yosemite 143 612 27.54 85 182 5.68

Palomar 145 619 27.87 46 99 3.10




Table 2.6. Paired samples t-tests comparing high- and low-elevation climatic variables.
Significant p-values in bold.

Worldclim Above ground Underground
t df  p-value? t df p-value® t df p-value®
Biol 2.792 5.644 0.034 4.571 4.873 0.006 -19.793  2.542 0.001
Bio2 -0.403 4.335 0.706 -0.728  -0.728 0.501 0.691 3.423 0.533
Bio3 0.608 5.619 0.567 -0.307 4971 0.771 -1.605 2.597 0.221
Bio4 -0.802 5.797 0.454 -0.077  4.958 0.942 1.655 2.219 0.227
Bio5 0.483 4.201 0.653 1.142 4.461 0.311 -3.860 2.357 0.047
Bio6 2.065 5.925 0.085 4.391 4.873 0.008 -5.775 2.075 0.026
Bio7 -0.543 5.232 0.610 -0.265  4.365 0.803 1.391 2.143 0.291
Bio8 1.871 5.832 0.112 NA NA NA NA NA NA
Bio9 1.015 4218 0.365 NA NA NA NA NA NA
Biol0 1.113 4.100 0.327 2.573 4.875 0.051 -4.570 2.162 0.039
Bioll 1.980 5.961 0.095 1.793 4.498 0.139 -7.761 3.416 0.003
Biol2 -1.806 5.739 0.123 NA NA NA NA NA NA
Biol3 -0.687 4.404 0.527 NA NA NA NA NA NA
Biol4 -2.029 3.321 0.127 NA NA NA NA NA NA
Biol5 2.494 3.854 0.070 NA NA NA NA NA NA
Biol6 -1.419 5.001 0.215 NA NA NA NA NA NA
Biol7 -1.889 3.110 0.152 NA NA NA NA NA NA
Biol8 1.931 3.271 0.141 NA NA NA NA NA NA
Biol9 -1.257 4.811 0.266 NA NA NA NA NA NA

3significance Bonferroni-corrected p-value < 0.001
bsignificance Bonferroni-corrected p-value < 0.006
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Chapter 3 Phylogeography and population
genetics of a widespread North American ant,
Prenolepis imparis

3.1 Introduction

Past climate change has left signatures in population structure and species boundaries. The
Quaternary (2.4 mya to the present) glacial cycles are often cited as important in shaping the
biodiversity throughout the northern temperate regions. During this time, there were series of
major ice ages (Hewitt, 1996). Comparisons of genetic variation spanning historically
glaciated and unglaciated regions can reveal phylogeographic barriers and uncover genetic
breaks not associated with current geographic boundaries. The Pleistocene epoch (1.8 — 0.01
mya) in particular is known for numerous climatic fluctuations between glacial and
interglacial periods (Clark & Mix, 2002). During the last glacial maximum (LGM) in North
America (~22-18 kya), ice sheets extended from southern Alaska throughout most of Canada
and into the northeastern and northwestern United States (Mann & Hamilton, 1995).

Species-specific traits will allow for individualistic responses to these climate cycles
(M. Davis & Shaw, 2001; Soltis, Morris, McLachlan, Manos, & Soltis, 2006; Stewart, Lister,
Barnes, & Dalen, 2010). For example, warm-adapted species experienced contractions or
retreated to southern refugia as the glacier expanded (Alberdi et al., 2015; M. Davis & Shaw,
2001). In these cases, postglacial expansion into previously uninhabitable regions has likely
been important in shaping these populations and species (Guiher & Burbrink, 2008; Hewitt,
1996). These leading populations can show reduced genomic variation as founding events
lead to loss of alleles and homozygosity (Lait & Hebert, 2018). In contrast, cold-adapted
species retreated to northern refugia during interglacials (Beatty & Provan, 2010; Shapiro et
al., 2004; Stewart et al., 2010). In these cases, populations and species there are expected to
be characterized by deeper structure and/or distinct genetic lineages (Lee-Yaw, Irwin, &
Green, 2008; Loehr et al., 2006).

In addition to species-specific responses, populations south of ice sheets retained
higher genetic diversity that was accentuated by topographic features such as mountains and
rivers, which created barriers to gene flow or refugia. These low-latitude populations are
often characterized by deeper evolutionary histories. For example, populations would have
been isolated on the sky-islands of the US Southwest (west Texas, Southern New Mexico,
southern Arizona, and southern California) (Galbreath, Hatner, & Zamudio, 2009; Hope et
al., 2016; Hope, Panter, Cook, Talbot, & Nagorsen, 2014). Other localities, such as
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California, experienced moderate temperature oscillations (Graham, 1999) relative to eastern
North America, which allowed populations to expand and contract regionally within and
between microrefugia (Gugger, Ikegami, & Sork, 2013; Sork, Gugger, Chen, & Werth,
2016).

The separate biogeographic histories of these regions (northeastern North America,
northwestern North America, and sky-islands in the southwest) should be reflected in
patterns of faunal diversity, if the fauna evolve in sifu over evolutionary time in these
regions. Widespread taxa can be particularly useful to study the genetic effects of climate
cycles on population diversification and fragmentation in these regions (Spellman & Klicka,
2007). In addition to a broad range, those organisms with restricted dispersal capabilities
should maintain genetic patterns created while occupying that region (Hewitt, 1996). Ants
are excellent models for phylogeographic analyses because they have low vagility (Peeters &
Ito, 2001) and can be widespread. The winter ant, Prenolepis imparis, is widespread across
North America and cold-adapted, making it an ideal organism to infer genetic structure and
examine the effects of climatic cycles on demographic history. This species is closely
associated with oak trees and, to a lesser extent, pine trees (Cuautle et al., 2016; Frye & Frye,
2012; Wheeler, 1930). It is the only nominal species in North America, and its closest sister
taxon (Prenolepis nitens) is found throughout southeastern Europe (LaPolla, Brady, &
Shattuck, 2010; J. L. Williams & LaPolla, 2016). Molecular evidence suggests P. imparis
and P. nitens diverged in the Miocene approximately 12 — 5 mya (Matos-Maravi et al.,
2018). The preference for cold temperatures and oak trees is shared by the common ancestor
of both species (P. heschei) (Perkovsky, 2011). Morphological data from one or a few
specimens suggest there are several subspecies (Fig. 3.1): P. i. minuta (United States, District
of Columbia), P. i. pumila (United States, North Carolina), P. i. festacea (United States,
District of Columbia), P. i. californica (United States, California), P. i. arizonica (Arizona),
P. i. colimana (Mexico, Volcan de Colima), P. i. coloradensis (United States, Colorado), P. i.
veracruzensis (Mexico, Veracruz) (J. L. Williams & LaPolla, 2016).

In this paper, we use genomic data to address the phylogeny of the winter ant in
North America and to investigate processes involved in creating contemporary diversity. We
sequenced Ultraconserved Elements (UCEs) available for Hymenoptera (Branstetter,
Longino, Reyes-Lopez, Schultz, & Brady, 2017) and combined phylogenetic analyses and
population level analyses to examine the continental-scale phylogeographic patterns in this
species, and given the diversity of historical forces across this spatial scale, we expected to
see a variety of different evolutionary patterns. Some patterns between biogeographic regions
we might see include 1) populations evolved in situ among separate regions, in which case
we should see deep divergence between populations that have been isolated relative to
shallower divisions between individuals within populations that would represent expansions
out of refugia and 2) migration has always been high, in which case, migration between
regions has been frequent enough that we won’t be able to detect regional divergence, this
could result in polytomies and unresolved nodes across the phylogeny.

3.2 Methods

We sequenced 73 individual ants that were collected from sites across the United States and
Mexico (Fig. 3.1). We included two outgroup species: Prenolepis nitens and Prenolepis
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naoroji. Samples were either hand collected by the authors or generously donated by
collaborators and museums (See Supp. Table C.1).

Samples and DNA extraction

For specimens that were destructively sampled, genomic DNA was extracted from whole
ants using a Qiagen DNeasy Blood & Tissue kit (Valencia, CA.). The kit protocol was
followed as specified, with the following modifications: Samples were first ground in 1.5mL
tubes with a stainless-steel grinding ball, 50pug RNase A and 10uL DTT were added to the
lysis step, and finally, samples were eluted in 300uL RNase- and DNase-free water and then
put in a vacuum-heater and evaporated down to 100uL. For specimens that were
nondestructively sampled, the same modifications were used, except ants were not ground
but, instead, placed whole in the lysis buffer and put in a rotating oven for 48 hours, with
additional 20uL ProK added after the first 24 hours. These samples were then soaked in 70%
ethanol solution before being re-mounted.

Following extraction, DNA was sheared using a Bioruptor sonicator (Diagenode)
with 1 or 4 rounds of sonication (1 minute per round on low, 90s on and 90s off). If the
sample was collected before the year 2000, or, if the sample was pinned prior to DNA
extraction, we assumed the samples were partially degraded and they were only sonicated for
a 1 minute shear time total, all others were sheared for 4 minutes. Because of low starting
concentrations (often less than 100ng total DNA), the sheared DNA was not visualized on a
gel. As the majority of the sequence variation is usually found upstream of the target sites for
the UCE probes, we wanted longer size fragments (approximately 400-1000bp). However,
without being able to visualize this, we did not know the size fragments of our extractions, so
we purified the reaction following shearing using 0.7x low ratio Solid Phase Reversible
Immobilization (SPRI) beads in order to remove smaller fragments.

Library preparation and array capture

Following sonication and purification, the DNA library preparation and array capture
protocols were used as described in Meyer and Kircher (2010), with minor modifications.
Most of those modifications were only introduced during the reaction clean-up. For all the
purifications, we used 80% ethanol instead of 70% ethanol as stated in Meyer and Kircher
(2010). In addition, 0.7x low ratio SPRI beads were used for purification after blunt-end
repair and after indexing reactions in order to remove DNA fragments that are too sheared.
Blunt-ends were repaired as in Meyer and Kircher (2010), except our mix had a final
concentration of 0.05 U/uL of T4 DNA polymerase and 0.25U/uL of T4 polynucleotide
kinase in 20uL of master mix. In addition, we combined three separate indexing PCRs (12
cycles) where every sample had a unique index number and combined identical samples to
one final indexed library eluted in 22uLL water (instead of EB) before enrichment. We
assessed success of library preparation by measuring DNA concentrations with the Qubit
flourometer and visualizing the libraries on an agarose gel.

For UCE enrichment, we made pools at equimolar concentrations containing eight
uniquely labeled samples that were pooled together to contain 500ng total DNA. We
performed enrichments using a custom UCE bait set developed for Hymenoptera (‘hym-v2).
This set has custom-designed probes targeting 2,590 UCE loci in Hymenoptera (Branstetter
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et al., 2017). We followed library enrichment procedures for MY croarray MY Baits kit
(Mycroarray, Inc), except we used 0.1X concentration of the standard MY Baits, and added
5uL of the Roche Developer Reagent, and 1.0puL of 10mM custom blocking oligos designed
for our custom tags (Meyer & Kircher, 2010). The enrichment was performed at 65°C for 22
hours. We then used 10uL of the library and cycled this 18 times during the amplification.
Following post-enrichment PCR, we purified this reaction in 1.2X SPRI beads and eluted in
22 uL EB.

In order to verify enrichment, we performed qPCR on both our post-enrichment and
unenriched libraries using a DyNAmo™ Flash SYBR® Green qPCR kit (Thermo Fisher
Scientific). We checked that in our post-enrichment libraries, we saw a greater fold
enrichment in our positive controls, UCE82, UCE591, and UCE1481, than the unenriched
libraries (Faircloth, Branstetter, White, & Brady, 2015). We quantified each enriched pool
using a Qubit flourometer, checked peak quality and peak library size using a Bioanalyzer.
We then diluted them to less than 100nM and pooled them all at equimolar concentrations
into the same sequencing lane. Sequencing was done using an Illumina HiSeq4000.

Bioinformatic processing

We used a custom Perl workflow to process UCE sequence capture data from methods
described in Bi ef al. (2012 and Portik et al. (2016). The pipeline for processing de novo
target capture data are available in github (https://github.com/CGRL-QB3-
UCBerkeley/denovoTargetCapturePhylogenomics). Briefly, raw fastq reads were filtered
using Cutadapt (Martin, 2011) and Trimmomatic (Bolger et al., 2014) to remove low quality
reads and adapter sequences. Exact duplicates were eliminated using Super Deduper
(https://github.com/dstreett/Super-Deduper). We used FLASH (Mago¢ & Salzberg, 2011) to
merge overlapping paired-end reads. We then used SPAdes (Bankevich et al., 2012) to
assemble cleaned reads via a multi-kmer approach, to generate raw assemblies for each
sample. We used BLASTn (S F Altschul, Gish, Miller, Myers, & Lipman, 1990) (evalue
cutoff = le-10, similarity cutoff = 75) to compare SPAdes raw assemblies of each individual
to the UCE baits to identify assembled contigs that stemmed from UCE loci. The resulting
non-redundant UCE assemblies from each individual sample were used as a raw reference
that includes the targeted UCE and the flanking sequences (+/-500bp to targeted UCE
region). Paired-end and merged cleaned reads from each individual were then aligned to the
individual-specific assemblies using Novoalign (Li & Durbin, 2009), and we only retained
reads that mapped uniquely to the reference. We used Picard
(http://broadinstitute.github.io/picard/) to add read groups and GATK (McKenna et al., 2010)
to perform re-alignment around insertions/deletions. We finally used SAMtools/BCFtools (Li
et al., 2009) to generate individual consensus sequences by calling genotypes and incorporate
ambiguous sites in the individual-specific assemblies. Sites were masked as ‘N’s if the read
depth was lower than 5x or if they were within 5bp near an indel. RepeatMasker (Smit et al.
n.d., below) was implemented to mask (by using Ns) putatively repetitive elements against
and short repeats, using the “ants” database. For each individual we retained a resulting
consensus contig if no more than 80% of the nucleotides were Ns after the above masking.
Multi-sample alignments of each locus were generated with MAFFT (Katoh & Standley,
2013) and ambiguously aligned regions in alignments were then trimmed using Trimal
(Capella-Gutiérrez, Silla-Martinez, & Gabaldon, 2009). We retained alignments where at
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least 30% of the samples containing no more than 60% missing data (Ns or gaps). We also
calculated average read depth and trimmed off alignment that fell outside of the 2"¢ and 98"
percentile of the distribution. To further control for potential paralogs, we also removed
entire alignment in which any site where the maximum proportion of shared heterozygosity
is above 0.3. Capture efficiency was evaluated by average per site depth for the target and +/-
500bp flanking regions for each locus, sensitivity, which is the percentage of bases within a
target sequence that are recovered in one or more reads, and specificity, which determines the
percentage of cleaned reads mapped to target and +/- 500bp flanking sequences.

Several museum samples had extremely low sensitivity, specificity, or coverage and
were eliminated from the following analyses.

Phylogenetic analyses

We combined all filtered individual alignments in phylip format and made a partitioned file
ready for RAXML analysis. We ran RAXML using several different datasets and analysis
methods to account for the effects of missing data and data partitioning (Branstetter et al.,
2017). We created one alignment that contained all the UCE loci recovered in our analyses.
We also filtered the individual UCE alignments for 100% and 90% taxa present. We then
created RAXML formatted alignments of the remaining concatenated loci. For each of the
concatenated alignments, we created two files: one partitioned by gene, one unpartitioned.
We analyzed each dataset with RAXML v8.1.17 (Stamatakis, 2014) with a rapid bootstrap
analysis (100 replicates) plus best tree search (option “-f a”’) using GTR+T" as the model of
sequence evolution.

Population admixture

To infer the number and composition of our populations, we used both a model-based
clustering method and a multivariate method. We used the program STRUCTURE v2.3.4
(Pritchard, Stephens, & Donnelly, 2000) to investigate the number of population clusters and
potential admixture between populations in our dataset. This software uses a Bayesian
algorithm that creates clusters that maximize Hardy-Weinberg equilibrium and gametic phase
equilibrium within clusters and disequilibrium between clusters. We used one random
informative SNP per locus from our P. imparis individuals only, initial runs of the entire
SNP datasets were too computationally demanding. Ten iterations were run for each value of
K from 1 (no population structure) to 10 (five more than the number of major clades we
detected with RAXML), with a burn-in of 10,000 steps followed by 100,000 MCMC steps,
under an admixture model. We summarized the results using CLUMPAK (Kopelman, Mayzel,
Jakobsson, Rosenberg, & Mayrose, 2015) and visualized the results using the program
DISTRUCT (Rosenberg, 2004). We evaluated populations with using highest AK method
(Evanno, Regnaut, & Goudet, 2005). After initial runs suggested two main populations (see
below), we further split the dataset into those two groups and ran STRUCTURE again on those
groups independently using the same inputs as before. We also investigated the genetic split
of populations using a discriminant analysis of principal components (DAPC) with
ADEGENET 2.0 (Jombart, 2008; Jombart & Ahmed, 2011) in the program R using the
function dapc. This multivariate analysis combines principal component analysis (PCA) and
discriminant analysis to determine the number of genetic clusters. We initially investigated
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the number of clusters by using the k-means algorithm. The preferred number of clusters was
evaluated using the Bayesian information criterion (BIC) scores.

Summary statistics

We calculated the number of polymorphic loci both within and between populations. We
used alignments for each UCE locus to calculate diversity within (Watterson’s 0, x,

Tajima's D) and between (corrected Dxy) populations using PopGenome (Pfeifer,
Wittelsbuerger, Ramon-Onsins, & Lercher, 2014). Because the levels of diversity within
each locus were so variable, we calculated the diversity for each locus individually and then
calculated the mean value of all loci. Standard deviation was calculated as the square root of
the sample mean/sample size.

3.3 Results

UCE Sequencing

The mean DNA sample concentration for our 75 taxa was 0.87 ng/uL (0.22 — 2.1 ng/uL)
post-extraction, and 34.10 ng/uL (22.7 — 44 ng/uL) post-PCR libraries. The number of raw
reads averaged at 1322.4 Mb (range: 217.5 — 3610.8 Mb) for individual samples. After
cleaning, the average amount of recovered data was 352.7 Mb (range: 19.9 — 1269.6 Mb).
The proportion of bases that was covered by least one read in in-target assemblies
(sensitivity) was highly conserved across all samples with an average of 98.9% (range: 94.1 —
99.8%). The proportion of cleaned reads that mapped to the targeted UCE bait and +/- 500bp
flanking regions (specificity) has an average of 40.6% among samples with a considerably
wide range (0.07- 69.1%). Accordingly, coverage for both the target and flanking regions
also varied wildly between samples (2.7 - 231X) with the average of 85X. The coverage for
+/- 500bp flanking to the UCE regions where more variable sites are expected was also high
with an average of 61.9X.

After filtering, our sequence capture recovered a total of 1,402 loci with a
concatenated length of 1,029,532 bp. Locus length averaged 734 bp (range: 87 — 1106 bp)
and contained an average of 4.6 polymorphisms per locus (range: 0 — 19 polymorphisms).
Filtering the dataset to include only those loci that contained data from at least 90% of our
samples (67/75 individuals) left us with 1,338 loci with a concatenated length of 1,001,687
bp. Further filtering to include only those loci that contained data from every sample left us
with 772 loci with a concatenated length of 605,486 bp.

The UCE phylogeny using RAXML recovered strong geographical structuring of five
main clades (Fig. 3.1 & 3.2a). All main clades were recovered with varying support (Supp.
Fig. C.1) The strongest support was found when analyzing the 100% filtered dataset
partitioned by gene; this tree provided the values we report (Fig. 3.2a). The most basal
lineage comes from one individual in Florida (FL). After that, the phylogeny is split into two
groups: one group from the east coast of the United States, and another group that spans the
Western US and Mexico. These two main groups are further divided. On the east coast, there
are two main clades: New England (NE) and southern US (SO; excluding Florida). On the
West Coast, there is a group that includes individuals from Oregon and California (CA) and
another group with deeply divergent individuals from the southwest and Mexico (AZ).
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Within the CA clade, there are three well-supported branches (CAIL, CAII, CAIIL; Fig. 3.2 &
3.3). The deepest phylogenetic break (CAI) occurs between one individual, a microgynous
queen (J. L. Williams & LaPolla, 2016) from the Sierra Nevadas in northern California and
all the other individuals from California and Nevada. A second break in the CA clade, splits
the Clade into roughly two parts, CAIII found across California and Nevada, and CAII found
in southern California. Although all maximum likelihood analyses recovered the same main
clades, the node separating the AZ clade and CA clade was only strongly supported with the
90% and 100% filtered dataset, partitioned by gene (Fig 3.2a, Supp. Fig. C.1). The splits
between CAII and CAIII were only recovered with the 100% filtered dataset, both partitioned
and unpartitioned (Supp. Fig. C.1).

Population admixture

The Bayesian clustering analysis based on 1,378 SNPs resulted in an initial detection of two
main groups (AK =4336.97) (Fig. 3.2b). One group contained all the samples from the FL,
NE, SO, and AZ clades while the other group consisted of only those samples from Oregon
and California (CA clade). After these two groups were further split into two separate runs,
the clustering analysis based on 27 individuals from the FL, NE, SO, AZ clades and 1,291
SNPs revealed three groups (AK = 24528.45) consistent with main lineages found from the
UCE phylogeny. One difference was that the one individual from the Florida clade was
lumped either with the NE or SO clade (Fig 3.2c¢), though at K = 4, the FL clade is separated
from the NE and SO clades (Supp. Fig. C.2). Within Oregon and California, the clustering
analysis based on 46 individuals and 1,300 SNPs revealed the highest AK at three
populations (AK = 67.05). The most widespread cluster occurs in northern California up to
Oregon, (corresponding to CAI and CAII) with admixed individuals in northern California.
Another cluster occurs in southern California (corresponding to CAII), with admixed
individuals on the central coast of California and on the Tehachapi Mountains (Fig. 3.2¢ &
3.3).

We used k-means clustering to confirm our five clusters of P. imparis and
substructure within the CA clade. Using the entire dataset of P. imparis and SNPs (73
individuals and 36,582 SNPs), increasing the number of clusters from n = 3 to n = 4 yielded
an improvement in BIC. BIC values at n =4 to n = 5 were the same, suggesting both clusters
are valid. At n = 4, with the exception of the FL and SO ants, each cluster roughly
correspond to those clades found with the phylogeography and clusters in STRUCTURE (NE,
AZ, CA). The FL and SO clades are grouped together. At n =5, the FL and SO individuals
are split into two groups that correspond to the original clade designations (Fig. 3.4a & c)
Within the CA clade, the k-means clustering did not identify any distinct subpopulations (46
individuals, 19,105 SNPs) (Fig. 3.4b & d).

UCE summary statistics

Using the entire set of 1,402 loci, we estimated population levels of diversity using
PopGenome (Table 3.1) (Pfeifer et al., 2014). The percent of polymorphic loci within and
among clades varied. Within the major clades, the percent of polymorphic loci ranged from
3.32% — 23.09%, while there was considerably less variation between clades (18.49% —
27.48%). The AZ clade exhibited highest UCE nucleotide diversity (r), followed by the CA
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clade, and finally the NE and SO clades exhibited the least amount of diversity. Values of
Watterson’s theta (Bw), reflecting contemporary effective population size, followed a similar
pattern: the AZ clade was highest, followed by the CA clade, and finally the SO and NE
clades (Table 3.1). Tajima’s D was lowest in the CA population, however, the standard
deviation gives overlapping ranges for all clades.

Mean pairwise sequence divergence between clades ranged from 0.65% — 3.32%
(Table 3.2). The CA and NE and SO clades were less than 1% divergent on average from
each other. The AZ clade exhibited intermediate levels of divergence (1.18% — 1.52%), while
the largest divergence was seen between the FL clade and all other populations (2.53% —
3.32%).

3.4 Discussion

The deep phylogeographic structure detected between five well-supported clades of P.
imparis is consistent with long-term regional isolation of populations. These phylogenetic
relationships among the clades suggest a high degree of geographic structure, as each of the
major clades identified correspond to a group of geographically clustered populations. In
addition, the populations from each region have separate histories that are reflected in their
genome. Previous morphological work suggests there are several morphological types that
roughly correspond to our clades, though more work will need to be done to understand the
range limits of each morphological type and genomic clade found here.

The clades in the eastern United States (NE, SO) are consistent with what we
expected to find in a cold-adapted species. The two lineages with deep division suggest two
independently evolving populations that were isolated during the Last Glacial Maximum
(LGM) in northern refugia. Species could have survived in close proximity to the Laurentide
Ice Sheets (Soltis et al., 2006). The clades currently occupy a broad area, which makes it
difficult to determine an exact refugia location, but they roughly overlap other northern
refugial locations (e.g. interior plains, southern Highlands, Appalachians) (J. D. Austin,
Lougheed, & Boag, 2004; Lee-Yaw et al., 2008). Previous ecological niche modelling done
on an eastern North American white oak (Quercus alba) found these oaks would have been
widespread in eastern North America during the last interglacial period (LIG; ~120 — 140
kya) (Gugger et al., 2013). During the LGM, these oak trees experienced a range contraction
to the south. This retreat of their closely associated habitat could have left isolated
populations near the edge of the ice sheets in the north that were able to expand into suitable
habitat again when the oak trees expanded their range into their current range. The low
genetic diversity in both the SO and NE clades seen here suggests recent expansion from
these refugia. Interestingly, there are two morphological types that overlap in District of
Columbia; we were unable to genotype the morphological specimens, so it is unknown what
clade they represent, but both the STRUCTURE and ADEGENET results suggest there are no
hybrids between clades.

The high levels of genetic diversity within the AZ clade suggest ancient and probably
multiple vicariance events. Our AZ clade represents individuals from mountain ranges of the
Madrean Archipelago of southeastern Arizona (Pinal and Chiricahua), the Bradshaw
Mountains of central Arizona, the Davis Mountains of west Texas, and the Mexican states of
Jalisco and Sonora. These sky-islands may have acted as refugia during unfavorable climatic
conditions (Mastretta-Yanes et al., 2018). These mountain ranges are characterized by dry,
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inhospitable low elevations and mesic habitats at high elevation (Bezy & Cole, 2014;
Goémez-Mendoza & Arriaga, 2007; Jaggar & Palache, 1905). Populations on different
mountain ranges that rely on cooler conditions such as those found in the mesic habitats are
isolated from each other by the dry, desert conditions experienced at low altitude (Atwood et
al., 2011; Carleton, Sachez, & Vidales, 2002; Kerhoulas & Arbogast, 2010; Tennessen &
Zamudio, 2008). These mountain ranges were likely colonized when conditions allowed for
migration among contiguous mesic habitat throughout the valleys (McVay, Hauser, Hipp, &
Manos, 2017; Tennessen & Zamudio, 2008). Migration between isolated mountain ranges
would have depended on mesic corridors (Atwood et al., 2011). The timing of isolation and
levels of gene flow among and between these mountain ranges remains unknown for most
species. Periodic climate fluctuations during the Pleistocene would have resulted in cyclical
contraction-expansion of suitable habitats (Provan & Bennett, 2008). During the LGM, areas
such as northern Mexico and southwestern United States would have experienced cooler
temperature and increased precipitation (Bradbury, 1997; Metcalfe, O’Hara, Caballero, &
Davies, 2000; Pérez-Alquicira et al., 2010). These conditions would have been favorable for
cold-adapted species such as P. imparis, as well as the oak and pine woodlands they are
commonly associated with (Moreno-Letelier & Pifiero, 2009). Despite more recent favorable
conditions, genetic variation in a broad range of taxa (e.g. jumping spiders (Masta 2000),
beetles (Smith and Farrell 2005), birds (McCormack et al. 2008; Puebla-Olivares et al. 2008),
lizards (Tennessen and Zamudio 2008), pines (Moreno-Letelier and Pifiero 2009), flying
squirrels (Kerhoulas and Arbogast 2010), rattlesnakes (Bryson et al. 2011), and Fougquieria
(Arturo De-Nova et al. 2018)) that occupy sky-islands in North American deserts found that
gene flow among mountain ranges and lineages is limited and isolation ancient, while gene
flow within ranges and lineages has been influenced by more recent migration during the
Pleistocene. The high genetic diversity we see here supports ancient diversification and
isolation among ranges. Current conditions in the southwest mountains and Mexico have
created isolated populations of flora and fauna restricted to high altitude mountain tops
surrounded by uninhabitable dry desert in the low lands (McVay et al., 2017). Given that
there are at least four morphological types in this area, it seems likely that there are isolated
cryptic lineages awaiting discovery. Further studies should increase sampling in these areas
and investigate genetic diversity using a faster evolving marker (i.e. microsatellites) in order
to determine the amount of local migration among and within these mountain ranges.

The higher genetic diversity and evidence for multiple populations of P. imparis
within the CA clade suggest a very different evolutionary history than that of the eastern
United States. The deepest phylogenetic break within the CA clade occurs between the
microgynous queen (CAI) and the remaining samples (CAII and CAIII). It is unknown if this
individual represents a distinct morph or a social parasite (J. L. Williams & LaPolla, 2016).
The phylogenetic separation between this individual and all other ants in the CA clade is
well-supported, while STRUCTURE attributed most of the genetic makeup to the widespread
genotype and not a unique genotype. This is not surprising given STRUCTURE is influenced
by sample size (Kalinowski, 2011). Given the distinct phylogenomic makeup of this
individual, it would appear to be a social parasite, though more work will need to be done to
understand the relationship between this queen and other individuals.

A second phylogenetic break occurs between individuals in northern
California/Oregon and southern California (CAIIl & CAII). According to populations
inferred from the phylogeny, the northern limits of CAII includes individuals from the
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Transverse Ranges (Northwest Transverse Range and the Tehachapi Mountains) and
continues south to the Palomar Mountains. This implies the Transverse Ranges are important
barriers in southern California for this species. Phylogeographic breaks associated with the
Transverse Ranges are well documented (Calsbeek, 2003; Gottscho, 2016; Rissler, Hijmans,
Graham, Moritz, & Wake, 2006). When it was possible to estimate the timing of separation
between lineages, the genetic breaks seems to coincide with orogeny of the ranges and
aridification in the region (Calsbeek, 2003). Genetic divergence between CAII and CAIII is
relatively low which could reflect a late Pleistocene divergence, which would be coincident
with the uplift of the Transverse Ranges. It is unclear if the individuals with mixed ancestry
along the Southern Coastal Ranges represent retention of ancestral alleles or recent
migration.

The results from STRUCTURE suggested a third genetic type (within CAIII) in the
Sierra Nevadas and into the Northern Coastal Ranges. Most individuals with this third type
are depicted as individuals with mixed ancestry, only one individual had this ancestry as a
majority of its genotype (Fig. 2d & 3). An east/west split between populations in California
has been noted many times before; the warm, dry area of the Central Valley poses a strong
environmental barrier (Rissler et al., 2006). As suitable habitat retreated and expanded during
the Pleistocene climatic fluctuations, populations of P. imparis would have been isolated on
either side of the Central Valley, creating distinct populations with corridors of suitable
habitat allowing migration.

The population differentiation within California suggests incomplete lineage sorting
and/or some level of recent dispersal of individuals around California. The spatially
concordant distribution of individuals from different populations may reflect range
contractions, expansions, and migrations during glacial and interglacial periods, local
persistence and maintained gene flow. This pattern is concordant with other studies that have
found a relatively stable climate and topographic features relevant in creating differentiation
in California (Calsbeek, 2003; Gharehaghaji, Minor, Ashley, Abraham, & Koenig, 2017;
Gottscho, 2016; Rissler et al., 2006; Schierenbeck, 2017). Given that ADEGENET did not find
evidence for subpopulations, more localized sampling of populations of P. imparis will be
necessary to evaluate this discrepancy.

The phylogeographic pattern found in P. imparis is complex. Although we could not
infer the absolute timing of these events, our inference from 1,402 UCE loci and combined
analyses suggest that our phylogenetic results are due to in sifu evolution and is supported by
the fact that there are five well-supported clades, each which experienced local effects to the
fluctuating climate. Individuals from these clades are genetically isolated and
morphologically distinct. This raises the possibility that each clade represents a unique
species, though more work will need to be done to determine this. In the east coast of North
America, extant clades probably represent the descendants of isolated populations during the
LGM that have recently expanded into their current range. In the southwest, we see sky-
islands of endemism and high diversity suggesting fragmented populations. Across
California and into Oregon, we see a different pattern still. This area was characterized by
more moderate disruptions in climate patterns and which allowed persistence and local
migration.
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3.6 Figures

Figure 3.1. Map of United States and Mexico with samples used. Triangles denote
morphologically designated varieties of P. imparis. Circles denote samples used in this study,
and colors refer to major lineage as determined by maximum likelihood phylogeny.
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Figure 3.2. Phylogenetic and population clustering of P. imparis individuals. a) RAXML
maximum likelihood tree created using 772 UCE loci, partitioned by gene, with support
values on nodes. b) Population assignment results for 75 individuals and all clades (FL, NE,
SO, AZ) based on K =2 from STRUCTURE. Colors correspond to colored clades on the
maximum likelihood tree and horizontal lines represent one individual. For each individual,
the color proportion indicates the genetic contributions c) population assignment results for
the FL, NE, SO, and AZ groups (K = 3), colors and bars are the same as above. d) Population
assignments of the California clade (CA) at K = 3, colors and bars are the same as above.

a) g , b) 9 ks
. FL
FL
NE
NE
100,
/ 100
100 SV S0
100 AZ
199 AZ
AZ
d)
/
98

CA

CA

5.0E-4



49

Figure 3.3. Map of California and the localities of genetic samples as circles. The colors of
each sample locality correspond to the probabilities that the individual is assigned to one of
the three genetic clusters. In addition, they are labeled according to their phylogenetic break.
CAL, the microgynous queen, is indicated, CAII is circled, the remaining samples represent
individuals from the CAIII cluster.
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Figure 3.4. Nonparametric k-means clustering of total genetic diversity across all samples of
P. imparis. a) Across all samples, increasing the number of clusters fromn =3 ton =4
yielded improvement in Bayesian information criterion (BIC). Increasing the number of
clusters from n = 4, to n = 5 did not reduce or increase our BIC scores. b) Within the CA
clade, clustering suggests that all ants are drawn from the same population. ¢) Principal
component analysis (PCA) for all samples. Clades are depicted by different colors and inertia
ellipses, while dots represent individuals. d) PCA within the CA clade. Dots represent
individuals.
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3.7 Tables

Table 3.1. Demographic statistics for UCEs of P. imparis. Number of individuals sequenced
for each population as well as the number of polymorphic loci within population. Mean
values (£ SD) of number of polymorphic loci between clades and mean values (= SD) of
population genetic summary statistics (Watterson’s 0, nucleotide diversity (m; expressed as

%), and Tajima’s D from the entire UCE dataset.

polymorphic polymorphic

clade n loci within loci between Ow T Tajima's D
clades clades

CA 46 20.97 26.36 (4.75) 0.077 (0.200) 0.0025 (0.010) -1.29 (0.35)

AZ 7 23.09 27.18 (3.95) 0.161 (0.398) 0.0160 (0.047) -0.88 (0.67)

NE 8 3.32 18.49 (4.92) 0.023 (0.139) 0.0018 (0.012) -0.84 (1.22)

SO 11 5.57 18.65 (4.96) 0.028 (0.128) 0.0020 (0.011) -1.08 (0.44)

FL 1 - 23.95(5.37) - - -
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Table 3.2. Mean values (maximum) of corrected sequence divergence between populations.

AZ

NE

SO

FL

CA
1.22 (38.88)
0.66 (69.51)
0.35 (23.03)

2.57 (66.23)

AZ

1.52 (77.74)
1.18 (34.58)

3.32 (79.47)

NE

0.65 (68.03)

2.91 (68.03)

SO

2.53 (66.23)
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Appendix C. Supplementary Information for
Chapter 3

C.1 Supplemental Figures

Supplemental Figure C.1. Phylogenetic clusters of P. imparis. RAXML maximum likelihood
tree with support values on nodes for all runs. Above the nodes are the support values obtained
when partitioned by gene with all 1oci/90% filtered dataset/100% filtered dataset. Below the
nodes are the support values obtained when not partitioned with all loci/90% filtered
dataset/100%filtered dataset. Stars indicate support > 99 for each dataset. Dashes indicate that
particular topology was not recovered.
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Supplemental Figure C.2. STRUCTURE results for K = 3 and K = 4 for individuals within the CA
clade of P. imparis. Colors correspond to clades in main figures, vertical lines represent one
individual, the color proportion indicates the genetic contribution.
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C.2 Supplemental Table

Supplemental Table C.1. Samples of P. imparis included in this study.
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Sample

Cluste

Countr

Latitude Longitude State Collector
Number r y
BDB662 39.07513 -96.57065 SO USA Kansas Benjamin D. Blanchard
PM009 34.729 92,355 SO | USA | Arkansas Daniella Prince, Stephen
Yanoviak
Bel0306 38.216 85.761 SO | USA | Louisville Daniella Prince, Stephen
Yanoviak
JTO1 37.97215 -90.53236 SO USA Missouri James Trager
JWillo1 39.3928 -76.6047 SO USA Maryland Jason Williams
KRO1 33.881536 -96.800234 SO USA Oklahoma Karl Roeder
SOA953 33.773118 -84.317659 SO USA Georgia School of Ants
SOA1062 35.292581 -80.624117 SO USA Nort'h School of Ants
Carolina
North
SOA675 36.507486 -76.353738 SO USA . School of Ants
Carolina
SOA305 39.961672 -75.315589 SO USA Pennsylvania School of Ants
Champl 40.0975 -88.23355 SO USA Ilinois unknown
BDB654 42.2806 -83.7269 NE USA Michigan Benjamin D. Blanchard
SOA1189 42.12218 -87.960137 NE USA [llinois School of Ants
SOA3636 | 42323794 | -72.626542 | NE | Usa | Massechuset School of Ants
SOA439 | 42375748 | 71366259 | NE | Usa | Massachuset School of Ants
SOA3311 42.593247 -83.252536 NE USA Michigan School of Ants
SOA3844 40.720603 -74.564692 NE USA New Jersey School of Ants
SOA2592 42.698523 -87.894501 NE USA Wisonsan School of Ants
MMP0191 38.9517429 - oo
] ] 7832301202 NE USA Virginia M.M. Prebus
AVS56 33.73 -117.6833 CA USA California Andy Suarez
BWO1 3. 104?2694 -118.5404 CA USA California Brian Whyte
CQS071 37.5789 -122.4657 CA USA California CD Quock
CQS076 37.7283 -122.489 CA USA California CD Quock
CQS083 37.7404 -122.4406 CA USA California CD Quock
Toni073 38.0301361 122.2143277 CA USA California Christian Irian
DHO1 32.023205 -119.76576 CA USA California David Holway, I Naughton
EMS3069 41.74818 -123.3592 CA USA California E.M. Sarnat
ESO01 38.544905 | -121.740516 CA USA California Eli Sarnet
34.0016666 - e
INO1 119.6772222 CA USA California Ida Naughton

7
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NRG1012 38.9729527 123.1163916 CA USA California Kelsey Schenkle
SOA1123 38.789282 -121.208789 CA USA California School of Ants
Acad02 33.97958 -120.07861 CA USA California M.L. Borowiec
MLB1241 38.03541 -120.22726 CA USA California M.L. Borowiec
MLB177 38.87306 -121.56889 CA USA California M.L. Borowiec
MLB0039 37.33059 -122.09131 CA USA California M.L.Bollinger
gAMPOW 3446023 | -12002376 | CA | USA | California M.M. Prebus
I;/IMPOIOS 3850551 | -122.10197 | CA | USA | California M.M. Prebus
gAMPOlog 38.86064 | -12241792 | CA | USA | California M.M. Prebus
gAMPOl W1 3991485 | -121.04213 | CA | USA | California M.M. Prebus
yMPOl 71 4114958 | -12232423 | cA | USA | California M.M. Prebus
iAMPOW 3934424 | 12275392 | CA | USA | California M.M. Prebus
gAMPO(’zz 4551983 | -122.62574 | CA | USA Oregon M.M. Prebus
Bead2 37.74763 -119.58584 CA USA California Maria Tonione
Bead4 37.219167 -121.916667 CA USA California Maria Tonione
Bead5 33.334444 -116.9175 CA USA California Maria Tonione
Bead6 38.48307 -122.14895 CA USA California Maria Tonione
Bead8 37.23647 -122.11702 CA USA California Maria Tonione
Bead9 37.872916 -122.2631 CA USA California Maria Tonione
Toni002 37.21223 -121.79686 CA USA California Maria Tonione
Toni065 37.74467 -119.58472 CA USA California Maria Tonione
Toni086 38.511697 -122.100433 CA USA California Maria Tonione
Toni088 38.496 -122.123419 CA USA California Maria Tonione
Toni090 38.515508 -122.080406 CA USA California Maria Tonione
Bead3 38.50867 -122.09678 CA USA California Maria Tonione
Bead7 34.00381 -118.05395 CA USA California Maria Tonione
Toni066 37.82903 -120.00413 CA USA California Maria Tonione
Toni071 37.2297027 122.0780638 CA USA California Maria Tonione
NDTO1 39.4856138 1212311583 CA USA California Neil Tsutsui
NDT673 35.467778 -120.376944 CA USA California Neil Tsutsui
NDT670 36.67 -121.768611 CA USA California Neil Tsutsui
NDT671 35.850556 -120.770556 CA USA California Neil Tsutsui
PSW14050 37.016667 -119.45 CA USA California Phil Ward
PSW16240 39.216667 -121.035 CA USA California Phil Ward
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PSW16713 38.52922 -121.76615 CA USA California Phil Ward
AW1195 39.283333 | -120.983333 CA USA California Alex Wild
SOA3830 29.634173 -82.367064 FL USA Florida School of Ants
JTL8031 38.79069 -109.19692 AZ USA Utah Jack Longino
YMPO2T 3070167 | -104.10069 | AZ | USA Texas M.M. Prebus
PSW14708 | 31.933333 | -109.252222 AZ USA Arizona Phil Ward
PSW9284 19.516667 | -103.683333 AZ Mexico Jalisco Phil Ward
RAJ5745 34'4076 6666 -112.435 AZ USA Arizona Robert A Johnson
RAJ5767 33'43766666 11 1.06-83333 AZ USA Arizona Robert A Johnson
RAJ5593 31.0166666 1 10.3é41667 AZ Mexico Sonora Robert A Johnson
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