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SUMMARY

Although generating high neutralizing antibody levels is a key component of protective immunity 

after acute viral infection or vaccination, little is known about why some individuals generate 

high versus low neutralizing antibody titers. Here, we leverage the high-dimensional single-cell 
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profiling capacity of mass cytometry to characterize the longitudinal cellular immune response to 

Zika virus (ZIKV) infection in viremic blood donors in Puerto Rico. During acute ZIKV infection, 

we identify widely coordinated responses across innate and adaptive immune cell lineages. High 

frequencies of multiple activated cell types during acute infection are associated with high titers 

of ZIKV neutralizing antibodies 6 months post-infection, while stable immune features suggesting 

a cytotoxic-skewed immune set point are associated with low titers. Our study offers insight into 

the coordination of immune responses and identifies candidate cellular biomarkers that may offer 

predictive value in vaccine efficacy trials aimed at inducing high levels of antiviral neutralizing 

antibodies.

Graphical Abstract

In brief

McCarthy et al. use mass cytometry to longitudinally characterize peripheral cellular immune 

features during Zika virus (ZIKV) infection in non-pregnant adults. They identify distinct cellular 

immune signatures during acute infection that reliably predict the persistence of high versus low 

ZIKV-specific neutralizing antibody levels 6 months after infection.

INTRODUCTION

Infection of pregnant individuals with Zika virus (ZIKV), a flavivirus primarily transmitted 

to humans via the bite of an infected mosquito, can lead to persistent viral replication in 
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the placenta and fetal brain that is associated with devastating fetal neurologic outcomes 

(Bhatnagar et al., 2017; Honein et al., 2017; Nithiyanantham and Badawi, 2019; Zorrilla 

et al., 2017). In contrast, for the majority of non-pregnant immunocompetent adults, ZIKV 

virus is rapidly cleared from the plasma (Barzon et al., 2018; Calvet et al., 2018; Coffey 

et al., 2017; Osuna et al., 2016; Stone et al., 2020) and infection is accompanied by 

mild symptoms such as fever, rash, and joint pain or can be asymptomatic (Lazear and 

Diamond, 2016; Rodriguez-Barraquer et al., 2019). Since the recent 2015–2016 epidemic 

in the Americas, there has been a considerable effort towards the development of a ZIKV 

vaccine, particularly for the prevention of mother-to-child transmission of infection (Abbink 

et al., 2018; Richner and Diamond, 2018; Shan et al., 2018). The majority of ZIKV vaccine 

candidates aim to induce durable, high-titer neutralizing antibody responses, which confer 

protection in animal models (Abbink et al., 2017; Ngono and Shresta, 2018).

Natural infection with ZIKV in humans generates robust ZIKV-specific antibody responses 

(Larocca et al., 2016; Rodriguez-Barraquer et al., 2019); however, there is wide inter-

individual variation in the levels of ZIKV-specific antibodies that persist in the serum 

(Andrade et al., 2019; Rodriguez-Barraquer et al., 2019). Immunity to subsequent infection 

with ZIKV is likely to be influenced by the magnitude and durability of the ZIKV 

neutralizing antibody response (Abbink et al., 2016; Barouch et al., 2017; Larocca et al., 

2016), but little is known about the factors that contribute to inter-individual variation in 

antibody responses. There is substantial cross-reactivity between virus-specific antibodies 

(Andrade et al., 2019; Dejnirattisai et al., 2016; Priyamvada et al., 2016) and T cell 

responses (Grifoni et al., 2017; Lim et al., 2018; Wen et al., 2017) generated after infection 

with ZIKV and those from the closely related and often co-circulating dengue virus 

(DENV). However, prior DENV exposure alone does not appear to explain the wide range of 

ZIKV antibody titers observed after natural infection (Andrade et al., 2019).

For other pathogens, baseline immune characteristics and/or signatures of early immune 

responses acutely after infection or vaccination have been shown to correlate with the 

magnitude of pathogen-specific antibody titers (Hu et al., 2019; Koutsakos et al., 2021; Li 

et al., 2017; Nakaya et al., 2015; Popper et al., 2018; Querec et al., 2009; Tan et al., 2014; 

Tsang et al., 2014). Some aspects of the innate cytokine and cellular immune responses to 

ZIKV infection have been described in humans (Barros et al., 2018; Cimini et al., 2017; 

Grifoni et al., 2018; Lai et al., 2018; Lum et al., 2018; Michlmayr et al., 2017; da Silva 

et al., 2019). However, the relationship between the acute-phase immune response and the 

generation of ZIKV-specific antibodies has not been characterized. This is in part due to 

the inherent challenges in identifying and establishing longitudinal cohorts of individuals 

identified during the earliest days of the acute phase of a natural infection.

Here, we used high-dimensional single-cell profiling with mass cytometry (cytometry 

by time of flight [CyTOF]) to deeply characterize the cellular innate and adaptive 

immune response during acute and convalescent ZIKV infection. We evaluated longitudinal 

peripheral blood samples collected from 25 individuals in a natural history cohort of healthy, 

non-pregnant adults from Puerto Rico who were found to be viremic with ZIKV at the 

time of blood donation during the recent ZIKV epidemic of 2015–2016 (Musso et al., 

2017; Stone et al., 2020; Williamson et al., 2020). We found broadly coordinated cellular 
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responses across immune cell lineages during acute ZIKV infection and identified distinct 

cellular immune signatures during acute ZIKV infection that were associated with the 

development and persistence of low versus high neutralizing antibody titers. In addition, 

we identified stable immune features that comprise a cytotoxic immune set point associated 

with low neutralizing antibody titers. Future vaccine efficacy trials for ZIKV and other acute 

viral infections may benefit from the inclusion of these candidate cellular biomarkers to aid 

in the prediction of neutralizing antibody titers, and additional strategies may be required to 

elicit stronger antibody responses in individuals with cytotoxic-skewed baseline immune set 

points.

RESULTS

Identifying immune cell populations that respond to acute ZIKV infection

To characterize the cellular immune response to acute ZIKV infection, we designed two 

CyTOF antibody panels to phenotype innate immune and B cell (panel 1) and T cell 

(panel 2) features (see STAR Methods). We used these panels to analyze peripheral blood 

mononuclear cells (PBMCs) collected longitudinally at up to three time points during acute, 

early, and late convalescent phases of infection from 25 otherwise healthy blood donors 

in Puerto Rico who were found to be viremic for ZIKV at the time of blood donation 

(“index visit”; study participants are part of a larger REDS-III cohort; Figure 1A; Table 

S1; Data S1). Of the participants, 28% (7 of 25) were female, and the median age was 45 

years (range 21–71). All participants mounted a detectable ZIKV immunoglobulin M (IgM), 

IgG, and neutralizing antibody response (reported as the 80% neutralization titers [NT80]; 

Figure 1B). Although all participants were viremic at the index visit, 68% (17 of 25) had 

not yet formed ZIKV-specific IgM responses. Of the participants with a collection visit at 

the first (“acute”) PBMC collection time point (median of 8 days after index), 100% had 

formed IgM antibodies and 22% (5 of 23) had residual detectable plasma viremia. There was 

substantial variation in both peak neutralizing antibody titers (ZIKV NT80 titers: 84–37,872) 

and follow-up titers 6 months after the index visit (0–6,286).

We first characterized how acute ZIKV infection perturbs the frequency and activation of 

different immune cell types in peripheral blood. We manually gated major landmark immune 

cell populations defined by standard lineage markers (e.g., classical [CD14+] monocytes, 

non-classical [CD14−CD16+] monocytes, plasmacytoid dendritic cells [pDCs], classical 

DCs [cDCs], CD56bright/dim natural killer [NK] cells, CD4+ T cells, CD8+ T cells, B 

cells, etc.) and classically defined adaptive immune cell subsets (see Figure S1 for gating 

strategy and STAR Methods for mass-cytometry antibodies). We first evaluated the relative 

abundance of 40 cell types (landmark populations and adaptive immune subsets). We 

then evaluated the Boolean expression of 30 different phenotypic surface and intracellular 

proteins on these parent cell types, which yielded a total of 286 unique phenotypic features 

(see Table S2 for phenotypic features and Data S2 for all raw data from manual gating).

To broadly determine how the immune state is perturbed in the context of ZIKV infection, 

we performed principal-component analysis (PCA) on the manually gated CyTOF features 

(adjusted for age and sex). We mapped the trajectories across the three time points in PCA 

space for each individual ZIKV-infected participant (Figure 1C) as well as 8 control ZIKV-
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uninfected blood donors (black triangles). While there was variation between individuals, 

most participants followed a similar general trajectory from right to left along PC1 as they 

progressed from acute to convalescent ZIKV infection (not observed across longitudinal 

sampling of 6 separate ZIKV-uninfected individuals; Figure S1D). The number of days 

between the index and the acute time point negatively correlated with the total distance 

travelled in PCA space across the top five PCs as well as the value of PC1 at the acute 

time point (Figure 1D). These correlations suggest that both the PC1 coordinate and the 

distance travelled correspond to movement in virtual infection space as participants resolve 

their ZIKV infection.

To understand which cellular features contributed to this coordinated movement over time, 

we used linear mixed effect modelling on the age- and sex-adjusted feature abundances (see 

Data S3 for tables of all statistical-analysis results). While the frequency of most major 

immune cell types did not change significantly across the three sampled time points (Figures 

S2A and S2B), 128 of the 286 phenotypic features did change significantly across the three 

sampled time points (adjusted p value [p_adj] < 0.05; Figure 1E). The vast majority (95%) 

of these changing features were elevated at the acute time point and decreased in abundance 

by the late convalescent time point. A subset of these features initially remained elevated 

at the early convalescent time point, while others decreased sharply between the acute and 

early convalescence stage (e.g., most populations expressing Ki-67 and CD71).

To leverage the richness of our high-dimensional single-cell dataset, we performed 

unsupervised clustering using the SCAFFoLD algorithm that we have described previously, 

which associates cell clusters with user-defined landmark populations (Spitzer et al., 2015, 

2017). We observed high concordance in the frequency of the pre-defined landmark immune 

cell populations between our manual gating and SCAFFoLD approaches (Figures S2C and 

S2D). Linear mixed effect modelling demonstrated that 15 of 34 clusters assigned to innate 

immune cell types and 23 of 56 clusters assigned to adaptive immune cell types (innate 

immune and B cell clusters from CyTOF panel 1, T cell clusters from panel 2) changed 

significantly in abundance as a percentage of their parent landmark population over time 

(Figures 1F and 1G; full raw and statistical analysis data available in Data S2 and S3). 

We again observed diversity in the direction and speed with which clusters changed in 

abundance over the three time points.

Innate immune cell activation in acute ZIKV infection

Little is known about the innate immune response to acute ZIKV infection in humans. 

Intermediate (CD14+CD16+) monocytes have been shown to increase in the peripheral 

blood of children with acute infection and are themselves a major target for ZIKV infection 

(Michlmayr et al., 2017, 2020). In adults, we also observed a transiently elevated level of 

intermediate monocytes during acute ZIKV infection (Figure 2A; see Figure S1 for gating). 

Intermediate monocytes in acute infection expressed higher levels of activation markers 

(Figure 2A). Manual gating and unsupervised clustering analyses revealed that acute 

infection was also associated with activation in the broader classical (CD14+) monocyte 

population (which includes CD14+CD16+ intermediate monocytes; Figure 2B) as well as 

non-classical (CD14−CD16+) monocytes (Figure S3A).
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To understand how the expression of activation markers was coordinated on monocyte 

populations transiently increased in acute infection, we used our clustering analysis to 

investigate co-expression on individual cells contained within the classical CD14+ monocyte 

cluster (cluster 49) with the greatest median relative change in frequency (−75%) from the 

acute to late convalescent timepoints (Figure 2C). This revealed three modules of markers 

with coordinated expression patterns: (1) a proliferative module (Ki-67, CD71, and CD38), 

(2) an early activation module (HLA-DR, CD86, PD-1, and CD69), and (3) a monocyte 

maturation/differentiation module (CD16, CD11c, CD40, and CD4; Figure 2C). Thus, with 

unsupervised analysis, we identified modules representing distinct activation/differentiation 

states of transiently expanded monocytes.

The proportion of activated cDCs and pDCs was also increased in acute infection, and 

several activation markers were co-expressed on the cDC cluster with the greatest relative 

decrease in abundance as infection resolved (Figure S3B). Among NK cells, acute infection 

was associated with increased proliferation and activation in both CD56bright and the 

more cytotoxic CD56dim NK cells, which resolved during convalescence (Figure S3C). 

Collectively, these data demonstrate that acute ZIKV infection is characterized by the 

activation and differentiation of diverse innate immune cells.

Accumulation of activated T and B cells in acute ZIKV infection

The population of HLA-DR+CD38+ CD8+ T cells has been found to be enriched for 

antigen-specific CD8+ T cells in other acute infections (Chandele et al., 2016; Mathew 

et al., 2020; Wang et al., 2018). Acute ZIKV infection was accompanied by a profound 

accumulation of cycling, activated non-naïve CD8+ T cells co-expressing HLA-DR and 

CD38 (Figures 2D and 2E). Indeed, our clustering analysis revealed that the expression 

of multiple activation markers on CD8+ T cells in acute ZIKV infection was tightly co-

regulated on small sub-populations. The majority of HLA-DR+CD38+ CD8+ T cells were 

contained within three clusters of CD8+ T cells that expressed the highest levels of other 

activation markers (e.g., Ki-67, ICOS, CTLA-4, TIGIT, CD25) and were only transiently 

increased in acute infection (summed median frequency of c75, 66, 34 across time: 7.1% 

→ 3.1% → 1.6%; Figure 2F). Acute ZIKV infection was also associated with a transient 

increase in the abundance of small sub-populations of cycling and activated non-naïve CD4+ 

T cell subsets and cytotoxic-skewed γδ T cells (Figure S4).

Using two established and correlated (Figure S5A) methods for identifying B cell 

populations that are actively secreting antibodies (CD38hiCD20neg plasmablasts and 

CD71hiCD20neg antibody-secreting cells [ASCs] [Ellebedy et al., 2016]), we noted a 

significant decrease in the frequency of these cells between acute infection and early/late 

convalescence (Figures 2G and 2H). Phenotypically, a larger proportion of ASCs and other 

B cell subsets expressed the transcription factor T-bet, which has been associated with B cell 

responses to viral infections (Johnson et al., 2020), during acute infection compared with 

early and late convalescence (p_adj = 0.02; Figures 2H and S5C).

An increased frequency of CD20hiCD71hi activated B cells (ABCs) has also been described 

in other acute infections in humans (Ellebedy et al., 2016; Sutton et al., 2021). We observed 

a significant decrease over time in the proportion of ABCs expressing Ki-67, FCRL5, 
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and CD40 (Figure 2H). Overall, multiple subsets of B cells transiently expressed several 

activation makers in acute ZIKV infection (Figures S5B and S5C). Finally, the expression 

of CD21 was lower on the two IgD-memory B cell populations during acute ZIKV infection 

(Figure S5C), which may identify cells recently exited from a germinal center (Lau et al., 

2017).

Coordinated activation of innate and adaptive immune cells in acute ZIKV infection

We next asked how these immune parameters during acute infection were coordinated to 

understand the intercellular dynamics that mediate the observed active immune response. 

We focused on the acute time point from 17 individuals without detectable anti-ZIKV IgM 

at their index visit to limit the variation in the data collected from participants, who may 

have been sampled at a different number of days following infection. We first interrogated 

features enriched for antigen-specific cells and found that the frequencies of ASC B cells 

and CD38+HLA-DR+ non-naïve CD8+ T cells were positively correlated (Spearman’s r = 

0.61, p = 0.01; Figure 3A).

We broadly characterized the relationships of the acute-phase cellular features by computing 

correlations between all cellular features at the acute time point, revealing 279 feature 

pairs that were positively correlated and 66 that were negatively correlated during acute 

ZIKV infection (p_adj < 0.05). To focus on the correlations that were exclusive to acute 

ZIKV infection, we separated the feature pairs that were uniquely correlated during acute 

ZIKV infection, designated as “unique” (n = 169), from the remainder-labeled as “shared”

—that were correlated both during acute infection as well as in the uninfected samples 

(n = 176; Figure 3B). Compared with the shared correlations, the unique correlations 

during acute ZIKV infection were more likely to be between features from different major 

landmark populations (odds of correlations being between features belonging to different/the 

same landmark populations among unique [105/64] versus shared [68/108] correlations; 

odds ratio [OR] 2.60 [95% confidence interval (CI): 1.65–4.12]; Figure 3C). The unique 

correlations were also more likely to be between (rather than within) adaptive and innate 

immune features (OR 2.77 [1.54–5.10]). Thus, during acute ZIKV infection, there was 

more coordination across arms of the immune system (e.g., significant unique correlation 

between CD38+ pDCs and CD38+ Th1 CD4+ T cells [r = 0.79, p_adj = 0.03]; Figure 

3D). We also found that within the positive correlations, the unique correlations were more 

likely to be between different markers (OR 2.27 [1.31–3.98]; e.g., CD40+ cDCs and Ki-67+ 

double-negative [DN; CD27-IgD-] B cells [r = 0.78, p_adj = 0.03]; Figure 3D). Together, 

these findings suggest that during acute ZIKV infection, there is broad coordination of the 

expression of a diversity of activation markers across adaptive and innate immune cell types.

Individuals exhibit inversely correlated cellular immune signatures during acute ZIKV 
infection

We next asked if there were inter-individual differences between study participants in acute 

ZIKV infection that may help to explain the large differences in neutralizing antibody 

titers. Indeed, the feature pairs uniquely correlated during acute infection were more likely 

to be negatively correlated across study participants compared with those shared with 

the uninfected state (OR 3.80 [2.03–7.42]; Figures 3B and 3C). For example, uniquely 
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in acute ZIKV infection, we observed negative correlations between the frequency of 

ABCs and CD4+ regulatory T cells (Tregs) (r = −0.86, p_adj = 0.002) and between 

CD69+ CD56dim NK cells and Helios+ Vδ2- γδ T cells (r = −0.77, p_adj = 0.03; Figure 

3E). We hypothesized that these negatively correlated features unique to acute infection 

reflected inter-individual variability in the acute-phase immune response. To investigate, we 

performed hierarchical clustering of the acute-infection-feature correlation matrix (Figure 

4A), which revealed the presence of two modules (modules 3 and 5) that contained sets of 

features which were inversely correlated with one another (average correlation: r = −0.79; 

see Data S2 for features contained within each module). While the module 5 immune 

signature was enriched for features that represent activated innate and adaptive immune cell 

types, 54% of which were transiently elevated in acute infection, the module 3 signature 

was enriched for features that reflect more cytotoxic-differentiated cell types, 91% of which 

were “stable,” meaning they did not change in abundance in the context of acute ZIKV 

infection. During acute infection, some individuals had a higher module 5 score, reflecting 

dynamic immune activation during acute ZIKV infection, while others had a higher module 

3 score, suggesting a more cytotoxic-differentiated immune state (Figure 4B). To determine 

the clinical significance of these acute-phase signatures, we next asked if these distinct 

acute-phase cellular immune signatures could predict the magnitude of ZIKV neutralizing 

antibody responses after infection.

Transient expansion of activated cell types in acute infection predicts high neutralizing 
antibody titers after ZIKV infection

We observed a large range in the titers of ZIKV neutralizing antibodies (NT80) that persisted 

several months after the resolution of acute infection (Figure 1B). In order to identify the 

cellular immune features during acute ZIKV infection that associated with the development 

of a high versus low ZIKV NT80 titer 6 months after infection, we again focused our 

analysis on individuals sampled as early as possible in the course of infection (i.e., who 

were ZIKV IgM- at the index visit). Since prior exposure to DENV is associated with 

significantly higher long-term ZIKV NT80 antibody titers (Rodriguez-Barraquer et al., 2019; 

Figure S5D), we also only examined individuals with serologic evidence of prior DENV 

infection (final n = 14). These individuals were separated into high or low 6-month ZIKV 

NT80 titer groupings based on the tertiles of the 6-month ZIKV NT80 titers from the whole 

DENV-exposed REDS-III cohort (low: n = 6, <230, mid: n = 3, 230–1,240, or high: n = 

5, >1,240), which were measured a median of 181 days after index visit (range: 160–196 

days; Figure 5A). Of note, there was no significant difference in the age (p = 0.31) or sex 

distribution (p = 0.53) between the tertiles.

Using a receiver operating characteristic (ROC) analysis, we found that a module 5-skewed 

score during acute infection was predictive of a high 6-month ZIKV NT80 titer, while a 

module 3-skewed score during acute infection was predictive of a low 6-month titer (area 

under the curve [AUC] = 0.800; Figure 5B). To investigate which individual features were 

predictive of high versus low 6-month titers, we returned to an unbiased analysis with the 

full set of phenotypic features, examining features with significantly different frequencies at 

the acute time point between the high- and low-titer individuals. While we did not observe 

an association between the frequencies of antigen-specific populations (e.g., ASCs or HLA-
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DR+CD38+ CD8+ T cells) at the acute time point and the level of ZIKV neutralizing 

antibody titers at 6 months post-infection (Figures S5E and S5F), we did find unique sets of 

features associated with high versus low levels of ZIKV neutralizing antibody titers.

We found that high levels of ZIKV neutralizing antibody titers 6 months post-infection were 

associated with a significantly higher frequency of 11 cellular features during acute infection 

(e.g., CD86+ CD14−CD16+ monocytes and pDCs, CD40+ CD14+ monocytes and cDCs, 

CD69+ NK cells, CD38+ Th1 and Tfh CD4+ T cells, and CD86+, as well as Ki-67+ DN 

B cells; Figures 5C and 5D). These included multiple activated cell types, eight of which 

were contained within module 5. Six of the 11 features associated with the high-titer group 

were specifically expanded in acute infection (indicated as “Changing”). These features 

also tended to be low in frequency in uninfected individuals (see lighter green colors in 

“Uninfected [UI] Mean” column). Together, these data suggest that high 6-month ZIKV 

NT80 titers are associated with robust but transient expansion of specific, diverse activated 

cellular features during the acute phase of infection.

A cytotoxic immune set point predicts low neutralizing antibody titers after ZIKV infection

In contrast, individuals with low titers of neutralizing ZIKV antibodies 6 months after 

infection had an acute infection immune signature defined by higher frequencies of 

cytotoxic T cell features. These included higher granzyme B expression in Tctl CD4+ T 

cells, a larger TEMRA population in CD8+ T cells, higher Eomesodermin expression in 

non-naïve CD8+ T cells, a higher overall frequency of non-naïve Vδ2- γδ T cells, and a 

higher frequency of non-naïve Vδ2- γδ T cells that express granzyme B, T-bet, and Helios 

(Figures 5C and 5E). Most (8 of 9) of the low-titer-associated features were contained within 

the stable, cytotoxic-skewed module 3. Unlike the cellular features associated with high 

6-month NT80 titers, most of the features associated with low 6-month NT80 titers were 

present at high baseline abundance in uninfected individuals (see darker green/blue colors 

in the Uninfected Mean column), and most (8 of 9) were not dynamically regulated over 

the course of ZIKV infection. This supported the notion that the cytotoxic-skewed immune 

signature associated with the development of low neutralizing antibody titers represents a 

distinct and stable immunologic set point. A higher frequency of cytotoxic-differentiated T 

cells can relate to a history of infection with other viruses, in particular cytomegalovirus 

(CMV), and a positive CMV serostatus can be associated with impaired response to 

vaccination (Bowyer et al., 2020; McElhaney et al., 2012; Merani et al., 2017). However, 

CMVseropositivity was not significantly associated with the development of low ZIKV 

NT80 titers in our cohort (p = 0.29).

To determine the predictive power of the high- and low-titer-associated features, we again 

performed an ROC analysis and found that all of the acute infection cellular immune 

features associated with high or low antibody titers also reliably predicted these two 

outcomes in this cohort (minimum AUC = 0.833; Figure 5F). Interestingly, several of 

the low-titer-associated features at the late convalescent time point, after the resolution of 

infection, remained associated with and were predictive of low 6-month ZIKV NT80 titers 

(Figures 5C, black in the “Late Convalescence” column, and 5G). Collectively, our data 

suggest that high 6-month ZIKV NT80 titers are predicted by an immune state of transiently 
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expanded, highly activated immune cell features during acute infection. In contrast, low 

6-month ZIKV NT80 titers are instead predicted by a distinct immune set point characterized 

by a stable, high frequency of cytotoxic-differentiated T cell populations that are not 

dynamically regulated during acute ZIKV infection.

DISCUSSION

We present here a deep characterization by mass cytometry of dynamic cellular immune 

responses to acute ZIKV infection in human adults. Leveraging a well-characterized 

longitudinal cohort of individuals with viremic ZIKV infection, we found that acute ZIKV 

infection did not impact the frequency of most major cellular immune populations. However, 

small populations of highly activated innate and adaptive immune cells were coordinately 

and transiently expanded during acute infection, and distinct acute-phase immune signatures 

predicted the persistence of high versus low ZIKV neutralizing antibody titers 6 months after 

the resolution of infection. Our findings build upon a small but growing set of literature 

describing cellular immune responses in acute viral infection in humans (Arunachalam et 

al., 2020; Chandele et al., 2016; Chng et al., 2019; Ellebedy et al., 2016; Kazer et al., 2020; 

Koutsakos et al., 2021; Liu et al., 2021; Michlmayr et al., 2018; Ndhlovu et al., 2015; Rahil 

et al., 2020; Rouers et al., 2021; Sekine et al., 2020; Takata et al., 2017; Townsley et al., 

2021; Wang et al., 2018), and they suggest immunologic states to target in order to enhance 

the efficacy of antiviral vaccines.

Our analysis of cellular activation states enabled us to precisely delineate and characterize 

the coordination between innate and adaptive immune cell populations that respond to 

acute ZIKV infection. In prior studies, acute ZIKV infection has been associated with 

activation of some innate immune cell types (Lai et al., 2018) and, in children, an increase 

in the frequency of monocyte populations that are also a target for viral infection in 
vivo (Michlmayr et al., 2017, 2020). In our study in adults, we observed not only a 

similar expansion of intermediate CD14+CD16+ monocytes during acute infection but 

also a transient increase in a suite of activation markers on this cell type in the acute 

phase. Additionally, we identified a cluster of CD14+ monocytes that were present at a 

higher frequency during acute infection (c49) with distinct co-regulated markers denoting 

proliferation, activation, or differentiation states. Among adaptive immune cells, HLA-

DR+CD38+ non-naïve CD8+ T cells were expanded at the acute time point, consistent 

with other acute viral infections (Chandele et al., 2016; Koutsakos et al., 2021; Wang 

et al., 2018). We found that these cells were contained in three distinct clusters of cells 

that co-express different combinations of activation markers. Acute ZIKV infection was 

also associated with activation of T helper type 1 (Th1) and Tctl T cell CD4+ T cell 

subsets. Finally, using gating strategies to identify populations of B cells enriched for 

antigen-specific cells in other infections (Andrews et al., 2019; Ellebedy et al., 2016), we 

identified an expansion of Tbet+ASCs during acute ZIKV infection.

Our study describes the diverse and coordinated activation of cellular immune responses 

during acute ZIKV infection in human adults. Compared with the baseline correlations that 

exist in the uninfected state, we found that acute ZIKV infection drove new coordination 

between different immune cell types and across the innate and adaptive immune system. 
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The correlations unique to acute ZIKV infection (e.g., positive correlations in the proportion 

of CD38+ pDCs and CD38+ Th1 CD4+ T cells, or between CD40+ cDCs and Ki-67+ 

DN B cells) may reflect interactions that are essential to mount a productive antiviral 

immune response. Further exploration of the correlated features in acute infection revealed 

two distinct modules that were inversely correlated: one (module 5) contained features 

reflecting transiently elevated activated cell populations, while the second (module 3) 

contained features reflecting stable/unchanging cytotoxic cell populations. Remarkably, 

these two acute infection immune signatures, which we identified using an unbiased analysis 

approach, appear to truly reflect distinct immune states that differentially impact and predict 

the development and maintenance of high neutralizing antibody responses.

High titers of ZIKV neutralizing antibodies are likely critical for protective immunity 

in humans, and they are a key target for ZIKV vaccines (Diamond et al., 2019). Six 

months following infection, participants across our cohort had a greater than 100-fold 

difference in ZIKV neutralizing antibody titers. Other than a positive association with prior 

DENV serostatus observed here and in other studies (Rodriguez-Barraquer et al., 2019), 

little is known about what parameters predispose some individuals to maintain higher 

versus lower ZIKV neutralizing antibody titers. Interest-ngly, as has been in observed in 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (Koutsakos et 

al., 2021), the frequency of ASCs during acute ZIKV infection did not correlate with 

antibody levels in convalescence. We did, however, find several other acute-phase cellular 

features that were associated with and predictive of high versus low neutralizing antibody 

titers, many of which have plausible roles in augmenting a productive B cell response. For 

example, CD86 expression on pDCs and monocytes and CD40 expression on cDCs and 

monocytes can mediate enhanced antigen presentation to and priming of helper CD4+ T 

cells, interferon gamma (IFN-γ) produced by activated Th1 cells or NK cells can promote B 

cell activation, and activated Tfh CD4+ T cells can provide direct help to differentiating B 

cells. Further investigation could elucidate whether robust induction of these same activated 

cell populations also predicts the long-term immunogenicity of vaccines for ZIKV and other 

viral infections.

In contrast to the dynamically regulated acute-phase cellular immune features associated 

with high ZIKV neutralizing antibody titers, a higher frequency of T cells with cytotoxic-

differentiation features were associated with low 6-month ZIKV neutralizing antibody titers 

and were predictive of levels of 6-month ZIKV neutralizing antibody titers. Most of these 

features did not dynamically change over the course of infection and were themselves 

inversely correlated with the cellular immune features associated with high 6-month ZIKV 

neutralizing antibody titers (similar to the inverse correlation between modules 3 and 5 

in the correlation matrix). Several of the low-titer-associated cytotoxic features were also 

present at higher levels in the low-titer individuals 3–6 months after resolution of the 

infection, suggesting that they may represent a stable biological state that is likely reflective 

of their history of prior antigen encounters. This state is distinct from the small populations 

of virus-specific (e.g., HLA-DR+CD38+) T cells that are transiently expanded in acute 

infection (Chandele et al., 2016; Koutsakos et al., 2021; Wang et al., 2018). The stability 

of these features suggests that a cytotoxic immune set point may identify individuals 

predisposed to have a blunted activation response to acute infection that then leads to 
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impaired neutralizing antibody responses. In general, a more cytotoxic-skewed T cell 

compartment can be a sign of immune senescence, which can in turn be associated with a 

reduced capacity to generate functional antigen-specific responses after vaccination (Bowyer 

et al., 2020; McElhaney et al., 2012). Thus, in addition to identifying candidate biomarkers 

of a responsive immune signature that may be useful for predicting the formation of a robust 

neutralizing antibody response to other infections or vaccination, our study also provides 

insight into potential markers of an immune state that impairs the formation of protective 

immunity after acute viral infection. Future studies should explore the generalizability of 

our findings to other infections and vaccination and the underlying causes of these distinct 

immune signatures.

Our study providesa first in-depth characterization of the cellular immune response to acute 

ZIKV infection in human adults and relates distinct acute-phase cellular immune signatures 

to the development of high or low titers of durable neutralizing antibodies. Our approach 

offers a powerful tool to test whether these features also predict immunogenicity of vaccines 

for ZIKV and other viral infections, such as SARS-CoV-2, for which neutralizing antibodies 

play a major role in protection. Our findings suggest that targeted therapeutic approaches 

in individuals predicted to have poor neutralizing antibody responses to vaccination (e.g., 

different adjuvants or a higher dose of vaccine) might increase acute-phase immune 

activation and subsequently promote enhanced long-term protective antiviral immunity.

Limitations of the study

Our study has some important limitations. Although we have made an effort to control for 

the variance introduced by sampling time, it was not possible to align participants according 

to the exact date they were infected. Our study included only otherwise healthy individuals 

who presented for volunteer blood donation and does not include pregnant individuals or 

infants, who are key populations affected by this infection. Finally, while it is likely that 

neutralizing antibodies play a key role in immunologic protection from ZIKV (Khoury et al., 

2021), a titer that correlates with protection in humans has not yet been identified (Richner 

and Diamond, 2018), and other antibody functions (Maciejewski et al., 2020) and/or other 

types of immune responses (Abbink et al., 2016; Hassert et al., 2019; Larocca et al., 2016) 

may also be critical for robust protection.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Rachel Rutishauser 

(rachel.rutishauser@ucsf.edu).

Materials availability—This study did not generate new unique reagents.
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Data and code availability

• De-identified raw fcs files with mass cytometry data were deposited on 

Mendeley: https://doi.org/10.17632/5cn6cy97b7.2. All data generated from 

manual gating and clustering analysis are provided in supplemental tables.

• This paper does not report original code.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We characterized the cellular immune response to acute and resolving ZIKV infection in 

the peripheral blood of 25 otherwise healthy adults (negative for HIV, hepatitis B and C 

infections) who had viremic ZIKV infection between 2015 and 2016 at the time of blood 

donation in Puerto Rico (“index” visit). Participants were selected from the prospective 

REDS-III cohort (see Table S1 for demographic and clinical characteristics) (Musso et 

al., 2017; Stone et al., 2020; Williamson et al., 2020). Peripheral blood mononuclear cells 

(PBMCs) from these ZIKV+ individuals were sampled longitudinally at up to three intervals 

after the index visit: (1) within 5–12 days after the index visit (“acute”; median 8 days), 

(2) within 15–27 days after index visit (“early convalescence”; median 21 days), and (3) 

within 85–189 days after index visit (“late convalescence”; median 91 days; see Figure 1A 

for sampling schema). 19 of 25 individuals had longitudinal sampling of PBMCs available 

at all three timepoints. ZIKV viral load and antibody measurements were performed at these 

and additional timepoints (see Figure 1B). Participants were asked about the presence of 

6 symptoms at each visit (fever, rash, joint or bone pain, body or muscle pain, painful or 

red eyes, headache). At the first (“acute”) PBMC collection time point, 40% of the ZIKV+ 

donors had ≥ 3 symptoms present. Two groups of ZIKV-uninfected (“ZIKV−”) individuals 

were also included in our analyses. The ZIKV− participants were recruited from a larger 

cohort of blood donors based at the same blood donation clinics as the ZIKV+ participants 

(with the same sample processing protocols), with samples collected in the years prior to 

the onset of the ZIKV epidemic in Puerto Rico. Samples from the first ZIKV− cohort 

(single timepoint, n = 8) were processed and run on the mass cytometer in parallel with the 

samples from the ZIKV+ individuals. Samples from the longitudinal ZIKV− cohort (n = 6 

participants across three timepoints) were run separately. All samples were obtained with 

appropriate informed consent and ethics committee approval of the University of California 

San Francisco.

METHOD DETAILS

Viral load and antibody measurements—ZIKV viral load, antibody levels, and ZIKV 

and DENV neutralizing antibody measurements were performed as described previously 

(Stone et al., 2020; Williamson et al., 2020). In brief, ZIKV viral load was measured by 

quantitative PCR. Anti-Zika virus IgM and IgG were measured by antibody-capture ELISA 

using recombinant ZIKV antigen kindly provided by the US Centers for Disease Control 

and Prevention (CDC) and as previously described (Lanciotti et al., 2008; Williamson et 

al., 2017). ZIKV neutralizing titers were measured using a ZIKV reporter viral particle 
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neutralization titration assay (Integral Molecular, Philadelphia, PA) (Whitbeck et al., 2020), 

and index donations were tested for pre-existing DENV IgG with the Detect IgG ELISA 

(InBios; Seattle, WA).

PBMC preparation and mass cytometry staining—Whole peripheral blood was 

collected at the clinical sites, shipped overnight at ambient temperature to Vitalant, San 

Francisco, CA, USA, where they were processed and cryopreserved within 24 h of 

collection and then stored in liquid nitrogen as previously described (Musso et al., 2017). 

Mass cytometry experiments were performed over the course of five separate experiments, 

with normalization between experiments performed as outlined below. PBMCs were thawed, 

and only samples with >70% viability were used for analysis (most were >90% viable after 

thawing by the Muse Cell Analyzer [Millipore Sigma, Burlington, MA, USA]) (Odorizzi et 

al., 2018; Owen et al., 2007). We stained 2–4 million cells per panel in two mass cytometry 

panels (see STAR Methods for antibody clones and metals), following a previously 

published protocol (Spitzer et al., 2017) with the following modifications. Briefly, we 

marked dead cells by incubating the samples for one minute with 25 mM Cisplatin 

(Sigma-Aldrich, St. Louis, MO, USA) in phosphate buffered saline (PBS) plus EDTA, 

performed surface staining with metal-tagged antibodies in PBS with 0.5% bovine serum 

albumin (BSA) for 30 min at room temperature, fixed and permeabilized cells following 

manufacturer’s instructions for the eBioscience Foxp3/Transcription Factor Staining Buffer 

Set (Thermo Fisher Scientific, Waltham, MA, USA), barcoded samples using mass-tag 

cellular barcoding reagents diluted in Maxpar Barcode Perm Buffer (Fluidigm, South San 

Francisco, CA, USA) as described previously (Spitzer et al., 2017), combined up to twenty 

barcoded samples into a single tube, performed intracellular staining with antibodies diluted 

in eBioscience Foxp3/Transcription Factor kit perm wash (Thermo Fisher Scientific), fixed 

cells in freshly prepared 2% paraformaldehyde (Electron Microscopy Sciences, Hatfield, PA, 

USA) in the presence of a DNA intercalator (Ornatsky et al., 2008), and then washed and ran 

cells on the Fluidigm CyTOF 2 mass Cytometer within one week of staining.

Mass cytometry data processing

Data quality control: Following data acquisition, the FCS files were normalized across 

experiments using bead standards and the data normalization algorithm using the R package 

‘premessa.’ The live cell events were debarcoded using a single-cell debarcoding algorithm 

(Zunder et al., 2015) and we analyzed >25,000 (mostly >50,000) cells per sample. From 

the individual sample files, normalization beads were excluded based on Ce140 and Eu153 

signal, single cell events were identified based on Ir191 DNA signal measured against 

event length, and CD45− or Pt195+ dead cells were excluded. Potential batch effects were 

minimized by including samples from the same individual in the same experiment. Spillover 

between the Yb173 and Yb174 channels was compensated based on the CyTOF metal purity 

matrix (Han et al., 2018) using flowcore (Ellis et al., 2019). Gating was performed using 

CellEngine (CellCarta, Montreal, Canada).

Manual gating: Traditional hierarchical gating was applied to identify 12 “landmark” 

immune populations: CD14+ “classical” monocytes, CD14− CD16+ “non-classical” 

monocytes, classical and plasmacytoid dendritic cells [cDC and pDC, respectively], 
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basophils, CD56bright and CD56dim natural killer cells, regulatory CD4+ T cells, non-

regulatory CD4+ T cells, CD8+ T cells, γδ T cells as stained by either a pan-γδ T cell 

receptor (TCR) antibody or an antibody that only recognizes γδ T cells with the Vδ2 chain 

(see Figure S1 for gating strategy) as well as well-defined adaptive immune subsets (see 

Figure S2 for the identity of these populations). Within each of the “parent” cell types, 

we manually gated positive and negative populations of biologically relevant phenotypic 

markers from the two mass cytometry panels (see Table S2 for markers assessed on each 

“parent” population). For each of the parent cell types, we only included phenotypic markers 

for which we could clearly gate a positive population above background antibody staining 

levels.

Clustering by statistical SCAFFoLD: We generated SCAFFoLD maps using the Scaffold 

R package. As described previously (Spitzer et al., 2015, 2017), using all of the live 

CD45+ leukocytes collected across participants and timepoints for each staining panel, we 

applied an unsupervised clustering algorithm based on the CLARA clustering algorithm 

to partition cells into a user-defined number of clusters (100 clusters per staining panel). 

We excluded Ki-67 and Granzyme B to avoid having functional markers cluster cells 

across cell types together. Landmark populations were gated as outlined in Figure S1 (for 

cluster analysis, NK cells were treated as one population). We next generated force-directed 

graphs (SCAFFoLD maps) to visualize the association of each cluster with its likely parent 

landmark population. We excluded from our downstream analysis clusters that contained 

<20 cells in >80% of samples (12 clusters in Panel 1, 2 clusters in Panel 2) as well as 

clusters that contained cells that did not have the expected expression of classical landmark 

population (e.g., we excluded a cluster of cells that clustered with the CD8+ T cells but 

appeared to co-express the B cell marker, CD19 and may potentially represent doublets 

[median 0.09% of total CD8+ T cells at the acute timepoint]; all together, these 9 clusters 

in Panel 1 and 7 clusters in Panel 2 comprised 0.08% and 0.13% of the total live population 

at the acute timepoint). Cell clusters were thus determined to be “reliably” assigned to 

landmark cell populations if they were not excluded based on these criteria and if they 

were identified in Panel 1 for innate immune cells (total 17 classical and 3 non-classical 

monocyte, 9 NK cell, 4 cDC, 1 pDC clusters) and B cells (total 14 clusters) and Panel 2 for 

T cell phenotypes (total 6 CD4+ Treg, 20 non-Treg CD4+, 14 CD8+, and 2 non-Vδ2 γδ T 

cell clusters). In the SCAFFoLD maps depicted, a representative map from one participant at 

timepoint 1 is shown.

QUANTIFICATION AND STATISTICAL ANALYSIS

Change in manually gated population and cell cluster frequencies over time—
To measure the change in abundance of manually gated cell features (e.g., landmark and 

sub-landmark populations and populations expressing individual phenotypic markers) and 

cell clusters, the frequency of each feature (expressed as a % of the parent population) was 

log transformed with a constant factor of 1/10E6 or 1/10E3, respectively. Log-transformed 

values were adjusted for participant age and sex using a linear regression and the residuals 

(log-adjusted abundance) were used in downstream analyses. For age and sex, the median 

(± standard deviation) contribution of each of these factors to the variance for individual 

features was 1.63 (±5.83)% and 1.17 (±3.16)%, respectively. Age/sex contribution to 
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variance for individual features can be found in Data S2. The change over time for 

the log-adjusted feature abundance between the “acute,” “early convalescent” and “late 

convalescent” visits was assessed using a linear mixed effect (LME) model with the nlme R 

package (Pinheiro et al., 2019) with log-transformed days since index visit as a fixed effect 

and participant ID as a random effect. The p values for each group of features were adjusted 

for multiple testing correction by Benjamini Hochberg with an FDR cutoff of 5% for a 

significant effect of time since index visit on feature abundance. For 95% confidence interval 

graphs, line graphs were generated in R using the package ggplot2 (Wickham, 2016). The 

95% confidence intervals for the median values were calculated by bootstrapping with 1000 

iterations.

PCA analysis—The log-adjusted manually gated features that were present across all 

ZIKV infected and cross-sectional uninfected samples (281 of 324 total features in the 

dataset) were used for principal component analysis with the function PCA (parameters: 

"scale.unit = TRUE", ncp = 5) from the R package FactoMineR (Lê et al., 2008). The 

samples were visualized in PCA space with PC1 and PC2 values as the coordinates using 

factoextra and ggplot2 in R.

Heatmaps—Heatmaps were made in R using the package ComplexHeatmap (Gu et al., 

2016). For the manually gated features and cluster features summary heatmaps, the row/

column orders, respectively, were determined using the R package seriation (Hahsler et al., 

2008) with the travelling salesperson problem (TSP) method.

Network correlation analysis—Pairwise Spearman correlations were calculated on the 

log-adjusted feature abundances from samples at the acute visit for participants (n = 17) 

who were previously exposed to Dengue and in an early stage of infection (pre-IgM at the 

time of Index visit). The p values were adjusted with the Benjamini-Hochberg method. The 

correlation matrix was hierarchically clustered using complete linkage based on Euclidean 

distance to create correlation modules. For the relationship between modules, the average 

value was calculated across all significant correlations (p_adj<0.05) between features within 

each module. For the module 5 - module 3 score, each module score is the sum of 

the z-score scaled log-adjusted cellular features within the module. The 95% confidence 

intervals for the correlation in the infected samples for each pairwise feature comparison 

was calculated using bootstrapping with 1000 iterations. For each significant correlation (p 

adjusted<0.05), the correlation was categorized as “shared” with the uninfected cohort if the 

correlation value in the uninfected cohort fell within the 95% confidence interval from the 

infected samples or had the same sign as the infected correlation and a magnitude greater 

than the 95% confidence interval magnitude maximum. Otherwise, the correlation was 

categorized as “unique.” Fisher’s exact test was used to determine odds ratio for correlations 

being unique to ZIKV as the exposure (versus being “shared” with the uninfected) and the 

indicated correlation attribute as the outcome. The circular network graph was visualized 

using ggplot2 and the marker network graph was visualized with igraph (Csardi, 2006).

Antibody associations—The NT80 titers at the 6-month timepoint of the DENV-

exposed, ZIKV+ individuals from the larger REDS III cohort were classified into antibody 
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tertiles. The association between age and sex and the 6-month NT80 titer groupings was 

assessed on the entire REDS-III cohort using one-way ANOVA and a Chi-square test of 

independence, respectively. To test the association between cellular immune phenotypes and 

ZIKV neutralizing antibody titers, we used acute or late-convalescent visit samples from 

participants who had not yet formed IgM at the index visit, were DENV-exposed, and who 

had 6-month NT80 titers available (n = 14). Exact permutation tests were used to test for 

significant differences in the log-adjusted cellular features (age- and sex-adjusted) between 

samples from participants in the high versus low tertiles (n = 5 in high group and n = 6 

in low group). The association between CMV IgG seropositivity and 6-month NT80 titers 

was assessed using the Wilcoxon Rank Sum test based on a larger subset of REDS-III study 

participants for whom CMV serostatus were available (n = 10 CMV+, n = 23 CMV−).

Antibody associations predictive modelling—We used pROC (Robin et al., 2011) 

to plot ROC curves with log-adjusted feature abundance at the acute or late convalescent 

visit as the predictor and 6-month NT80 antibody titer category (e.g., “High” or “Low”) as 

the response for each participant. The 95% CI for the AUC values were computed with the 

default “DeLong” method.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• We investigate coordinated immune activation during acute ZIKV infection

• Individuals have distinct cellular immune signatures during acute ZIKV 

infection

• High immune activation in acute ZIKV predicts high neutralizing antibody 

levels

• A stable cytotoxic-skewed set point predicts low neutralizing antibody levels
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Figure 1. Acute infection with ZIKV elicits profound phenotypic changes across peripheral blood 
cellular immune populations
(A) Twenty-five adults, viremic with acute ZIKV infection at the time of blood donation 

(index visit), had peripheral-blood sampling at up to three time points: acute phase of 

infection and early and/or late convalescence (see Table S1 for clinical characteristics).

(B) Plasma ZIKV viral load (VL), neutralizing antibody titers (NT80) and total IgG and 

IgM levels of study-cohort participants. Red line connects median values at each sampling 

timepoint (±95% confidence interval [CI]).

(C) Directed line plots for each participant in PCA space from early to later time points. 

Black triangles denote 8 uninfected control samples.

(D) Scatterplots of days since index visit at the acute time point and the value of PC1 at 

the acute time point or the total distance traveled in PCA space between the acute and late 

convalescent time points (Spearman’s correlation with regression line).

(E) Heatmap showing the Z score-normalized frequency of the log-adjusted feature 

abundances for the manually gated phenotypic features that change significantly over time 

(see Table S2 for list of features assessed).
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(F) SCAFFoLD maps showing clusters of cells associated with landmark cell-population 

nodes (black dots). Clusters that significantly change in abundance between the acute and 

late convalescent time points are labeled: increase (red), decrease (blue), or increase and 

then decrease (green).

(G) Heatmap showing the normalized abundance of the clusters (Z score based on 

percentage of parent-cell-type population) that change significantly. Significance in (E)–(G) 

based on linear mixed effects (LME) model fit with p_adj < 0.05.

See also Figure S1 and Tables S1 and S2
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Figure 2. Transient accumulation of activated immune cells during acute ZIKV infection
(A) Frequency (as a percentage of total live cells) and phenotype (Z scored proportion of 

cells that express each marker) of CD14+CD16+ monocytes across the course of acute and 

resolving ZIKV infection.

(B) Heatmap showing Z score-normalized median expression of indicated markers (rows) 

for each monocyte-associated cell cluster (columns). Column annotation indicates clusters 

that significantly decrease (blue), increase (red), increase and then decrease (green), or 

remain unchanged (gray) in abundance (as a percentage of CD14+ monocytes; p_adj < 

0.05).

(C) Change in abundance of CD14+ monocyte cluster 49 (as a percentage of CD14+ 

monocytes; p_adj = 0.0002; left) and Spearman’s correlation matrix of marker expression on 

single cells in CD14+ monocyte cluster 49 from acute-visit samples (right).

(D) Gating scheme for non-naïve CD8+ T cells that co-express HLA-DR and CD38. 

Percentages shown are the percentage of parent populations in plotted sample.
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(E) Frequency (as a percentage of non-naïve CD8+ T cells) and phenotype (Z scored 

proportion of cells that express each marker) of HLA-DR+CD38+ non-naïve CD8+ T cells 

across the course of acute and resolving ZIKV infection.

(F) Phenotype (Z scored median expression of each marker) of CD8+ T cell clusters that 

significantly decrease (blue), increase (red), increase and then decrease (green), or remain 

unchanged (gray) in abundance.

(G) Gating scheme for B cell subsets, including activated and antibody-secreting B cells 

(ABCs and ASCs, respectively). Percentages shown are the percentage of parent populations 

in the plotted sample.

(H) Frequency (as a percentage of non-naïve B cells) and phenotype of ABCs and ASCs 

across the course of acute and resolving ZIKV infection; p_adj < 0.05). *p_adj < 0.05, 

**p_adj < 0.01, and ***p_adj < 0.001.

(A, C, E, and H) Red line connects median values at each sampling time point (±95% CI). 

UI, uninfected. N = 25 participants.

See also Figures S3-S5.
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Figure 3. Coordinated activation across different cell types in acute ZIKV infection
(A) Scatterplot of the frequency of ASC B cells and CD38+HLA-DR+ CD8+ T cells in 

acute ZIKV infection with regression line.

(B) Number of significant (p_adj < 0.05) positive and negative correlations between cellular 

immune features that are present in acute ZIKV infection, grouped by those that are unique 

to ZIKV versus those shared with the uninfected (UI) cohort.

(C) Odds ratio (±95% CI) that cellular immune feature correlations unique to ZIKV 

infection are more likely to be associated with different correlation attributes (compared 

with the correlations shared with the UI cohort).

(D and E) Correlation plots of select features uniquely correlated in acute ZIKV infection 

(Spearman’s r with correlation line): (D) adaptive-to-innate immune features and (E) 

negatively correlated features. N = 17 participants (anti-ZIKV IgM- at index visit).
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Figure 4. Correlated immune cell features during acute ZIKV infection
(A) Correlation heatmap depicting Spearman’s correlation values (no significance cutoff) of 

all manually gated features from acute ZIKV infection, representing the 17 participants who 

were ZIKV IgM- (“pre-IgM”) at the index visit. Hierarchical clustering was used to group 

cellular features into five modules. Negatively correlated modules 3 and 5 are indicated with 

bold outlines.

(B) Distribution of (module 5 score - module 3 score) values at the acute visit among the 

pre-IgM study participants. N = 17 participants (anti-ZIKV IgM- at index visit).

See also Figure S5.
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Figure 5. Distinct cellular immune signatures are associated with the development of high versus 
low ZIKV neutralizing antibody titers 6 months after infection
(A) ZIKV neutralizing antibody titers (NT80) measured approximately 6 months post-index 

visit in the overall REDS-III study participants (gray dots) and the sub-cohort studied here 

(black dots). Participants were divided into tertiles based on these values.

(B) Receiver operating characteristic (ROC) curve for predicting high- versus low-titer 

individuals using the difference between the acute-phase module 5 and 3 signature scores.

(C) Heatmap showing Z score-normalized abundance at the acute visit for cellular features 

that were significantly (p_adj < 0.05) increased in high versus low 6-month NT80 titer 

participants at the acute time point. Row annotations for each feature indicate the following: 

mean values in a cross-sectional UI control cohort, whether or not the abundance of the 

feature significantly changed across time between acute to convalescent infection, and 

whether or not the abundance of the feature was also present at a significantly higher 

frequency (p_adj < 0.05) in the same group (high-versus low-titer participants) at the late 

convalescent time point.

(D and E) Abundance (log-adjusted) of features during acute ZIKV infection associated with 

high (D) versus low (E) 6-month neutralizing antibody titers.
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(F) ROC curves for predicting high- versus low-titer individuals using the acute ZIKV 

cellular features from (C) that are associated with high (left) versus low (right) 6-month 

ZIKV NT80 titers.

(G) ROC curves for predicting high-versus low-titer individuals using the late convalescent 

features associated with low 6-month ZIKV neutralizing antibody titers. (B, F, and G) The 

area under the curve (AUC) value and 95% CI for the features corresponding to each curve 

are colored by AUC value for each plot. N = 14 participants with 6-month ZIKV NT80 titer 

data available (anti-ZIKV IgM- at index visit).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mass cytometry antibodies: metal-antigen (clone) Self-conjugated unless from 
Fluidigm

Y89-CD45 (clone HI30) Fluidigm Cat#3089003B; RRID:AB_2661851

In113-CD14 (clone M5E2) BioLegend Cat#301802; RRID:AB_314184

In115-CD123 (clone 6H6) BioLegend Cat#306002; RRID:AB_2661822

La139-CD33 (clone WM53) BioLegend Cat#303402; RRID:AB_314346

Ce140-CD38 (clone HIT2) BioLegend Cat#303502; RRID:AB_314354

Pr141-CD3 (clone UCHT1) BioLegend Cat#300402; RRID:AB_2661835

Nd142-CD19 (clone H1B19) BioLegend Cat#302202; RRID:AB_2661817

Nd143-CXCR3 (clone G025H7) BioLegend Cat#353702; RRID:AB_10983073

Nd144-CD11b (clone ICRF44) BioLegend Cat#301302; RRID:AB_314154

Nd145-CD4 (clone RPA-T4) BioLegend Cat#300502; RRID:AB_314069

Nd146-CD8 (clone RPA-T8) BioLegend Cat#301002; RRID:AB_2661818

Sm147-CD11c (clone Bu15) BioLegend Cat#337202; RRID:AB_1236381

Nd148-CD16 (clone 3G8) BioLegend Cat#302001; RRID:AB_314201

Sm149-CD138 (clone DL-101) BioLegend Cat#352302; RRID:AB_10915555

Eu151-CD21 (clone Bu32) BioLegend Cat#313502; RRID:AB_416326

Sm152-gdTCR (clone 11F2) Fluidigm Cat#3152008B; RRID:AB_2687643

Eu153-CD45RA (clone HI100) BioLegend Cat#304102; RRID:AB_314406

Sm154-CD40 (clone 5C3) BioLegend Cat#334302; RRID:AB_1236384

Gd156-PDL1 (clone 29E.2A3) BioLegend Cat#329702; RRID:AB_940372

Gd157-CD69 (clone FN50) BioLegend Cat#310902; RRID:AB_314837

Gd158-CD27 (clone O323) BioLegend Cat#302802; RRID:AB_2661825

Gd160-Tbet (clone 4B10) BioLegend Cat#644802; RRID:AB_1595503

Dy161-CTLA4 (clone 14D3) Fluidigm Cat#3161004B; RRID:AB_2687649

Dy162-CD80 (clone 2D10.4) Fluidigm Cat#3162010B; RRID:AB_2811101

Dy163-CD86 (clone IT2.2) BioLegend Cat#305401; RRID:AB_314521

Ho165-CD24 (clone MI5) BioLegend Cat#311102; RRID:AB_314851

Er166-NKG2D (clone ON72) Fluidigm Cat#3166016B; RRID:AB_2892110

Er167-FCRL5 (clone 509f6) BioLegend Cat#340302; RRID:AB_2104586

Er168-Ki67 (clone B56) Fluidigm Cat#3168007B; RRID:AB_2800467

Tm169-CD71 (clone CY1G4) BioLegend Cat#334102; RRID:AB_1134247

Er170-IgD (clone IA6-2) BioLegend Cat#348202; RRID:AB_10550095

Yb171-CD20 (clone 2H7) BioLegend Cat#302302; RRID:AB_314250

Yb172-BDCA1 (clone L161) BioLegend Cat#331502; RRID:AB_2661820

Yb173-IgM (clone MHM-88) BioLegend Cat#314502; RRID:AB_493003

Yb174-HLA-DR (clone L243) BioLegend Cat#307602; RRID:AB_314680

Lu175-PD-1 (clone EH12.2H7) BioLegend Cat#329902; RRID:AB_940488

Yb176-CD56 (clone HCD56) Fluidigm Cat#3176008B; RRID:AB_2661813
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REAGENT or RESOURCE SOURCE IDENTIFIER

Sm149-CCR4 (clone 205410) R&D Cat#MAB1567; RRID:AB_2074395

Nd150-OX40 (clone A019D5) BioLegend Cat#351302; RRID:AB_10718513

Eu151-ICOS (clone C398.4A) BioLegend Cat#313539; RRID:AB_2810475

Sm154-CX3CR1 (clone 2A9-1) BioLegend Cat#341602; RRID:AB_1595422

Gd155-CCR6 (clone G034E3) BioLegend Cat#353402; RRID:AB_10918625

Tb159-Vd2 (clone B6) BioLegend Cat#331402; RRID:AB_1089226

Dy162-FOXP3 (clone PCH101) BioLegend Cat#3162011a; RRID:AB_2687650

Dy164-EOMES (clone WD1928) ThermoFisher Cat#14-4877-82; RRID:AB_2572882

Ho165-CD127 (clone A019D5) BioLegend Cat#351302; RRID:AB_10718513

Er166-TIGIT (clone A15153G) BioLegend Cat#372702; RRID:AB_2632714

Er167-CCR7 (clone G043H7) BioLegend Cat#353202; RRID:AB_10945157

Tm169-CD25 (clone 2A3) Fluidigm Cat#3169003B; RRID:AB_2661806

Yb171-CXCR5 (clone RF8B2) Fluidigm Cat#3171014B; RRID:AB_2858239

Yb172-Helios (clone 22F6) BioLegend Cat#137202; RRID:AB_10900638

Yb173-Granzyme B (clone GB11) BioRad Cat#MCA2120; RRID:AB_2114582

Biological samples

Cryopreserved human PBMCs and plasma REDS-III study participants Demographic Data available in Table S1

Chemicals, peptides, and recombinant proteins

Cisplatin Sigma-Aldrich Cat #P4394

eBioscience FoxP3/Transcription Factor Staining Buffer 
Set

Thermo Fisher Scientific Cat #00-5523-00

Maxpar Barcode Perm Buffer Fulidigm Cat #201057

Paraformaldehyde Electron Microscopy Sciences Cat #15710

Intercalator Fluidigm Cat #201103A

Deposited data

Mass cytometry data This paper https://doi.org/10.17632/5cn6cy97b7.2

Software and algorithms

CellEngine CellCarta https://cellcarta.com/cellenginesoftware/

R 3.6.1 The R Foundation https://www.r-project.org/

premessa 0.1.8 R package https://github.com/ParkerICI/premessa

flowCore 1.50.0 Ellis et al., 2019 RRID:SCR_002205

ggplot2 3.2.1 Wickham, 2016 RRID:SCR_014601

nlme 3.1-140 Pinheiro et al., 2019 RRID:SCR_015655

factoextra 1.0.5 Kassambara and Mundt, 2017 RRID:SCR_016692

FactoMineR 1.42 Lê et al., 2008 RRID:SCR_014602

seriation 1.2.8 Hahsler et al., 2008 https://cran.r-project.org/package=seriation

ComplexHeatmap 2.1.1 Gu et al., 2016 RRID:SCR_017270

SCAFFoLD Spitzer et al., 2015 https://github.com/SpitzerLab/
statisticalScaffold

igraph 1.2.4.1 Csardi, 2006 RRID:SCR_019225

pROC 1.17.0.1 Robin et al. 2011 https://CRAN.R-project.org/package=pROC
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