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Vulnerability and robustness in the essential gene complement of two bacterial species, 

profiled with CRISPRi 

Melanie R. Silvis 

 

ABSTRACT 

 

 Bacterial essential genes contribute to the most fundamental processes of cellular life. 

The study of their functions in vivo has long been intractable to systematic genetic approaches, 

which are fundamental to understanding pathway level connections that govern cellular life and 

are a requirement for dissecting the complex cellular processes to which essential genes 

contribute. In Chapter 1 of this work I review recent advances in mapping gene-phenotype 

relationships in bacteria using the CRISPR-based technology, CRISPR interference (CRISPRi) 

for titratable gene knockdowns, focusing on their applications to the studies of essential genes, 

the exploration of chemical-genetic interactions, and the prospects for disentangling complex 

phenotypes in diverse bacterial species. In Chapter 2 I describe my analysis of the essential 

gene functions in the model Gram-negative bacterium Escherichia coli and the model Gram-

positive Bacillus subtilis using datasets from paired chemical-genetic screens. In this work I 

identify both shared and Gram-negative specific mechanisms of collateral sensitization to 

antibiotic action. In Chapter 3 I investigate a fundamental property of essential genes, which is 

the relationship between their expression level and the cellular growth rate. Here, further 

developing CRISPRi tools in bacteria to predictably titrate knockdown efficacy, I interpret the 

knockdown-fitness relationships of each essential gene in E. coli and B. subtilis, discovering 

broad conservation of constraints setting and maintaining expression levels across these 

diverged species.  
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INTRODUCTION 

Bacteria must protect their genetic material from invasive DNA elements such as phages 

and plasmids, and they accomplish this using diverse immune systems (Bernheim and Sorek 

2019) that are tasked with both recognition and response to these molecularly simple foreign 

agents. The mechanisms of these two activities—recognition and the protective responses—

have provided a bountiful source of inspiration for technological development with applications 

in diverse areas including basic research, diagnostics, and therapeutics (Knott and Doudna 

2018; Pickar-Oliver and Gersbach 2019; C. H. Huang, Lee, and Doudna 2018; Y. Li et al. 2019). 

CRISPR immunity systems, arguably the category of bacterial immune systems with the most 

penetrance in recent technological development, couple programmable sequence-specific 

recognition with specified nuclease activities, using either multi-protein or single-effector 

complexes (Hille et al. 2018). Importantly, these systems are highly modular, enabling them to 

be easily ported into different contexts while retaining their targeting and nuclease activities, and 

are often amenable to combination with other enzymes or mutation in order to expand their 

functionalities. 

  A major driver of CRISPR-based technology development is their application in 

functional genomics: coupling genome-scale genetic perturbations with high-throughput 

phenotypic assays to systematically define gene-phenotype relationships. Microbial genomes 

are a major source of new gene content and functionalities. As the pace of bacterial whole-

genome sequencing increases, higher-throughput functional assays must be developed to link 

the identification of novel genes and their products with their cellular roles. CRISPR-based tools 

are poised to bridge the gap between genotype and phenotype, and this review will focus on 

CRISPR interference (CRISPRi) approaches for bacterial gene knockdown. CRISPRi offers 

three specific features that will enable rapid genotype-phenotype associations: (1) it enables 

rapid construction of genome-scale barcoded libraries of pre-programmed gene knockdowns, 

(2) CRISPRi can reduce gene expression to intermediate levels (i.e. not “all or nothing”), 



 3 

allowing the investigation of intermediate phenotypes with specific implications for the essential 

genes, and (3) CRISPRi tools have now been demonstrated to function in diverse microbial 

species, allowing gene functions to be studied across large evolutionary timespans. 

In this review we will discuss recent developments in the application of CRISPRi to 

generate libraries of unique genetic perturbations in bacterial systems of interest, and their 

applications in characterizing gene function. In the process, we will highlight both technological 

and conceptual advances in functional genomics that are afforded by these new scalable 

technologies. 

  

CRISPR interference (CRISPRi) for targeted gene knockdown in bacteria 

The twin roles of CRISPR immunity systems—recognition and nuclease activity—are 

productively uncoupled in CRISPR interference (CRISPRi) approaches, that use nuclease-

inactive effector proteins which retain the ability to stably bind their target DNA, enabling their 

use as programmable transcriptional repressors. In this section we will review the initially 

described features of bacterial CRISPRi and how recent comprehensive analyses have 

provided a more detailed picture that will influence how large-scale functional studies are 

designed and interpreted. 

  To date, the majority of bacterial CRISPRi applications have built on early work using a 

catalytically inactive mutant of the Type II-A Cas9 system from Streptococcus pyogenes 

(dCas9Spy) for programmable repression in Escherichia coli (Qi et al. 2013; Bikard et al. 2013). 

Natural Type II systems consist of a single effector protein (Cas9) which is targeted to DNA by 

the sequence of the spacer region in a two-RNA duplex. In these first concurrent 

demonstrations of bacterial CRISPRi, the two-RNA duplex was supplied using either the natural 

configuration of crRNA:tracrRNA (Bikard et al. 2013) or using a simplified single chimeric 

sgRNA (Qi et al. 2013), in either case the spacer region being easily modified to determine the 

targeted locus. Binding of the dCas9-sgRNA complex to DNA involves a two-part recognition 
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mechanism, one carried out by each member of the complex (Sternberg et al. 2014; Szczelkun 

et al. 2014). First, dCas9 recognizes a short, double-stranded DNA sequence called the 

protospacer adjacent motif (PAM) which is identified by 1D diffusion scanning along DNA 

stretches. Second, the DNA duplex adjacent to the PAM is unwound as a DNA:RNA hybrid is 

formed between the sgRNA spacer region and the target DNA strand. Once the dCas9-sgRNA-

DNA complex and 20bp R-loop is formed it is extremely stable, exhibiting off-rates on the order 

of ~6hr in mammalian cells (Richardson et al. 2016) and the complex is hypothesized to only 

undergo dissociation events in bacterial systems following DNA replication cycles (Jones et al. 

2017). 

  In the initial work establishing bacterial CRISPRi, several important properties of 

CRISPRi were characterized that have, in most cases, been borne out in subsequent 

comprehensive studies. Each of these properties influence the design and interpretation of 

CRISPRi libraries for use in functional genomics. 

  First, the initial work outlined two mechanisms by which CRISPRi can function in 

bacteria. When targeted to promoter regions, dCas9-sgRNA complexes prevent RNAP 

recognition and therefore transcription initiation. Alternatively, when targeted within gene open 

reading frames (ORFs), dCas9-sgRNA binding is sufficient to prevent RNAP elongation, as 

assayed by NET-seq (Churchman and Weissman 2011) in now two species (Qi et al. 2013; 

Peters et al. 2016). The latter mode is more commonly employed in bacterial CRISPRi screens 

to date, and has the advantages of not requiring TSS annotation (Lee et al. 2019) and having 

increased target space within ORFs as opposed to promoter regions. 

Efficacy of knockdown when targeted within ORFs shows clear strandedness. sgRNAs 

designed to base pair with the non-template (coding) strand are more effective than those 

designed to base pair with the template (non-coding) strand, and this has been repeatedly 

shown across species (Peters et al. 2016; Lee et al. 2019; Cui et al. 2018). The molecular 

mechanism explaining this strandedness is not known, however recent in vitro work has shown 
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that template-strand targeted dCas9-sgRNAs are more easily surpassed by both bacterial multi-

subunit RNAPs and by phage single-subunit RNAPs than non-template targeted complexes 

(Widom et al. 2019), suggesting this pass-through property is common across diverse RNAPs. 

Again, most functional genomics approaches using CRISPRi in bacterial systems now 

exclusively use non-template targeting sgRNAs, though some benefits to exploring weak 

perturbations using template-targeting sgRNAs have been discussed (Rousset et al. 2018). 

Although early work with small numbers of sgRNAs suggested that efficacy of repression 

by targeting dCas9-sgRNA complexes within ORFs was location-dependent—targeting 5’ within 

the ORF having a stronger effect than targeting towards the 3’ end (Qi et al. 2013)—more 

comprehensive analysis with larger numbers of sgRNAs has found no significant difference in 

repression, by assaying either expression (protein level) (Hawkins et al. 2019) or indirectly by 

assaying fitness of essential gene knockdowns (Wang et al. 2018). The relatively consistency of 

effects from targeting different loci within the same gene (Hawkins et al. 2019) have lent support 

to analytical approaches that use a synthesis of the measurements from multiple sgRNAs 

targeting the same gene (discussed further below). 

Bacterial genes are often organized into clusters (operons) that are co-transcribed, and 

because CRISPRi acts by interfering with transcription elongation the potential to interfere with 

the expression of neighboring genes is a central concern that continues to be explored. Early 

work conceptualized these effects in two distinct categories: the expression of genes 

downstream of the targeted gene was anticipated to be reduced as elongating RNAP were 

stalled before reaching their ORFs (CRISPRi “forward polarity”), and by an incompletely 

understood mechanism genes upstream of the targeted gene were frequently observed to be 

repressed (CRISPRi “reverse polarity”). Both forward and reverse polarity were shown to 

function in B. subtilis using a synthetic rfp-gfp operon, with forward polarity having a stronger 

effect than reverse polarity (Peters et al. 2016). These data support the conclusion that bacterial 

CRISPRi can provide operon-level functional classification. 
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Both forward and reverse polarity have been challenging to employ as assumptions in 

functional analysis. First, forward polar effects from targeting non-essential genes upstream of 

essential genes have comprised a relatively low percentage of false positives in essential gene 

assignments using CRISPRi in E. coli (Wang et al. 2018; Rousset et al. 2018), highlighting 

incomplete knowledge of transcription unit organization even in well-studied species. Second, 

comprehensive descriptions of reverse polar effects have been similarly case-by-case, with a 

more general position-dependent effect when targeting within 50bp of the ends of upstream 

genes, and a small number of cases seeming to cause reverse polarity for targeting at any 

position (Wang et al. 2018). 

         Almost certainly there are multiple layers occluding the underlying phenomenon in these 

reports. The first is that it has been traditionally easiest to measure the effects of targeting up- or 

down-stream of essential genes on fitness as a proxy for polar effects on transcription, or by 

using synthetic operons of fluorescent proteins. Each has caveats that may prevent 

generalization. Furthermore, while the (or any) mechanism of reverse polarity is incompletely 

understood, species-specific effects remain a likely source of discrepant results. 

  A third property suggested by early bacterial CRISPRi applications is that targeting in 

bacterial genomes was highly specific. Using RNA-seq, sgRNAs targeting a non-endogenous 

gene (rfp) have been shown to not interfere with endogenous gene expression (Qi et al. 2013; 

Peters et al. 2016; Qu et al. 2019), arguing that targeting specificity is theoretically high in 

relatively small bacterial genomes that have limited off-target sequence potential. At odds with 

these demonstrations, evidence in support of relaxed targeting constraints was also explored 

early on, suggesting that targeting required the PAM sequence and at least 12bp of PAM-

proximal sequence (Qi et al. 2013; Bikard et al. 2013). More recent phenotypic screens have 

further characterized the impact of these relaxed targeting constraints on phenotype 

assignment, identifying multiple cases where off-target effects are a source of false positives, for 

example in identification of genes contributing to fitness (Rousset et al. 2018; Cui et al. 2018). 
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These studies have characterized 9 or 11bp of sequence identity to promoter targeting or non-

template strand targeting (respectively) as sufficient to interfere with expression at an off-target 

site. These findings highlight the requirement of multiple sgRNAs per target gene in functional 

screens to avoid false positives, as targeting specificity is not ensured by the uniqueness of 

23bp (spacer + PAM) in the genome. 

Reconceptualizing these relaxed targeting requirements as an asset to CRISPRi 

approaches, modifications to sgRNA spacers that impact targeting efficacy are emerging as key 

levers by which to predictably tune knockdown and to therefore explore intermediate 

phenotypes. The majority of bacterial CRISPRi approaches have controlled the cellular 

concentrations of dCas9-sgRNA complex to modulate knockdown efficacy, usually by regulating 

the expression of either or both complex members using defined inducible promoters (Qi et al. 

2013; Peters et al. 2016; X. Li et al. 2016; Cui et al. 2018; Rock et al. 2017). This has enabled, 

for example, the exploration of fitness-promoting genes by constructing CRISPRi libraries in 

permissive conditions (dCas9 or sgRNA is not expressed) and experimentation in non-

permissive conditions (dCas9 or sgRNA expression is maximally induced). However, as detailed 

above, perfect complementarity between the 20bp spacer region of the sgRNA and the target 

DNA is not required for gene knockdown, as was appreciated early in the discovery of Type II 

systems (Jinek et al. 2012), and early evidence suggested that intermediate knockdown effects 

could be achieved by deliberately introducing mismatched bases into spacers at precise 

locations.  

The underlying logic of the impacts on dCas9-sgRNA binding by single mismatches 

have now been evaluated in a number of assays, with results in general agreement with a few 

bacterial CRISPRi-specific lessons. A comprehensive analysis of all single-mismatch variants 

targeting gfp in two bacterial species in a CRISPRi assay has shown that the impacts of single-

mismatches can be reliably and precisely predicted by a simple model using only sequence 

features of the spacer region (Hawkins et al. 2019). This comprehensive dataset captured the 
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full range of intermediate efficacies and found that—in agreement with early reports (Qi et al. 

2013)—mismatches in the seed (PAM-adjacent) region had the largest impacts on efficacy, but 

that even PAM-distal single mismatch variants retained measurable activity. Two recent large 

studies of singly mismatched sgRNAs are in general agreement with the results from this 

analysis, highlighting the universal nature of the CRISPRi mechanism. A large dataset of 

dCas9-sgRNA association rates in vitro to diverse DNA substrates (Boyle et al. 2017) showed 

the same seed-region sensitivity to mismatches, but found that sgRNAs were completely 

tolerant of mismatches at the very distal end of the spacer (positions 19-20) in this assay. 

Similarly, in a recent mammalian CRISPRi study, singly mismatched sgRNAs were used to 

repress essential genes and achieve intermediate growth rates (Jost et al. 2019). This dataset—

relating many sequence features of the sgRNA spacer and mismatch identity to growth rate—

was used to develop an elastic net linear regression model capturing a majority of the variance 

in the dataset (r2=0.52 between predicted and measured growth rates). Again, this model 

describes a system in which mismatches at the distal sgRNA end are completely tolerated, in 

agreement with the in vitro association rate measurements. One interpretation of these data is 

that (1) bacterial systems are a very sensitive assay for dCas9-sgRNA binding, in which very 

slow association rates can be captured, perhaps because the effects are amplified by multiple 

dCas9-sgRNA-DNA interactions per cell, and (2) that mechanistic differences in the mammalian 

CRISPRi systems which use KRAB fusions to recruit stable, silencing chromatin modifications 

again reduce sensitivity to small changes in sgRNA efficacy. If true, bacterial CRISPRi systems 

may represent a novel assay for fundamental properties of dCas9-sgRNA-DNA interactions, for 

example in how anti-CRISPR proteins interact with them to prevent binding (Rauch et al. 2017). 

 The potential to predictably tune knockdown via the deliberate introduction of single 

mismatches into sgRNAs opens up many experimental opportunities to systematically 

characterize gene function. Because mismatches are introduced into the spacer which can be 

used as a strain barcode in next-generation sequencing, multiple intermediate levels of target 
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gene knockdown can be assessed within the same pool and the same experiment. Compared 

to titration of knockdown by inducing dCas9-sgRNA complex concentration, some experimental 

and theoretical work has made the case that tuning knockdown efficacy in the latter way is 

prone to noise and dependence on native expression levels of the targeted genes (Vigouroux et 

al. 2018). Instead, the authors provide evidence that tuning knockdown using sgRNAs with 

mismatches between their spacers and the target DNA experiences less noise. While the 

proposed mechanism of this distinction—that RNAP dislodges dCas9-sgRNA complexes when 

sgRNAs are mismatched—remains to be fully supported, in vitro it has been shown that E. coli 

RNAP passes through even fully matched dCas9-sgRNA complexes on DNA ~30% of the time 

and does not dissociate when it reaches the blockade (Widom et al. 2019). This is consistent 

with persistent attempts to pass through even fully matched dCas9-sgRNA-DNA complexes, 

possibly suggested by the observed NET-seq signals of pausing (Qi et al. 2013; Peters et al. 

2016). 

Finally, multiple reports have noted the unsuitability of specific CRISPRi system variants 

for certain bacterial species and characterized some important issues that should be 

incorporated into the design and analysis of CRISPRi screens for gene function. Toxicity caused 

by dCas9 expression has now been identified by multiple groups (Qu et al. 2019; Rock et al. 

2017) as an sgRNA-independent phenomenon, although the mechanism remains unclear. In 

some cases, toxicity is specifically related to the dCas9 variant used (Rock et al. 2017) and 

manifests as generalized sensitivity to stresses. In other cases, toxicity is a function of 

expression level (Qu et al. 2019). High levels of expression of dCas9-sgRNA complexes have 

also been shown to have sequence-specific toxicities in E. coli (Cui et al. 2018), suggesting that 

it is not the translation load alone that can interfere with normal cell physiology. Users of 

CRISPRi to investigate genotype-phenotype relationships must clearly avoid and control for 

possible non-specific phenotypes, which can be addressed, for example, by evaluating large 

numbers of non-targeting sgRNAs. 
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CRISPRi and assays for gene function 

CRISPRi has to date been used to explore bacterial gene function in two primary modes, 

and almost exclusively in model species. In the first mode, relatively small arrayed CRISPRi 

libraries (<500 sgRNAs) are constructed and deeply phenotyped using relatively low throughput 

quantitative assays. This has been optimally applied for “systems biology approaches”: 

simultaneously capturing the networks of functional interactions between targeted genes by 

quantifying large numbers of independent phenotypes. In the second type of approach, 

advances in parallel oligo synthesis strategies enable the construction of large pooled libraries 

(>30,000 sgRNAs) which are phenotyped in a more limited manner. These works have been 

more in line with “functional genomics”: addressing targeted questions about the contributions of 

individual genes to a specific process, usually one that is linked to growth or fitness. Forward-

looking strategies will likely capitalize on the benefits afforded by each (including development 

of bespoke phenotypic assays for pathways of interest), aim to increase the throughput for deep 

phenotyping of larger libraries, and extend CRISPRi screens for gene function to diverse 

species. 

 

Arrayed CRISPRi approaches to identify gene function 

Chemical-genetic approaches query large numbers of genetic perturbations for their 

ability to influence sensitivity or resistance to small molecule inhibitors of growth (reviewed in 

(Cacace, Kritikos, and Typas 2017)). By profiling growth quantitatively across large numbers of 

chemical conditions, these “phenotypic signatures” have provided an important means to 

identify functional interactions between genes and even to identify functions for uncharacterized 

genes using “guilt by association” logic. In bacteria and in yeast, chemical-genetic screening 

technologies have embraced arrayed library formats, enabling collection of chemical 

phenotypes of bacterial genome-wide deletion libraries (Nichols et al. 2011; Shiver et al. 2016; 

Kritikos et al. 2017) and heterozygous and homozygous yeast deletion libraries (Hillenmeyer et 
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al. 2008). Importantly, the ability to screen yeast genes in a haploid state (heterozygous gene 

deletions) extended the surveyable genetic space to essential genes—genes for which a cell 

cannot tolerate the loss of both copies. The profiling of bacterial essential genes has now 

recently moved into the same theoretical domain, using CRISPRi libraries that partially reduce 

essential genes’ expression. This has enabled the first characterization of a bacterial essential 

gene interaction network in B. subtilis, importantly using phenotypic signatures to link one 

essential gene of unknown function (ylaN) to known pathways in iron-sulfur cluster biogenesis 

(Peters et al. 2016). 

 Chemical-genetic profiling is reliant on the number, diversity, and specificity of conditions 

available in which to screen for phenotypes in order to resolve the functions of cellular 

pathways. Therefore, the use of small molecule antibiotics has been primary. Importantly, there 

is a secondary outcome of comprehensively screening for the determinants of antibiotic 

resistances, which is a more complete picture of the intrinsic and acquirable mechanisms of 

resistance that bacteria possess (Shiver et al. 2016). The ability to screen essential genes for 

their contribution to these mechanisms may be profound, as essential genes are usually the 

direct targets of drugs (Peters et al. 2016) and are largely conserved across diverse species 

(Koo et al. 2017; Grazziotin, Vidal, and Venancio 2015). Datasets of chemical-genetic 

interactions for bacterial essential genes may also support predictions of synergistic antibiotic 

combinations, which have been found to be rare (Brochado et al. 2018). As more species are 

screened and phenotyped in this manner, the generalizability of chemical-genetic interactions—

and therefore antibiotic resistance and sensitization mechanisms—can be assessed. 

 Morphological variation is another source of complex and quantifiable phenotypes with 

which to understand gene function (K. C. Huang 2015; Campos et al. 2018). Multiple points can 

be made to support the value of capturing morphological phenotypes from arrayed CRISPRi 

libraries: first, cell morphology is deeply tied to fitness and takes inputs from diverse cellular 

processes; second, cell to cell variability is a meaningful morphological property; third, the 
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dynamics of morphological change over time are informative; and finally, capturing strain 

phenotypes individually can also support more fine-grained analysis including protein 

localization (Kuwada, Traxler, and Wiggins 2015) and subcellular properties such as nucleoid 

structure (Nonejuie et al. 2013). 

 CRISPRi libraries specifically can aid in these approaches by offering the ability to titrate 

gene knockdown. Whereas strong perturbations might converge on one catastrophic 

morphological outcome, slight perturbations may provide more diverse outcomes related to 

specific gene function. Strong knockdown of essential genes, on the other hand, has also been 

useful in ascribing general gene function (Peters et al. 2016; Veening and Liu 2017). The 

microscopy hardware, automated image capture software, and analysis tools have all made 

great strides towards accommodating the capture of many strain phenotypes in parallel (Ursell 

et al. 2017; Shi, Colavin, Lee, et al. 2017; Campos et al. 2018). 

 The future prospects for high-content phenotype capture for arrayed bacterial CRISPRi 

libraries are exciting. In some cases, it will remain easier to design and create arrayed CRISPRi 

libraries than other forms of libraries used for reverse genetic screens, in particular where 

essential gene phenotypes are important. Some complex phenotypes will be best explored 

using assays of separate strains, in particular those phenotypes for which multiplexing is not 

possible (Fuhrer 2016; Breinig et al. 2015), where cell-to-cell heterogeneity is important to 

quantify, or where cross-complementation between different genetic backgrounds is an issue. 

Because arrayed libraries are intrinsically barcoded by their sgRNA spacers, arrayed libraries 

can be pooled before assaying if barcode counting by next-generation sequencing is available. 

This approach ensures an even distribution of each mutant, which can aid in sensitivity for 

enrichment or depletion assays (Peters et al. 2019). Arrayed libraries might also provide a 

helpful starting position for the investigation of genetic interactions. 
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Genome-wide, pooled CRISPRi libraries to characterize specific phenotypes 

In the second mode of CRISPRi screens for gene function, pooled library construction 

achieves high complexity, allowing comprehensive analysis of many genes with high statistical 

power. This has already been applied to the identification of genes that promote a fundamental 

bacterial property: growth in rich media. While these examples of genome wide tiling CRISPRi 

libraries in E. coli (Wang et al. 2018; Cui et al. 2018) have explored the sources of false 

positives in depletion based screens, their use in an understudied Vibrio species (Lee et al. 

2019) has clearly demonstrated their value in identifying new biology.  

The contributions of genes to growth can themselves be dissected further in these 

pooled assays. For example, titrating knockdown of essential genes using single-mismatch 

sgRNAs has allowed the characterization of “knockdown-fitness curves” representing the 

relationship between attempted knockdown and growth rate (Hawkins et al. 2019). This 

relationship encompasses the ways in which bacteria may be robust to CRISPRi knockdown—

expression of essential genes in excess of what they’re required to support growth, or feedback 

on expression to maintain optimal levels (Rousset et al. 2018)—and can identify points of 

vulnerability, where no robustness to knockdown is observed. These features feed into the 

reconceptualization of essentiality as a quantitative trait with many facets, including evolvability 

and environmental dependence (Rancati et al. 2018). Large, complex libraries also support the 

evaluation of essentiality with respect to genetic and environmental contexts, for example by 

screening a common pool of sgRNAs in differing genetic backgrounds, or by testing depletion in 

different conditions. The use of simple enrichment or depletion screens to identify genes 

contributing to a specific process of interest is already being explored. For example, tolerance to 

the presence of industrial chemicals is a desirable feature for bioproduction (Wang et al. 2018), 

or in an interesting dissection of a more complex phenotype, genes supporting the infection and 

reproduction of diverse phage (Rousset et al. 2018). 
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With regards to large pooled CRISPRi libraries, a few technical points continue to arise 

and have been addressed using distinct methodologies from different groups. First and foremost 

is the quantification of per-strain fitness in optimal growth conditions. Following work in 

mammalian systems with CRISPR/CRISPRi libraries, some recent studies (Hawkins et al. 2019; 

Wang et al. 2018) have favored the use of growth metrics that use steady-state growth 

assumptions to calculate effective doubling time relative to an estimate of wild-type doubling 

time (Gilbert et al. 2014; Kampmann, Bassik, and Weissman 2013; Jost et al. 2019). This 

approach requires accurate estimation of wild-type doubling, which can be done using large 

numbers of unique non-targeting sgRNAs and provides an effective means of distinguishing 

slight growth phenotypes from noise. It also requires, however, that steady-state growth 

assumptions are reasonable given the experimental design, for example by maintaining 

exponential growth through back-dilution. In other cases, the experimental question does not 

rely on differentiating intermediate phenotypes, and rather seeks to categorize genes as (for 

example) growth promoting or not. In these cases, recent work has avoided the use of non-

targeting control sgRNAs and instead estimated significance using the statistical framework 

from common RNA-seq approaches implemented in DESeq2 (Love, Huber, and Anders 2014) 

or using approaches to maximize sensitivity to small effect sizes using maximum likelihood 

estimates and combining the information from multiple sgRNAs targeting the same gene (Lee et 

al. 2019; W. Li et al. 2014).  

In the future, we anticipate the development of further assays for combination with 

CRISPRi libraries in a few specific directions. First, screens for complex phenotypes that 

support follow up screens for each step of the biological process of interest. Second, the use of 

fitness-independent enrichments and depletions. FACS-based separation of complex libraries 

using differences in fluorescence (Hawkins et al. 2019) or even morphological characteristics 

like single-cell width (Shi, Colavin, Bigos, et al. 2017) is a facile method well-suited to genome-

scale questions. Fluorescence can be tied to pathway activation (i.e. signaling, stress response 
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activation, differentiation processes) for a genome scale library. Finally, the growing application 

of CRISPRi tools to diverse bacterial species (Peters et al. 2019) will provide access to more 

complex and relevant phenotypes from non-model species, including pathogenesis (Qu et al. 

2019), but also provide an exciting new lens with which to view gene function. The cross-

species comparison of gene function, in particular for largely conserved sets of genes such as 

the essential genes, using directly comparable CRISPRi tools, will provide an unprecedented 

view of the fundamental requirements of bacterial cell physiology and where adaptation has 

allowed new properties to emerge. 

 

  



 16 

REFERENCES 

Bernheim, Aude, and Rotem Sorek. 2019. “The Pan-Immune System of Bacteria: Antiviral 

Defence as a Community Resource.” Nature Reviews Microbiology. 

https://doi.org/10.1038/s41579-019-0278-2. 

Bikard, David, Wenyan Jiang, Poulami Samai, Ann Hochschild, Feng Zhang, and Luciano A 

Marraffini. 2013. “Programmable Repression and Activation of Bacterial Gene Expression 

Using an Engineered CRISPR-Cas System.” Nucleic Acids Research 41 (15). 

https://doi.org/10.1093/nar/gkt520. 

Boyle, Evan A., Johan O.L. Andreasson, Lauren M. Chircus, Samuel H. Sternberg, Michelle J. 

Wu, Chantal K. Guegler, Jennifer A. Doudna, and William J. Greenleaf. 2017. “High-

Throughput Biochemical Profiling Reveals Sequence Determinants of DCas9 off-Target 

Binding and Unbinding.” Proceedings of the National Academy of Sciences of the United 

States of America 114 (21): 5461–66. https://doi.org/10.1073/pnas.1700557114. 

Breinig, Marco, Felix A Klein, Wolfgang Huber, and Michael Boutros. 2015. “A Chemical–

Genetic Interaction Map of Small Molecules Using High-throughput Imaging in Cancer 

Cells.” Molecular Systems Biology 11 (12): 846. https://doi.org/10.15252/msb.20156400. 

Brochado, Ana Rita, Anja Telzerow, Jacob Bobonis, Manuel Banzhaf, André Mateus, Joel 

Selkrig, Emily Huth, et al. 2018. “Species-Specific Activity of Antibacterial Drug 

Combinations.” Nature 559 (7713): 259–63. https://doi.org/10.1038/s41586-018-0278-9. 

Cacace, Elisabetta, George Kritikos, and Athanasios Typas. 2017. “Chemical Genetics in Drug 

Discovery.” Current Opinion in Systems Biology 4: 35–42. 

https://doi.org/10.1016/j.coisb.2017.05.020. 

Campos, Manuel, Sander K Govers, Irnov Irnov, Genevieve S Dobihal, François Cornet, and 

Christine Jacobs-Wagner. 2018. “Genomewide Phenotypic Analysis of Growth, Cell 

Morphogenesis, and Cell Cycle Events in Escherichia Coli.” Molecular Systems Biology 14 

(6): e7573. https://doi.org/10.15252/msb.20177573. 



 17 

Churchman, L Stirling, and Jonathan S Weissman. 2011. “Nascent Transcript Sequencing 

Visualizes Transcription at Nucleotide Resolution.” Nature 469 (7330): 368–73. 

https://doi.org/10.1038/nature09652. 

Cui, Lun, Antoine Vigouroux, François Rousset, Hugo Varet, Varun Khanna, and David Bikard. 

2018. “A CRISPRi Screen in E. Coli Reveals Sequence-Specific Toxicity of DCas9.” Nature 

Communications 9 (1). https://doi.org/10.1038/s41467-018-04209-5. 

Fuhrer, Tobias. 2016. “Genomewide Landscape of Gene-Metabolome Associations in 

Escherichia Coli.” Mol Syst Biol 12 (888): 1–14. https://doi.org/10.15252/msb. 

Gilbert, Luke A, Max A Horlbeck, Britt Adamson, Jacqueline E Villalta, Yuwen Chen, Evan H 

Whitehead, Carla Guimaraes, et al. 2014. “Genome-Scale CRISPR-Mediated Control of 

Gene Repression and Activation.” Cell 159: 647–61. 

https://doi.org/10.1016/j.cell.2014.09.029. 

Grazziotin, Ana Laura, Newton M. Vidal, and Thiago M. Venancio. 2015. “Uncovering Major 

Genomic Features of Essential Genes in Bacteria and a Methanogenic Archaea.” FEBS 

Journal 282 (17): 3395–3411. https://doi.org/10.1111/febs.13350. 

Hawkins, John S, Melanie R Silvis, Byoung-Mo Koo, Jason M Peters, Marco Jost, Cameron C 

Hearne, Jonathan S Weissman, Horia Todor, and Carol A Gross. 2019. “Modulated 

Efficacy CRISPRi Reveals Evolutionary Conservation of Essential Gene Expression-

Fitness Relationships in Bacteria.” BioRxiv, 805333. https://doi.org/10.1101/805333. 

Hille, Frank, Hagen Richter, Shi Pey Wong, Majda Bratovi, Sarah Ressel, and Emmanuelle 

Charpentier. 2018. “The Biology of CRISPR-Cas: Backward and Forward.” Cell 172: 1239–

59. https://doi.org/10.1016/j.cell.2017.11.032. 

Hillenmeyer, Maureen E., Eula Fung, Jan Wildenhain, Sarah E. Pierce, Shawn Hoon, William 

Lee, Michael Proctor, et al. 2008. “The Chemical Genomic Portrait of Yeast: Uncovering a 

Phenotype for All Genes.” Science. https://doi.org/10.1126/science.1150021. 

Huang, Chun Hao, Ko Chuan Lee, and Jennifer A Doudna. 2018. “Applications of CRISPR-Cas 



 18 

Enzymes in Cancer Therapeutics and Detection.” Trends in Cancer. 

https://doi.org/10.1016/j.trecan.2018.05.006. 

Huang, Kerwyn Casey. 2015. “Applications of Imaging for Bacterial Systems Biology.” Current 

Opinion in Microbiology 27: 114–20. https://doi.org/10.1016/j.mib.2015.08.003. 

Jinek, Martin, Krzysztof Chylinski, Ines Fonfara, Michael Hauer, Jennifer A Doudna, and 

Emmanuelle Charpentier. 2012. “A Programmable Dual-RNA-Guided DNA Endonuclease 

in Adaptive Bacterial Immunity.” Science 337 (6096): 816–21. 

https://doi.org/10.1126/science.1225829. 

Jones, Daniel Lawson, Prune Leroy, Cecilia Unoson, David Fange, Vladimir Ćurić, Michael J 

Lawson, and Johan Elf. 2017. “Kinetics of DCas9 Target Search in Escherichia Coli.” 

Science 357 (6358): 1420–24. https://doi.org/10.1126/science.aah7084. 

Jost, Marco, Daniel A Santos, Reuben A Saunders, Max A Horlbeck, John S Hawkins, Sonia M 

Scaria, Thomas M Norman, et al. 2019. “Titrating Gene Expression with Series of 

Systematically Compromised CRISPR Guide RNAs.” BioRxiv, 717389. 

https://doi.org/10.1101/717389. 

Kampmann, Martin, Michael C Bassik, and Jonathan S Weissman. 2013. “Integrated Platform 

for Genome-Wide Screening and Construction of High-Density Genetic Interaction Maps in 

Mammalian Cells.” Proceedings of the National Academy of Sciences 110 (25): E2317–26. 

https://doi.org/10.1073/pnas.1307002110. 

Knott, Gavin J, and Jennifer A Doudna. 2018. “CRISPR-Cas Guides the Future of Genetic 

Engineering.” Science. https://doi.org/10.1126/science.aat5011. 

Koo, Byoung-Mo, George Kritikos, Jeremiah D. Farelli, Horia Todor, Kenneth Tong, Harvey 

Kimsey, Ilan Wapinski, et al. 2017. “Construction and Analysis of Two Genome-Wide 

Deletion Libraries for Bacillus Subtilis.” Cell Systems. http://www.cell.com/cell-

systems/pdf/S2405-4712(16)30447-1.pdf. 

Kritikos, George, Manuel Banzhaf, Lucia Herrera-Dominguez, Alexandra Koumoutsi, Morgane 



 19 

Wartel, Matylda Zietek, and Athanasios Typas. 2017. “A Tool Named Iris for Versatile High-

Throughput Phenotyping in Microorganisms.” Nature Microbiology 2. 

https://doi.org/10.1038/nmicrobiol.2017.14. 

Kuwada, Nathan J., Beth Traxler, and Paul A. Wiggins. 2015. “Genome-Scale Quantitative 

Characterization of Bacterial Protein Localization Dynamics throughout the Cell Cycle.” 

Molecular Microbiology 95 (1): 64–79. https://doi.org/10.1111/mmi.12841. 

Lee, Henry H, Nili Ostrov, Brandon G. Wong, Michaela A. Gold, Ahmad S. Khalil, and George 

M. Church. 2019. “Functional Genomics of the Rapidly Replicating Bacterium Vibrio 

Natriegens by CRISPRi.” Nature Microbiology. https://doi.org/10.1038/s41564-019-0423-8. 

Li, Wei, Han Xu, Tengfei Xiao, Le Cong, Michael I Love, Feng Zhang, Rafael A Irizarry, Jun S. 

Liu, Myles Brown, and X. Shirley Liu. 2014. “MAGeCK Enables Robust Identification of 

Essential Genes from Genome-Scale CRISPR/Cas9 Knockout Screens.” Genome Biology 

15 (12): 554. https://doi.org/10.1186/s13059-014-0554-4. 

Li, Xin-tian, Yonggun Jun, Michael J Erickstad, Steven D Brown, Adam Parks, Donald L Court, 

and Suckjoon Jun. 2016. “TCRISPRi : Tunable and Reversible , One-Step Control of Gene 

Expression.” Nature Publishing Group, 1–12. https://doi.org/10.1038/srep39076. 

Li, Yi, Shiyuan Li, Jin Wang, and Guozhen Liu. 2019. “CRISPR/Cas Systems towards Next-

Generation Biosensing.” Trends in Biotechnology. 

https://doi.org/10.1016/j.tibtech.2018.12.005. 

Love, Michael I, Wolfgang Huber, and Simon Anders. 2014. “Moderated Estimation of Fold 

Change and Dispersion for RNA-Seq Data with DESeq2.” Genome Biology 15: 550. 

https://doi.org/10.1186/s13059-014-0550-8. 

Nichols, Robert J, Saunak Sen, Yoe Jin Choo, Pedro Beltrao, Matylda Zietek, Rachna Chaba, 

Sueyoung Lee, et al. 2011. “Phenotypic Landscape of a Bacterial Cell.” Cell 144 (1): 143–

56. https://doi.org/10.1016/j.cell.2010.11.052. 

Nonejuie, Poochit, Michael Burkart, K. Pogliano, and Joe Pogliano. 2013. “Bacterial Cytological 



 20 

Profiling Rapidly Identifies the Cellular Pathways Targeted by Antibacterial Molecules.” 

Proceedings of the National Academy of Sciences 110 (40): 16169–74. 

https://doi.org/10.1073/pnas.1311066110. 

Peters, Jason M., Alexandre Colavin, Handuo Shi, Tomasz L. Czarny, Matthew H. Larson, 

Spencer Wong, John S. Hawkins, et al. 2016. “A Comprehensive, CRISPR-Based 

Functional Analysis of Essential Genes in Bacteria.” Cell 165 (6): 1493–1506. 

https://doi.org/10.1016/j.cell.2016.05.003. 

Peters, Jason M, Byoung-Mo Koo, Ramiro Patino, Gary E Heussler, Cameron C Hearne, Jiuxin 

Qu, Yuki F Inclan, et al. 2019. “Enabling Genetic Analysis of Diverse Bacteria with Mobile-

CRISPRi.” Nature Microbiology. https://doi.org/10.1038/s41564-018-0327-z. 

Pickar-Oliver, Adrian, and Charles A Gersbach. 2019. “The next Generation of CRISPR–Cas 

Technologies and Applications.” Nature Reviews Molecular Cell Biology. 

https://doi.org/10.1038/s41580-019-0131-5. 

Qi, Lei S, Matthew H Larson, Luke A Gilbert, Jennifer A Doudna, Jonathan S Weissman, Adam 

P Arkin, and Wendell A Lim. 2013. “Repurposing CRISPR as an RNA-Guided Platform for 

Sequence-Specific Control of Gene Expression.” Cell 152 (5): 1173–83. 

https://doi.org/10.1016/j.cell.2013.02.022. 

Qu, Jiuxin, Neha K Prasad, Michelle A Yu, Shuyan Chen, Amy Lyden, Nadia Herrera, Melanie R 

Silvis, et al. 2019. “Modulating Pathogenesis with MOBILE-CRISPRI.” Journal of 

Bacteriology 201 (22): 1–9. https://doi.org/10.1128/JB.00304-19. 

Rancati, Giulia, Jason Moffat, Athanasios Typas, and Norman Pavelka. 2018. “Emerging and 

Evolving Concepts in Gene Essentiality.” Nature Reviews. Genetics. 

https://doi.org/10.1038/nrg.2017.74. 

Rauch, B.J., M.R. Silvis, J.F. Hultquist, C.S. Waters, M.J. McGregor, N.J. Krogan, and J. Bondy-

Denomy. 2017. “Inhibition of CRISPR-Cas9 with Bacteriophage Proteins.” Cell 168 (1–2). 

https://doi.org/10.1016/j.cell.2016.12.009. 



 21 

Richardson, Christopher D, Graham J Ray, Mark A Dewitt, Gemma L Curie, and Jacob E Corn. 

2016. “Enhancing Homology-Directed Genome Editing by Catalytically Active and Inactive 

CRISPR-Cas9 Using Asymmetric Donor DNA” 34 (3). https://doi.org/10.1038/nbt.3481. 

Rock, Jeremy M., Forrest F. Hopkins, Alejandro Chavez, Marieme Diallo, Michael R. Chase, 

Elias R. Gerrick, Justin R. Pritchard, et al. 2017. “Programmable Transcriptional 

Repression in Mycobacteria Using an Orthogonal CRISPR Interference Platform.” Nature 

Microbiology 2 (February): 1–9. https://doi.org/10.1038/nmicrobiol.2016.274. 

Rousset, Francois, Lun Cui, Elise Siouve, Christophe Becavin, Florence Depardieu, and David 

Bikard. 2018. “Genome-Wide CRISPR-DCas9 Screens in E. Coli Identify Essential Genes 

and Phage Host Factors.” PLoS Genetics 74 (4): 417–22. 

https://doi.org/10.1371/journal.pgen.1007749. 

Shi, Handuo, Alexandre Colavin, Marty Bigos, Carolina Tropini, Russell D. Monds, and Kerwyn 

Casey Huang. 2017. “Deep Phenotypic Mapping of Bacterial Cytoskeletal Mutants Reveals 

Physiological Robustness to Cell Size.” Current Biology 27 (22): 3419-3429.e4. 

https://doi.org/10.1016/j.cub.2017.09.065. 

Shi, Handuo, Alexandre Colavin, Timothy K Lee, and Kerwyn Casey Huang. 2017. “Strain 

Library Imaging Protocol for High-Throughput, Automated Single-Cell Microscopy of Large 

Bacterial Collections Arrayed on Multiwell Plates.” Nature Protocols 12 (2): 429–38. 

https://doi.org/10.1038/nprot.2016.181. 

Shiver, Anthony L, Hendrik Osadnik, George Kritikos, Bo Li, Nevan Krogan, Athanasios Typas, 

and Carol A Gross. 2016. “A Chemical-Genomic Screen of Neglected Antibiotics Reveals 

Illicit Transport of Kasugamycin and Blasticidin S.” PLoS Genetics 12 (6). 

https://doi.org/10.1371/journal.pgen.1006124. 

Sternberg, Samuel H, Sy Redding, Martin Jinek, Eric C Greene, and Jennifer A Doudna. 2014. 

“DNA Interrogation by the CRISPR RNA-Guided Endonuclease Cas9.” Nature 507 (7490): 

62–67. https://doi.org/10.1038/nature13011. 



 22 

Szczelkun, Mark D, Maria S Tikhomirova, Tomas Sinkunas, Giedrius Gasiunas, Tautvydas 

Karvelis, Patrizia Pschera, Virginijus Siksnys, and Ralf Seidel. 2014. “Direct Observation of 

R-Loop Formation by Single RNA-Guided Cas9 and Cascade Effector Complexes.” 

Proceedings of the National Academy of Sciences of the United States of America 111 

(27): 9798–9803. https://doi.org/10.1073/pnas.1402597111. 

Ursell, Tristan, Timothy K. Lee, Daisuke Shiomi, Handuo Shi, Carolina Tropini, Russell D. 

Monds, Alexandre Colavin, et al. 2017. “Rapid, Precise Quantification of Bacterial Cellular 

Dimensions across a Genomic-Scale Knockout Library.” BMC Biology 15 (1): 1–15. 

https://doi.org/10.1186/s12915-017-0348-8. 

Veening, Jan-Willem, and Xue Liu. 2017. “High-throughput CRISPRi Phenotyping Identifies 

New Essential Genes in Streptococcus Pneumoniae.” Mol Syst Biol 12 (888): 1–14. 

https://doi.org/10.15252/msb. 

Vigouroux, Antoine, Enno Oldewurtel, Lun Cui, David Bikard, and Sven van Teeffelen. 2018. 

“Tuning DCas9’s Ability to Block Transcription Enables Robust, Noiseless Knockdown of 

Bacterial Genes.” Molecular Systems Biology 14 (3): e7899. 

https://doi.org/10.15252/msb.20177899. 

Wang, Tianmin, Changge Guan, Jiahui Guo, Bing Liu, Yinan Wu, Zhen Xie, Chong Zhang, and 

Xin Hui Xing. 2018. “Pooled CRISPR Interference Screening Enables Genome-Scale 

Functional Genomics Study in Bacteria with Superior Performance-Net.” Nature 

Communications 9 (1). https://doi.org/10.1038/s41467-018-04899-x. 

Widom, Julia R., Victoria Rai, Christopher E. Rohlman, and Nils G. Walter. 2019. “Versatile 

Transcription Control Based on Reversible DCas9 Binding.” RNA 25 (11): 1457–69. 

https://doi.org/10.1261/rna.071613.119. 

 



 23 

Chapter 2 

Functional analysis of E. coli essential genes using CRISPRi   
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INTRODUCTION 

 Bacterial essential genes encode for the fundamental reactions of cellular life and are 

often the direct targets of antibiotics, but the challenges of manipulating them genetically have 

thus far precluded systematic approaches to understanding their roles in vivo. CRISPR 

interference (CRISPRi) for the titratable knockdown of bacterial genes (Qi et al. 2013; Bikard et 

al. 2013; Peters et al. 2016) is positioned to narrow the gap between essential genes and their 

cellular phenotypes, however few systematic phenotypic studies have been completed (Peters 

et al. 2016; Veening and Liu 2017). High-dimensional phenotyping approaches such as 

chemical-genetic screening (Nichols et al. 2011; Shiver et al. 2016) and morphological profiling 

(Veening and Liu 2017; Nonejuie et al. 2013; Peters et al. 2016; Campos et al. 2018) each 

present high-throughput modalities with which to capture large numbers of independent, 

quantitative phenotypes of arrayed bacterial libraries. For example, chemical-genetic screens of 

the Escherichia coli non-essential gene deletion library (Baba et al. 2006) have identified 

functional interactions on the basis of shared chemical signatures (Nichols et al. 2011) as well 

as surveying available cellular mechanisms of antibiotic resistance (Shiver et al. 2016). The 

extension of these screening technologies to the phenotypes of slight essential gene depletions 

has already yielded surprising cross-pathway functional interactions of essential genes and 

further insights into antibiotic action in the model Gram-positive Bacillus subtilis (Peters et al. 

2016). Furthermore, the titratable nature of CRISPRi for perturbing essential gene levels allow 

both the sensitive probing of key regulators of cell morphology, but also exploration of “terminal 

phenotypes” in which essential genes are fully repressed, each reflecting important aspects of 

gene function (Peters et al. 2016).  

 As CRISPRi has been established as a facile tool with which to study essential genes 

diverse microbial species (Lee et al. 2019; Veening and Liu 2017; Rock et al. 2017; Peters et al. 

2019), it presents a unique opportunity to compare the conservation of essential gene functions 

across diverged species (Hawkins et al. 2019). A major distinction in the bacterial domain is the 
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presence of the Gram-negative specific outer membrane across gammaproteobacterial and 

other major pathogens and commensal species. The outer membrane is a complex structure 

that defines a unique bacterial compartment (the periplasm) and provides protection against 

small molecule and other physical stressors (Rojas et al. 2018) in the environment. Despite its 

centrality in bacterial physiology, major gaps in our knowledge of how the barrier function of this 

structure is created, in part due to its essential nature in Gram-negative species. Finally, 

comparisons across species will fruitfully explore differences in the morphological space 

available to different species based on their intrinsic structural differences. 

 Motivated by this potential, here we systematically profile the chemical and 

morphological phenotypes of an E. coli essential gene knockdown library. By strategically 

aligning our assays with previously published datasets from a B. subtilis essential gene 

knockdown library (Peters et al. 2016), we are able to leverage this comparison to identify 

shared and Gram-negative specific mechanisms of intrinsic antibiotic resistance, as well as the 

primary regulators of cell morphology. Finally, we explore a novel phenomenon during sub-

saturating CRISPRi targeting in bacteria which interacts non-productively with native feedback 

regulatory circuits on gene expression. We show that this feedback does not successfully 

restore homeostasis, and that dysregulation can take the form of increased heterogeneity in 

expression levels and other cellular phenotypes. 

 

RESULTS AND DISCUSSION 

Chromosomal CRISPRi enables the systematic functional study of essential genes in E. 

coli 

To systematically analyze the functions of essential genes in the model Gram-negative 

bacterium Escherichia coli, we designed an inducible, chromosomally integrated CRISPRi 

system that is calibrated to achieve 50% knockdown in the absence of inducer (Figure 2.1A). 

Addition of IPTG reduces expression of an rfp target from 50% to ~7% in a uniform and 
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concentration-dependent manner (Figure 2.1B). Our arrayed library of 479 CRISPRi strains 

(Table 2.1), consists of 266 high-confidence essential genes, 81 genes of uncertain essentiality, 

and 132 non-essential or conditionally essential genes (Methods) (Koo et al. 2017; Baba et al. 

2006; Yamamoto et al. 2009; Goodall et al. 2017; Patrick et al. 2007). Each gene is targeted by 

one computationally optimized sgRNA (“GitHub - Traeki/Sgrna_design” n.d.), with most (86-

95%) either stronger than or within one standard deviation of the mean fitness impact of 

reported sgRNAs targeting that gene (Hawkins et al. 2019; Wang et al. 2018; Rousset et al. 

2018) (Fig. 2.4B). The arrayed nature of our library enables many types of assays, including 

chemical-genetic screening and single-cell microscopy. 

We reproducibly measured (Fig. 2.4C, r=0.897-0.974) relative strain fitness (RF = the 

number of doublings relative to that of non-targeted control strains (Methods)) using a pooled 

competition assay with or without induction (Figure 2.1C). Under induced conditions (1mM 

IPTG) few non-essential genes showed reduced fitness (median RF=1.00, Table 2.2), whereas 

most high-confidence essentials had reduced fitness (~75%, RF≤0.9, median RF=0.73), and 

many had fitness defects even without induction. The bottom 10th percentile of fitness defects 

without induction (RF<0.831, n=23) was enriched for ribosomal proteins and translation factors. 

A similar pooled competition experiment of B. subtilis CRISPRi strains (Peters et al. 2016) 

without induction (knockdown ~33-50%; RF<0.73, n=16) also showed enrichment for ribosomal 

proteins and translation factors with both shared and unique sets of translation factors among 

the most sensitized in these species (Fig. 2.4D). Thus, CRISPRi is effective at sensitizing cells 

specifically to essential gene knockdowns. 

 

Chemical profiling of the essential gene knockdown library generates a robust dataset 

sensitive to operon structure for gene-phenotype assignment 

We performed a chemical-genetic screen of the arrayed E. coli essential gene 

knockdown library, along with 91 representative non-essential deletion strains (Nichols et al. 
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2011) using sub-MIC concentrations of ~100 unique small molecule inhibitors, with some at 

multiple concentrations (150 conditions total, Table 2.3). The small molecules selected either 

elicited strong phenotypes from distinct sets of non-essential deletion strains (Nichols et al. 

2011) or lacked known mechanisms of action (see Methods). We used endpoint growth to 

estimate condition-specific growth rates (quantified by S-scores (Collins et al. 2006)), as in our 

previous chemical-genetic screens (B. subtilis essential CRISPRi library (Peters et al. 2016); E. 

coli non-essential deletion library (Nichols et al. 2011)). We observed high correlation between 

knockdown growth measurements for condition replicates (≥4 replicates per condition, median 

Pearson r=0.711, Fig. 2.4E), and between strain replicates (2-4 replicates per strain, median 

Pearson r=0.680, Fig. 2.4F). Importantly, S-scores of the 91 deletion strains were well 

correlated to those in (Nichols et al. 2011) for the 70 overlapping conditions (Pearson r=0.565; 

Fig. 2.4G). Thus, the data from our screen was highly reproducible. 

We defined significant chemical-gene phenotypes (FDR≤5%; (Nichols et al. 2011; Peters 

et al. 2016)), resulting in 1886 high-confidence phenotypes, with 64.5% of strains (309) having 

at least one phenotype (Figure 2.1D). We compared our phenotypic signatures to known 

functional interactions from several databases using ROC (receiver operating characteristic) 

curves to calculate a true positive rate (TPR) when the false positive rate (FPR) was set at 5% 

(Figure 2.1E). Highly correlated phenotypic signatures were better predictors of more specific 

metrics of functional interactions (e.g. members of the same complex, >4 shared GO biological 

process terms) than higher-level metrics (e.g. members of the same pathway, >2 shared GO 

biological process terms). As expected, the predictive power of all metrics increased by 

excluding strains with few significant phenotypes. This pattern also held in a reanalysis of the B. 

subtilis CRISPRi data in (Peters et al. 2016) for comparable metrics, although differences in 

annotation depth in some cases prevented a direct comparison. Therefore, phenotypic 

signatures capture specific functional interactions between essential genes. 
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In bacterial genomes, genes are often organized into co-transcribed operons. CRISPRi 

targeting reduces the transcript level of downstream operon members by blocking RNA 

polymerase transit and of upstream operon members by an unknown mechanism termed 

“reverse polarity” (Peters et al. 2015, 2016). Using a simple bioinformatic definition of operons 

(Methods), we found that phenotypic signatures were predictive of operons in both E. coli and B. 

subtilis, whether operons had consistent functions (>=50% of members sharing one GO 

biological process term) or were of mixed function (Figure 2.1E). However, using ROC analysis 

exclusively on genes from mixed function operons was less predictive of functional interactions 

than using only single genes (genes not predicted to be in an operon), suggesting that targeting 

mixed-function operons causes multiple perturbations that can obscure the phenotypic signature 

of the targeted gene.  

 

Chemical profiling of the essential knockdown library provides a novel lens for cross-

species comparisons of essential pathways 

The direct targets of most antibiotics are conserved across even distantly related 

species. Thus, antibiotics are species-agnostic probes of bacterial cell biology, enabling 

comparison of E. coli and B. subtilis enrichment patterns (data from (Peters et al. 2016)). To 

broadly examine the chemical-genetic interactions, we grouped drugs by their targeted process 

(Figure 2.2A) and looked for patterns of drug sensitization (S-scores<0) that were significantly 

enriched within functional groups of genes (hypergeometric test, Bonferroni corrected p<0.05; 

Figure 2.2B). We observed enriched sensitivities in both species when drug target and gene 

function are directly related: e.g. DNA related stresses and DNA processes (e.g. DNA 

replication), PMF disruptors and quinone biosynthesis and recycling (e.g. riboflavin biosynthesis 

(E. coli) or menaquinone biosynthesis (B. subtilis)), cell wall synthesis inhibitors and cell wall 

biosynthesis genes (e.g. peptidoglycan biosynthesis), tetrahydrofolate inhibitors and genes in 

tetrahydrofolate biosynthesis, and protein synthesis inhibitors and translation factors (e.g. 
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aminoacyl-tRNA metabolism). Intriguingly, one shared enrichment pattern—knockdown of cell 

wall and cell division genes causing sensitivities to DNA damaging stresses—is not readily 

explained by direct synergistic effects. This observation suggests an evolutionarily conserved 

connection between the cell wall and DNA damage. Additionally, we observe differing 

enrichment patterns for some drug categories (e.g. protein synthesis) that are also not 

explained by direct effects. We next investigate these two cases of commonality and difference, 

and specifically how the latter may be attributed to the central distinction between E. coli and B. 

subtilis: the presence of the Gram-negative specific outer membrane (OM).  

 

The knockdowns of essential cell wall and cell division genes independently contribute 

to DNA damage sensitivity 

Knockdowns of cell wall or cell division genes increase sensitivity to DNA damaging 

stresses in both E. coli and B. subtilis, responding to ciprofloxacin in both species (Fig. 2.5A,B). 

As these knockdowns do not induce the SOS response in either species (Fig. 2.5C), they are 

unlikely to impact genome integrity in a way that is sensed by RecA/LexA. Two findings 

suggested that cell wall and cell division knockdowns independently contribute to DNA damage 

sensitization in E. coli. First, cell wall biosynthesis genes (e.g. murB) and cell division genes 

(e.g. minE) not co-transcribed with the other gene class are sensitized (Fig. 2.5A). Second, 

analysis of transcript levels in single knockdown strains of adjacent cell wall and cell division 

genes (Conway et al. 2014; Lalanne et al. 2018) (Figure 2.2C) reveal four transcriptionally 

independent units comprised exclusively or predominantly of either cell wall or cell division 

genes (Figure 2.2D), again suggesting independent effects on the DNA damage phenotype. 

Using a liquid growth assay to monitor growth with or without sub-inhibitory 

concentrations of the chain-terminating nucleoside analogue azidothymidine (Elwell,’ et al. 

1987), we first demonstrated that both cell division (ftsA, ftsL) and cell wall biosynthesis (murE) 

gene knockdowns were sensitized to DNA damage compared to a control strain (Figure 2.2E, 
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Fig. 2.5D). We then asked whether the observed DNA damage sensitivity results from 

enhancing SulA-mediated division inhibition during SOS, where SulA prevents FtsZ 

polymerization during stress, and is then degraded by Lon during recovery (Mukherjee, Cao, 

and Lutkenhaus 1998; Dajkovic, Mukherjee, and Lutkenhaus 2008; Chen, Milam, and Erickson 

2012). Consistent with this hypothesis, deleting sulA from the ftsL and ftsA cell division 

knockdown strains partially alleviated their sensitivity to azidothymidine (Figure 2.2E, Fig. 2.5D). 

Our finding that cell division knockdowns synergize with SulA is also consistent with the finding 

that lon is essential in strains with slight division defects (e.g. reduced-expression ftsZ mutants 

(Nazir and Harinarayanan 2016)) in a sulA-dependent manner, and that preventing SulA 

degradation (∆lon strain) (Nichols et al. 2011) sensitizes cells to azidothymidine.  

Interestingly, deleting sulA had no effect on DNA damage sensitization in the murE 

knockdown strain (Figure 2.2E, Fig. 2.5D). murE is less sensitized to DNA damage than ftsL/A, 

making it unlikely that the lack of effect of ∆sulA simply reflects a more severe division defect of 

murE. Instead, murE is likely to have a distinct mechanism for sensitization. Additionally, partial 

rescue of ftsL and ftsA knockdowns by ∆sulA raises the possibility that additional DNA damage-

induced division inhibitors contribute to their sensitization (Maguin et al. 1986; Jaffe, D’Ari, and 

Norris 1986; Modell, Hopkins, and Laub 2011). In summary, our results are in agreement with 

complex coordination between peptidoglycan biosynthesis, cell division and genome integrity 

and/or replication, mediated in part by SulA and in part by as yet unknown mechanism(s). 

 

Contributions to the barrier function of the outer membrane 

Although the contributions of individual genes to barrier function has been documented  

(Vuorio and Vaara 1992; Galloway and Raetz 1990; Normark 1970; Young and Silver 1991; 

Grundstrom, Normark, and Magnusson 1980; Vaara and Nurminen 1999; Sperandeo et al. 

2008; Sampson, Misra, and Benson 1989; Ruiz et al. 2005; Malinverni et al. 2006; Wu et al. 

2005; Doerrler and Raetz 2005), our dataset is the first systematic interrogation of the 
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contributions of essential and many non-essential genes to the intrinsic resistance mechanisms 

provided by the Gram-negative outer membrane. There is currently great interest in 

reengineering Gram-positive-restricted antibiotics to meet the challenge of growing antibiotic 

resistance in Gram-negative pathogens, and design rules must contend with the unique 

permeability barrier imposed by the Gram-negative outer membrane (Richter and Hergenrother 

2018). To advance the development of such rules, we comprehensively explored the signatures 

of outer membrane permeability in our dataset.  

We first determined whether the processes inhibited by antibiotics or properties of the 

antibiotics themselves (irrespective of targeted process) were responsible for the enriched 

sensitivity of the 17 OM gene depletions to inhibitors of protein synthesis, transcription, and 

membrane stability (Figure 2.1A). Using tSNE to cluster all conditions based on OM gene 

knockdown phenotypes, we found no clustering based on targeted pathway (Figure 2.2F), but 

strong clustering of the 9 antibiotics in our screen unable to accumulate in E. coli (intracellular 

accumulation <300 nmol/1012 CFU (Richter et al. 2017)). We broadened this analysis by 

identifying additional strains specifically sensitized to non-accumulating antibiotics, and 

additional small molecule inhibitors highly correlated with at least one non-accumulating 

antibiotic (Figure 2.2H). We identified 24 additional compounds (33 total) whose phenotypic 

signatures among OM genes are strongly correlated with those of the non-accumulating drugs. 

These compounds were highly correlated as a group (median Pearson r=0.549 within outer 

membrane gene phenotypes; Figure 2.2H), and include molecules acting at the inner 

membrane either by disrupting the proton motive force (phenazine and triclosan (Domenech et 

al. 2019)) or acting as detergents (bile salts, benzalkonium, and chlorpromazine); as well as 

others with cytoplasmic targets, which may be OM-limited based on their large molecular 

weights (clarithromycin, spiramycin, bleomycin, actinomycin D, holomycin/phleomycin, 

ceftazidime, oxacillin) (Table 2.3). 
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Genes specifically sensitized to non-accumulating antibiotics (hypergeometric test, 

p<0.05) were predominantly from the pathways of LPS biosynthesis (lpxABD, DrfaC, DrfaE, 

DlpcA), LPS transport (lptACEG), outer-membrane protein chaperones and insertion 

machineries (bamA, DbamB, DsurA) and non-essential efflux transporters (DacrB, DtolC); each 

group exhibited distinct sensitization patterns. LPS biosynthesis genes were broadly sensitized 

to all 33 inhibitors, as were the major efflux machinery genes (acrB, tolC), except for retaining 

resistance to vancomycin and rifampicin, which may be poor efflux substrates because they 

have the highest molecular weights. The broad sensitization of acrB and tolC may result from 

reduced capacity to specifically efflux antibiotics, and/or from increased general permeability 

caused by membrane stress (Mateus et al. 2018). By contrast, LPS transport machinery genes 

(the Lpt complex) were predominantly sensitized to non-accumulating antibiotics (except lptG). 

These restricted sensitivities represent either distinct cellular outcomes from perturbing 

biosynthesis vs. transport or indicate that LPS biosynthesis is rate-limiting for populating the 

outer leaflet with LPS. Genes involved in the folding or insertion of outer membrane proteins 

(the Bam complex) were sensitized only to larger non-accumulating antibiotics, possibly 

indicating a defect in permeability but not efflux, the reverse of the phenotypic signatures of the 

efflux deletions. These data indicate that the processes of permeability and efflux can be 

decoupled. The sensitivity of LPS biosynthesis knockdown strains to both effluxed and 

(potentially) non-effluxed antibiotics raises the possibility that LPS content both limits 

permeability and is required for efficient efflux.  

We were particularly interested in understanding the genes most strongly sensitized to 

non-accumulating antibiotics, most of which function in LPS biosynthesis. Because CRISPRi 

knockdown affects operons, and some of these genes are adjacent (Figure 2.2I), we determined 

whether each gene independently contributed to sensitization. Comparison of the total 

phenotypic signatures upon knockdown suggested a highly similar phenotypic outcome from 
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targeting bamA, lpxD, fabZ, lpxA, and lpxB, but not from targeting upstream of bamA (uppS, 

cdsA, rseP) (Figure 2.2I). bamA and lpxD had relatively isolated effects on transcription when 

assayed by mRNA-seq (Figure 2.2J), possibly because knockdown induced sE (Fig. 2.5E), 

whose multiple promoters might alleviate CRISPRi knockdown (Figure 2.2J). Expression of non-

targeted variants of bamA or lpxD each restored wild-type levels of vancomycin resistance to 

their respective knockdown strains, suggesting independent contributions to OM integrity 

(Figure 2.2K). In contrast, targeting lpxB affected the expression of many genes (fabZ, lpxA, 

lpxB, rnhB, dnaE and accA) (Figure 2.2J). We discounted dnaE and accA since their 

phenotypes when targeted are inconsistent with an outer membrane integrity role (Figure 2.2I), 

and focused on fabZ and lpxA, the genes most strongly sensitized to vancomycin. Their 

sensitivity upon knockdown was alleviated both by complementation with non-targeted variants 

(Figure 2.2K) and by expression of the other gene (Fig. 2.5F), suggesting that each may 

contribute to vancomycin resistance. On its face this result presents an intriguing paradox, as 

LpxA and FabZ compete for substrates at the branchpoint between Lipid A biosynthesis and 

fatty acid biosynthesis (Figure 2.2L). 

Our screen also identified novel sensitized CRISPRi strains whose targets had not 

previously been connected to barrier function. We discounted candidates reflecting secondary 

effects due to a) operon level knockdown (e.g. leuS and holA are in the lptE operon); b) 

upstream effects on LPS biosynthesis (e.g. glmS); c) imperfect overlap with non-accumulating 

drug set sensitivity (e.g. zipA, parE, rpsK). However, alaS, an alanine-tRNA ligase, did not have 

any of these confounding factors and hence may have a novel role in barrier function. Its 

knockdown phenotypes are strongly correlated with those of outer membrane genes (median 

r=0.476 with OM genes). We verified that knockdown in uninduced conditions (the conditions of 

the screen) affects transcript level, and showed that alaS expression was restored by full 

knockdown (Fig. 2.5G), as expected from the transcriptional feedback of AlaS (Putney and 

Schimmel 1981). This known feedback could explain lack of a phenotype in our vancomycin 
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sensitivity assay (Figure 2.2K), as these experiments are done under partial induction, where 

transcriptional compensation is expected. Importantly, alaS overexpression conferred slight 

resistance to vancomycin (Figure 2.2K), consistent with alaS having a homeostatic or stress-

induced role in maintaining the OM barrier. The mechanism by which this occurs remains to be 

elucidated; aminoacyl-tRNA synthases (ARS) in other Gram-negative species often protect 

against cationic antimicrobial peptides (CAMPs) via Lipid A modifications (Fields and Roy 2018; 

Klein et al. 2009) although there are no known cases in E. coli. 

In summary, we have systematically catalogued the contributions of essential and non-

essential genes to OM integrity, with three important findings. First, our results reveal the 

profound effects of slight knockdown of LPS biosynthesis genes on drug entry, finding that a 2-

fold knockdown of genes in Lipid A biosynthesis was as effective in allowing drug entry as 

deletion of later non-essential modifications of LPS core (rfaA, rfaE, lpcA: classical “deep rough” 

mutants). Our evidence is consistent with FabZ contributing to intrinsic vancomycin resistance 

via maintenance of the OM barrier, however it may also be the case that fabZ knockdown and 

complementation are primarily acting on flux through the LpxA Lipid A biosynthesis branch. We 

explore these possibilities further in the concluding perspective. Second, we find that LPS 

transport is more robust to knockdown than LPS synthesis in terms of increasing OM 

permeability. Finally, the broad and significant effects of alaS knockdown suggest that it may be 

an interesting drug target, as other aminoacyl-tRNA synthases have been (Hurdle, O’Neill, and 

Chopra 2005). 

 

Predicted direct-target interactions reveal native feedback regulation of essential gene 

expression 

Slight depletion of antibiotic targets should sensitize cells to the cognate antibiotic 

inhibitor, as has been observed in some cases in B. subtilis (Peters et al. 2016). Surprisingly, 

only 3/15 of the known antibiotic-target interactions in our screen were significantly sensitized 
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(FDR≤5%), although a majority of the remainder (7/12=58%) exhibited sensitization of “on-

pathway” or related genes (Figure 2.3A). This suggests that these antibiotics and sgRNAs 

generally are active, but that compensatory regulation might obscure synergy. We selected 4 

cases (fabB/cerulenin; rho/bicyclomycin; fusA/fusidic acid; mreB/A22) and one sensitized 

control (fabI/triclosan) for study. Quantifying transcript abundance without and with saturating 

induction, as compared to targeting rfp, revealed that our positive control, fabI/triclosan, and 

fabB/cerulenin, which was not sensitized, exhibited the expected knockdown efficacy (Figure 

2.3B). Lack of a fabB phenotype may be due to the presence of FabF, a FabB homolog that is 

non-essential in E. coli but that is also inhibited by cerulenin (Price et al. 2001). Importantly, B. 

subtilis has only FabF (Koo et al. 2017) and the knockdown of fabF is sensitized to cerulenin 

(Figure 2.3A) (Peters et al. 2016). In contrast, rho, fusA and mreB transcripts were each present 

above wildtype levels when targeted with CRISPRi without induction. In each case, further 

induction of CRISPRi knockdown restored knockdown, suggesting that the cell has a limited 

capacity to compensate for reduced expression of these genes.  

We developed two reporters to quantitatively measure knockdown and feedback at the 

single-cell level. The “knockdown reporter” drives sfgfp expression from an upstream region 

containing the native promoter and the 5’ end of the gene (Zaslaver et al. 2006), and reports on 

expression at the endogenous locus: the net result of knockdown and compensatory regulation. 

The “feedback reporter” is identical to the knockdown reporter, except that its PAM sequence 

has been mutated so that expression reports only upregulation (Figure 2.3C). We explored two 

cases with well characterized negative feedback regulation (rho, fusA), and a third where 

feedback is not completely understood (gyrA). 

Rho prematurely terminates its own expression in its leader sequence (rhoL), allowing 

Rho to directly downregulate its own production (Matsumoto et al. 1986). Our reporter system 

confirms that non-saturating (uninduced conditions) CRISPRi slightly upregulates rho (Rousset 

et al. 2018). We further show that upregulation is uniform at the single-cell level, is overcome by 
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further induction of CRISPRi, and that bicyclomycin, a direct inhibitor of Rho, phenocopies the 

rho knockdown (Figure 2.3D). The bicyclomycin results confirm that both knockdown and 

feedback reporters are responsive to Rho activity levels. As the rho knockdown strain has no 

significant chemical phenotypes in the screen data, this overactive compensation may 

successfully approximate wildtype levels of expression without causing drastic cellular 

dysfunction. 

Negative feedback of the fusA transcription unit is mediated by RpsG, which binds to an 

mRNA site upstream of its ORF and inhibits the translational coupling between rpsL and rpsG-

fusA-tufA (Saito, Mattheakis, and Nomura 1994; Saito and Nomura 1994). A feedback reporter 

containing both the promoter and RpsG binding-site is upregulated in a fusA knockdown strain 

(Figure 2.3E), but mutations that disrupt RpsG binding (Saito and Nomura 1994) abrogate this 

upregulation. Thus, CRISPRi-induced feedback depends solely on RpsG binding, a finding we 

validated by showing that inhibiting FusA (EF-G) activity with fusidic acid does not upregulate 

expression (Figure 2.3E). Importantly, the fusA knockdown has significant chemical phenotypes, 

potentially owing to the dysregulation of multiple key translation factors (fusA/EF-G, tufA/EF-Tu) 

and ribosomal proteins (RpsL, RpsG) which are no longer responsive to (presumably) excess 

RpsG. 

Finally, we probed the complex interactions that maintain genomic supercoiling. DNA 

gyrase (encoded by gyrAB) introduces negative supercoils and its promoter activity increases 

when supercoiling is decreased (Rolf Menzel and Gellert 1983; R. Menzel and Gellert 1987). 

The non-essential topoisomerase 1 (topA) antagonizes gyrase action by relaxing DNA 

supercoils (Gellert et al. 1982). Additionally, topoisomerase IV (parCE) has an essential role in 

decatenating chromosomes following replication (Zechiedrich, Khodursky, and Cozzarelli 1997). 

Novobiocin inhibits the activities of both gyrB and parE in vivo (Hardy and Cozzarelli 2003). 

Knockdown of parE but not gyrB was sensitized to novobiocin in both E. coli and B. subtilis, 

suggesting a compensatory mechanism specific to gyrB that may be shared. 
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Our chromosomally integrated feedback reporter revealed that increasing knockdown of 

either gyrA or gyrB upregulated expression of both gyrA and gyrB promoters (Figure 2.3F), 

likely preventing their knockdown (median feedback reporter expression=0.97 for gyrA and 1.4 

for gyrB relative to non-targeting strain control). Notably, topA is also upregulated in the gyrA 

and gyrB knockdown strains even at basal knockdown, suggesting that compensation at the 

gyrA and gyrB promoters does not precisely restore native supercoiling, triggering 

overexpression of topA (Y. C. Tse-Dinh and Beran 1988; Y.-C. Tse-Dinh 1985). These results 

may suggest that cells oscillate between a hyper- and hypo-supercoiled state as DNA gyrase 

levels fluctuate with slight knockdown. Importantly, while the contributions of supercoiling-

sensitive promoters of gyrA and gyrB in E. coli to homeostatic control of genomic supercoiling 

have been deeply explored, it is unclear whether the same paradigm maintains supercoiling in 

Gram-positives. Some Streptomyces have been shown to transcriptionally regulate gyrA and 

gyrB in response to short-term supercoiling stress (Szafran et al. 2016), while other evidence 

from B. subtilis suggests that mutations that increase Topo IV expression are a more facile way 

to rebalance supercoiling, perhaps indicating additional constraints on DNA gyrase levels (Reuß 

et al. 2019). The lack of sensitization of gyrAB knockdowns in B. subtilis may suggest that, like 

E. coli and Streptomyces, regulatory feedback is equipped to manage minor challenges to 

supercoiling homeostasis.  

Taken together, these data show that feedback regulation actively tries to restore 

homeostasis when essential genes are depleted, and furthermore that even in conditions of 

sub-saturating CRISPRi targeting homeostasis may not be restored. Specifically, these studies 

indicate that sub-saturating targeting of rho leads to uniform upregulation (2-fold); that feedback 

on expression of the fus operon is regulated solely by RpsG with no contribution from fusA (EF-

G); and that targeting of DNA gyrase subunits causes dysregulation of its own expression and 

that of other supercoiling-controlled genes. More broadly, this methodology will permit 

systematic analysis of the input-output relationships of regulatory circuits governing expression 
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at the single-cell level and open the door to systematic discovery and analysis of the regulatory 

mechanisms governing essential gene expression.  

 

PERSPECTIVE 

Here we describe the first systematic exploration of the phenotypes of partial essential 

gene depletion in the model Gram-negative bacterium E. coli, shedding new light on the roles of 

essential gene products in vivo. Using high-throughput quantitative chemical screens, we 

identified strengths and limitations of CRISPRi for the identification of gene phenotypes, namely 

that knockdown phenotypes reflect perturbations to the combined functions of all operon 

members. Nonetheless, we identify an underexplored mechanism of sensitization to DNA 

damage caused by slight knockdown of genes involved in cell wall biosynthesis and cell 

division; a connection that is shared between E. coli and B. subtilis. We identify one mechanism 

of interaction between these two processes which is the action of SOS-induced cell division 

inhibitors, and specifically demonstrate the importance of SulA in mediating sensitivity of cell 

division (partially) but not cell wall biosynthesis gene knockdowns. It is possible that a unifying 

connection can be found between the cell wall and cell division knockdowns that explains the 

remaining sensitivity of cell division and the totality of the cell wall biosynthesis gene 

knockdowns. Alternatively, perturbations to either cell wall synthesis or cell division may each 

connect to DNA damage by their own secondary mechanisms. For example, interfering with cell 

division has been shown in B. subtilis to irreversibly prevent DNA replication initiation (Arjes et 

al. 2014), though such a mechanism in E. coli has not been completely described (Sánchez-

Gorostiaga et al. 2016). Among all general classes of drug targets, cell wall targeting and DNA 

targeting drugs demonstrate synergy when combined in gamma-proteobacteria, a relatively rare 

characteristic of antibiotic combinations (Brochado et al. 2018). 

We pursue an interesting and medically important phenotype of outer membrane 

permeability, identified by its broad-spectrum antibiotic sensitization which was absent in the B. 
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subtilis CRISPRi dataset. We identify other small molecule stresses that synergize with outer 

membrane permeability, identifying compounds that disrupt the inner membrane and the proton 

motive force, suggesting that these two pathways are reliant on the protective barrier of the 

outer membrane for their optimal function. We also identify a large number of antibiotics from 

diverse classes that may be outer membrane limited; further analysis on this set may identify 

and/or clarify rules of compound accumulation in Gram-negative species, an important line of 

research. 

The finding that FabZ may contribute to the OM permeability barrier is a novel one that 

raises intriguing possibilities about the regulation of LPS production. It is possible that the 

primary effect of fabZ targeting is on lpxA expression, suggesting that LpxA levels are a lever 

with which to tune LPS production. LpxA has been neglected as such a point of regulation 

because, although first in the Lipid A biosynthesis pathway, its reaction is thermodynamically 

unfavorable and requires the activity of LpxC downstream as the first committed step; however 

it is known that reduced activity lpxA mutants are sufficient to select for reduced activity fabZ 

mutants (Mohan et al. 1994), consistent with its activity being limiting in extreme cases. LpxC is 

sole known regulator of this branchpoint, and can become stabilized by FabZ overexpression or 

hyperactivity (Zeng et al. 2013; Ogura et al. 1999). Therefore, fabZ overexpression may restore 

the resistant phenotype to the fabZ or lpxA knockdowns by stabilizing LpxC and restoring flux 

towards LPS production. FabZ is the primary dehydratase of unsaturated fatty acid 

biosynthesis, and a model has been proposed in which LpxC stability is favored by increased 

acyl-ACP pools, the result of FabZ activity (Ogura et al. 1999). It is possible that compensation 

via LpxC is only equipped to rebalance flux towards LPS biosynthesis when FabZ activity is 

high, and cannot respond when FabZ activity is too low, or when LPS biosynthesis is depressed 

in the absence of FabZ activity. The synteny of these two genes—fabZ and lpxA—further 

suggests that other regulatory mechanisms are possible. 
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Finally, using a small set of predicted chemical-genetic interactions between antibiotics 

and their direct targets, we find that sub-saturating CRISPRi targeting of some essential genes 

does not cause the predicted sensitization because of regulatory compensation on the targeted 

gene itself. This regulatory compensation follows known features of feedback regulation, and 

some presented evidence suggests that during sub-saturating CRISPRi targeting, cells 

experience fluctuations in the concentration of essential gene products. In other cases, essential 

genes are readily knocked down by CRISPRi, suggesting that cells have flexible requirements 

for some essential gene products and strictly regulate others. The methodology we present here 

for identifying and characterizing feedback regulation caused by CRISPRi perturbation will be 

productively applied to broader screens for this behavior, not limited to essential genes. 

 

MATERIALS AND METHODS 

Experimental model and subject details: 

Microbes 

Escherichia coli strains were cultured in LB medium at 37C, or in MOPS complete with glucose 

(MOPS EZ Rich Defined, Teknova #M2105) at 37C, as indicated. 

 

Method details: 

General strain manipulations and procedures 

CRISPRi strain construction: 

The lambda-att integrating plasmid pCAH63 (Haldimann and Wanner 2001) was modified to 

contain an sgRNA expression cassette to generate pCs-550r in the following steps: the sgRNA 

constant region was cloned from pgRNA-bacteria (Addgene #44251 (Qi et al. 2013)), the 

terminators L3S3P22 and L3S2P21 were cloned up and downstream, respectively, to flank the 

sgRNA cassette, and the sgRNA promoter was changed from BBa_J23119 to PlLac-O1 (Lutz 

and Bujard 1997). New 20nt spacers were cloned into pCs-550r by inverse PCR (Larson et al. 
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2013), Sanger sequenced, and transformed into E. coli BW25113 harboring pINT-ts to promote 

integration at lambda att (Haldimann and Wanner 2001) using CaCl2-competence and selecting 

for chloramphenicol resistance. 

High-efficiency conjugation was used to transfer dcas9 from the chromosome of a donor 

strain to the chromosome of a sgRNA-encoding recipient strain. A “pseudo-Hfr” strain isogenic 

to BW25113 carries the transfer region from F and a spectinomycin marker integrated 

downstream of rhaM (4086kb) (Typas et al. 2008). The dcas9 donor strain was constructed by 

integrating dcas9 and a gentamicin resistance marker at the Tn7 att site (Choi and Schweizer 

2006), adjacent to the origin of transfer, using the Mobile-CRISPRi triparental mating strategy 

(Peters et al. 2019). To clone the Tn7 cassette plasmid, dcas9 was amplified from pdCas9-

bacteria (Addgene #44249) under control of the synthetic promoter BBa_J23105 

(http://parts.igem.org/). Conjugation was performed on LB plates by mixing the dcas9 donor and 

sgRNA recipient in equal ratios, incubating for 5hr at 37C, pinning onto double-selection plates 

(chloramphenicol + gentamicin), and growth overnight. Single colonies from each conjugation 

mix were isolated by streaking onto double-selection plates. 

RFP and RFP-GFP reporter strains for knockdown quantification: 

The rfp cassette including kan marker was PCR amplified from the entry vector used to 

construct the previously described RFP reporter strain (plasmid: pSLQ1232, strain: MG1655 

nfsA::PlLac-O1-mrfp) (Qi et al. 2013), the rfp promoter changed from PLlac-O1 to a minimal 

synthetic promoter (BBa_J23119) {http://parts.igem.org/} to create pSLQ1232-P541-rfp, and 

integrated into BW25113 at nfsA by lambda red recombineering (Thomason et al. 2014) and 

selecting for kanamycin resistance. To construct the rfp-gfp synthetic operon reporter strain, gfp 

was cloned downstream of rfp in pSLQ1232-P541-rfp to create pSLQ1232-P541-rfp-gfp, and 

inserted into the chromosome at nfsA as described above. sgRNA plasmids targeting either rfp 

or gfp (pCs-550r or pCs-550-601, respectively) were integrated into the chromosome in the 

manner described for library plasmids above. Promoter variants were cloned along with dcas9 
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into the Tn7 cassette plasmid, and triparental mating was used to introduce dcas9 cassette into 

the chromosome at Tn7att (as described above). 

Transcriptional reporter plasmids: 

We used transcriptional reporter plasmids selected from, or designed to mimic, the existing 

library from (Zaslaver et al. 2006). If the desired reporter was not a member of the library, the 

upstream region (150-400bp upstream of ORF and 50-100bp within ORF and containing the 

targeted protospacer) was amplified by PCR (see primers in Table 2.1) from the BW25113 

genomic DNA with 25bp flanking sequence and assembled by HiFi (New England Biolabs 

#E2621L) with the PCR-amplified pUA66 vector. In the case of feedback reporters, PAM 

mutations were introduced by quick-change mutagenesis (see primers in Table 2.1). Plasmids 

were transformed into CRISPRi strains by electroporation, selecting for kanamycin resistance. 

Complementation plasmids: 

The ORFs of genes of interest were amplified from E. coli BW25113 genomic DNA (see primers 

in Table 2.1) and assembled into pBAD24 (Guzman et al. 1995) using Gibson assembly (NEB 

HiFi #E2621X). Plasmids were transformed into CRISPRi strains by electroporation, selecting 

for ampicillin resistance. 

ΔsulA CRISPRi strains: 

The sulA::kan allele was first moved into sgRNA recipient strains by P1 transduction 

(Thomason, Costantino, and Court 2007) and selecting for kanamycin resistance. Conjugation 

was used to move dcas9 into the sgRNA ΔsulA recipients, as described above, double-selecting 

for kanamycin- and gentamicin-resistant colonies twice in succession, after which 

chloramphenicol resistance was confirmed by patching. 
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CRISPRi library design, construction, pooled growth experiment 

Design: 

sgRNAs were designed to target genes in Escherichia coli BW25113 having some evidence of 

essentiality in published datasets, as described in the main text and summarized in (see library 

description in Table 2.1). sgRNAs were designed to target within each gene’s ORF near the 5’ 

end, binding the non-template strand, and sgRNAs with multiple potential binding sites were 

avoided, as previously described (Peters et al. 2016). sgRNA design scripts are publicly 

available (“GitHub - Traeki/Sgrna_design” n.d.). 

Arrayed library construction: 

sgRNA plasmids were cloned, verified, and integrated into E. coli BW25113 as described for 

individual strains above. One isolate of each sgRNA recipient was stored by inoculating into 

250ul LB with chloramphenicol in 96 deep-well plates, grown for 6.5hrs, mixed with glycerol, and 

stored at -80C. 

Arrayed sgRNA recipient libraries and arrayed dcas9 donor strain were pinned from glycerol 

stocks to separate LB agar plates using a ROTOR robot (Singer Instruments) and grown 

overnight. The arrayed recipient library was then mixed with the arrayed donor strain by pinning 

onto a new LB agar plate, and then grown for 8 hours to allow conjugation. Patches were mixed 

and transferred to a double-selection agar plate (gentamicin and chloramphenicol) using the 

ROTOR robot and grown overnight. Patches were each individually struck out on double 

selection plates for single colony isolation. To store the CRISPRi library, 2 isolates of each 

strain were inoculated in 250ul LB with chloramphenicol and gentamicin, supplemented with 

0.2% glucose, in 96 deep-well plates, grown for 6.5hrs, mixed with glycerol, and stored at -80C 

in 96 well plates. 

Pooled library construction: 

To enable the use of deep sequencing to quantify relative fitness (see below), an additional ~50 

non-targeting sgRNA plasmids were cloned and integrated into BW25113, as described above. 
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Control sgRNA spacers were selected as a random subset from previously characterized 

control sgRNAs (Hawkins et al. 2019). Construction of the pooled library (all library sgRNAs plus 

control sgRNAs) was identical to that of the arrayed library except that after the second double 

selection of the arrayed library, all patches were scraped from the agar plate, thoroughly mixed, 

and stored as glycerol stocks at -80C. 

Pooled growth experiment: 

To quantify the relative fitness of each CRISPRi strain, we enumerated the relative proportion of 

each sgRNA spacer in the mixed population by deep sequencing, before and after 15 doublings 

in saturating IPTG. Briefly, a single glycerol stock of the pooled library was fully thawed, 

inoculated into 10ml LB at 0.01 OD600, and grown for 2.5hr (final ~0.3 OD600). This culture 

was collected (10ml, t0) and used to inoculate replicate 4ml LB cultures (+/- 1mM IPTG) at 0.01 

OD600, which were then repeatedly grown 130min to 0.3 OD600 (5x doublings) and back-

diluted to 0.01 a total of 3 times (15x doublings). At the endpoint cultures were collected (4ml, 

t15) by pelleting (9000xg 2min) and stored at -80C. The following day genomic DNA was 

extracted using the DNeasy Blood & Tissue kit (Qiagen #69506) with the recommended Gram-

negative pre-treatment and RNAse A treatment. sgRNA spacer sequences were amplified from 

gDNA using Q5 polymerase (New England Biolabs #M0493S) for 14x cycles using custom 

primers containing TruSeq adapters and indices, followed by gel-purification from 8% TBE gels. 

 Spacer sequences were extracted from FASTQ files, counted by exact matching to 

expected library spacers, and their counts normalized within each sample to control for read 

depth. We calculate the fitness as Relative Fitness (Hawkins et al. 2019), where the log2 fold 

change is normalized by the median log2 fold change of the control sgRNAs, and adjusted by 

the number of doublings. All RF values are reported in Table 2.2. 

 The RF values of B. subtilis CRISPRi strains were recalculated from a previous dataset 

(Hawkins et al. 2019), using the same set of control sgRNAs as was used for the E. coli 
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CRISPRi pooled growth experiment. The measurements reflect the activities of the same 

sgRNAs used in the B. subtilis chemical genetic screen and original library (Peters et al. 2016). 

 

Chemical screen of the arrayed CRISPRi library 

Screen procedure 

Chemical screening was performed and chemical-gene scores were calculated as previously 

described (Nichols et al. 2011; Peters et al. 2016; Shiver et al. 2016). Briefly, before screening, 

glycerol stock plates were thawed and robotically pinned onto LB agar plates in 1536 format 

using a ROTOR robot (Singer Instruments) to make the “source” plates. Following overnight 

growth, strains were transferred from source plates to plates containing sub-MIC chemical 

inhibitors/stresses using the ROTOR robot, and grown for 8-18hrs at 37C until the plate as a 

whole had measurable-sized patches, stored at 4C overnight, and imaged the following day 

using the spImager-M plate imaging system (S&P Robotics). 

The strain array contains 2-4 total biological replicates of each CRISPRi strain, and a 

total of 91 deletion strains from the Keio collection (Baba et al. 2006) screened without 

replicates, in randomized positions within the array. Chemical concentrations were determined 

empirically by streaking the background strain (BW25113) on plates with 2-fold concentration 

ranges below the MIC. Concentrations were chosen such that growth was inhibited roughly 50% 

or less, and roughly 50% of small molecules were screened at multiple concentrations. The 

screen contained 4-5 replicates plates of each concentration. Chemical plates for screening 

were poured manually, dried 2 days at room temperature, and inspected for defects before 

screening. All conditions are described in Table 2.3. 

Calculation of condition-specific phenotypes 

Colony sizes were extracted from plate images using the Iris software package (Kritikos et al. 

2017). Spatial effects were normalized using a quadratic function, median and variance of 

colony opacities were normalized between plates, and S-scores were computed using 
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previously described scripts in MATLAB (Collins et al. 2006; Shiver et al. 2016). False discovery 

rates for each condition-specific phenotype were computed from S-scores, on a condition-

specific basis, as previously described (Nichols et al. 2011).  

Further analyses of phenotypes 

Gene-gene correlation validation 

Genes were correlated (Pearson r) based on their phenotypic signatures, and the absolute 

value of gene-gene correlations (|r|) was compared to databases of functional connections in 

ROC analyses using the metrics package in sklearn. A simple definition of operons was used 

and applied to both E. coli and B. subtilis CRISPRi targets: co-directional genes where the ORF 

start is within 50bp of the upstream ORF stop were considered to be in the same operon. For 

comparison to the STRING database of functional interactions, several criteria were used to 

remove lower quality predictions: interactions were considered high quality only if their 

“experimental evidence” score was greater than 699. 

 

Flow cytometry to quantify knockdown and reporter activities 

Growth and flow cytometry analysis of the RFP reporter strains was done as described in 

(Rauch et al. 2017) with minor modifications. Strains were initially inoculated from single 

colonies and grown for ~5hr before dilution instead of overnight. Data was collected on a LSRII 

flow cytometer (BD Biosciences) using the yellow/green laser (561 nm) and the PE-Texas Red® 

detector (610/20 nm). Data for at least 20,000 cells were collected, and median fluorescence 

values were extracted using FlowJo (FlowJo, LLC). Error bars represent the standard deviation 

from 3 or more biological replicates. Data from representative samples were plotted as 

histograms using FlowJo. 

For analysis of the transcriptional reporters, cultures were maintained in kanamycin 

selection throughout, and back-diluted in the presence of IPTG and/or drug treatment for 2-3hr, 
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before data was collected on the same instrument using the blue laser (488 nm) and the FITC 

detector (530/30 nm).  

 

RT-qPCR to quantify knockdown 

Growth and RT-qPCR 

E. coli CRISPRi strains were grown in triplicate from single colonies in pre-warmed 4ml LB for 

2.5hrs before back-dilution (1:80) in pre-warmed 4ml LB +/- 1mM IPTG and growth for 3hr prior 

to collection (OD600 ~ 0.2). The control strains express rfp with or without an sgRNAs targeting 

rfp (“non-targeting”) and were treated identically. Samples were collected (300ul) in 900ul 

TRIzol-LS (Thermo Fisher #10296010) and stored at -20C overnight. The following day RNA 

was extracted according to the TRIzol protocol. RNA was quantified using a NanoDrop 2000c 

Spectrophotometer (Thermo Scientific) to normalize input (500ng input / 20ul reaction). For 

each RT-qPCR probe set and each sample replicate, reactions were performed in triplicate. 

All RT-qPCR assays were done using the Luna Universal One-Step RT-qPCR kit (New 

England Biolabs #E3005S) according to its RT and cycling protocols, in 96 well PCR plates 

(Neptune #3732.X) and measured on a CFX Connect Real-Time System (Bio-Rad). 

RT-qPCR analysis 

Standard curves for each primer pair were first assessed on serially diluted RNA (extracted from 

the CRISPRi control strain) to confirm single melting peaks, strong correlations of technical 

replicates, and to calculate their efficiencies (in accordance with (Sinton, Finlay, and Lynch 

1999)). The relative expression (or Normalized Relative Quantity (NRQ)) of each gene of 

interest in each experimental sample was calculated according to (Hellemans et al. 2008), 

which uses the geometric mean of two reference genes (here: atpB and recA) to normalize the 

probe of interest within each sample, and further calculates the fold-change in relative 

expression compared to a wildtype strain. The “non-targeting” rfp+ strain was considered the 

wildtype for the normalization of all other strains. 
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RNA-seq and 5’-end mapping 

Cultures were grown and RNA extracted as described for RT-qPCR above. 

RNA-seq library prep 

1 ug of purified RNA was fragmented at 95°C for 7 minutes in 1x T4 RNA Ligase buffer (NEB) 

with an equal volume of 2X alkaline fragmentation buffer (0.6 volumes of 100 mM Na2CO3 plus 

4.4 volumes of 100 mM NaHCO3. After 3’end healing with PNK (NEB) in T4 RNA ligase buffer 

for one hour, 3’ ligation to a pre-adenylated, barcoded TruSeq R1 adapter with 5 random bases 

at its 5’ end was performed overnight. The barcoded samples were then pooled and run onto a 

6% TBE-Urea gel for size selection (>15nt insert size), eluted and ethanol precipitated before 

performing ribosomal RNA subtraction (RiboZero). Reverse transcription with SuperScript IV 

(Invitrogen) was performed using a TruSeq R1 RT primer, and followed by ligation of the 

TruSeq R2 adapter to the 3’end of the cDNA overnight, prior to another gel size selection as 

described above. A final PCR of the library was performed with indexed TruSeq PCR primers to 

add the index and P5/P7 flowcell adapters, followed by gel extraction, precipitation and a 

BioAnalyzer (Agilent) run for quality control before sequencing on a HiSeq4000 platform. 

 

RPKM calculations 

The indexed raw sequencing data was demultiplexed according to their R1 barcodes and the 

degenerate linker sequence was clipped using a custom script. Mapping of individual reads to 

the genome of E. coli (GenBank ID U00096.3) was performed with STAR (STAR: ultrafast 

universal RNA-seq aligner, (Dobin et al. 2013)), followed by read counting and calculation of 

RPKM for individual genome regions according to gene annotations from assembly ASM584v2. 
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Complementation of CRISPRi strains and quantification of chemical phenotype 

CRISPRi strains were constructed that were complemented with either gfp or an essential gene 

of interest under control of an arabinose-inducible promoter in pBAD24 (Guzman et al. 1995). 

For each complementing essential gene, the toxicity of over-expression was first assessed by 

growing in 10-fold dilutions of arabinose from 0.2% to 0.0002% and monitoring OD600, and the 

maximum tolerated (without causing growth inhibition) concentration was used in subsequent 

experiments. For strains in which the CRISPRi-targeted gene was complemented, the 

complementation allele was mutated to preserve protein sequence but disrupt CRISPRi 

recognition by mutating either the PAM sequence or 2nt in the seed region (first 7nt adjacent to 

PAM). These mutations were made using quick-change mutagenesis. 

CRISPRi stains complemented with either an essential gene or with gfp were grown in 

competition with an RFP-expressing strain (nfsA::rfp-kan) complemented with gfp. Competitions 

were done in the presence of ampicillin (to maintain the complementation plasmid), 0.01mM 

IPTG to induce CRISPRi knockdown, the previously determined maximum tolerated arabinose 

concentration (0.0002% or 0.2% arabinose), and with or without sub-inhibitory concentrations of 

vancomycin (40ug/ml). 

Strains were first grown to mid-log phase in the presence of ampicillin and arabinose, 

and then diluted to 0.00025 OD with the competitor strain in the specified competition 

conditions, in 300ul in deep 96 well plates, and grown for a total of 4.5hrs (37C, 900RPM). Each 

competition well was then diluted and plates for CFU selecting for gentamicin resistance. 2-3 

competition replicates were used for each experimental strain.  

 

Growth curves to validate azidothymidine sensitivity 

CRISPRi strains and those combined with the sulA deletion were grown in 4ml LB from 

single colonies, and diluted back to OD600=0.005 in 150ul LB with or without 0.025ng/ml 
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azidothymidine. The volumes were grown in microplates (Corning #3631) for 10hr in a Biotek 

Synergy H4 Microplate reader at 37C with fast shaking and measuring OD600 every 6min. 
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FIGURES 

 

 
Figure 2.1. Chromosomal CRISPRi in E. coli enables the knockdown of essential genes 
and chemical phenotyping. (A) Diagram of E. coli chromosomal integration sites for dcas9 
from Streptococcus pyogenes and the chimeric sgRNA and their respective promoters. (B) 
Distribution of single-cell RFP fluorescence values for a chromosomal CRISPRi system as in (A) 
targeting chromosomal rfp and grown with titrating IPTG, compared to cells with no RFP (black 
line, left) and cells with no sgRNA (black line, right). Lower panel depicts the median single-cell 
RFP values as a percent of no-sgRNA control, compared to the concentration of IPTG. (C) 
Relative fitness of each CRISPRi strain grown in a pooled experiment, grown with or without 
1mM IPTG for 15 generations. Strains are separated into categories based on the essentiality of 
their target gene: essential, non-essential, or essentiality uncertain. Right panel depicts the 
uninduced (“No IPTG”) data for targeting essential genes in E. coli compared to the data from 
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(Hawkins et al. 2019) in which essential B. subtilis genes are targeted by slight knockdown (as 
in (Peters et al. 2016)) without induction. (D) Distribution of significant phenotypes (sensitive 
and resistant, FDR<0.05) from the chemical screen for the ~150 conditions tested. CRISPRi 
strains are separated into categories as in (C). Lower panel shows the sums of significant 
phenotypes for each CRISPRi strain, and right panel shows the sums of significant phenotypes 
for each condition. (E) True positive rates (TPR) at FPR=0.05 for all ROC analyses using the 
absolute value of correlation (|Pearson r|) between strains’ phenotypic signatures and evaluated 
on the datasets of functional interaction described at the top. CRISPRi strains without at least 
one significant phenotype were excluded. Top panel shows the results for the chemical screen 
of the E. coli CRISPRi library. Bottom panel shows the results for the chemical screen of the B. 
subtilis CRISPRi library (Peters et al. 2016). 
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Figure 2.2. Cross-species comparison of sensitivity patterns reveals shared and Gram-
negative-specific signatures. (A) Enrichment p-value (hypergeometric test, Bonferroni 
corrected) of GO biological process terms for which E. coli CRISPRi strains targeting genes 
annotated with that term had an enrichment of significant sensitivity phenotypes, for each group 
of stresses as categorized on the y-axis. X-axis shows the p-value of each enrichment. Each 
significantly enriched GO term is colored by a general functional categorization. (B) Enrichments 
as in (A) for significant sensitivity phenotypes in B. subtilis CRISPRi strains. (C) Correlation 
(Pearson r) between chemical phenotype signatures of genes in close genomic proximity with 
functions related to cell wall biosynthesis and cell division. (D) Change in expression (Log2FC) 
for genes of interest caused by CRISPRi targeting of genes selected from the cluster in (C). 
Independently repressible units are demarcated by purple lines. (E) Growth in the presence of 
sub-MIC azidothymidine of E. coli CRISPRi strains and their DsulA variants. Growth is 
measured by the median OD600 measurement following 6-7hrs of growth and averaged across 
two biological replicates. (F) t-SNE clustering of all conditions using the phenotypes of E. coli 
CRISPRi strains targeting genes with OM-related functions. Specific categories of conditions 
are colored as indicated. (G) t-SNE clustering as in (F) with conditions colored by their 
intracellular concentration as measured in (Richter et al. 2017). (H) Expanded analysis of outer 
membrane permeable mutants and their phenotypes. Heatmap showing S-scores of strains 
sensitized to non-accumulating antibiotics. Genes with OM-related functions are indicated with 
asterisks and are as used in (F-G). Non-accumulating antibiotics (<300nmol/1012 CFU) are 
indicated with asterisks. Additional genes are those with significantly enriched sensitivities to 
non-accumulating antibiotics (hypergeometric test, p<0.05). Additional conditions are those that 
were highly correlated with at least one non-accumulating antibiotic condition. (I) Correlation 
(Pearson r) between chemical phenotype signatures of genes in close genomic proximity with 
functions related to outer membrane biogenesis. (J) Change in expression (Log2FC) for genes 
of interest caused by CRISPRi targeting of genes selected from the cluster in (I). Independently 
repressible units are demarcated by purple lines, and annotated sE promoters are indicated in 
blue. (K) Relative growth in sub-MIC vancomycin of E. coli CRISPRi strains and their 
complemented variants, in competition against wildtype. Relative growth is assessed by CFU/ml 
and reflects the fraction of growth in vancomycin compared to untreated, relative to a wildtype 
control. (L) Schematic of the metabolic branch point between fatty acid biosynthesis and Lipid A 
biosynthesis, governed by the activities of FabZ and LpxA/LpxC, respectively. 
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Figure 2.3. Predicted direct target interactions reveal pervasive feedback controlling 
essential gene expression and triggered by CRISPRi targeting. (A) Predicted direct target 
interactions in the E. coli and B. subtilis CRISPRi chemical genetic screens. All direct target 
pairs are listed and are shown in blue if the direct target knockdown was significantly sensitized 
(FDR<0.05) and in red if not. n.t. not tested. (B) Transcript levels of CRISPRi targeted genes 
measured by RT-qPCR. Wildtype levels of expression, uninduced CRISPRi levels (no IPTG) 
and maximally induced (1mM IPTG) are shown for each targeted gene. Transcript levels are 
shows as Normalized Relative Quantities (NRQ) and the distribution of 2-3 biological replicates 
are shown as boxplots. (C) Schematic of the dual-reporter system to quantify CRISPRi 
knockdown and feedback at the single-cell level. (D) Schematic describing negative 
autoregulation of rho and the knockdown/feedback reporter experiments. Lower panel shows 
the relative median single-cell GFP fluorescence for the strains and reporters as indicated. 
Induction of CRISPRi by IPTG or induction of feedback by drug treatment are each shown along 
the lower x-axis. Lower right panels show the distribution of single-cell GFP values for the rho 
knockdown and feedback reporters. (E) as in (D) for evaluation of fusA feedback regulation. (F) 
as in (D-E) for evaluation of gyrA and gyrB feedback regulation. All reporters in (F) are 
chromosomally integrated at xylA. 
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Figure 2.4. Construction and characterization of the E. coli essential gene CRISPRi 
library. (A) Workflow of the construction of the E. coli CRISPRi library. New spacers are cloned 
in parallel into the plasmid pCs-550r by iPCR, followed by ligation. These plasmids are 
competent to express the full length sgRNA under control of the IPTG-inducible promoter PlLac-
O1. In parallel, each plasmid is integrated into the latt site in the chromosome of a recipient 
wildtype (BW25113) cell using the helper plasmid pINT-ts, and selecting for chloramphenicol 
resistance. These strains are then arrayed in 96-well plates, and comprise the “sgRNA library”. 
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The right branch of the workflow describes the construction of a dcas9 donor strain which is 
competent to transfer dcas9 in single copy to a recipient cell using conjugation. dcas9 was 
cloned into the plasmid pTn7C59 inside a cassette recognized by the site-specific transposase 
Tn7. The plasmid pTn7C59 and the plasmid pTn7C1 (expressing Tn7) are each transferred to a 
recipient pseudo-Hfr strain (Typas et al. 2008) in a tri-parental mating strategy (Peters et al. 
2019), resulting in integration of the dcas9 cassette at the Tn7att in the recipient chromosome. 
The Tn7att site is adjacent to the origin of transfer (OriT) in the dcas9 donor strain, allowing it to 
transfer the dcas9 cassette but not the conjugative machinery (tra region) to a recipient cell. 
Below outlines the mating protocol, the mating and first selection steps of which take place on 
high-density array agar pads, and the final selection step using single colony isolation. (B) The 
relative fitness (RF) of sgRNAs chosen for the E. coli CRISPRi library and their activities 
compared to other sgRNAs targeting the same essential gene in three large-scale screens 
(Wang et al. 2018; Rousset et al. 2018; Hawkins et al. 2019). All fitness values are shown as 
relative fitness, with the mean fitness among all sgRNAs targeting the same gene shown as 
point in the line representing the full distribution. Right of the plots details the percentage of 
sgRNAs selected for this library whose RF values fall within or below 1 standard deviation of the 
mean RF for all sgRNAs targeting that gene. (C) Relative fitness measurements are 
reproducible. Relative fitness is shown for two biological replicates in uninduced “No inducer” 
and induced “1mM IPTG” conditions. Points are colored according to their essentiality 
designation as in Fig. 2.1C. (D) Relative fitness of high-confidence essential homologs in 
uninduced conditions in E. coli and B. subtilis. Essential homologs falling in the bottom 10th 
percentile of essential homologs in either species are labeled. (E) Reproducibility of the 
chemical-genetic screen in E. coli. The distribution of correlations among all condition replicate 
pairs (≥4 replicates per condition, 151 conditions); median Pearson r=0.711. (F) The distribution 
of correlations among all strain replicate pairs (2-4 replicates per strain, 479 strains); median 
Pearson r=0.680. (G) The distribution of correlations for the deletion strains screened among all 
matched conditions with (Nichols et al. 2011) (91 strains, 70 overlapping conditions); Pearson 
r=0.565. 
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Figure 2.5. Shared and Gram-negative specific sensitivity patterns from the chemical-
genetic screens. (A) S-scores of all cell division and cell wall biosynthesis gene knockdowns 
(upper) and DNA replication genes (lower) in E. coli for conditions causing DNA damage. Upper 
shows strains and conditions clustered hierarchically using Euclidean distance. Lower shows 
conditions in the same order as above, and strains clustered. (B) as in (A) for S-scores of B. 
subtilis strains in which cell division or cell wall biosynthesis genes (upper) or DNA replication 
genes (lower) are targeted. Data as in (Peters et al. 2016). (C) RNA-seq of outer membrane, 
cell division, and cell wall biosynthesis genes demonstrates no strong activation of SOS 
response. Log2 fold change (Log2FC) in expression compared to a CRISPRi control strain is 
shown for SOS-induced genes. (D) Growth curves in the presence (blue outline) or absence (no 
outline) of sub-inhibitory azidothymidine. Each panel shows one CRISPRi target, alone or in 
combination with a sulA deletion (∆sulA). Greyed section highlights the timepoints used to 
estimate end-point growth in Fig. 2.2E. (E) as in (C) for genes regulated by sE and Rcs 
pathways. (F) Complementation of vancomycin sensitivity as in Fig. 2.2K. (G) RT-qPCR 
quantification of target transcript levels in an rfp targeting and alaS targeting strain. 
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TABLES 

Table 2.1. Strains and primers used in this study (including CRISPRi libraries). Supplemental 

file. 

Table 2.2. Growth phenotypes from pooled screen. Supplemental file. 

Table 2.3. Chemical screen details and phenotypes. Supplemental file. 
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INTRODUCTION 

Bacteria must optimize protein production to maximize survival and growth in constantly 

changing environments. Given the high energetic cost of protein synthesis, optimizing 

expression is particularly important for essential genes: although only ~5-10% of the genome, 

they constitute a disproportionate fraction (~50%) of the proteome (Lalanne et al., 2018) and 

insufficient expression is, by definition, fatal. Previous work using CRISPR interference 

(CRISPRi), hypomorphs, and promoter replacement revealed gene-, environment-, and 

antibiotic-specific fitness effects of altering essential gene expression (Bauer et al., 2015; Dekel 

and Alon, 2005; Eames and Kortemme, 2012; Johnson et al., 2019; Keren et al., 2016; Nichols 

et al., 2011), but the lack of a facile method for systematically perturbing bacterial gene 

expression has thus far prevented a comprehensive understanding of how bacteria optimize 

expression of their essential protein complement. CRISPRi, which represses bacterial 

transcription by targeting a catalytically dead Cas9 (dCas9) to an open reading frame using a 

complementary sgRNA, is an inducible and inherently barcoded system that has been used to 

perturb essential gene expression in its native context. However, tuning transcriptional 

repression by adjusting dCas9 or sgRNA abundance (Liu et al., 2017; Peters et al., 2016) is 

noisy and precludes the interrogation of multiple knockdown levels in a single experiment 

(Vigouroux et al., 2018).  

Here we establish a species-independent approach for predictably titrating CRISPRi 

activity in bacteria using single mismatches in the base-pairing region of sgRNAs. Mismatched 

sgRNAs enable massively parallel interrogation of the fitness effects of many intermediate 

levels of CRISPRi efficacy across genes in a single pooled growth experiment. Building on 

previous studies of off-target and mismatched sgRNA activity (Gilbert et al., 2014; Jost et al., 

2020; Vigouroux et al., 2018), we screened a comprehensive library of mismatched gfp-

targeting sgRNAs in Escherichia coli and Bacillus subtilis and used the data to build a species-
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independent model of mismatched sgRNA activity for bacterial CRISPRi. We used this model to 

explore the expression-fitness landscapes of all essential genes in E. coli and B. subtilis by 

comparing the fitness effects of ~90 mismatched sgRNAs to the predicted levels of CRISPRi 

activity for each essential gene in each species. Our analysis of per gene expression-fitness 

relationships revealed that CRISPRi targeting of different essential genes has different effects 

on cellular fitness, but that these effects are largely conserved within pathways, and between E. 

coli and B. subtilis homologs. The conservation of expression-fitness relationships for most 

genes over >2 billion years suggests that conserved homeostatic constraints underlie the 

optimization of essential gene expression and highlights processes with divergent evolutionary 

pressures. Our findings thus provide both new insights into bacterial physiology and an 

important new tool for exploring reduced-expression phenotypes in many bacterial species. 

 

RESULTS AND DISCUSSION 

CRISPRi efficacy is similarly titrated by sgRNA mismatches in E. coli and B. subtilis 

Mismatched sgRNA efficacy has been sparsely tested in E. coli (Qi et al., 2013) using rfp 

targeted by variants of a single sgRNA. However, no comprehensive, multi-species 

measurements of repression by mismatched sgRNAs have been reported for bacterial 

CRISPRi. To directly quantify the impact of mismatches on the repression of mismatched 

sgRNAs in bacterial systems, we generated a comprehensive library of sgRNA spacers 

targeting gfp (3201 total), consisting of all spacers fully complementary to the non-template 

strand (33), a majority of their possible single mismatch variants (47/60), and a subset of their 

possible double mismatch variants (49/1710) (Figure 3.8A). Using FACS-seq (Figure 3.1A, 

Methods), we quantified the ability of these sgRNAs to repress transcription of a highly 

expressed chromosomal copy of gfp both in E. coli and B. subtilis (Figure 3.9A-C, Table S1). 

We found that sgRNAs with either single (Figure 3.1B) or double (Figure 3.10A) mismatches in 
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their base-pairing regions generated the full range of repression (no efficacy to full efficacy) in 

both species. Importantly, sgRNA activity was unimodal (Figure 3.9E-H) and highly correlated 

between E. coli and B. subtilis (R2: singly mismatched sgRNAs = 0.65, doubly mismatched 

sgRNAs = 0.61, all sgRNAs = 0.71; Figure 3.1B, Figure 3.10A, and Table S1), despite an 

evolutionary distance of several billion years and differences in experimental setup (E. coli: 

plasmid-encoded sgRNAs, B. subtilis: chromosomally integrated sgRNAs).  

Mismatched sgRNA efficacy has also been explored in mammalian CRISPRi systems 

(Gilbert et al., 2014; Jost et al., 2020), however, substantial differences exist between CRISPRi 

modalities in bacteria (blocking RNA-polymerase elongation) and mammalian systems 

(recruiting chromatin modifiers to promoters). To compare mismatched sgRNA efficacy between 

bacteria and mammalian systems, we calculated the mean relative activity of bacterial gfp-

targeting and mammalian essential gene-targeting singly mismatched sgRNAs (Jost et al., 

2020) for all combinations of mismatch position and base substitution. We found that although 

sgRNA activity is correlated between the two systems (R2 = 0.61, Figure 3.1C and Figure 3.11), 

the activity of the mammalian system is more strongly impacted by mismatches in general, 

particularly in the PAM-proximal seed region (Figure 3.1C and Figure 3.11. Whereas almost all 

mismatches in the seed region completely abolish sgRNA activity in the mammalian system, 

sgRNAs with equivalent mismatches still retain measurable activity in the bacterial system, 

consistent with previous reports (Qi et al., 2013). These differences may be due to differences in 

how CRISPRi functions. In bacteria, dCas9 efficiently blocks transcriptional elongation when 

targeted within the ORF, while in mammalian systems, efficient repression requires targeting a 

dCas9-KRAB fusion to occlude the promoter region and recruit chromatic modifying proteins 

(Gilbert et al., 2013). Previous work compared the activity of mismatched sgRNAs in 

mammalian cells using either dCas9 or dCas9-KRAB (Gilbert et al., 2014) and found that 

mismatches in the seed region were better tolerated by a dCas9 repression system than by a 

dCas9-KRAB system. This indicates that KRAB function may be responsible for the sensitivity 
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of the mammalian system to mismatches. Taken together, these data suggest that although the 

primary determinant of mismatched sgRNA efficacy in both bacteria and mammalian systems is 

shared, differences in how CRISPRi functions in these two systems manifest as quantitative 

differences in mismatched sgRNA efficacy. Remarkably, mismatched sgRNAs function similarly 

in E. coli and B. subtilis, potentially allowing facile design of sgRNAs with specific degrees of 

knockdown across diverse bacterial systems.   

 

A species-independent linear model robustly predicts mismatched-sgRNA activity 

Given the species-independent performance of gfp-targeting mismatched sgRNAs, we 

next asked whether we could accurately predict the effects of single mismatches on sgRNA 

activity. Previous work on CRISPRi off-target effects (Gilbert et al., 2014; Qi et al., 2013) and 

concurrent work on mismatched sgRNAs in a mammalian context (Jost et al., 2020), identified 

mismatch position, base substitution, and the GC% of the fully complementary spacer as the 

strongest determinants of mismatched sgRNA efficacy. We therefore constructed a simple 

linear model that used one-hot encoded mismatch position (20 parameters), one-hot encoded 

base substitution (12 parameters), and spacer GC% (1 parameter) to predict the relative 

efficacy of mismatched gfp-targeting sgRNAs (Figure 3.2A).  

We separately trained this linear 33-parameter model on the E. coli, B. subtilis, or 

species-averaged relative efficacy of our 1,551 gfp-targeting singly mismatched sgRNAs. 

Regardless of which data was used for training, model weights for mismatch location, base 

substitution, and spacer GC% were similar (Figure 3.12, Table S2), could be used for cross-

prediction (Figure 3.13) and reflected known dCas9 behavior. Model weights for mismatch 

location indicated decreasing sgRNA efficacy for mismatches closer to the PAM (Figure 3.2B), 

as expected based on the mechanism of dCas9 binding and R-loop formation (Gong et al., 

2018). Model weights for base substitution were correlated (R2 = 0.60, p < 0.005) to the 
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changes in the free energy of sgRNA-DNA pairing (ΔΔG) caused by the base substitution 

(Figure 3.2C). Finally, the negative coefficient assigned to GC% suggests that sgRNAs with 

high GC% are more tolerant of mismatches, consistent with what has been found in a 

mammalian system (Jost et al., 2020). Despite the simplicity of this model, the effects of single 

mismatches were robustly predicted (Figure 3.2D, Figure 3.13, species-averaged R2 = 0.56, 11-

fold CV-MSE = 0.10 +/- 0.08). Additionally, when applied to doubly mismatched sgRNAs by 

assuming that mismatches independently affect sgRNA efficacy (as suggested in Qi et al., 

2013), our model accurately predicted the relative efficacy of these sgRNAs (species-averaged 

R2 = 0.53, Figure 3.10B).  

To validate a biophysical interpretation of our model, we took advantage of a previously 

published data set containing measured association rates (kon) of a dCas9-sgRNA complex to 

60 singly mismatched and 1130 doubly mismatched DNA sequences (Boyle et al., 2017). Re-

interpreting this data as sgRNA mismatches, we compared the measured association rates to 

the relative sgRNA activity predicted by our model for these orthogonal sgRNAs (Figure 3.2E, 

Figure 3.10C). Our predicted sgRNA activity was highly correlated (R2: single mismatches = 

0.71, double mismatches = 0.45) to the kon measured in this in vitro system, supporting the 

hypothesis that mismatched-CRISPRi functions by reducing the association rate of the dCas9-

sgRNA complex for the target DNA, likely by slowing R-loop formation (Gong et al., 2018). 

Taken together, these data strongly suggest that a simple linear model trained on the relative 

efficacy of our gfp-targeting singly mismatched sgRNA library can be used to design 

mismatched sgRNAs with a specific activity level targeting any gene.  

 

Measuring the fitness of libraries of mismatched sgRNAs in E. coli and B. subtilis  

Using our model of mismatched sgRNA activity, we designed a set of sgRNAs targeted 

to the essential gene complement of E. coli and B. subtilis (~300 genes in each species, Table 

S3) and predicted to have a range of activities. We generated large pooled libraries of strains in 
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which each essential gene is targeted by 100 sgRNAs (10 fully matched guides each with 9 

singly mismatched variants, Methods, Figure 3.8C) and compact libraries in which each 

essential gene is targeted by 11 sgRNAs. Additionally, for two well characterized essential 

genes encoding UDP-GlcNAc-1 carboxyvinyltransferase (E. coli: murA, B. subtilis: murAA), and 

dihydrofolate reductase (E. coli: folA, B. subtilis: dfrA), we generated comprehensive libraries (at 

least 47/60 single mismatch variants for each sgRNA within the gene, Methods, Figure 3.8B). 

The libraries were grown for 10 doublings, maintaining exponential phase through back-dilution 

(Figure 3.3A). We calculated the relative fitness (Kampmann et al., 2013; Rest et al., 2013) of 

each strain by comparing its relative abundance (quantified by next-generation sequencing of 

the sgRNA spacers) to the relative abundance of 1000 non-targeting sgRNAs at the start and 

end of each experiment (Methods, Table S3). Relative fitness is defined as the number of 

doublings of any strain relative to the number of wildtype doublings over the time course of the 

experiment. Strains with a relative fitness of 1 grow as well as wild-type; lower values imply 

slower growth. Relative fitness was highly reproducible in both species (R2 > 0.9, Figure 3.14A-

B) and was validated by orthogonal measurements of individual strain fitness (Figure 3.14C). 

Our relative fitness values for fully complementary guides were correlated with previously 

reported measurements (Rousset et al., 2018; Wang et al., 2018) but had greatly expanded 

dynamic range (Figure 3.14D-E) due to differences in experimental design. Whereas previous 

studies were optimized for determining essentiality by quantifying fitness over >15 generations, 

we optimized our experiments for an expanded dynamic range by quantifying fitness over 10 

generations and sequencing to greater depth. This expanded dynamic range enabled the 

quantification of strong fitness defects, including measurement of negative relative fitness, 

which indicates active depletion from the pool. CRISPRi targeting of 23 E. coli genes and 24 B. 

subtilis genes reproducibly (>5 sgRNAs/gene) caused negative relative fitness (Table S4). 

Consistent with an interpretation of negative relative fitness as lysis, a majority (15/24) of these 
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B. subtilis genes caused lysis (as assayed by microscopy) when targeted with a fully 

complementary sgRNA (Peters et al., 2016) (Table S4, Methods).  

 

Per gene expression-fitness relationships are robustly quantified using mismatched-

sgRNAs 

We next assessed whether comparing the activity of sgRNAs predicted from our model 

to their measured relative fitness would allow us to infer the expression-fitness relationships of 

essential genes. Inferring per gene expression-fitness relationships requires both that our gfp-

trained model accurately predicts relative sgRNA efficacy and that fully complementary sgRNAs 

have similar efficacy at all loci within a gene.  

We first tested the applicability of our gfp-trained model to sgRNAs targeting 

endogenous genes. Since repression of essential gene expression monotonically decreases 

cellular fitness, we reasoned that if our model is accurate, predicted sgRNA efficacy should be 

negatively correlated to relative fitness within a series of sgRNAs targeted to a specific locus. 

Consistent with this hypothesis, we found that predicted sgRNA activity within series was 

negatively correlated to the relative fitness of those strains in both E. coli (median r = -0.74, 

Figure 3.3B) and B. subtilis (median r = -0.86, Figure 3.3B), suggesting that relative sgRNA 

activity was correctly predicted. Weaker correlations in E. coli likely reflect variation in sgRNA 

plasmid copy number and/or E. coli specific effects (Cui et al., 2018). To further probe the 

generality of our model, we trained it on the relative fitness effects of our comprehensive 

mismatched sgRNA libraries (Figure 3.8B) targeting the essential endogenous dihydrofolate 

reductase genes: E. coli folA (1,525 sgRNAs) and B. subtilis dfrA (1,281 sgRNAs). Because 

dihydrofolate reductase abundance is linearly related to fitness above an initial threshold of 

activity (Bhattacharyya et al., 2016), we interpreted the fitness defects of strains containing 

mismatched sgRNAs targeting these genes as readouts of knockdown efficacy. We found that 

when trained on the folA or dfrA data, model weights (Figure 3.12) and performance (Figure 
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3.13) were similar to the gfp-trained model, suggesting that both our model of mismatched 

sgRNA efficacy and the parameters fit from the gfp data are broadly applicable.  

We next tested whether knockdown efficacy was consistent across targeted loci. 

Because our model predicts knockdown efficacy with respect to the fully complementary sgRNA 

(“relative knockdown efficacy”), it can be applied across sgRNA families to determine 

expression-fitness curves only if fully complementary sgRNAs achieve similar knockdown 

efficacy at all loci within a gene. Fully complementary sgRNAs targeting gfp and folA/dfrA 

showed limited variability that did not correlate with the location of the sgRNA (Figure 3.15). To 

determine if this pattern held true for other endogenous essential genes, we reasoned that 

differences in knockdown at different loci within a gene would manifest as differences in the 

fitness effect of fully complementary sgRNAs targeting the same gene (Figure 3.3C-D). 

Comparing the variability of the fitness effect of fully complementary sgRNAs targeting the same 

gene to the overall variability in the fitness effect of fully complementary sgRNAs using sum of 

squares, we found that within gene variability accounted for only 26.7% of total variability in E. 

coli and 18.6% of total variability in B. subtilis. This suggests that fully complementary sgRNAs 

targeting the same gene are substantially more similar with regards to their fitness outcomes 

than fully complementary sgRNAs as a whole, and supports the assumption that fully 

complementary sgRNAs targeting the same gene have similar levels of activity.  

Consistent with these outcomes, predicted sgRNA activity was negatively correlated with 

cellular fitness for all sgRNAs targeting the same gene in both E. coli (median r = -0.65, Figure 

3.3B) and B. subtilis (median r = -0.75, Figure 3.3B). Taken together, these analyses strongly 

suggest that we can accurately and sensitively probe the expression-fitness relationships of 

essential genes in E. coli and B. subtilis by comparing the predicted activity of mismatched 

sgRNAs to their measured fitness using a pooled screening approach. 
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Expression-fitness relationships are conserved within biological processes and between 

essential homologs 

Examining the essential gene expression-fitness relationships, we were struck by their 

diverse and gene-specific nature (Table S3). To quantitatively characterize these differences, 

we first binned the sgRNAs targeting each gene according to predicted sgRNA activity and 

calculated the median fitness within each bin (Methods, Figure 3.16A-B, and Table S5). Next, 

we used these simplified representations of per gene expression-fitness relationships to 

calculate pairwise distances between E. coli and B. subtilis essential genes. Within each 

organism, we found that the expression-fitness relationships of genes involved in the same 

biological process (whether defined by KEGG, GO biological process, or COG) were 

significantly more similar to each other than to those of genes involved in different biological 

processes, even when excluding gene pairs in the same operon to account for CRISPRi polarity 

(all p < 10-16, Methods). Inversely, clustering genes by the shape of their expression-fitness 

curves produced functional enrichments (Table S6) in both E. coli and B. subtilis. Finally, in a 

cross-species comparison, the expression-fitness curves of essential genes were, as a group, 

more similar (p < 10-10) to that of their homologs than to other genes in the opposing species. 

To eliminate the possibility that these similarities were the result of systemic biases in 

the prediction of mismatched sgRNA activity, we also performed these analyses using the 

average per gene fitness effect of fully complementary sgRNAs, which do not depend on our 

model of mismatched sgRNA activity. We found that the per gene fitness effects of fully 

complementary sgRNAs were also significantly more similar within biological processes (all p < 

10-16, Methods) than between biological processes. However, clustering solely by the per gene 

fitness effects of fully complementary sgRNAs produced fewer functional enrichments, and a 

less statistically significant similarity between E. coli and B. subtilis homologs (p < 10-6). Taken 

together, these data suggest that these expression-fitness curves are both biologically 
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meaningful and representative of deeply conserved homeostatic constraints on bacterial 

physiology. 

 

Expression-fitness relationships of biological processes 

To explore the conserved optimizations of bacterial essential gene expression, we 

examined three functional categories having similar expression-fitness relationships in E. coli 

and B. subtilis. CRISPRi targeting of essential cofactor biosynthesis genes (KEGG pathways 

under “Metabolism of cofactors and vitamins”) did not strongly affect fitness in either species 

after 10 generations (Figure 3.4A-B). This observation is consistent with the small-colony but 

non-culturable phenotype of essential cofactor biosynthesis gene deletions (Koo et al., 2017) 

and suggests that these cofactors and/or the enzymes producing them are present in excess of 

what is required for exponential growth. This buffer may be required to enable rapid shifts in 

metabolism in response to changing environmental conditions, similar to what has been 

proposed for the pentose-phosphate pathway (Christodoulou et al., 2018).  

The robustness of both bacteria to CRISPRi targeting of essential cofactor synthesis 

genes contrasts with the strong, approximately linear effect of targeting genes involved in 

translation (KEGG pathways under “Translation”, Figure 3.4C-D). Previous work has 

established a linear relationship between growth rate and the number of ribosomes per cell 

during exponential growth in E. coli, B. subtilis, and other bacteria (Borkowski et al., 2016; 

Schaechter et al., 1958; Scott et al., 2010). By linearly inhibiting ribosomal protein expression, 

we likely decrease the number of functional ribosomes, leading to a corresponding linear 

decrease in growth rate. Moreover, feedback to restore ribosomal protein expression is unlikely 

because most ribosomal proteins are negatively regulated by their excess relative to rRNA 

(Nomura et al., 1980; Scott et al., 2014). Depletion of translation factors has a similarly linear 

effect on growth rate, likely due to slowed elongation rate (Dai et al., 2016) as has been shown 

for some antibiotics that inhibit translation elongation (Scott et al., 2010). The conserved linear 
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relationship between the expression of proteins involved in translation and growth rate 

reinforces the universal importance of translational capacity for determining growth rate.  

CRISPRi targeting of genes involved in cytoplasmic peptidoglycan (PG) precursor 

synthesis (KEGG ko00550) also generated strong phenotypes in both species. However, in 

contrast to the linear expression-fitness relationship of genes involved in translation, PG 

synthesis genes exhibited bimodal fitness outcomes that depended on predicted sgRNA activity 

(Figure 3.4E-F). This bimodality is highlighted by the fitness outcomes of the comprehensive 

murA and murAA-targeting libraries, even when considered independently of predicted 

knockdown (Figure 3.16C-D). Cells tolerated partial repression of these genes without exhibiting 

a fitness defect. If expression was sufficiently repressed, these strains lysed (Table S4) as has 

been described for murA, murG, and mraY inhibition in E. coli (Fransen et al., 2017; Mengin-

Lecreulx et al., 1991; Zheng et al., 2008) and for murC, murD, and murG depletion in B. subtilis 

(Peters et al., 2016). To determine whether the bimodality observed for these genes was due to 

bimodal CRISPRi activity, we measured the ability of 18 mismatched sgRNAs to repress a 

murAA-gfp transcriptional fusion in B. subtilis. These measurements were conducted in a B. 

subtilis strain complemented with non-targeted murAA (Methods) to enable quantification of 

lethal levels of knockdown and to avoid the potential for transcriptional feedback. Measured 

knockdown closely tracked the predicted activity of sgRNAs targeting murAA in this experiment 

(Figure 3.16E, Table S10), suggesting that the non-linear expression-fitness relationship of 

uncomplemented murAA reflects non-linearly decreasing growth due to MurAA depletion, 

transcriptional feedback, cell lysis, or other host specific effects. Previous work in E. coli 

(Mengin-Lecreulx and van Heijenoort, 1985) and Salmonella typhimurium (Kahan et al., 1974) 

demonstrated that the levels of enzymes involved in cytoplasmic peptidoglycan precursor 

synthesis are not affected by growth rate or fosfomycin inhibition. Additionally, recent work in E. 

coli, Caulobacter crecentus, and Listeria monocytogenes (Harris and Theriot, 2016) found that 

low doses of fosfomycin impact cell morphology, as expected if peptidoglycan synthesis is 
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inhibited, but did not impact growth rate. This suggests that the absence of homeostatic 

regulation in peptidoglycan precursor synthesis is conserved.  Given this lack of regulation, the 

dearth of intermediate fitness outcomes in either species upon repression of PG precursor 

synthesis is surprising. It suggests that neither species is able to slow growth rate or up-regulate 

cytoplasmic PG precursor synthesis in response to reduced flux through this pathway to prevent 

lysis. It has been proposed that bacteria use peptidoglycan precursor concentration to sense 

and balance cellular metabolism and growth (Harris and Theriot, 2016). This would be 

incompatible with direct feedback regulation of cytoplasmic PG precursor synthesis and may 

explain the sharp transition between growth and lysis. 

 

The expression-fitness relationships of many cell wall synthesis genes differ between E. 

coli and B. subtilis  

Given the similarity between the expression-fitness curves of most essential genes in E. 

coli and B. subtilis, we reasoned that homologs with substantially different expression-fitness 

curves may reflect biologically meaningful differences between the two organisms. We identified 

9 homologs as significantly different between the two organisms (Table S7, FDR < 0.2).  

Remarkably, 7/9 of these genes encoded enzymes involved in peptidoglycan (PG) 

synthesis and maturation, highlighting that although these pathways are conserved between 

Gram-positive and -negative species, major distinctions have evolved in how they contribute to 

construction of viable cells. Whereas CRISPRi targeting of genes involved in cytoplasmic PG 

precursor synthesis (Figure 3.5, group 3) generated bimodal expression-fitness relationships in 

both E. coli and B, subtilis, CRISPRi targeting of genes encoding enzymes involved in UDP-

GlcNAc synthesis, meso-DAP synthesis, and longitudinal cell wall synthesis differentially 

affected the two species (Figure 3.5).  

E. coli was significantly more tolerant of mreBCD perturbation than B. subtilis (Figure 

3.5, group 4). In contrast to B. subtilis, which lysed at intermediate levels of mreBCD 
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knockdown, E. coli exhibited a minimal fitness defect after 10 generations and only lysed after 

15 generations (Table S3). This observation is consistent with the small effect of CRISPRi 

targeting of mrdA (the PBP2 associated with MreBCD) on fitness in E. coli, the lack of 

transcriptional knockdown when targeting mreC (Reis et al., 2019), and with previous work 

which found that the fitness of Enterobacter cloacae is also relatively unaffected by mreBCD 

CRISPRi targeting (Peters et al., 2019). It is unclear why E. coli and other Gram-negative 

bacteria are less affected by mreBCD CRISPRi targeting than B. subtilis, however 

transcriptional buffering through feedback appears to play a role.  

E. coli was also more robust than B. subtilis to CRISPRi targeting of genes required for 

producing either UDP-GlcNAc (Figure 3.5, group 1) or meso-DAP (Figure 3.5, group 2). 

Whereas B. subtilis lysed when these genes were targeted with high activity sgRNAs, E. coli 

exhibited a minimal fitness effect after 10 generations (Figure 3.5, Table S4, and Table S7). To 

determine whether transcriptional feedback, mediated by divergent regulatory mechanisms 

(Barreteau et al., 2008; Rodionov et al., 2003) is responsible for the lack of observed phenotype 

in E. coli, we measured the ability of 2 fully complementary and 2 mismatched sgRNAs to 

reduce the expression of E. coli genes encoding enzymes involved in meso-DAP (asd, dapD, 

dapE), and UDP-GlcNAc (glmS) synthesis using RT-qPCR. We found that both fully 

complementary and mismatched sgRNAs were effective in significantly reducing the expression 

of these genes, with mismatched sgRNAs affecting gene expression less than fully matched 

sgRNAs (Figure 3.6A). All fully complementary sgRNAs targeting dapD and dapE generated 

similar knockdown (~20 fold) to a sgRNA targeting rfp, suggesting that if compensatory 

mechanisms exist, they must be post-transcriptional. In contrast, fully complementary sgRNAs 

targeting asd and glmS were less efficacious, generating ~5 fold knockdown, suggesting that 

the robustness of E. coli to CRISPRi targeting of asd and glmS may be due to transcriptional 

feedback. Consistent with this hypothesis, asd, which encodes an important branchpoint 

enzyme in amino acid synthesis is multivalently repressed by lysine, threonine, and methionine 
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(Boy and Patte, 1972) and negatively regulated by the small RNA SgrS (Bobrovskyy and 

Vanderpool, 2016). By de-repressing asd in response to low amino acid levels, these 

mechanisms may be responsible for the increased robustness of E. coli to asd knockdown. 

Similarly, the robustness of E. coli to CRISPRi targeting of glmS may also be due to feedback 

regulation by a positively acting sRNA, glmZ, which stabilizes glmS mRNA in response to low 

intracellular GlcN-6-P levels (Urban and Vogel, 2008), such as those caused by CRISPRi 

targeting of glmS. Taken together these results suggest that feedback, mediated by divergent 

regulatory mechanisms (Barreteau et al., 2008; Rodionov et al., 2003) may contribute to the 

reduced sensitivity of E. coli to CRISPRi targeting of these genes. 

An additional difference between cell wall synthesis in E. coli and B. subtilis is PG 

recycling (Figure 3.6B). Whereas E. coli recycles cleaved PG in both exponential and stationary 

phase, B. subtilis does so only in stationary phase (Johnson et al., 2013). We reasoned that 

increased robustness of E. coli to knockdown of genes in meso-DAP and UDP-GlcNAc 

synthesis might be a consequence of the ability of E. coli to supplement de novo synthesis of 

these compounds with recycled PG. We therefore repeated our small library fitness experiments 

in E. coli strains harboring deletions of either ampG or mpl, two key enzymes involved in 

recycling, and compared the relative fitness of essential gene knockdowns in the different 

backgrounds (Methods, Figure 3.8C). AmpG is the sole permease involved in PG recycling, and 

its deletion abolishes PG recycling (Johnson et al., 2013). Deletion of ampG did not sensitize E. 

coli to knockdown of PG synthesis genes (Figure 3.6C), suggesting that recycled PG does not 

contribute robustness to knockdown. Surprisingly deletion of mpl, which acts downstream of 

AmpG to ligate salvaged tripeptides to UDP-GlcNAC, sensitized E. coli to knockdown of murI 

and dapA (Figure 3.6D). These two genes encode enzymes responsible for isomerizing L-Glu to 

D-Glu (murI) and catalyzing the rate limiting step in meso-DAP synthesis (dapA, Reverend et 

al., 1982). D-Glu and meso-DAP are two of the three amino acids in the tripeptide ligated by 

mpl. The sensitizing and specific effect of an mpl deletion suggests that the flux through PG 
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recycling is important for fitness, and the lack of sensitizing effects in the ampG deletion 

suggests that the absence of this flux can be overcome. Compensatory regulation in response 

to a cytoplasmic PG intermediate upstream of mpl ligation (e.g. UDP-GlcNAC) would be 

activated in response to ampG deletion, but not in response to mpl deletion, potentially 

explaining our observations. However, the mechanism of such regulation remains to be 

elucidated.  

These experiments also identified a novel phenotype, highlighting the ability of these 

approaches to generate new biology. Deleting either ampG or mpl de-sensitized E. coli to the 

depletion of FtsH (Figure 3.6C-D), an essential protease responsible for balancing flux through 

lipopolysaccharide biosynthesis and phospholipid synthesis by regulating the stability of LpxC, 

an enzyme catalyzing the first committed step in lipopolysaccharide synthesis (Ogura et al., 

1999). It remains to be determined whether PG recycling affects the balance between 

lipopolysaccharide biosynthesis and phospholipid synthesis (perhaps by depleting the pool of 

UDP-GlcNAc), or an ancillary FtsH function. Underscoring the importance of screening multiple 

levels of essential gene knockdown, no significant epistatic interactions were identified in either 

strain background when only the two fully complementary sgRNAs targeting each gene were 

considered. These data highlight the utility of combining mismatched CRISPRi libraries with 

other genetic backgrounds to identify novel modulators of essential gene requirements.  

 

Expression-fitness curves are modulated by external perturbations  

 Bacteria have been previously shown to produce some enzymes at higher levels than 

needed for immediate survival in order to buffer against future environmental perturbations 

(Figure 3.4A-B, Christodoulou et al., 2018). To explore the ability of mismatched sgRNAs to 

capture shifts in the expression-fitness relationship of individual genes driven by external 

perturbations, we measured the relative fitness of the comprehensive sgRNA library targeting 

drfA in B. subtilis treated with sub-MIC doses of the antibiotic trimethoprim. Trimethoprim 
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directly inhibits DfrA (Figure 3.7A) and has been shown to act synergistically with partial 

knockdown of dfrA (Peters et al., 2016). However, the degree of synergy as a function of dfrA 

knockdown has not been investigated. We found that a low dose of trimethoprim abolished the 

initial buffering observed in the untreated strain (Figure 3.7B). A higher (but still sub-MIC) dose 

of trimethoprim further depressed the expression-fitness relationship, and caused a phenotype 

even at the lowest levels of knockdown. These data suggest that the DfrA concentration is 

buffered against external perturbations and highlights the ability of mismatched sgRNAs to 

enable exploration of these subtle shifts.     

 

PERSPECTIVE 

Bacterial essentialomes typically consist of several hundred genes encoding the core 

reactions central to viability. Apart from studies of the lac operon (Dekel and Alon, 2005; Eames 

and Kortemme, 2012), the lack of precise, high-throughput methods for titrating gene 

expression has precluded an understanding of how bacteria respond to a continuum of essential 

gene repression. Here we report a modified CRISPRi system that generates graduated, 

species-independent levels of repression by programming dCas9 with singly mismatched 

sgRNAs. Leveraging this system, we assessed the fitness effects of titrating essential gene 

expression for almost all essential genes in E. coli and B. subtilis. These data revealed striking 

differences between the expression-fitness landscapes of genes and pathways that highlighted 

conserved and divergent biological constraints driving the optimization of essential gene 

expression. Because CRISPRi tools have now been established for many bacteria (e.g. (Peters 

et al., 2019), our approach can be applied to pathogenic and microbiome strains to inform target 

selection for drug design and illuminate unique constraints for bacterial growth.  

Our comprehensive characterization of mismatched sgRNAs targeting gfp identifies the 

organism-independent rules that determine mismatched sgRNA activity in bacteria (Figure 3.1 

and Figure 3.2). By applying these rules, either independently or with the software developed 
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here (Methods), sgRNAs can be readily designed that generate a specific level of knockdown 

targeting any bacterial gene. These mismatched sgRNAs enable a range of high-throughput 

techniques to accelerate biological discovery. First, mismatched sgRNAs allow the rapid 

generation of reduced expression mutants. Reduced expression mutants of essential genes 

have been used for drug target discovery and lead optimization in Mycobacterium tuberculosis; 

however, extensive up-front strain optimization was required to identify gene-specific expression 

levels that facilitate identification of chemical-genetic interactions (Johnson et al., 2019). Our 

system enables facile generation and testing of a broad range of repression levels, potentially 

accelerating drug discovery and target identification. Second, our high-throughput pooled 

screening methodology to determine relative fitness is amenable to testing the effects of 

essential gene titration in varying environmental and genetic backgrounds. To simplify the 

exploration of essential gene requirements in diverse conditions, we constructed smaller (11 

sgRNA/gene) libraries for E. coli and B. subtilis essential genes that can be easily screened in 

varying conditions or transferred into different genetic backgrounds. The reduced complexity of 

these libraries aids multiplexing while retaining a broad range of phenotypes for most genes in 

both species (Figure 3.17). Finally, our approach also allows the use of CRISPRi to measure 

epistatic interactions between essential and non-essential genes. This approach had previously 

been hampered by the need to fully repress the non-essential gene (so as to maximize the 

chance of a phenotype) while only partially repressing the essential gene (so as to enable cell 

survival). This hurdle can be overcome by targeting the essential gene with a mismatched 

sgRNA.  

Although a mounting body of evidence supports the idea that gene essentiality is a 

quantitative trait (Rancati et al., 2018), systematically exploring this hypothesis has been 

challenging due to the lack of universally applicable methods of essential gene titration. Here we 

firmly establish quantitatively different fitness effects of essential gene depletion by targeting 

each gene at 10 separate loci using directly comparable CRISPRi methodologies and fitness 



 92 

measurements in two species. This is the first dataset that allows meaningful comparisons of 

expression-fitness relationships across species, and we use it to compare homologous essential 

genes in E. coli and B. subtilis. The similarity of most expression-fitness relationships between 

these diverged species underscores conserved evolutionary constrains and also highlights the 

significant differences in DAP synthesis and in the Rod PG synthetic apparatus as new targets 

for study. In contrast to synthetic promoter-based methods of studying expression-fitness 

relationships (Keren et al., 2016) which inherently eliminate native transcriptional feedback 

loops, our method is sensitive to the effects of essential gene regulation. Whether a cell buffers 

the effects of gene repression by regulatory feedback or by producing an excess of gene 

product is secondary to the importance of having buffering capacity, which is readily observed 

for some genes and not others. These studies inform target selection for drug design, illuminate 

aspects of bacterial growth, and provide a starting point for investigating how bacteria program 

robustness into their essential gene network.  

 

MATERIALS AND METHODS 

 

Experimental model and subject details: 

Microbes 

Escherichia coli strains were cultured in LB medium at 37C. Bacillus subtilis strains were 

cultured in LB medium at 37C. 

 

Methods details: 

General strain manipulations and procedures 

Bacillus subtilis strain construction and growth conditions 

All B. subtilis strains were constructed in the wildtype 168 background using natural 

competence as previously described (Koo et al., 2017). For all individual CRISPRi strains and 



 93 

libraries, a recipient strain encoding dcas9 under control of the Pxyl promoter at the lacA locus 

(strain CAG74209) (Peters et al., 2016), was transformed with an sgRNA plasmid (see “sgRNA 

plasmid construction”) which recombines in single copy at the amyE locus, selecting for 

chloramphenicol resistance. In select cases, single- vs. double-crossover events from plasmid 

integration were distinguished by streaking on starch plates to assay disruption of amyE. 

For the GFP knockdown FACS-seq experiments, two modified recipient strains expressing 

dcas9 were constructed: one encoding gfp (strain CAG78920) and the other encoding rfp (strain 

CAG78921). To construct these, the dcas9 strain (strain CAG74209) was transformed with 

pDG1731-gfp or pDG1731-rfp to integrate Pveg-gfp-spc or Pveg-rfp-spc, respectively, at the 

thrC locus, selecting for spectinomycin resistance. All subsequent transformations of the gfp 

and rfp-marked strains required threonine supplementation in the competence media (40μg/ml), 

as thrC is disrupted. 

For flow cytometry-based competition experiments (see “Relative fitness validation”), the 

dcas9 recipient strain was transformed with a modified sgRNA plasmid that also encodes either 

Pveg-gfp or Pveg-rfp (see “sgRNA plasmid construction”). 

A murAA-gfp transcriptional fusion knock-down reporter strain was constructed by 

transformation of the dcas9 strain (above) with the DNA fragments containing constitutively 

expressed rfp with removable kanR cassette, murAA-gfp transcriptional fusion with removable 

kanR cassette, and constitutively expressed non-targeted murAA with spectinomycin resistant 

gene, of which fragments were integrated into sacA, murAA and thrC locus respectively, 

sequentially in that order. The B. subtilis Pveg promoter was used for constitutive expression of 

rfp and non-targeted murAA. The DNA fragment containing constitutively expressed rfp with 

removable kanR cassette was constructed by joining PCR of three fragments: Pveg-rfp-kanR 

fragment amplified from pACYC-rfp-kanR, and 1kb each 5′ and 3′ flanking sequences of 

sacA. The DNA fragment containing murAA-gfp transcriptional fusion with removable kanR 

cassette was constructed by the joining of gfp-kanR amplified from pACYC-gfp-kanR, 1kb of the 
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3’ end of the murAA open reading frame, and 1kb downstream of the murAA open reading 

frame. Before the gfp-kanR fragment was integrated downstream of murAA to generate strain 

CAG78923, the kanR cassette was removed from rfp strain as described previously to generate 

strain CAG78922 (Koo et al., 2017). Non-targeted murAA was designed to remove PAM 

sequence or alter the sgRNA targeting sequence without substituting amino acid sequence of 

murAA. Non-targeted murAA DNA was generated by overlapping PCR with mutagenic primers 

(Table S8) and its BsiWI/NruI digested fragment were cloned into pJMP3 (Addgene #79875) 

digested with BsrGI/PmeI. The cloned plasmid was transformed into the dcas9, rfp, murAA-gfp 

strain, selecting for spectinomycin resistance, to generate strain CAG78924. Finally, this strain 

was transformed with sgRNA plasmids as described above. 

Unless otherwise noted, all strain construction and growth assays for B. subtilis were done 

in LB medium and using antibiotics at the specified concentrations: erythromycin (1μg/ml), 

spectinomycin (100μg/ml), chloramphenicol (7.5μg/ml), kanamycin (7.5μg/ml). 

 

Escherichia coli strain construction and growth conditions 

All CRISPRi library strains were constructed in the wildtype BW25113 background by 

electroporating an sgRNA plasmid or plasmid pool (see “sgRNA plasmid construction”) into a 

recipient strain encoding dcas9 (for essential gene knockdown libraries), or dcas9 and gfp or rfp 

(for GFP knockdown libraries), selecting for ampicillin resistance. 

For the essential gene knockdown library recipient strain (strain CAG78830), Tn7 

transposition was used to integrate a dcas9 expression cassette into the Tn7att site using 

triparental mating of DAP(diaminopimelic acid)-dependent donors and selecting for gentamicin 

resistance in the absence of DAP, as previously described (Peters et al., 2019). The dcas9 

expression cassette is modified from previously described versions (Peters et al., 2019), 

contains dcas9 from S. pyogenes (Qi et al., 2013) with a 3X Myc C-terminal tag, and is 
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expressed from the IPTG-inducible promoter PlLac-O1 (Lutz and Bujard, 1997) and regulated 

by lacIq. 

For the GFP knockdown FACS-seq experiments, two recipient strains expressing dcas9 

were constructed: one encoding gfp (strain CAG78108) and the other encoding rfp (strain 

CAG78107). Each was generated by first cloning the constitutive gfp and rfp expression 

cassettes from pDG1731-gfp and pDG1731-rfp upstream of frt-cat-frt from pKD3 (Datsenko and 

Wanner, 2000), integrating them into the chromosome between yjaA and yjaB using 

recombineering (Thomason et al., 2014), and selecting for chloramphenicol resistance. P1 

phage transduction (Thomason et al., 2007) was then used to move the gfp-frt-cat-frt or rfp-frt-

cat-frt cassettes into BW25113, selecting for chloramphenicol resistance. Chromosomal dcas9 

was then introduced to these strains by conjugation using a pseudo-Hfr dcas9 donor, as 

described previously (Rauch et al., 2017), where dcas9 is expressed by the minimal synthetic 

promoter PBBa_J23105 {https://parts.igem.org}, and transconjugates were selected using 

gentamicin and chloramphenicol. 

For the RT-qPCR experiments, CRISPRi strains expressing sgRNAs targeting 

peptidoglycan biosynthesis genes were individually reconstructed by electroporating the dcas9 

strain (strain CAG78830) with sgRNA plasmids constructed as described below (see “sgRNA 

plasmid construction”). 

For the experiments combining the compact sgRNA libraries with deletions of peptidoglycan 

recycling pathway genes, the desired deletion alleles (ampG::kan or mpl::kan) were isolated 

from the Keio collection. Briefly, the deletion mutants were isolated, confirmed by PCR of 

kanamycin cassette junctions, and P1 phage was made from verified strains. Transduction of 

the dcas9 strain (strain CAG78830) was performed (Thomason et al., 2007) with each the 

phage, selecting for kanamycin resistance, and the resulting strains were transformed with 

sgRNA plasmid libraries as detailed below (see “Escherichia coli CRISPRi library construction) 
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Unless otherwise noted, all strain construction and growth assays for E. coli were done in 

LB medium and using antibiotic selection at the specified concentrations: ampicillin (100μg/ml), 

carbenicillin (50μg/ml), gentamicin (10μg/ml), chloramphenicol (25μg/ml), kanamycin (30ug/ml). 

 

Bacillus subtilis CRISPRi library construction 

As in the individual CRISPRi strain construction (above), CRISPRi libraries were constructed by 

transforming sgRNA plasmids into the dcas9 strain. The protocol was modified in one of two 

ways in order to increase the scale; we found both methods were sufficient to maintain 

coverage of the pooled plasmids. In one method, cells were grown in B. subtilis competence 

medium to OD600=1.5, and then incubated with plasmid DNA (300μl cells + 300ng plasmid 

DNA) in 96-well deep-well plates. Incubations were performed for 2hr at 37C with shaking 

(900RPM), after which point plates were spun down at 5000g for 10 minutes and resuspended 

in 2mL LB medium before plating on plates (Falcon #351058) with chloramphenicol at a density 

~0.4M CFU/plate and growth overnight at 37C. A second method incubated competent cells 

(grown in B. subtilis competence medium to OD600=1.5) with plasmid DNA in culture flasks, for 

2hr at 37C with shaking (900RPM), after which point cells were spun down in 50ml tubes and 

resuspended in 2-6ml LB before plating on chloramphenicol plates as before. 

To store the transformed CRISPRi library, plates were scraped, pelleted and resuspended in 

S7 salts (Koo et al., 2017) with 15% glycerol, and stored in 500uL aliquots at -80C. 

 

Escherichia coli CRISPRi library construction 

Strain library construction from plasmid libraries was achieved by electroporating plasmid DNA 

into the recipient strains, and plating on plates (Falcon #351058) with carbenicillin and 0.2% 

glucose (to repress uptake of residual lactose in LB that can induce the IPTG-controlled dcas9 

in the essential gene knockdown strains) at a density ~0.4M CFU/plate and growth overnight at 
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37C. To store the libraries, plates were scraped, pelleted, and resuspended in 15% glycerol to 

be stored at -80C. 

 

sgRNA plasmid construction 

The sgRNA plasmid pJSHA77 was modified from pDG1622 to increase transformation and 

double-crossover efficiency. 1.5kb of DNA upstream of amyE was PCR amplified from B. 

subtilis 168 genomic DNA and inserted into pDG1662 by HiFi Assembly (New England Biolabs 

#E2621L), replacing the shorter upstream fragment of amyE in pDG1662. Synthetic DNA 

containing a transcription terminator, an sgRNA driven by Pveg with BsaI cut sites for spacer 

cloning, and downstream tandem transcription terminators was purchased from IDT and cloned 

into the previously described pDG1662 derivative by HiFi Assembly (New England Biolabs 

#E2621L), generating pJSHA77. 

Oligonucleotide pools containing the desired elements with flanking restriction sites and 

library-specific PCR adapters were obtained from Agilent Technologies (Table S8). The 

oligonucleotide pools were amplified by 15 cycles of PCR using Q5 polymerase (New England 

Biolabs #M0493S) and custom primers (Table S8). The PCR product was digested with BsaI-

HFv2 (New England Biolabs #R3733) and gel purified from 10% TBE gels (Invitrogen 

#EC6275BOX) to remove adapter ends. pJSHA77 vector was midi-prepped (Qiagen #12143), 

digested with BsaI-HFv2 for 1hr, and treated with Antarctic phosphatase (New England Biolabs 

# M0289S), and ligation was carried out at a 1:2 (vector:insert) molar ratio using T4 DNA Ligase 

(New England Biolabs #M0202L). Ligations were transformed into electrocompetent cells (New 

England Biolabs #C3020K), recovered for 1hr at 37C in LB, and then inoculated into 100ml with 

carbenicillin and grown overnight. Plasmid libraries were collected by midiprep (Qiagen #12143) 

and analyzed by deep sequencing (Illumina MiSeq #MS-103-1002) to assess cloning efficiency 

and library diversity.  



 98 

For individual sgRNA strains, inserts were prepared by annealing two single-stranded DNA 

oligos together to create the 4-base overhangs, and then annealed inserts were ligated using T4 

DNA Ligase (New England Biolabs #M0202L) individually into pJSHA77 digested with BsaI-

HFv2 and treated with Antarctic phosphatase (New England Biolabs # M0289S). 

For the single-strain competition validation strains, pJSHA77 was first modified to 

incorporate a constitutively expressed Pveg-gfp or Pveg-rfp using HiFi Assembly (New England 

Biolabs #E2621L). Strains were then constructed as described above, ligating annealed-pair 

inserts into the modified vector after digesting with BsaI-HFv2. 

 

sgRNA plasmid library design  

Code for designing (fully matched) sgRNA spacers targeting a list of genomic loci can be found 

at https://github.com/traeki/sgrna_design.  

Non-targeting sgRNA controls were designed by creating random 20nt sequences with a 

distribution of GC content similar to B. subtilis (~45%), and then using bowtie (Langmead et al., 

2009) to identify (and subsequently filter out) sgRNAs which aligned (allowing 3 or fewer 

mismatches) to other intragenic targets in the combined genomes of E. coli and B. subtilis, or 

any targets in gfp or rfp. 

For the libraries targeting all essential genes in B. subtilis, multiple iterations of sgRNA 

library design (i.e. spacer design), construction, and analysis were used. For B. subtilis libraries, 

all presented data is from V2 library measurements, with the exception of the trimethoprim 

experiments which used measurements of the V1 libraries (all data in Table S3). 

For the V1 libraries targeting B. subtilis genes we chose target genes to be all those 

previously identified as essential, putative essential, or low-fitness (Koo et al., 2017; Peters et 

al., 2016) (Table S3). For every gene in the V1 set, two non-overlapping fully complementary 

spacers were chosen, each targeting the non-template strand as close to the start of the ORF 

as possible. For each fully complementary spacer, a set of 25 spacer variants were designed 
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and ordered: 2x the fully complementary spacer, 5x randomly chosen single-mismatches within 

7 bases of the PAM, 5x randomly chosen single-mismatches 8-12 bases from the PAM, 3x 

randomly chosen single-mismatches 13-19 bases from the PAM (to exclude the outermost 

base), 10x randomly chosen double mismatches 1-19 bases from the PAM. In addition, for 

every gene the first three non-overlapping template-strand spacers were included. 

The V2 B. subtilis libraries included all essential B. subtilis genes as well as a subset of non-

essential but fitness-impacting genes (Table S3) from V1 of the library. The V2 E. coli libraries 

included a majority of genes with evidence for essentiality (Table S3) (Koo et al., 2017). For 

every gene in this set, ten non-overlapping fully complementary spacers were chosen on the 

non-template strand, as close to the start of the ORF as possible. For each fully complementary 

spacer, a set of 10 spacer variants was designed and ordered (for a total of 100 sgRNAs per 

gene): 1x the original fully complementary spacer, 9x single-mismatches (Figure 3.8). Single-

mismatches were chosen using the following criteria: all possible single-mismatch variants were 

evaluated by the trained linear model for a predicted sgRNA activity (GitHub - 

traeki/sgrna_design, no date) (train_linear_model.py and choose_guides.py). These predicted 

sgRNA activities were categorized into five bins: <10%, >90%, and three equally sized bins 

between 10% and 90% predicted sgRNA activity. Three sgRNAs were chosen from each of the 

middle three bins.     For the design of all libraries using this strategy, a preliminary version of 

the linear model was used. 

The compact libraries with 11 sgRNAs per gene were selected as above, with the following 

modifications for both species: for each gene 2x fully complementary sgRNAs were chosen, and 

9x single-mismatch variants were selected from among all possible single-mismatch variants of 

each, using a binning strategy as described above (Figure 3.8). For E. coli, also as described 

above, the bins were generated using predicted sgRNA activity. For B. subtilis the bins were 

instead generated using the measured relative fitness values from the V1 experiment, and the 

selected sgRNAs were therefore a subset of those used in the V1 library. 



 100 

The dfrA, gfp, and rfp V1 comprehensive libraries (used in the trimethoprim experiment and 

all FACS-seq experiments) were designed analogous to the V1 essential gene libraries, with 

100 sgRNAs per target: 4x the original fully complementary spacer, 20x randomly chosen 

single-mismatches within 7 bases of the PAM, 15x randomly chosen single-mismatches 8-12 

bases from the PAM, 12x randomly chosen single-mismatches 13-20 bases from the PAM, and 

49x randomly chosen double mismatches 1-20 bases from the PAM (Figure 3.8). 

For the V2 comprehensive libraries targeting dfrA, murAA, folA, or murA, we designed all 

possible non-template spacers, each with all possible single-mismatches, for a total of 60x 

mismatch variants per fully complementary sgRNA. 

 

Relative fitness experiments 

Relative fitness experimental details 

Glycerol stocks of the B. subtilis essential-gene library (V1 or V2), the dfrA and murAA libraries 

(V1 or V2), and the library of non-targeting control sgRNAs were fully thawed, mixed,  and 

inoculated into 150 mL cultures of LB at a combined OD600 of 0.01 (5% control, 75% essential-

gene library, 10% dfrA library, 10% murAA library). This culture was allowed to grow to OD600 

0.1, at which point the culture was back-diluted to OD600 0.01 in fresh 150 mL culture of LB + 

1% xylose. This culture was then grown to OD600 0.3 (~5 doublings), back-diluted to OD600 

0.01 in LB + 1% xylose, and grown to OD600 0.3 (total ~10 doublings). Samples were collected 

a) immediately before back dilution into xylose and b) after the final growth phase, ~10 

doublings apart (Figure. 2A). The trimethoprim experiments were carried out in an identical 

manner, except that both 1% xylose and trimethoprim (Sigma-Aldrich #T7883-5G) (0 ng/mL, 

15ng/mL, or 30ng/mL) were added from the first back-dilution and maintained throughout 

growth. Concentrations of trimethoprim were chosen such that wildtype growth rate was 

unaffected. 
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Fitness experiments for the E. coli V2 libraries were carried out in an identical manner to 

the B. subtilis fitness experiments with the following exceptions: all growth occurred in the 

presence of ampicillin, and induction was achieved with 1mM IPTG instead of 1% xylose. 

For both B. subtilis and E. coli, compact library experiments were carried out in an 

identical manner as the larger scale fitness experiments above, save that the volume of cultures 

was 15mL, and only compact libraries and non-targeting control libraries were mixed together 

(90% compact library, 10% controls). 

At the desired time points, B. subtilis cultures were collected (1ml) by pelleting (9000xg 

2min) and genomic DNA was extracted using the DNeasy Blood & Tissue kit (Qiagen #69506) 

with the recommended Gram-positive pre-treatment and RNAse A treatment. For the E. coli 

fitness experiments, E. coli cultures were collected (4ml) by pelleting (20000xg 2min) and 

plasmid DNA was extracted using the QIAprep Spin miniprep kit (Qiagen #27106). sgRNA 

spacer sequences were amplified from gDNA or plasmid DNA using Q5 polymerase (New 

England Biolabs #M0493S) for 14x cycles using custom primers containing TruSeq adapters 

and indices (Table S8), followed by gel-purification from 8% TBE gels (Invitrogen 

#EC62152BOX), and sequencing on HiSeq 4000 with single-end 50bp reads at the UCSF 

Center for Advanced Technology using a custom sequencing primer (Table S8). 

 

Relative fitness analysis 

Raw FASTQ files were aligned to the library oligos and counted using (GitHub - 

traeki/sgrna_design, no date) (count_guides.py), and relative fitness was calculated using 

(compute_gammas.py and gamma_to_relfit.py). For each strain (x) with at least 100 counts at t0 

we calculate the relative fitness F(x) according to: 

 

𝐹(𝑥) =
𝑙𝑜𝑔2 𝑟+,(𝑡.) ∗ 𝑟0(𝑡1.)𝑟+,(𝑡1.) ∗ 𝑟0(𝑡.)

𝑔+,
+ 1 
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where rx(ti) is the fraction of strain X in the population at time i and gwt is the number of 

generations of wildtype growth in the experiment. A derivation of this equation can be found in 

(Keren et al., 2016) and (Rest et al., 2013). In our experiments, gwt is calculated from the OD 

measurements of the culture, and rwt(ti) is calculated as the median of 1000 non-targeting 

control sgRNAs from that sample. For strains with at least 100 counts at t0 and 0 counts at t10, 

we set: 

 

𝑙𝑜𝑔2
𝑟0(𝑡1.)
𝑟0(𝑡.)

= 0 

 

Finally, the relative fitness measurements of each sgRNA were averaged across 

samples (B. subtilis experiments: 6 replicates, E. coli experiments: 4 replicates) to calculate the 

final relative fitness value and standard deviation (Table S3). 

 

Detection limits of relative fitness measurements 

Our relative fitness experiments seek to quantify the number of doublings each strain 

experiences during the course of the experiment, relative to the number of doublings a wild-type 

(or a non-targeting sgRNA control) strain experiences during this time. To do so, we measure 

the bulk growth of the population, and quantify the relative abundance of each strain at the start 

and end of each experiment via next-generation sequencing. Changes in the relative 

abundance of a strain are determined by the growth rate of the individual strain relative to the 

population as a hole. For example, there is a 210 ~ 1,000-fold increase in the number of cells 

during a 10-doubling experiment. Therefore, cells that do not divide (but remain intact) will 

experience a 1,000-fold decrease in relative abundance.  
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Our ability to measure the relative abundance of strains is constrained by sequencing 

depth.  Assuming an equal number of reads at the start and end of the experiment, 

measurement of a 1,000-fold decrease in relative abundance requires that a strain have at least 

1,000 reads at the start of the experiment. A poorly represented strain (e.g. 50 read counts at 

the start of the experiment) cannot decrease 1,000-fold and be meaningfully measured.  

Previously reported pooled fitness experiments of CRISPRi libraries in E. coli prioritized 

sensitivity to slight growth defects over quantifying the extent of a strong fitness defect (Figure 

3.13D-E). To do so, these experiments were run for many generations (15+) and were 

sequenced with relatively less depth (median counts ~100). This limited their ability to quantify 

strong fitness effects. In contrast, this study prioritized quantification of the full range of possible 

fitness outcomes. As a result, our experiments were run for 10 generations and deeply 

sequenced (median counts > 1,000), allowing us to quantify a broad range of fitness defects. 

Many strains were abundant enough at the start of the experiment to allow accurate 

quantification of decreases greater than 210 ~ 1,000-fold. These events (relative fitness < 0) 

represent active depletion from the pool. 

 

Relative fitness validation 

To validate the practice of using pooled growth measurements as an approximation of relative 

fitness, we also measured the relative fitness of individual dfrA knockdown strains grown in the 

presence of a wildtype strain. For each dfrA sgRNA, the spacer was cloned separately into 

pJSHA77-gfp and pJSHA77-rfp, each transformed into the dcas9 strain, and then competed 

against a wildtype constitutively expressing the opposite fluorophore (i.e. strains with a dfrA 

sgRNA and expressing gfp were competed against a wildtype expressing rfp). Strains were 

mixed at a starting OD600 of 0.01 in 300μL of LB in four replicate wells of a 96-well deep-well 

plate, covered with a breathable film, and grown shaking at 900 RPM at 37C. Cells were diluted 

to OD600 0.01 in fresh LB with 1% xylose and grown again (900 RPM, 37C) to OD600 0.3. 
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Immediately after each back-dilution (and at end of experiment) the previous plate was fixed 

with 50μL of 37% formaldehyde per well, incubated for 10min at room temperature, and 

quenched with 50μL of 2.5 M glycine. The quenched reaction was diluted 1:20 into 1X PBS 

before measurement by flow cytometry (LSRII, BD Biosciences) using the blue laser (488 nm) 

and the FITC detector (530/30 nm) for GFP detection, and the yellow/green laser (561 nm) and 

the PE-Texas Red detector (610/20 nm) for RFP detection. Data for at least 20,000 cells were 

collected, and thresholds based on control wells were used to define the GFP+ and RFP+ 

populations to determine the ratio of each population in each sample using FlowJo (FlowJo, 

LLC). All calculated relative fitness measurements from this validation experiment are provided 

in Table S3. 

 

Relative expression measurements 

Growth and RT-qPCR 

Reconstructed E. coli CRISPRi strains targeting genes involved in peptidoglycan precursor 

biosynthesis were grown in triplicate from single colonies in pre-warmed 4ml LB + ampicillin for 

2.5hrs before back-dilution (1:80) in pre-warmed 4ml LB + ampicillin + 1mM IPTG and growth 

for 3hr prior to collection (OD600 ~ 0.2). The control strains express rfp and harbor sgRNA 

plasmids expressing sgRNAs targeting either rfp or gfp (“non-targeting”) and were treated 

identically. Samples were collected (300ul) in 900ul TRIzol-LS (Thermo Fisher #10296010) and 

stored at -20C overnight. The following day RNA was extracted according to the TRIzol 

protocol. RNA was quantified using a NanoDrop 2000c Spectrophotometer (Thermo Scientific) 

to normalize input (500ng input / 20ul reaction). For each RT-qPCR probe set and each sample 

replicate, reactions were performed in triplicate. 

All RT-qPCR assays were done using the Luna Universal One-Step RT-qPCR kit (New 

England Biolabs #E3005S) according to its RT and cycling protocols, in 96 well PCR plates 

(Neptune #3732.X) and measured on a CFX Connect Real-Time System (Bio-Rad). 
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RT-qPCR analysis 

Standard curves for each primer pair were first assessed on serially diluted RNA (extracted from 

the CRISPRi control strain) to confirm single melting peaks, strong correlations of technical 

replicates, and to calculate their efficiencies (in accordance with (Bustin et al., 2009)). The 

relative expression (or Normalized Relative Quantity (NRQ)) of each gene of interest in each 

experimental sample was calculated according to (Hellemans et al., 2007), which uses the 

geometric mean of two reference genes (here: atpB and recA) to normalize the probe of interest 

within each sample, and further calculates the fold-change in relative expression compared to a 

wildtype strain. The “non-targeting” rfp+ strain was considered the wildtype for the normalization 

of all other strains. 

 

 

FACS-seq experiments 

FACS-seq experimental details 

Three separate strain libraries were constructed and mixed together for use in the sorting 

experiments: a gfp+ strain with the gfp-targeting sgRNA library (mismatch-GFP), a gfp+ strain 

with the non-targeting sgRNA control library (“high-GFP” or “control sgRNA” in figure), and a 

gfp- strain with the rfp-targeting sgRNA library (“no-GFP” or “dark control”) (Figure 3.1A). 

Glycerol stocks of each library were fully thawed, inoculated into replicate 12.5ml cultures of LB 

(B. subtilis) or LB with ampicillin (E. coli) at 0.01 OD600, and allowed to grow for 2.5-3hr. Then 

cultures were back-diluted to 0.01 OD600 in LB with 1% xylose (B. subtilis) or LB with ampicillin 

(E. coli) and grown for 2.5hr. Immediately before sorting the cultures were mixed at a ratio 

reflecting the overall diversities of their libraries (40% mismatch-GFP, 40% low-GFP, 20% high-

GFP), and then the mixture was diluted 1:10 in PBS at room temperature (B. subtilis) or on ice 

(E. coli).  
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Sorting was done on the mixed cultures using a BD FACSAria II (Laboratory for Cell 

Analysis in Helen Diller Family Comprehensive Cancer Center at UCSF), using the blue laser 

(488 nm) and the FITC detector (530/30 nm), and at a flow rate of 5 and collecting for 20min 

total. Post-sorting the collected bins were filtered using either cellulose nitrate membranes with 

0.2um pore (Thermo Scientific #145-0020) or mixed cellulose esters 0.22um pore disc filters 

(MF-Millipore #GSWP02500) on a glass filtration apparatus. Filters were resuspended in 9ml LB 

(B. subtilis) or LB with ampicillin (E. coli) by vortexing at max speed for 30s, then split into two 

outgrowth cultures and grown overnight in 4ml LB (B. subtilis) or LB with ampicillin (E. coli). A 

portion of the input mixed sample (i.e. pre-sorting) was treated similarly and grown overnight. 

DNA was extracted from each outgrowth culture separately and analyzed by deep sequencing 

as described above. 

 

FACS-seq analysis 

For each species, two biological replicates (i.e. cultures starting from unique glycerol stocks) 

were sorted by FACS, and from each biological replicate’s 4 bins (plus unsorted mixture) two 

technical replicates (i.e. two overnight outgrowth cultures from which DNA was extracted) were 

sequenced. Library spacers were counted in each sequenced sample, normalized to the 

sample’s total number of spacers counted, and technical replicate normalized counts were 

added together. For each biological replicate, the sorted bins were further normalized with 

respect to the mixed (i.e. pre-sorting) sample in the following manner: a linear model was used 

to determine the appropriate weights for each bin in order to recapitulate the mixed sample, and 

those weights were applied as scaling factors for all read counts from the given bin. This 

normalization was essential to correct for sequencing depth and cell number differences 

between bins. Briefly, we used the sklearn package (sklearn.linear_model) in Python and 

applied it to the mixed sample after removing from it the top and bottom 5th percentiles.  
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We sought to define a metric for enrichment in the GFP-high bins vs. the GFP-low bins 

that would be similar in scale to relative fitness. We define an enrichment ratio (ER) for each 

sgRNA as: 

 

𝐸𝑅 =
3
3
𝑛. 𝑛𝑜𝑟𝑚;<=> +

2
3
∗ 𝑛. 𝑛𝑜𝑟𝑚;<=?

1
3
∗ 𝑛. 𝑛𝑜𝑟𝑚;<=@ +

0
3
∗ 𝑛. 𝑛𝑜𝑟𝑚;<=1 

 

where n.normBin i is the normalized counts in Bin i, and Bin1 has the lowest GFP fluorescence 

while Bin4 has the highest. By this metric, values close to 1 have the highest GFP fluorescence 

(or weakest sgRNA activity) and values <1 have lower GFP fluorescence (or stronger sgRNA 

activity). Enrichment scores were normalized on a per experiment basis by subtracting the 

mean enrichment score of the “dark controls” and dividing by the mean enrichment score of the 

“high-GFP” strains. The resulting scores for each sgRNA (called the “FACS-seq score” in the 

main text) are available in Table S1. 

 

FACS-seq validation 

To validate our sorting procedure and the relationship between the calculated FACS-seq score 

and the fluorescence of a single strain, we randomly isolated 9 strains from the E. coli GFP 

knockdown library and analyzed them by flow cytometry to quantify knockdown relative to a 

non-targeting sgRNA (Figure 3.9E-H). Strains were grown in deep 96-well plates in 300ul LB 

overnight, diluted back and grown to ~0.4 OD600 before measurement. Briefly, data was 

collected on a LSRII flow cytometer (BD Biosciences) using the blue laser (488 nm) and the 

FITC detector (530/30 nm). Data for at least 20,000 cells were collected, and median 

fluorescence values were extracted using FlowJo (FlowJo, LLC). Data from representative 

samples were plotted as histograms using FlowJo to confirm that single-cell fluorescence was 

unimodal within the population (Figure 3.9E-H). sgRNA plasmids were miniprepped (Qiagen 
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#27106) from each library isolate and Sanger sequenced to ascertain their identity in the library 

experiment. To assay the behavior of the same sgRNAs in B. subtilis, the miniprepped plasmid 

was transformed into B. subtilis as described above, double-crossover events were verified by 

streaking on starch plates, and the strains were analyzed by flow cytometry as described above. 

All relative fluorescence measurements are provided in Table S1 and plotted in Figure 3.9A. 

 

Predicted sgRNA activity validation 

To validate the linear model’s ability to predict sgRNA activity based on sgRNA sequence, we 

measured the knockdown of a murAA-gfp transcriptional fusion in a B. subtilis strain that was 

complemented by a non-targeted copy of murAA. These strains also expressed a chromosomal 

rfp that allowed for calculation of the GFP/RFP ratio on a per cell basis. Strains were grown as 

described above (FACS-seq validation), with the exception that dcas9 was induced using 1% 

xylose after dilution. Data was collected on a LSRII flow cytometer (BD Biosciences) using the 

blue laser (488 nm) and the FITC detector (530/30 nm) for GFP detection, and the yellow/green 

laser (561 nm) and the PE-Texas Red detector (610/20 nm) for RFP detection. Data for at least 

20,000 cells were collected, and the per-cell GFP/RFP ratios as well as the population median 

GFP/RFP ratios were extracted using FlowJo (FlowJo, LLC). Relative knockdown was 

normalized to a murAA-gfp strain lacking an sgRNA, after first subtracting the background GFP 

fluorescence from a non-fluorescent B. subtilis strain. Relative GFP fluorescence 

measurements are provided in Table S9. 

 

Linear model of singly mismatched sgRNA efficacy 

Having measured the ability of ~1,600 singly mismatched sgRNAs to knockdown GFP 

expression, we sought to build a model to predict the effect of mismatches on sgRNA efficacy. 

Since an enrichment score of 1 represent maximal GFP fluorescence, and a score of 0 

represents no GFP fluorescence, we define knockdown for each sgRNA as: 
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𝑘𝑛𝑜𝑐𝑘𝑑𝑜𝑤𝑛EFGHI = 1 − 𝐹𝐴𝐶𝑆. 𝑠𝑒𝑞𝑠𝑐𝑜𝑟𝑒 

 

We then normalized the ability of each mismatched sgRNA to knockdown GFP compared to its 

equivalent fully complementary sgRNA using the equation below: 

 

𝑠𝑔𝑅𝑁𝐴𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦E<=FVWX<EXY,Z[\]EFGHI =
𝑘𝑛𝑜𝑐𝑘𝑑𝑜𝑤𝑛E<=FVWX<EXY,Z[\]EFGHI
𝑘𝑛𝑜𝑐𝑘𝑑𝑜𝑤𝑛^_VVWZ`XaV\X\=,YbWEFGHI

 

 

We next built a model that fit the activity of each sgRNA using the position of the 

mismatch (from 0 to 19, with 19 being PAM proximal, one hot encoded), the transition of the 

mismatch (from X to Y, one hot encoded), and the GC% of the fully complementary sgRNA. 

Mismatched sgRNAs were excluded from the analysis if they were variants of fully 

complementary sgRNAs with less than 0.5 knockdown (as described above). The parameters 

from this model trained on E. coli, B. subtilis, or species-averaged per sgRNA activity are 

presented in Table S2 and Figure 3.12, the raw data in Table S1. 

 

Expression-fitness relationship analysis 

Quantifying similarity between fully complementary guides targeting the same gene 

Our gfp based model predicts the activity of singly mismatched sgRNAs relative to the activity of 

the fully complementary sgRNA from which they are derived. To use this relative sgRNA activity 

as a proxy for absolute activity, fully complementary sgRNAs targeting the same gene should 

have the same activity. Since we cannot easily measure the sgRNA activity directly when 

targeting endogenous essential genes, we reasoned that we could validate this assumption by 

comparing fitness effect of fully complementary sgRNAs targeting the same gene (plotted in 

Figure 3.14).  
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To determine whether fully complementary sgRNAs targeting the same essential gene 

had similar effects, we compared the total sum of squares (totalSS) to the within gene sum of 

squares (withinSS) for fully complementary sgRNAs targeting essential genes. In E. coli, the 

withinSS accounted for 26.7% of the totalSS and in B. subtilis the withinSS accounted for 18.6% 

of the totalSS. This suggests that fully complementary sgRNAs targeting the same gene are 

substantially more similar with regards to their fitness outcomes than fully complementary 

sgRNAs as a whole, and supports the assumption that fully complementary sgRNAs targeting 

the same gene have similar levels of activity. 

 

Expression-fitness relationship analysis details  

In order to quantitatively assess the expression-fitness relationship of genes targeted by the V2 

E. coli and B. subtilis libraries, we developed a per gene pipeline, described below.  

 

1. In general, fully complementary sgRNAs targeting the same gene had similar fitness effects 

(Figure 3.17), suggesting that all fully complementary sgRNAs induce a similar level of 

knockdown. We identified outlier sgRNAs that were significantly less effective at inducing a 

fitness defect (and therefore were likely to be ineffective at knocking down their target) by 

comparing the distribution of fitness values for each series (series = the fully 

complementary sgRNA and its 9 singly mismatched variants) to the fitness distribution of 

the remaining series targeting the same gene. Using a two-sided t-test, we assessed 

whether the distribution of their relative fitness values was significantly different (p < 0.05) 

from the relative fitness distribution of the remaining sgRNAs targeting the gene. If their 

distribution was significantly different and their mean relative fitness was higher than the 

other sgRNAs targeting the same gene, we surmised that the fully matched sgRNA was 

likely not functional and excluded its series from further analysis.  
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2. We next predicted the sgRNA activity of all sgRNAs using the model of sgRNA efficacy 

described above trained on the two species averaged GFP data also described above. 

Consistent with the definition of sgRNA activity above, fully complementary sgRNAs were 

assigned an sgRNA activity of 1.  

3. We binned sgRNAs that passed our filter (Step 1) based on their predicted sgRNA activity 

(bin width = 0.2, bin spacing = 0.05, for a total of 17 bins), and within each bin we calculated 

the median relative fitness. A fully healthy (relative fitness = 1, predicted sgRNA activity = 0) 

pseudocount was included for each gene. Per gene bin medians for essential genes can be 

found in Tables S5.  

 

Per gene bin medians were used in all analyses of gene expression-fitness relationship 

similarity.  

 

Per gene and per sgRNA family correlation 

For both E. coli and B. subtilis, per sgRNA family correlations were calculated for sgRNA 

families that passed the filter described above, had at least one relative fitness value less than 

0.7, and had measurements for at least 6/10 possible sgRNAs. Similarly, per gene correlations 

for genes with a last bin fitness less than 0.7 and computed using sgRNA families that passed 

the filter described above. 

 

Gene expression-fitness relationship clustering and enrichment analysis 

To determine whether per gene expression-fitness curves were biologically meaningful, we 

clustered the bin medians (described above) for all essential gene in E. coli and B. subtilis into 9 

clusters using k-means with 10,000 random restarts. Functional enrichment within clusters was 

calculated for COG categories, GO biological process terms, and KEGG terms using the 

hypergeometric test. Only p-values with Bonferroni corrected (p < 0.05) are shown in Table S6.   
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Gene similarity comparisons 

To determine whether the expression-fitness relationships of genes within COG categories, GO 

biological process, or KEGG categories were more similar to each other than to those of other 

genes we first calculated pairwise Euclidean distances between the expression-fitness 

relationships of all essential genes within each species. We then used a two-sided t-test to 

compare the distances between genes within each category to the distances between those 

genes and genes in different categories. We accounted for CRISPRi polarity due to operon 

structure by excluding any distances between genes within the same operon (defined as two 

genes in the same direction <50bp apart) from both the “inside category” and the “outside 

category” set. 

To determine whether the expression-fitness relationships of homologous genes were 

more similar to each other than to those of other genes in the opposing organism, we calculated 

the pairwise Euclidean distance between the expression-fitness relationships of all essential 

genes that have essential homologs in both E. coli and B. subtilis (n = 150, as defined in Koo et 

at., 2017). We next used a two-sided t-test to determine if the distance between homologs was, 

on average, different from the overall distribution of distances between these 150 genes (i.e. 

when one gene from one species is compared to the 149 genes in the opposing species). To 

determine which pairs of homologs were significantly dissimilar, for each gene pair (including 

homologs), we calculated how many cross-species comparisons involving either gene were 

more similar than the comparison in question. We compared this number in homologs and non-

homologs to calculate a FDR.   

 

Quantification and statistical analysis: 

Statistical parameters—including r, R2, SD—are reported in the Figures, Figure Legends, or 

Supplementary Tables, as indicated and described in Methods Details (above). 



 113 

 

Data and code availability: 

Data 

All raw sequencing data is deposited in the Short Read Archive under accession 

PRJNA574461.  
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FIGURES 
 
 

 

Figure 3.1. Singly mismatched sgRNAs reproducibly generate a range of knockdown efficacies 
in B. subtilis and E. coli but perform differently from a dCas9-KRAB system in mammalian cells. 
(A) Workflow of a FACS-seq experiment. (B) FACS-seq scores (average of 2 biological 
replicates) for each singly mismatched sgRNA targeting gfp in B. subtilis and E. coli. Additional 
noise in E. coli likely represents changes in plasmid copy number during outgrowth. (C) Mean 
relative activity of sgRNAs with all possible single base substitutions at every possible position 
in E. coli and B. subtilis targeting gfp data and in a mammalian CRISPRi system targeting 
essential genes (Jost et al., 2020), total of 26,248 mismatched sgRNAs) 
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Figure 3.2. Mismatched sgRNA activity is accurately predicted by a simple linear model. (A) 
Schematic representation of a simple linear model for predicting the relative activity of 
mismatched sgRNAs. (B) Distributions of singly mismatched sgRNA relative activities by 
mismatch position. Each distribution represents 36-93 sgRNAs. (C) Comparison of model 
parameters for base substitution and the average ΔΔG of the mismatch calculated using a 
nearest neighbor approximation and the values from (Alkan et al., 2018). (D) The predictions of 
a linear model trained on GC%, mismatch position, and mismatch identity compared to the 
measured relative gfp knockdown efficacies of each sgRNA averaged over both species. Inset 
is a histogram of the differences between predicted and measured knockdown, reflecting both 
prediction and measurement error: 56% of sgRNAs measured within 0.15 of their predicted 
activity (red bars). (E) The predictions of the linear model compared to the measured singly 
mismatched sgRNA association rates (kON) in vitro (Boyle et al., 2017). Grey lines indicate the 
average (solid) and average +/- 1 SD (dashed) association rate of sgRNAs with mutated PAMs. 
Since such sgRNAs have no measurable association rate, this represents the detection limit of 
the assay in (Boyle et al., 2017).  
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Figure 3.3. The expression-fitness curves of essential genes in E. coli and B. subtilis can be 
studied using singly mismatched sgRNAs. (A) Schematic of the fitness experiment design. (B) 
Distribution of per sgRNA locus (solid lines) and per gene (dashed lines) correlations (Pearson 
r) for sgRNAs targeting genes in E. coli (orange) and B. subtilis (blue). (C-D) The fitness effects 
of all fully complementary sgRNA targeting essential genes in E. coli (C) and B. subtilis (D) 
showing that the identity of the targeted gene is the driving factor in determining the fitness 
effect of an sgRNA. Genes are arranged in order of median fitness defect.  
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Figure 3.4. Expression-fitness relationships of essential genes are conserved within biological 
process and between B. subtilis and E. coli. Relative fitness compared to predicted knockdown 
for: essential cofactor biosynthesis genes (KEGG pathways under “Metabolism of cofactors and 
vitamins”) in B. subtilis (A) or E. coli (B); KEGG pathways under “Translation” in B. subtilis (C) or 
E. coli (D); peptidoglycan biosynthesis (KEGG pathway ko00550) in B. subtilis. (E) or E. coli (F). 
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Figure 3.5. Similar and different expression-fitness relationships of cell wall biosynthesis genes 
in B. subtilis and E. coli. (A) Pathway of peptidoglycan synthesis and incorporation, color coded 
by portion of the pathway. (B) Predicted knockdown vs. relative fitness for the groups of 
essential genes from pathway sections indicated in (A), in B. subtilis and E. coli. 
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Figure 3.6. Screening mismatched sgRNA libraries in combination with genetic perturbations 
reveals modulators of essential gene requirements. (A) RT-qPCR measurements of repression 
by sgRNAs targeting 4 essential genes in E. coli shows that both mismatched and fully 
complementary sgRNAs are able to repress transcription. (B) Schematic of peptidoglycan 
recycling and synthesis pathway in E. coli. (C-D) Volcano plots comparing the median change in 
relative fitness for all sgRNAs targeting a gene to the statistical significance of those changes as 
quantified by a Wilcox test in the ΔampG (C) and Δmpl (D) genetic backgrounds. The dashed 
line represents a Bonferroni corrected p-value < 0.01  
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Figure 3.7. Environmental changes can modulate essential gene requirements. (A) Schematic 
of dihydrofolate reductase (dfrABsu) inhibition by trimethoprim. (B) Expression fitness curve of B. 
subtilis dfrA in LB (black), LB+15ng/ml trimethoprim (red), and LB+30ng/ml trimethoprim 
(purple) showing the expression dependent synergy between DfrA depletion and trimethoprim.   
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Figure 3.8. Design of mismatched sgRNA libraries targeting (A) gfp, (B) comprehensive 
libraries targeting dfrA, folA, murAA, and murA, and (C) each essential gene for the large 
libraries and the compact libraries. The breakdown of single mismatch variants per series and 
the total unique sgRNAs per gene are shown for each. 
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Figure 3.9. Details related to the linear model, FACS-seq data, and its validation. (A) 
Mismatched sgRNA efficacy measured individually (relative GFP fluorescence) in either E. coli 
or B. subtilis compared to their FACS-seq score from measurements done in the same species. 
Relative fluorescence is the median GFP single-cell fluorescence, normalized as a fraction of 
non-targeted control. (B) FACS-seq scores for all sgRNAs comparing two biological replicates in 
B. subtilis. (C) FACS-seq scores for all sgRNAs comparing two biological replicates in E. coli. 
Increased noise in E. coli likely reflects variation in sgRNA plasmid copy number at the time of 
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DNA extraction and/or sequence-based E. coli specific effects on sgRNA efficacy (Cui et al., 
2018). (D) Schematic describing the isolation of random singly mismatched sgRNA strains from 
the E. coli gfp library, their analysis by flow cytometry, the introduction of the same sgRNA 
plasmids into B. subtilis, and their analysis by flow cytometry. (E-F) The distribution of single-cell 
GFP fluorescence values for strains of E. coli (E) or B. subtilis (F). (G) The sequences of the 
spacers indicated in (E) and (F), with mismatched bases highlighted in red. 
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Figure 3.10. Doubly mismatched sgRNAs are accurately predicted as the combined 
independent effects of singly mismatched sgRNAs. (A) FACS-seq enrichment scores (average 
of 2 biological replicates) for each doubly mismatched sgRNA targeting gfp in B. subtilis and E. 
coli.  (B) The predictions of the linear model for doubly mismatched sgRNA efficacy, treating 
each mismatch as independently affecting sgRNA efficacy, compared to the doubly mismatched 
sgRNAs’ measured gfp knockdown efficacies (two species averages). (C) The predictions of the 
linear model for doubly mismatched sgRNAs compared to the measured doubly mismatched 
sgRNA association rates (kON) in vitro (Boyle et al., 2017). Grey lines indicate the average 
(solid) and average +/- 1 SD (dashed) association rate of sgRNAs with mutated PAMs. Since 
such sgRNAs have no measurable association rate, this represents the detection limit of the 
assay in (Boyle et al., 2017).  
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Figure 3.11. Mismatched sgRNAs affect CRISPRi efficacy similarly in mammalian systems and 
bacterial systems. (A) The mean relative activity of sgRNAs targeting essential mammalian 
genes with specific base substitutions at specific positions. Mismatches at position 20 are not 
shown because all sgRNAs contained a “G” at position 20 for compatibility with the U6 
promoter. (B) The species-averaged mean relative activity of sgRNAs targeting gfp in E. coli 
and B. subtilis with specific base substitutions at specific positions. Darker color indicates 
stronger sgRNA activity. (C) Comparison of the species-averaged mean relative activity of 
sgRNAs targeting gfp in E. coli and B. subtilis with specific base substitutions at specific 
positions and the relative activity of singly mismatched sgRNAs targeting gfp in a mammalian 
system (Jost et al., 2020). Mismatch effect is correlated (R2 = 0.44, p < 10-7), but non-linear.  
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Figure 3.12. Parameters of linear models of singly mismatched sgRNA efficacy trained on 
FACS-seq or relative fitness data from either E. coli or B. subtilis have strongly correlated 
coefficient values. Each panel compares the coefficient values from the linear models trained on 
the two specified datasets.  
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Figure 3.13. Linear models of singly mismatched sgRNA efficacy trained on FACS-seq or 
relative fitness data from E. coli, B. subtilis, or the average of both (averaged gfp) retain a 
majority of their predictive power on other singly mismatched sgRNA datasets. Each panel 
compares the predictions of a linear model trained on the specified dataset to the measured 
efficacy (relative fitness or FACS-seq score) of sgRNAs in the other specified dataset, with the 
pearson correlation coefficient shown in the inset. The datasets used and evaluated are, in 
order from top-bottom and left-to-right: species averaged gfp, E. coli gfp, B. subtilis gfp, E. coli 
folA, and B. subtilis dfrA.   
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Figure 3.14. Relative fitness measurements are reproducible, orthogonally validated, and 
capture a large dynamic range. (A-B) Relative fitness measurements from two biological 
replicates in E. coli (A), and B. subtilis (B). (C) Relative fitness from pooled experiment 
compared to a relative fitness metric from competing individual dfrA-targeting CRISPRi strains 
against a fluorescently labeled wildtype and enumerating their relative abundance by flow 
cytometry before and after 10 doublings. (D & E) Per sgRNA relative fitness compared to 
previously reported fitness measurements (Rousset et al., 2018; Wang et al., 2018) showing the 
increased dynamic range of our measurements. The minimum quantifiable relative fitness can 
be approximated by the log2(median per sgRNA read count) divided by number of generations 



 129 

of growth. In (Wang et al., 2018), median read count per sgRNA was ~100, and strains were 
grown for ~15 generations; therefore, relative fitness below ~0.6 is not resolvable. Similarly, in 
(Rousset et al., 2018), median read count per sgRNA was >200 (~17 million total counts, 
92,919 elements), and strains were grown for ~17 generations; therefore, relative fitness below 
0.6 is not resolvable.  
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Figure 3.15. Fully complementary sgRNA efficacy is not significantly correlated with distance 
within the open reading frame in E. coli or in B. subtilis. (A-B) sgRNA distance from gfp ATG 
compared to its FACS-seq score in E. coli (A) and B. subtilis (B). (C) sgRNA distance from folA 
ATG compared to its impact on fitness in E. coli. (D) sgRNA distance from dfrA ATG compared 
to its impact on fitness in B. subtilis.  
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Figure 3.16. Singly mismatched sgRNAs targeting E. coli murA and B. subtilis murAA generate 
bimodal phenotypes that are not due to bimodal knockdown activity. (A-B) Predicted sgRNA 
activity and measured relative fitness of singly mismatched sgRNA targeting: (A) murAA in B. 
subtilis. (B) murA in E. coli. (C-D) Histogram of fitness outcomes for the same sgRNAs (E) 
Predicted sgRNA activity and relative expression for 18 singly mismatched sgRNA targeting a 
murAA-gfp transcriptional fusion in a murAA–complemented B. subtilis strain (Methods). 
Relative expression is shown as the median single-cell GFP fluorescence, normalized as a 
fraction of control (no sgRNA).  
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Figure 3.17. Design constraints and measured efficacy of singly mismatched sgRNAs in the 
compact libraries. (A) Confusion matrix showing the singly mismatched sgRNAs selected for the 
compact library based on their predicted knockdown vs. their measured relative fitness in E. 
coli. Designed relative fitness shows the predicted knockdown normalized by the strongest 
efficacy sgRNA’s relative fitness. (B) Same as (A) for the compact library in B. subtilis. 
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TABLES 
 
Table 3.1. Key resources 
 
REAGENT or RESOURCE SOURCE IDENTIFIER 
Chemicals, Peptides, and Recombinant Proteins 
Lysogeny broth (LB), Lennox Fisher scientific Cat# BP1427-2 

Bacillus subtilis MC medium Koo et al., 2017 N/A 

Bacillus subtilis competence medium Koo et al., 2017 N/A 

IPTG Denville scientific Cat# C18280-13 

Xylose   

Ampicillin sodium salt Sigma-Aldrich Cat# A9518 

Kanamycin sulfate 
 

Sigma-Aldrich Cat# K1377 

Erythromycin 
 

Sigma-Aldrich Cat# E5389 

Spectinomycin dihydrochloride pentahydrate 
 

Sigma-Aldrich Cat# S9007 

Chloramphenicol Sigma-Aldrich Cat# C0378 
Carbenicillin Millipore-Sigma Cat# 205805 
Gentamicin sodium salt Fisher Scientific Cat# AAJ1605103 
Trimethoprim Sigma-Aldrich Cat# T7883-5G 
   
Q5 High-Fidelity DNA polymerase 
 

New England 
Biolabs 
 

Cat# M0493S 
 

HiFi Assembly New England 
Biolabs 
 

Cat# E2621L 

BsaI-HFv2 New England 
Biolabs 

Cat# R3733 

T4 DNA Ligase New England 
Biolabs 

Cat# M0202L 

Critical Commercial Assays 
DNeasy Blood & Tissue Kit 
 

Qiagen 
 

Cat# 69506 
 

Midiprep Kit Qiagen Cat# 12143 
QIAprep Spin miniprep kit Qiagen Cat# 27106 
Deposited Data 
Raw sequencing data (FASTQs) for relative fitness 
experiments and FACS-seq experiments 

This study SRA: 
PRJNA574461 
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REAGENT or RESOURCE SOURCE IDENTIFIER 
Experimental Models: Organisms/Strains 
Bacillus subtilis 168 BGSC 

 
1A1 
 

Bacillus subtilis 168 lacA::Pxyl-dcas9(Erm) Peters et al., 2016 CAG74209 
Bacillus subtilis 168 lacA::Pxyl-dcas9(Erm), 
amyE::Pveg-sgRNA(cat) (CRISPRi libraries: 
sgRNA spacers listed in Table S3) 

This study N/A 

Bacillus subtilis 168 lacA::Pxyl-dcas9(Erm), 
thrC::Pveg-gfp(Spc) 

This study CAG78920 
 

Bacillus subtilis 168 lacA::Pxyl-dcas9(Erm), 
thrC::Pveg-gfp(Spc), pJSHA77 (CRISPRi libraries: 
sgRNA spacers listed in Table S1) 

This study N/A 

Bacillus subtilis 168 lacA::Pxyl-dcas9(Erm), 
thrC::Pveg-rfp(Spc) 

This study CAG78921 
 

Bacillus subtilis 168 lacA::Pxyl-dcas9(Erm), 
thrC::Pveg-rfp(Spc), pJSHA77 (CRISPRi libraries: 
sgRNA spacers listed in Table S1) 

This study N/A 

Bacillus subtilis 168 lacA::Pxyl-dcas9(Erm), 
sacA::Pveg-rfp 

This study CAG78922 
 

Bacillus subtilis 168 lacA::Pxyl-dcas9(Erm), 
sacA::Pveg-rfp, murAA-gfp(Kan) 

This study CAG78923 
 

Bacillus subtilis 168 lacA::Pxyl-dcas9(Erm), 
sacA::Pveg-rfp, murAA-gfp(Kan), thrC::Pveg-
murAA*(Spc) 

This study CAG78924 
 

Escherichia coli BW25113 Baba et al., 2006 
 

N/A 

Escherichia coli BW25113 Tn7att::PlLac-O1-
dcas9(Gent) 

This study CAG78830 

Escherichia coli BW25113 Tn7att::PlLac-O1-
dcas9(Gent), pJSHA77 (CRISPRi libraries: sgRNA 
spacers listed in Table S3) 

This study N/A 

Escherichia coli BW25113 Tn7att::PBBa_J23105-
dcas9(Gent), yjaA:Pveg-gfp(Cat):yjaB 

This study CAG78108 

Escherichia coli BW25113 Tn7att::PBBa_J23105-
dcas9(Gent), yjaA:Pveg-gfp(Cat):yjaB, pJSHA77 
(CRISPRi libraries: sgRNA spacers listed in Table 
S1) 

This study N/A 

Escherichia coli BW25113 Tn7att::PBBa_J23105-
dcas9(Gent), yjaA:Pveg-rfp(Cat):yjaB 

This study CAG78107 

Escherichia coli BW25113 Tn7att::PBBa_J23105-
dcas9(Gent), yjaA:Pveg-rfp(Cat):yjaB, pJSHA77 
(CRISPRi libraries: sgRNA spacers listed in Table 
S1) 

This study N/A 

10-beta Electrocompetent Escherichia coli New England 
Biolabs 

Cat# C3020K 

Oligonucleotides 
Primers used in this study are listed in Table S8 This study N/A 
Recombinant DNA 
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REAGENT or RESOURCE SOURCE IDENTIFIER 
pDG1731 Radeck et al., 2013 pBS4S (Addgene# 

55170) 
pDG1731-gfp This study N/A 
pDG1731-rfp This study N/A 
pDG1622 BGSC ECE119 
pJSHA77 This study N/A 
pJSHA77-rfp This study N/A 
pJSHA77-gfp This study N/A 
   
Software and Algorithms 
Bowtie2 Langmead and 

Salzberg, 2012 
 

http://bowtie-
bio.sourceforge.ne
t/bowtie2/index.sht
ml 
 

sgRNA design (fully matched sgRNAs) This study https://github.co
m/traeki/sgrna_d
esign 

Linear model training (train_linear_model.py) This study https://github.co
m/traeki/mismatc
h_crispri 

Design a subset of mismatch sgRNA 
(choose_guides.py) 

This study https://github.co
m/traeki/mismatc
h_crispri 

FASTQ analysis to calculate sgRNA abundance 
and relative fitness (count_guides.py, 
compute_gammas.py, gamma_to_relfit.py) 

This study https://github.co
m/traeki/mismatc
h_crispri 

FlowJo v10 FlowJo, LLC  
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