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Summary

The possibility of a shock wave generated by impact on a long bar
of a general nonlinear viscoelastic ("simple") material is discussed.
Characteristic relations are derived, as well as the equation governing
the decay of the shock amplitude as the shock is propagated into a
previously undeformed bar. It is shown how these eguations may be used

to generate a numerical integration procedure.



1. Introduction

The present study concerns the propagation of an impact wave into a
previously undeformed bar of a nonlinear viscoelastic material. The ber
is assumed to be straight and prismatic, and extends from X= @ to
X= co , X being a material coordinate corresponding to the undeformed
state.

At every point the mechanical state is described by the stress G-
(based on the original area), the strain € , and the particle velocity
¥ . VWherever these functions (of X and 'L , ¢ being the time) are
continuously differentiable, they are related by the equations of continuity

and motion, namely

Ve = €4, (1)

and

°§==€5\J€' | 2)
where ep denotes the density in the undeformed state, and the subscript
notation indicates partial differentiation.

In the case of a velocity impact taking place at {-O (prior to which
the bar is undisturbed, i.e., o~=€ =V = O ), we have the boundary

condition

viot)= qd), t>0, @

1f the function %(‘E) is continuous at £ =0, but has a discontinuous

derivative of any order, then the disturbance will be propagated into the
%

bar as a generalized acceleration wave. One-dimensional acceleration waves

in nonlinear viscoelastic materials have been thoroughly studied by Coleman,

*For a discussion of the possible growth of an acceleration wave into a
shock wave, see Ref. [2].



Gurtin, and Herrera [1], and Coleman and Gurtin [2]. If %(‘t) is
discontinuous at '\:- (o) , then the disturbance may be propagated as a
shock wave. The authors [8] have considered shock waves in semilinear
‘viscoelastic materials (i.e., materials with linear instantaneous response)

in another paper, and here we shall discuss shock waves in general nonlinear

viscoelastic materials.

"2, Definitions and Wave Properties

We shall now review some definitions and establish certain results
pertaining to waves.

A wave front 2 is a surface dividing the material into an un-
disturbed region shead of the wave, and a disturbed region behind. We
designate the value of a quantity d(x,{) just ahead of P2 by oL+
and just behind by o~ . If % « ol” the quantity ol is continuous

across & ; if ot ol we define the "jump" (o] in ol across ¥ by

At any time { N z occupies a unique position in space, given by

the Lagrangian coordinate xz(‘t) of Z . We define the wave speed by

F . . (5)

We shall denote the inverse functional relation to Xz ('t) by -l:o b‘) .
Clearly any quantity related to the wave front may be regarded as only a
function of X , or only a function of -é . The relationship between

xi and +° is given by



Xg
O .
(o]

(6)
c (?)
where € (X) is the wave speed as a function of X , or by
t,
*®
Xg = g ¢ h’]"“]' (7
(o]

When we do not show any explicit dependence of a wave front quantity
on X or{ , we may choose that dependence for convenience.
If & is a shock wave, then the functions G, € and VY
are discontinuous there. The discontinuities are related by the kinematic

compatibility equation

-CLé]" [V] ?

(8)

and by the dynamic compatibility equation

£°'J - ‘foc LV] .

(9)

From (8) and (9) we find (Cf. [1])

P I . .
m (10)

3. The Constitutive Law and Its Consequences

We shall consider the constitutive equation

o0

o (+) = ‘? {e(’c-s)} R | (an

S=D



where "} is a functional. (The dependence of U~ and € on X will
not always be specified, but is to be understood).
We assume that a} may be represented to any desired degree of

accuracy [3] by a multiple-integral expansion of the form

ol 0
F{eu-ot- S R () € (4-8) A5 4 ..+

<=0 o
o0 ol 5

+ S [ R™ (S, 0 ,%w) €, (t-5) - (12)
° o

L€ (4-5,) ds, -+ ds,,
If & shock wave propagates along the bar, at any point ¥ the strain
€ (as well as the stress and the velocity) is discontinuous at 'E""-ob‘).
Let us write
et = € ) H(E-t,09),

(13)
where H(—') is the Heaviside step function, and é* is a continuously
differeniable function of X and 'E . The integrands in (12) then become
distributions, specifically

€= €L GE U + € S,

(14)

where we write T for "',-to()!), and E for e*(x,é.bt))=(.€] ;
S (x)  is the Dirac delta function.
The stress just behind the wave, i.e., the stress discontinuity, is

given by



oD
LU’J- h'VV\ C'i‘ i E_H('C-s)} ? (15)
T-vot* =0

end in the case of a}i-—- 2 as given by (12),

(1= RYWOHE+ - - +RM(0*3"',0*)- EV.

(16)
The wave velocity is therefore given by
V)
2= L tim a}«iEH(t-s‘)g
Qo E t-»ot
. S=0
(17)

R(“(D"')*' T R(h\ (0","', 0+) E'h-l '

and is clearly a function of E . (The right-hand side of (17) is the
"instantaneous secant modulus' of [1]). Let the posifive root of (17)
be denoted by CE ; then Co represents the limit of C; as E-=>0,
and is also the velocity of propagation of an acceleration wave into a
previously undisturbed material [1]. The condition for the existence of a
shock wave with strain discontinuity B is ([4], Chap. III)

Ce2Co . (18)

In the material described by (12) we have

z,= oy +
PoCo = R (O D . (19)

“n)
For a material such that R (0+;"',0")’0 for W22 , Eqns. (17) and
(19) show that Cg=Cp . Such materials, which are designated "semilinear",

have been treated in detail by the authors [8].



o
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4. Characteristics and the Characteristic Relations
Discontinuities are propagated from the shock front along the
characteristics. In order to determine the characteristics in the x{
plane we differentiate (11) with respect to X to yield
o, = S"}ae(i-cﬂ\ Ey (Jc S)§ (209

o=0 =0

where %aj' denotes the Fréchet differential (see [5] pp. 22-28). Since

0; is a linear functional of €x we can write (20) in the form [6]

b
o3 = S G(e) €.t (t-9) c\é,
0

(21)

where Gi(sb is a functional of the history of €& and a function of S
ob

Gs)= %%. ¢ f:;:) > 5% ' (22)

When ?}' has & multiple-integral expansion of the form (12),‘%; has

the form

Gs) = %ieu’ -8 % = RV +

v2 (" “’CSU‘.)G{.,L{O‘)AU‘-!- +
0

o0
tn S 2(‘“) (5,55, ", Tna) e't(*'q-l) e
(o]

(23)
- €y (- 'n-!’ Ar Aq—‘“ﬂ
We integrate (21) by parts, obtaining
o
‘
oy = G( (o+) e)‘ t) + S G’ (%) ex (t-5) As, (24)

o




where CT'C5)= %%&—% .  The quantity G((O"') is, for every X
and t , a8 functional of the history of € ; it is the "instantaneous
tangent modulus' corresponding to the history [1]. Equations (1), (2),

and (24) form a system of quasi-linear partial integro-differential
equations for the three functions d') € eand ¥ . This system is
hyperbolic if G;(O"') is positive, snd by the usual method [4,7] can

be shown to haver three families of characteristics in the X": plane,

whose directions are given by

Ax

—— =*ta. 0
at » 7! (25)
where (@. is given by
2 _ +

It is possible, however, (and convenient) to eliminate G” from the given

system, and to consider the system coms isting of (1) and
Vo= ale, + b,

27)

where b is given by

- .
eo b= S G-‘(S) €y (t-9%) 3ds . (28)
0

There remain only two families of characteristics, namely, those with the

directions

a
X~ ta, (29)



along which the characteristic relations are

dvy ade=1bdat .

(30)
To study the characteristic directions and relations at points
immediately behind the wave front, we consider the function
o
Ge ()= lima iEH(t-a—) )SE
T>»ot =0 (31)
Just behind 2‘. the q1‘1antity O. becomes r a; , a8 function of = ,
given by
Qo0s = G (OF) (32)

To determine the corresponding quantity k’E,’ we differentiate (13) with

respect to X |, obtaining

* E
Ex= &, Lx)'l:)HL‘t) - = $¢t) ;

(33)
whence
T *
pob= S G'($) €, (£-9)ds - -CE- G't1). (34)
o €
Taking the limit of (34) as T -» oY , we obtain
b= - & &' co*
Po™e e G oM. (35)

1t can be shown, however, that the boundary condition (3), the jump
condition (8), and the characteristic relations (30) are not sufficient
to determine numerically the values of WV and € at all points behind

the shock front. Consider the characateristic network shown in Fig. 1, in



which the heavy line represents the shock front. At points O, 1, and 2

we wish to know the six quantities Vi,éé (L- O‘Bi) . We may apply (3)

t

Fig. 1. Characteristic Network for Shock Propagation

at points O and 1, and (8) at points O and 2, and (30)2 along the
characteristic segment joining points 1 and 2 - a total of five equetions.

We must, consequently, develop an additional equation.

5. The Equation Governing the Shock Amplitude

We shall consider the behavior of E as a function of time. The
total time derivative of a function £ which is discontinuous across 2:
is given by [2, Eqn. 2.4]

f;[ﬂ= L8]+ c[4] .

(36)

Letting ﬁ stand for € and V , respectively, and using (1), (2),

and (8), we obtain
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Po [o5]= —Zce.d_(_e] +Ce L& - Led A‘E , (37)

From (24), (26), and (28) we obtain also

LO; = [_0. ex] + Lb] (38)

Fo

Noting that 0';€ fV and their deriveatives vanish ahead of the wave front,

we combine (37) and (38) to obtain the desired equation
(Z+ E ACE)AE of e _c \em 4 e = 5
Ce d€ /) gJF (?; E) X C—é— . (39)
With the exception of 6;- , every quantity appearing in (39) is a function
of E : Cg is given by (17), Qg by (32), and be by (35). For a
material characterized by the expansion (12), (32) and (35) become,

respectively,

Qoaé = R (oM ¢+ 2E Rm(ot Mo +

(40)
- &
+ nE™ EM)(°+)"'ao+) )
and
?obe =-£8 14 "9 +7.r—:.§— RS (s O*)+ -
ce |ds
(41)
-\ o +
+r(vE 'S_SR (5’0’---’0*)}\
s=0"
In a semilinear viscoelastic material, QE = Ce ’Co ;  hence

(39) reduces to
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2 48 4 be _ o (42)
dt Co
a differential equation soluable explicitly -in the form
€
A&
=—ZC- -_
4 0 c (43)
Eo
where
-c.E_.= +
Co%o %CO ) . (44)

We refer for further information to our study of waves in semilinear
materials [8].

In an elastic material bE vanishes identically. If a bar of such
a material is subjected to constant-velocity impact, the governing
equations are satisfied by a constant state: the shock is propagated at
constant speed and with constant strength.

In the general case, in order to apply (39) to the triangle 0~1-2, we
need an estimate for é; along the segment 0-2. For this purpose it seems
reasonable to assume that € varies linearly in X and 'l: throughout the
triangle, so that an average value for éx may be expressed in terms of
the €&; (L=0,12).

It should be further noted that, because the characteristics are
curved, a numerical solution by the method of characteristics would be
extremely complicsted. It asppears simpler to perform a finite-difference
solution of the partial differential equations (1) and (27). However, the
approach by characteristics must be used near the origin in order to

permit a start. Thus, if the data obtained for points 0, 1, and 2 are



interpolated on the line t‘{z_ .

line for forward integration in the

then this line may be used as 2 base

{ direction.
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