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ABSTRACT OF THE DISSERTATION 

 
Visual Search Does Not Fully Characterize Feature-Based Selective Attention: 

Evidence from the Centroid Paradigm 
 

By 
 

A. Nicole Winter 
 

Doctor of Philosophy in Psychology 
 

 University of California, Irvine, 2017 
 

Professor Charles Chubb, Chair 
 
 

 

While the visual search task has been instrumental in the study of feature-based attention 

(i.e., how attentional mechanisms increase the salience of relevant features), no single 

methodology can tell the whole story. This dissertation investigates the contributions that 

a complementary methodology, the centroid task, can make to our understanding of 

feature-based attention. The first chapter directly compares the search and centroid tasks. 

It replicates the expected search results, finding that performance is always worse for 

conjunctive targets than it is for feature targets. However, it reports a different pattern of 

centroid results: conjunctive target centroid judgments can actually outperform 

constituent-feature centroid judgments. The second chapter examines the role of target-

distractor similarity in centroid estimations. It finds that, given sufficiently salient feature 

contrasts, conjunctive target conditions are better than or equal to both constituent-feature 

conditions, suggesting that there is not necessarily any cost to conjunctive centroid 

judgments. The third chapter reviews an equisalience analysis of an 8-item centroid task 



x 
 

and an analogous 2-item task. The different equisalience functions for the two tasks 

suggest that they access information differently. Together, these chapters provide 

compelling evidence that the centroid paradigm allows us to study aspects of feature-based 

attention that visual search cannot capture. 
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INTRODUCTION 

At any given moment, we are inundated with far more sensory input than we can possibly 

process—or, rather, more input than we can process fully.  Attentional mechanisms, then, 

are necessary to determine which stimuli are selected for further processing and which are 

ignored. This selection matters because attention is a limited resource: the attentional 

selection of any one stimulus (or part of a stimulus) means there are fewer resources 

available to attend to other stimuli (or other parts of the same stimulus). Across all sensory 

modalities, the goal of attention is to prioritize the processing of relevant stimuli over that 

of irrelevant stimuli. 

Visual attention is typically broken down into three main categories: spatial attention, 

object-based attention, and feature-based attention. Posner (1980) described spatial 

attention as a spotlight whose beam illuminates attended regions of a visual scene. Like a 

spotlight, the attentional beam moves through space and can be contracted to narrowly 

focus attention or expanded to more broadly disperse it. Shifts of spatial attention can be 

voluntary (endogenous) or reflexive (exogenous). Endogenous shifts take 300 msec or 

longer, while exogenous shifts typically occur in the range of 100-200 msec (e.g., Müller & 

Rabbitt, 1989).  Object-based attention is the idea attention can select particular objects for 

further processing. In support of this idea, Kahneman, Treisman, and Gibbs (1992) report 

that observers are faster at making discriminations within a single, attended object than 

across multiple, even when controlling for distance. This dissertation, however, focuses on 

feature-based attention: how attention enhances the salience of particular features. 
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For an example of feature-based attention, consider the following scenario. You are 

attending a conference with a colleague who, on this particular day, is wearing a purple 

sweater. After attending different sessions in the morning, you decide to meet for lunch in 

hotel lobby. However, the hotel lobby is packed with other conference goers, and it is 

impossible for you to attend to all of them at once. Remembering the color of your 

colleague’s sweater, you can efficiently search the crowded, complicated visual scene for 

just this color feature. This will enhance the salience of all purple items, including your 

colleague’s sweater, allowing you to quickly locate her. 

The way features guide visual attention has been the subject of much investigation, and 

Treisman’s Feature Integration Theory (FIT) continues to be one of the most influential—if 

not the most influential—accounts of this process. Treisman and Gelade first proposed FIT 

in 1980, based primarily on a series of compelling visual search experiments. In the visual 

search task, a participant searches for a previously-defined target among an array of 

distractors. The target can be defined by a single feature (e.g., a red X among green Xs) or 

by a conjunction of feature (e.g., a red X among green Xs and red Os). The participant’s task 

is to indicate as quickly and accurately as possible whether or not the target is present. Her 

reaction time is recorded and can be plotted as a function of display size—that is, the total 

number of items (targets and distractors) in the search array. Treisman and Gelade (1980) 

reported that, on positive (target present) trials, feature targets produce virtually no 

change in search time as the display size increases. However, they found that search time 

for conjunctive targets slows as more items are added to the display. According to FIT, 

these results reveal two stages of processing. The first (preattentive) stage involves parallel 

processing of features, creating individual feature maps. When the target is defined by a 
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single feature, this first stage is sufficient for target detection: since all the items are 

processed in parallel, there is no performance cost to processing displays with more items, 

resulting in flat search slopes. The second (attentional) stage, however, is necessary for the 

detection of conjunctive targets. While the constituent features have already been 

processed in the first stage, attention is needed to bind those features together. So, for 

example, the first stage may have produced both a red map and an X map, but these maps—

separately—provide no way of detecting an item that is both red and an X. It is then 

necessary have second stage of processing during which focused attention is deployed 

serially to each item location in order to integrate the relevant feature maps. Increasing 

display size, therefore, means that attention must be deployed to more locations, which in 

turn increases search time. (Treisman & Gelade, 1980; Treisman, 1985). 

Treisman initially drew a sharp distinction between the processing demands of feature and 

conjunctive search, claiming that feature search could always be accomplished 

preattentively via parallel processing while conjunctive search always required serial 

allocation of attention to each item until the target is detected (e.g., Treisman & Gelade, 

1980; Treisman, 1982). However, subsequent research would later reveal this to be too 

strong a position. For example, Houck and Hoffman (1986) found that color-form 

conjunctions could be registered preattentively and Nakayama and Silverman (1986) 

reported flat search slopes for stereo-motion and stereo-color conjunctions. Treisman 

(1988) responded by allowing for the possibility of early conjunctions—that is, for the 

possibility of preattentive registering of conjunctions in certain circumstances. She further 

added that feature inhibition was likely responsible for efficient conjunctive searches 

(Treisman & Sato, 1990). (For a comprehensive review of FIT, see Quinlan, 2003.) 
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Although it has undergone some revisions, FIT continues to be highly relevant to the study 

of feature-based attention. Similarly, the visual search task itself has made a lasting mark 

on the field—it is, in effect, the default methodology for investigating feature-based 

attention. The task has a relatively simple design and does not require any particularly 

fancy equipment. Search slopes are easily calculated (change in reaction time divided by 

change in display size) and easily interpreted (scanning rate per item). It is little wonder, 

then, why visual search reigns supreme. 

However, all tasks have their own particular task demands; there is no escaping this fact, 

regardless of how useful or how popular a task may be. In this way, the prevalence of visual 

search may actually be a hindrance to the study of feature-based attention. It is possible 

that idiosyncrasies of visual search task are being confused with inherent properties of 

feature-based attention. So, without complementary methodologies, there is no way to 

know what is merely a task idiosyncrasy versus what is an actual characteristic of feature-

based attention. 

One promising complementary methodology is the centroid paradigm. As in the search 

task, targets can be defined by a single feature or by some combination of features. A 

participant in a centroid task briefly sees a stimulus cloud containing targets and 

distractors, and then estimates the centroid, or center of mass, of the targets. After 100 (or, 

in some cases, even fewer) centroid trials, we can obtain rich measures of performance as 

described by Sun, Chubb, Wright, and Sperling (2016).  This dissertation presents evidence 

that some paradigmatic visual search results do not necessarily replicate in the centroid 
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paradigm. This suggests that there is more to the story of feature-based attention than 

visual search can tell. 
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CHAPTER 1 

CONJUNCTIVE TARGETS IN CENTROID AND SEARCH TASKS 

 

1.1 INTRODUCTION 

The feature-integration theory (FIT) of attention (Treisman & Gelade, 1980) continues to 

be hugely influential after more than three decades. This theory proposes that attention 

can select a particular feature, such as the color red, and heighten its salience in a visual 

scene. For instance, a teacher grading papers may need to locate her red pen in a cluttered 

office space. As she scans her desk, her attention focuses on each red item she comes 

across, while easily ignoring items of other colors. This heightened salience of all things red 

would be an example of what Treisman and Gelade called “feature-based attention” (FBA). 

The authors supported the concept of FBA using a series of visual search experiments.  

In a typical visual search experiment, a participant is presented with an array of items and 

asked to indicate whether a previously-defined target item is present or absent. In some 

cases, the targets may be defined by a single feature, such as shape or color. For instance, 

the target could be an ‘X’ in a field of ‘O’ distractors (Figure 1.1a), or a green item in a field 

of red distractors (Figure 1.1b). When the target is defined in this way (by a single feature), 

it appears to “pop out”; no matter how many distractors are in the display, the participant 

can quickly spot a present target. In other cases, however, the target may be defined by a 

conjunction of features. For instance, the target could be a green ‘X’ in a field of red ‘X’ and 
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green ‘O’ distractors (Figure 1.1c). These conjunctive targets no longer exhibit this “pop-

out” effect and are much more difficult to spot. 

The difficulty of finding a target can be quantified by measuring reaction time: how long it 

takes an observer to indicate whether the target was present or absent. Treisman and 

Gelade (1980) found that, when single-feature targets were present, reaction times 

remained virtually unchanged as the number of items in the display increased. When the 

target was defined by a conjunction of features, however, reaction time increased as a 

function of display size. These results, which have been replicated many times over (e.g. 

Bergen & Julesz, 1983; Egeth, Virzi, & Garbart, 1984; Nakayama & Silverman, 1986; Wolfe & 

Franzel, 1988), suggest a distinction between parallel and serial search. Participants can 

process all display items in parallel, Treisman and Gelade claim, for single-feature targets; 

however, for conjunctive targets, participants must scan each item individually. In this 

scanning process, attention is allocated to each item in order to bind the relevant features 

together (Treisman & Gelade, 1980). 

  

 
 
Figure 1.1: Feature vs. Conjunctive Targets in Visual Search Displays. (a) The target “X” is defined 
only by shape. (b) The target green circle is defined only by color. (c) The target green “X” is defined by 
both color and shape. When the target is defined by a single feature, as in (a) and (b), it appears to pop out 
from the distractors. However, when the target is defined by a conjunction of features, as in (c), it loses its 
pop-out effect. 
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Despite the many replications of this same basic pattern of results for single-feature and 

conjunctive targets, a few exceptions have been noted. For example, Nakayama and 

Silverman (1986) conducted a series of visual search experiments using the feature 

dimensions of color, motion, and stereoscopic disparity. As expected, the single-feature 

motion and color conditions produced flat reaction-time slopes, suggesting parallel search. 

One of the conjunction conditions, motion-color, produced the linearly increasing search 

slopes associated with serial search. However, the other two conjunction conditions, 

stereo-motion and stereo-color, produced flat reaction slopes indicative of parallel 

processing. In addition, Theeuwes and Kooi (1994) examined the feature dimensions of 

polarity, color, and shape in visual search. They also found flat (parallel) search slopes for 

all feature conditions. In the color-shape conjunction condition, they observed serial search 

slopes, but these slopes were relatively shallow. However, the slopes in the polarity-shape 

condition were flat, suggesting another case of parallel search for a conjunctive target. Even 

so, the visual search task, and its interpretation under FIT, has dominated much of the FBA 

literature. 

However, the visual search task is not the only available methodology for studying FBA. 

The centroid paradigm (Sun, Chubb, Wright, & Sperling, 2016), for example, also requires 

the participant to use attention filters deployed over space. Consider the teacher from our 

previous example—the one searching for a red pen—and suppose that, during her search, 

she knocks over a container of blue thumbtacks, scattering them on the floor. Her task has 

now changed: instead of finding her red pen, she needs to track information about the 

spread of blue thumbtacks on the floor in order to avoid stepping on them. She could do 

this by deploying a blue-selective attention filter, binding the blue-feature of each 
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thumbtack with its location. She could also average the location information to estimate the 

epicenter of the area she wishes to avoid. The “epicenter” in this case would be the 

centroid, or center of mass of the thumbtacks. This centroid task can be used in controlled 

experiments to, in some sense, measure an observer’s ability to construct and use such 

attention filters. 

In a typical centroid task, a participant is briefly shown an array of items made up of 

targets and distractors. As in the visual search task, the targets can be defined by a single 

feature or a conjunction of features. After the stimulus display, a blank screen appears, 

followed by a visual mask. The purpose of the brief stimulus display time and the 

backwards mask is to prevent endogenous shifts of spatial attention. The participant then 

strives to mouse-click the centroid, or center of mass, of the targets. Figure 1.2 shows an 

 
 
Figure 1.2: Example Centroid Trial. The participant briefly sees the stimulus display, followed by a 
blank screen and a mask. In this example, the squares are the target items, so her task is to estimation the 
centroid (or center of mass) of the squares. She responds via mouse click, then receives feedback showing 
her response (the small black square) and the actual centroid of the target items (the bullseye). 

 

Stimulus Display

250 ms

Mask

100 ms

Feedback

Blank Screen

50 ms

Subject 

Response

Targets = Squares
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example centroid trial. After 50-200 trials, we can accurately estimate (1) a lower bound on 

the number of items in the display she processes trial by trial to produce her responses, 

and (2) how much influence she gives each item type in her estimations. If performance on 

a particular centroid task is highly accurate, it suggests that there are populations of 

neurons that code for the feature or features that define the target. 

Different tasks, of course, have different task demands. Given the prevalence of visual 

search in the FBA literature, we seek to examine the relationship between the centroid 

paradigm and visual search. In particular, do the same features that support “pop out” in 

visual search lead to improved performance on the centroid task? In this chapter, we will 

present preliminary evidence that suggests the answer is no, or at least not always. We 

replicate the standard visual search results: flat reaction times for single-feature targets 

and increasing reaction times for conjunctive targets as display size increases. However, in 

the centroid task, we find evidence for improved performance on conjunction conditions 

relative to single-feature conditions—that is, conditions in which target items all share the 

same single feature which, in the context of a search task, would suffice to produce pop-out. 

 

1.2 EXPERIMENT 1: SIZE-COLOR CONJUNCTIONS 

 

1.2.1 Methods 

Experiment 1 consisted of both visual search and centroid tasks, completed in an ABBA 

order. For both tasks, the feature dimensions were size (big/small) and color (red/green), 
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creating four distinct item types. All display items were squares subtending either 0.50 

(big) or 0.29 (small) degrees of visual angle and presented against a gray background with 

Lxy triples (60.37, 0.32, 0.34). The exact color values for the red and green squares varied 

by participant (n=8) to achieve perceptual isoluminance; however, representative Lxy 

triples are (43.88, 0.38, 0.31) for a red item and (43.24, 0.26, 0.37) for a green item. Both 

tasks contained eight blocks, one for each of the eight target conditions (four single-feature, 

four conjunction). In the single-feature conditions, targets were defined either by size 

(big/small) or color (red/green) while, in the conjunction conditions, targets were defined 

by both size and color. We used a Latin square design for single-feature and conjunction 

conditions separately, then alternated whether the single-feature or conjunction conditions 

came first each session. The order of single-feature versus conjunction conditions was 

counterbalanced across participants. 

The red and green used to create stimulus items were derived using a minimum motion 

procedure (Anstis & Cavanagh, 1983; Herrera, 2016). Psychometric data were collected to 

derive 20 lights of different hues, each (1) maximally saturated on the display device used 

in these experiments and (2) motion-equiluminant to the background gray used in the 

minimum motion stimulus displays. Each of these 20 lights was then projected to the 

corresponding point in the space spanned by the Stockman and Sharpe (1999) 2 deg. cone 

fundamentals, and the best fitting plane was taken as an estimate of the participant’s 

equiluminant plane. The red and green used in the experiment for a given participant  were 

the extreme points on the line in this plane with S-cone activation equal to S-cone 

activation produced by the background gray in the minimum motion procedure. Thus this 

red and green are drawn from opposite sides of the “constant-S” axis of DKL space 
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(Derrington, Krauskopf, & Lennie, 1984). The background gray (60.37 cd/m2) used in the 

visual search and centroid tasks was lighter than the equiluminant background gray (40.87 

cd/m2) used in the minimum motion procedure. Pilot data from our lab, however, suggest 

that the same pattern of results emerges whether or not the color of the stimulus items is 

isoluminant with the background. The example stimulus displays (Figures 1.3, 1.4, and 1.5) 

slightly exaggerate the item-background luminance difference for easier viewing. 

Participants with no prior centroid experience first completed 500 trials of target-only 

centroid training, in order to minimize (1) idiosyncratic centroid computations across 

participants and (2) random response noise for each participant individually (Sun et al., 

2016). Centroid training consisted of four blocks (125 trials each) grouped by item type 

(black circles, black triangle, white circles, and white triangles). Stimulus cloud displays 

contained only one item type and 4, 8, 12, 16, or 20 items per display.  

 
 
Figure 1.3: Exp. 1 Centroid Displays. The same centroid display could be used for any of the four single-
feature targets (red, green, large, small) or any of the four conjunctive targets (red & large, red & small, 
green & large, green & small). All single-feature conditions had 8 items per display (4 targets, 4 
distractors) and all conjunctive conditions had 16 items per display (4 targets, 12 distractors) in order to 
keep the number of targets constant. 

Feature Target Display Conjunctive Target Display
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Figure 1.4: Exp. 1 Visual Search Displays for Feature Targets. The target in all four example displays is 
a red square, making color the relevant feature dimension and size the irrelevant feature dimension. The 
target item could take on either level of the irrelevant feature dimension; here, the red target could be 
either big or small. 
 
 
 

 

Display Size = 4 Display Size = 8

Display Size = 12 Display Size = 16
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Figure 1.5: Exp. 1 Visual Search Displays for Conjunctive Targets. The target in all four example 
displays is a large, red square. Both color and size are relevant feature dimensions. 
 
 
 
 
 

 

Display Size = 4 Display Size = 8

Display Size = 12 Display Size = 16
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All participants began with a practice session identical to the experiment, except with 

randomized block orders and fewer trials. There were 25 practice trials per condition for 

the centroid task (200 practice trials total), and 40 practice trials per condition for the 

visual search task (320 practice trials total). Participants were undergraduates and 

graduate students at the University of California at Irvine with normal or corrected-to-

normal vision. 

In the centroid task, items were presented in a cloud stimulus display measuring 800x800 

pixels, subtending approximately 13.75 degrees of visual angle. The dispersion of a 

stimulus cloud is given by  

Dispersion(𝑥, 𝑦) = [
1

2𝑁𝑐𝑙𝑜𝑢𝑑 − 1
∑ (𝑥𝑖

𝑁𝑐𝑙𝑜𝑢𝑑

𝑖=1

− 𝑋̅)2 + (𝑦𝑖 − 𝑌̅)2]

1
2

 

where 𝑁𝑐𝑙𝑜𝑢𝑑 is the total number of items in the cloud, 𝑥 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑁𝑐𝑙𝑜𝑢𝑑
) and 

𝑦 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑁𝑐𝑙𝑜𝑢𝑑
) are the vectors of x- and y-coordinates of the items, and 𝑋̅ (𝑌̅) is the 

mean of vector 𝑥 (𝑦). Each cloud had a fixed dispersion of 133
1

3
 pixels (2.30 degrees of 

visual angle), or one-sixth of the 800-pixel stimulus display. 

Each cloud included an equal number of each item type: two of each on single-feature trials 

(for a total of 8 items), and four of each on conjunction trials (for a total of 16 items). The 

conjunction trials had twice as many items as the single-feature trials in order to keep the 

number of targets constant at four across all conditions. Figure 1.3 shows example stimulus 

clouds for the centroid task. The cloud was displayed for 250 ms, followed immediately by 

a blank screen for 50 ms, and then by a visual mask for 100 ms. The mask was a grid 
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composed of the same item types as the cloud in order to maximize its effectiveness. Next, a 

cursor appeared at the center of the screen. The participant moved the cursor to enter her 

centroid estimation via mouse click. After every trial, the participant received feedback 

indicating both the location of her response (marked by a small, black dot) and the location 

of the target centroid (marked by a bulls-eye), overlaid on the original stimulus display. She 

advanced to the next trial by pressing the spacebar. There were 75 trials per block, eight 

blocks per session, and two experimental sessions for a total of 1,200 centroid trials per 

participant. 

In the visual search task, we used exactly the same process to assign item locations that we 

used in the centroid task, except for varying the number of items in the array; display size 

was either 4, 8, 12, or 16 items. Half the trials were positive (target present) and half were 

negative (target absent). In single-feature conditions, both levels of the irrelevant 

dimension were present in equal numbers. For instance, in the red target block, half the 

display would be big, green squares and the other half would be small, green squares. On 

positive trials, one of the squares was selected at random to be the target and only its color 

changed, so the red target could be either big or small (see Figure 1.4). 

In the conjunction conditions, both feature dimensions were relevant so, on positive trials, 

one of the distractors was selected at random to become the target. For example, in the red 

& big target block, there were big, green squares and small, red squares as distractors. If a 

big, green square was selected to be the target, we changed its color to red; if a small, red 

square was selected, we changed its size to be bigger (see Figure 1.5). All of these changes 

took place during the creation of the stimuli, so participants saw only the final product. 
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The task was to indicate, on each trial, whether or not the target was present. The 

participant pressed the Z key with her left hand to enter a “no” response or the M key with 

her right hand to enter a “yes” response. The search array remained on the screen until the 

participant entered her response, at which point she received visual correctness feedback. 

The feedback was displayed for 1000 ms, followed by a pause of either 250, 500, 750, or 

1000 ms before the participant automatically advanced to the next trial. There were 120 

trials per block, eight blocks per session, and two experimental sessions for a total of 1,920 

visual search trials per participant. 

 

1.2.2 Results 

To analyze the visual search data, we first found each participant’s median reaction time 

(RT) for each target condition, display size, and trial type (positive/negative), excluding 

incorrect trials. We then calculated the mean of the participants’ median RTs and the slopes 

of the best-fitting line to the RT data for each condition and trial type (Figure 1.6). We 

conducted a series of paired-samples t-tests on the search slopes as described in Tables 1.1 

and 1.2.  The search slopes were flatter in the search-for-red and search-for-green 

conditions than in the search-for-large and search-for-small conditions. In addition, the 

single-feature target conditions had flatter slopes than the conjunctive target conditions.  

There was also a main effect of size, with search-for-large conditions producing flatter 

slopes than search-for-small conditions. Most of these differences, however, only reached 

statistical significance in the negative trial comparisons. 
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Figure 1.6: Exp. 1 Visual Search Reaction Times. The lines plot the mean of participants’ median RTs 
for each target condition. The number the right of each line gives its slope.  Overall, we found flatter RT 
slopes for single-feature conditions than for conjunction conditions. Notably, however, the RTs were 
longer and the slopes steeper for single-feature size conditions compared to the single-feature color 
conditions. The bars show the error proportion, which is the number of incorrect trials divided by the 
total number of trials in a condition. Incorrect trials were excluded from participants’ median RTs. 
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(a) Comparisons between Feature Dimension Levels 

Contrast 𝐑 − 𝐆 𝐁 − 𝐒 
𝐑𝐁 + 𝐑𝐒

𝟐
−

𝐆𝐁 + 𝐆𝐒

𝟐
 

𝐑𝐁 + 𝐆𝐁

𝟐
−

𝐑𝐒 + 𝐆𝐒

𝟐
 

Mean 0.710 -0.908 -0.564 -2.737 

Standard Deviation 3.009 3.642 3.102 2.742 

Upper Bound 3.225 2.137 2.030 -0.444 

Lower Bound -1.806 -3.952 -3.157 -5.029 

T 0.667 -0.705 -0.514 -2.822 

p 0.526 0.504 0.623 0.026 

Bayes Factor 0.404 0.413 0.376 3.140 

 
 

(b) Comparisons across Feature Dimensions 

Contrast 
𝐑 + 𝐆

𝟐
−

𝐁 + 𝐒

𝟐
 

𝐑 + 𝐆

𝟐
−

𝐑𝐁 + 𝐑𝐒 + 𝐆𝐁 + 𝐆𝐒

𝟒
 

𝐁 + 𝐒

𝟐
−

𝐑𝐁 + 𝐑𝐒 + 𝐆𝐁 + 𝐆𝐒

𝟒
 

Mean -1.725 -4.366 -2.642 

Standard Deviation 2.383 1.924 3.174 

Upper Bound 0.268 -2.757 0.011 

Lower Bound -3.717 -5.975 -5.295 

T -2.047 -6.417 -2.354 

p 0.080 0.000 0.051 

Bayes Factor 1.344 94.742 1.876 

 
 
Table 1.1: Exp. 1 Paired-Samples T-tests of Search Slopes for Positive Trials. Letters refer to target 
conditions, with single letters indicating single-feature target conditions (e.g. ‘R’ = search-for-red) and two 
letters indicating conjunctive target conditions (e.g. ‘RB’ = search-for-red&big). Flatter (smaller) slopes 
indicate better performance while steeper (greater) slopes indicate worse performance. (a) The first and 
second columns compare the two color target conditions (R vs. G) and the two size target conditions (B vs. 
S), respectively. The third column compares the mean of the red conjunction conditions (RB and RS) with 
the mean of the green conjunction conditions (GB and GS) and,  the fourth column compares the mean of 
big conjunction conditions (RB and GB) with the mean of small conjunction conditions (RS and GS). (b) 
The first column compares the mean of the color conditions with the mean of the size conditions, the 
second column compares the mean of the color conditions with the mean of the conjunction conditions,  
and the third column compares the mean of the size conditions with the mean of the conjunction 
conditions. These comparisons show that search slopes were flattest in the color conditions, next flattest 
in the size conditions, and steepest in the conjunction conditions, though not all these comparisons are 
statistically significant. 
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(a) Comparisons between Feature Dimension Levels 

Contrast 𝐑 − 𝐆 𝐁 − 𝐒 
𝐑𝐁 + 𝐑𝐒

𝟐
−

𝐆𝐁 + 𝐆𝐒

𝟐
 

𝐑𝐁 + 𝐆𝐁

𝟐
−

𝐑𝐒 + 𝐆𝐒

𝟐
 

Mean 0.335 -6.455 -2.046 -5.554 

Standard Deviation 2.683 2.960 2.176 5.651 

Upper Bound 2.578 -3.981 -0.227 -0.830 

Lower Bound -1.908 -8.930 -3.866 -10.278 

T 0.353 -6.168 -2.660 -2.780 

p 0.734 0.000 0.032 0.027 

Bayes Factor 0.354 77.807 2.628 2.999 

 
 

(b) Comparisons across Feature Dimensions 

Contrast 
𝐑 + 𝐆

𝟐
−

𝐁 + 𝐒

𝟐
 

𝐑 + 𝐆

𝟐
−

𝐑𝐁 + 𝐑𝐒 + 𝐆𝐁 + 𝐆𝐒

𝟒
 

𝐁 + 𝐒

𝟐
−

𝐑𝐁 + 𝐑𝐒 + 𝐆𝐁 + 𝐆𝐒

𝟒
 

Mean -5.340 -8.580 -3.240 

Standard Deviation 1.801 2.494 2.408 

Upper Bound -3.834 -6.495 -1.226 

Lower Bound -6.846 -10.664 -5.253 

T -8.385 -9.731 -3.805 

p 0.000 0.000 0.007 

Bayes Factor 380.279 854.462 8.985 

 
 
Table 1.2: Exp. 1 Paired-Samples T-tests of Search Slopes for Negative Trials. Letters refer to target 
conditions, with single letters indicating single-feature target conditions (e.g. ‘R’ = search-for-red) and two 
letters indicating conjunctive target conditions (e.g. ‘RB’ = search-for-red&big). Flatter (smaller) slopes 
indicate better performance while steeper (greater) slopes indicate worse performance. (a) The first and 
second columns compare the two color target conditions (R vs. G) and the two size target conditions (B vs. 
S), respectively. The third column compares the mean of the red conjunction conditions (RB and RS) with 
the mean of the green conjunction conditions (GB and GS) and,  the fourth column compares the mean of 
big conjunction conditions (RB and GB) with the mean of small conjunction conditions (RS and GS). (b) 
The first column compares the mean of the color conditions with the mean of the size conditions, the 
second column compares the mean of the color conditions with the mean of the conjunction conditions,  
and the third column compares the mean of the size conditions with the mean of the conjunction 
conditions. These comparisons show that search slopes were flattest in the color conditions, next flattest 
in the size conditions, and steepest in the conjunction conditions, and all these comparisons are 
statistically significant. 
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We used the methods described in Sun et al. (2016) to analyze the centroid task data. The 

model of Sun et al. (2016) assumes that the x- and y-coordinates of the participant’s 

response on each trial are given by 

𝑅𝑥 = 𝜇𝑥 + 𝑄𝑥           and          𝑅𝑦 = 𝜇𝑦 + 𝑄𝑦   

for 𝑄𝑥 and 𝑄𝑦 independent, normally distributed random variables with mean 0 and some 

standard deviation 𝜎 and 

𝜇𝑥 =
∑ 𝑓𝜑(𝜏𝑖)𝑥𝑖

∑ 𝑓𝜑(𝜏𝑖)
          and           𝜇𝑦 =

∑ 𝑓𝜑(𝜏𝑖)𝑦𝑖

∑ 𝑓𝜑(𝜏𝑖)
 

where each sum is over all items 𝑖 in cloud 𝐶, 𝜏𝑖 is the type of item 𝑖, and 𝑥𝑖  and 𝑦𝑖 are the x- 

and y- coordinates of item 𝑖, and 𝑓𝜑 is the attention filter achieved by the participant. 

For a the attention condition with target filter 𝜑, these methods enable us to estimate (1) 

the attention filter 𝑓𝜑 achieved by the participant in that condition, (2) the Efficiency with 

which the participant was able to deploy the filter 𝑓𝜑 , and (3) the Data-drivenness 𝑉 of the 

participant’s response-production process. The attention filter 𝑓𝜑 defines the relative 

influence exerted on the participant’s responses by all four types of items occurring in the 

stimulus (large red, small red, large green and small green squares).  The function 𝑓𝜑 is 

constrained to sum to 1; however, it is possible for 𝑓𝜑 to assign negative values to some 

item types. (Figure 1.7 plots the attention filter averaged across eight participants.) The 

participant’s Efficiency in deploying 𝑓𝜑 is the minimum possible proportion of items that 

had to be included, on average, in the participant’s centroid computation to achieve 

predicted responses of the accuracy observed.  Efficiency is estimated by assuming that all 
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Figure 1.7: Exp. 1 Centroid Attention Filters. Each line shows the relative influence of each item type 
(averaged across eight participants) for a particular attention condition. The relative influence, or weight, 
of all the item types sums to 1. For all feature target conditions, the targets consist of two item types. The 
ideal attentional filter would be equally influenced by the two target item types (assigning them each a 
weight of 0.5) and not at all influenced by the two distractor item types (assigning them each a weigh of 
0).  Participants’ actual performance follows these trends. For example, in the attend-to-red condition, the 
two red items (targets) both have weights of about 0.5 while the two green items (distractors) both have 
weights of about 0. For all conjunctive target conditions, the target consists of only one item type. The 
ideal attentional filter would be influenced only by the target item (assigning it a weight of 1), and not at 
all influenced by the three distractor item types (assigning them each a weigh of 0). Again, participants’ 
actual performance is not far off. For example, in the attend-to-red&big target condition, the large red item 
type (target) has a weight of about 0.9, while the small red distractor has a weight of about 0.1 and the 
remaining green item types  have a weight of about 0. In each conjunctive target condition, the distractor 
that shares the target’s color exerts more influence on participants’ centroid judgments compared to the 
other two distractor item types. 
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residual error (i.e., the deviations of responses predicted by the model from actual 

responses) is due to removing a fixed proportion 𝑄 of randomly chosen items from the 

display on each trial and applying the model to the decimated display without additional 

error; Efficiency is then taken to be equal to 1 − 𝑄. (Figure 1.8 plots Efficiency for each of 

target conditions averaged across eight participants.) Finally, Data-drivenness (𝑉 in Eq. 21 

of Sun et al. 2016) reflects the degree to which the participant’s response on each trial is 

determined by the stimulus presented on that trial as opposed to being drawn on each trial 

toward a fixed default location (𝑥𝑑𝑒𝑓𝑎𝑢𝑙𝑡, 𝑦𝑑𝑒𝑓𝑎𝑢𝑙𝑡). In “binary” centroid tasks of the sort 

used in this paper in which the target filter assigns equal weight to a specific set of target 

item-types and weight 0 to the remaining distractor item-types, it is convenient to 

summarize the effectiveness of the attention filter 𝑓𝜑 achieved by the participant by the 

ratio of (numerator) the mean of 𝑓𝜑(𝑡) taken across all target items 𝑡 divided by 

(denominator) the mean of |𝑓𝜑(𝑑)| taken across all distractor items 𝑑. This statistic 

(selectivity ratio) provides a convenient index of the degree to which the attention filter 

achieved by the participant accentuates target items while filtering out distractor items. A 

selectivity ratio of ten or higher is considered excellent. We calculated the average 

efficiencies and selectivity ratios for participants across conditions (Figure 1.9).  

We performed the same paired-samples t-tests on our centroid measures of efficiency 

(Table 1.3) and selectivity (Table 1.4) as we did on our search slope data. As in the visual 

search tasks, an asymmetry in centroid task performance was observed between the 

attend-to-color vs. the attend-to-size conditions. Just as reaction times were faster in 

search-for-red and search-for-green conditions than they were in the search-for-large and 
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Figure 1.8: Exp. 1 Centroid Efficiencies. Efficiency estimates a lower bound on the proportion of items 
participant observed. The left side of the graph shows participants’ average Efficiencies for feature target 
conditions, and the ride side shows participants’ average Efficiencies for conjunctive target conditions. 
There were twice as many items in the conjunctive target conditions as in the feature target conditions, so 
lower Efficiency values for conjunctive targets no not necessarily indicate worse performance. Error bars 
reflect 95% confidence intervals.  
 
 
 
 
 

 
 
Figure 1.9: Exp. 1 Centroid Selectivity Ratios. The Selectivity Ratio is the mean target weight divided by 
the mean distractor weight, and offers a more direct way to compare performance on feature target 
conditions to performance on conjunctive target conditions. The left side of the graph shows participants’ 
average Selectivity Ratios for feature target conditions, and the ride side shows participants’ average 
Selectivity Ratios for conjunctive target conditions. Error bars reflect 95% confidence intervals. 
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(a) Comparisons between Feature Dimension Levels 

Contrast 𝐑 − 𝐆 𝐁 − 𝐒 
𝐑𝐁 + 𝐑𝐒

𝟐
−

𝐆𝐁 + 𝐆𝐒

𝟐
 

𝐑𝐁 + 𝐆𝐁

𝟐
−

𝐑𝐒 + 𝐆𝐒

𝟐
 

Mean 0.008 0.080 -0.012 0.107 

Standard Deviation 0.029 0.046 0.052 0.088 

Upper Bound 0.032 0.118 0.031 0.181 

Lower Bound -0.016 0.042 -0.055 0.034 

T 0.790 4.947 -0.657 3.444 

p 0.455 0.002 0.532 0.011 

Bayes Factor 0.434 27.312 0.402 6.158 

 
 

(b) Comparisons across Feature Dimensions 

Contrast 
𝐑 + 𝐆

𝟐
−

𝐁 + 𝐒

𝟐
 

𝐑 + 𝐆

𝟐
−

𝐑𝐁 + 𝐑𝐒 + 𝐆𝐁 + 𝐆𝐒

𝟒
 

𝐁 + 𝐒

𝟐
−

𝐑𝐁 + 𝐑𝐒 + 𝐆𝐁 + 𝐆𝐒

𝟒
 

Mean 0.120 0.129 0.009 

Standard Deviation 0.050 0.090 0.048 

Upper Bound 0.162 0.204 0.049 

Lower Bound 0.078 0.054 -0.031 

T 6.771 4.079 0.534 

p 0.000 0.005 0.610 

Bayes Factor 124.247 11.871 0.392 

 
 
Table 1.3: Exp. 1 Paired-Samples T-tests of Centroid Efficiencies. Letters refer to target conditions, 
with single letters indicating single-feature target conditions (e.g. ‘R’ = attend-to-red) and two letters 
indicating conjunctive target conditions (e.g. ‘RB’ = attend-to-red&big). Larger efficiencies indicate better 
performance while smaller efficiencies indicate worse performance. (a) The first and second columns 
compare the two color target conditions (R vs. G) and the two size target conditions (B vs. S), respectively. 
The third column compares the mean of the red conjunction conditions (RB and RS) with the mean of the 
green conjunction conditions (GB and GS) and,  the fourth column compares the mean of big conjunction 
conditions (RB and GB) with the mean of small conjunction conditions (RS and GS). (b) The first column 
compares the mean of the color conditions with the mean of the size conditions, the second column 
compares the mean of the color conditions with the mean of the conjunction conditions,  and the third 
column compares the mean of the size conditions with the mean of the conjunction conditions. These 
comparisons show that efficiencies were highest in the color conditions, next highest in the size 
conditions, and lowest in the conjunction conditions, though not all these comparisons are statistically 
significant. 
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(a) Comparisons between Feature Dimension Levels 

Contrast 𝐑 − 𝐆 𝐁 − 𝐒 
𝐑𝐁 + 𝐑𝐒

𝟐
−

𝐆𝐁 + 𝐆𝐒

𝟐
 

𝐑𝐁 + 𝐆𝐁

𝟐
−

𝐑𝐒 + 𝐆𝐒

𝟐
 

Mean 0.027 0.217 0.060 0.343 

Standard Deviation 0.279 0.138 0.196 0.136 

Upper Bound 0.260 0.332 0.224 0.456 

Lower Bound -0.206 0.102 -0.104 0.230 

T 0.276 4.466 0.871 7.152 

p 0.790 0.003 0.413 0.000 

Bayes Factor 0.347 17.375 0.457 164.516 

 
 

(b) Comparisons across Feature Dimensions 

Contrast 
𝐑 + 𝐆

𝟐
−

𝐁 + 𝐒

𝟐
 

𝐑 + 𝐆

𝟐
−

𝐑𝐁 + 𝐑𝐒 + 𝐆𝐁 + 𝐆𝐒

𝟒
 

𝐁 + 𝐒

𝟐
−

𝐑𝐁 + 𝐑𝐒 + 𝐆𝐁 + 𝐆𝐒

𝟒
 

Log10 Mean 0.700 0.325 -0.375 

Standard Deviation 0.317 0.179 0.151 

Upper Bound 0.965 0.475 -0.248 

Lower Bound 0.435 0.175 -0.502 

T 6.242 5.122 -7.000 

p 0.000 0.001 0.000 

Bayes Factor 82.542 32.012 147.280 

 
 
Table 1.4: Exp. 1 Paired-Samples T-tests of Centroid Selectivity Ratios. Letters refer to target 
conditions, with single letters indicating single-feature target conditions (e.g. ‘R’ = attend-to-red) and two 
letters indicating conjunctive target conditions (e.g. ‘RB’ = attend-to-red&big). Larger selectivity ratios 
indicate better performance while smaller selectivity ratios indicate worse performance. (a) The first and 
second columns compare the two color target conditions (R vs. G) and the two size target conditions (B vs. 
S), respectively. The third column compares the mean of the red conjunction conditions (RB and RS) with 
the mean of the green conjunction conditions (GB and GS) and,  the fourth column compares the mean of 
big conjunction conditions (RB and GB) with the mean of small conjunction conditions (RS and GS). (b) 
The first column compares the mean of the color conditions with the mean of the size conditions, the 
second column compares the mean of the color conditions with the mean of the conjunction conditions,  
and the third column compares the mean of the size conditions with the mean of the conjunction 
conditions. These comparisons show that selectivity ratios were highest in the color conditions, next 
highest in the conjunction conditions, and lowest in the size conditions, and all these comparisons are 
statistically significant. 
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search-for-small conditions in the visual search tasks, both efficiency and selectivity were 

higher in the attend-to-red and attend-to-green centroid task conditions than they were in 

the attend-to-large and attend-to-small conditions, and there was a main effect of size with 

better performance on attend-to-large conditions than on attend-to-small conditions. In 

contrast to search results, however, centroid performance (as measured by both efficiency 

and selectivity) was better in conjunctive target conditions than in the constituent-feature 

target conditions of attend-to-large and attend-to-small. Although this difference was not 

significant as measured by efficiency, it should be noted again that efficiency refers to a 

proportion of the items, and the conjunctive target display had twice as many items as the 

single-feature target displays. 

 

1.2.3 Conclusions 

Our visual search results more or less follow the expected pattern given the extensive 

search literature. It seems targets defined by color are easier to find than targets defined by 

size, both of which are easier to find that targets defined by the conjunction of color and 

size. We can describe this pattern with the simple inequality: Color > Size > Conjunction. 

Remarkably, the pattern of results is different in the centroid paradigm. Instead of all 

constituent-feature targets outperforming conjunctive targets, conjunctive targets are 

intermediate between the two constituent feature dimensions of the conjunction. Stated as 

an inequality, we find Color > Conjunction > Size in the centroid paradigm. Based on the FIT 

interpretation of visual search data, one might have predicted that a conjunctive centroid 

task would be an impossible one. However, it is not only possible, it is actually better than a 
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constituent-feature centroid task, even when the single-feature task has half as many items 

per display. Given the surprising nature of these results, replication is crucial. We 

conducted Experiment 2 in order to provide converging evidence using the feature 

dimensions of luminance and shape. 

 

1.3 EXPERIMENT 2: LUMINANCE-SHAPE CONJUNCTIONS 

 

1.3.1 Methods 

As in the first experiment, participants with no prior centroid experienced first completed 

500 trails of centroid training. The design of Experiment 2 was essentially identical to that 

of Experiment 1: practice sessions followed by experiment sessions for all participants. The 

ABBA task order and Latin squares block order also remained the same. The main 

difference between the experiments was the feature dimensions: instead of size and color, 

they were luminance (black/white) and shape (circle/triangle). We chose circles and 

triangles to achieve a difference in shape comparably dramatic to the difference in 

luminance between black and white. The triangles were equilateral and appeared at 

random orientations. We matched the area of the shapes are closely as possible, so the area 

of both circles and triangles was approximately 400 pixels. The radius of the circle 

subtended approximately 0.21 degrees of visual angle, and the distance from the center of 

the triangle to a vertex subtended approximately 0.31 degrees of visual angle. 
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Again, in the centroid task, items were presented in a stimulus display cloud (800 x 800 

pixels, 13.75 degrees of visual angle) with a fixed dispersion of one-sixth of the stimulus 

display size (133
1

3
 pixels, 2.30 degrees of visual angle). The background gray (47.63 cd/m2) 

was darker than in Experiment 1 so that it its luminance would be almost exactly in 

between the white (107.6 cd/m2) and black (0.28 cd/m2) items. The single-feature 

conditions had eight items per display (two of each of the four item types) and the 

conjunction conditions had 16 (four of each of the four item types), so there were always 

four targets per display. Figure 1.10 shows examples of these centroid stimulus displays. 

The stimulus display appeared for 250 ms, the blank screen for 50 ms, and the visual mask 

for 100 ms, after which participants entered their responses and received feedback. There  

 
 
Figure 1.10: Exp. 2 Centroid Displays. The same centroid display could be used for any of the four 
single-feature targets (black, white, circle, triangle) or any of the four conjunctive targets (black circle, 
black triangle, white circle, white triangle). All single-feature conditions had 8 items per display (4 targets, 
4 distractors) and all conjunctive conditions had 16 items per display (4 targets, 12 distractors) in order 
to keep the number of targets constant. 

 

Feature Target Display Conjunctive Target Display
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Figure 1.11: Exp. 2 Visual Search Displays for Feature Targets. The target in all four example displays 
is a black item, making luminance the relevant feature dimension and shape the irrelevant feature 
dimension. The target item could take on either level of the irrelevant feature dimension; here, the black 
target could be either a circle or a triangle. 
 
 
 

 

Display Size = 4 Display Size = 8

Display Size = 12 Display Size = 16
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Figure 1.12: Exp. 2 Visual Search Displays for Conjunctive Targets. The target in all four example 
displays is a black circle. Both luminance and shape are relevant feature dimensions. 
 
 
 

 

Display Size = 4 Display Size = 8

Display Size = 12 Display Size = 16
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were 100 trials per block, eight blocks per session, and two sessions for a total of 1,600 

centroid trials per participant (n=8).  

The visual search arrays were also created the same way as in Experiment 1. We used the 

same process to assign item locations with the same fixed dispersion. Display size was 4, 8, 

12, or 16 items; half the trials were positive and the other half were negative. When the 

target was defined by a single feature, the levels of the irrelevant feature dimensions 

appeared in equal numbers (see Figure 1.11). When the target was defined by a 

conjunction of features, both feature dimensions were relevant; so, on positive trials, one 

item was selected at random and modified to become the target (see Figure 1.12). 

The task was to indicate, on each trial, whether or not the target was present. The 

participant pressed the Z key with her left hand to enter a “no” response or the M key with 

her right hand to enter a “yes” response. The search array remained on the screen until the 

participant entered her response, at which point she received visual correctness feedback. 

There were 160 trials per block, eight blocks per session, and two sessions for a total of 

2,560 visual search trials per participant. 

We originally collected data from nine participants, but one appeared not to understand 

the centroid task. This participant had a mean Efficiency of 0.3473 and Data-Drivenness of 

0.4998, suggesting a strategy of clicking at random. We excluded this participant from 

future analyses and present data from the remaining eight participants in the following 

Results section. 
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1.3.2 Results 

Again, we analyzed our visual search data by taking each participant’s median RT on 

correct trials, then finding the mean for each target condition, display size, and trial type 

(positive/negative). We plot these means and the slopes of the best fitting lines for each 

condition and trial type (Figure 1.13) and performed a series of paired-samples t-tests on 

the search slopes as described in Tables 1.5 and 1.6. The search slopes were flatter in the 

search-for-black and search-for-white conditions than in the search-for-circles and search-

for-triangles conditions. In addition, the single-feature target conditions had flatter slopes 

than the conjunctive target conditions. 

For the centroid data, we calculated the attention filter for each item type by target 

condition using the Sun et al. (2016) methodology described earlier. The relative influence 

of each item type averaged across participants is shown in Figure 1.14. We also calculated 

the efficiencies (Figure 1.15) and selectivity ratios (Figure 1.16) for each target condition. 

Efficiency tracks error in that it provides an estimate of the number of items an ideal 

observer with the same attentional filter as participant would need to process in order to 

perform with the same error as that participant. In this way, it provides a lower bound on 

the number of items processed. The selectivity ratio is the average of the absolute values of 

the target item weights, divided by the average of the absolute values of the distractor item 

weights. This allows us to compare performance across feature target conditions (in which 

two item types are targets) to conjunction target conditions (in which only one item type is 

a target).  
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Figure 1.13: Exp. 2 Visual Search Reaction Times. The lines plot the mean of participants’ median RTs 
for each target condition. . The number the right of each line gives its slope. Overall, we found flatter RT 
slopes for single-feature conditions than for conjunction conditions. Notably, however, the RTs were 
longer and the slopes steeper for single-feature shape conditions compared to the single-feature 
luminance conditions. The bars show the error proportion, which is the number of incorrect trials divided 
by the total number of trials in a condition. Incorrect trials were excluded from participants’ median RTs. 
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(a) Comparisons between Feature Dimension Levels 

Contrast 𝐁 − 𝐖 𝐂 − 𝐓 
𝐁𝐂 + 𝐁𝐓

𝟐
−

𝐖𝐂 + 𝐖𝐓

𝟐
 

𝐁𝐂 + 𝐖𝐂

𝟐
−

𝐁𝐓 + 𝐖𝐓

𝟐
 

Mean 0.107 1.226 1.133 -0.682 

Standard Deviation 1.955 3.058 2.458 2.272 

Upper Bound 1.742 3.783 3.188 1.217 

Lower Bound -1.527 -1.330 -0.923 -2.582 

T 0.155 1.134 1.303 -0.850 

p 0.881 0.294 0.234 0.424 

Bayes Factor 0.340 0.555 0.641 0.451 

 
 

(b) Comparisons across Feature Dimensions 

Contrast 
𝐁 + 𝐖

𝟐
−

𝐂 + 𝐓

𝟐
 

𝐁 + 𝐖

𝟐
−

𝐁𝐂 + 𝐁𝐓 + 𝐖𝐂 + 𝐖𝐓

𝟒
 

𝐂 + 𝐓

𝟐
−

𝐁𝐂 + 𝐁𝐓 + 𝐖𝐂 + 𝐖𝐓

𝟒
 

Mean -2.087 -5.672 -3.584 

Standard Deviation 1.730 2.067 1.812 

Upper Bound -0.641 -3.944 -2.069 

Lower Bound -3.534 -7.400 -5.099 

T -3.412 -7.761 -5.595 

p 0.011 0.000 0.001 

Bayes Factor 5.952 252.052 48.441 

 
 
Table 1.5: Exp. 2 Paired-Samples T-tests of Search Slopes for Positive Trials. Letters refer to target 
conditions, with single letters indicating single-feature target conditions (e.g. ‘B’ = search-for-black) and 
two letters indicating conjunctive target conditions (e.g. ‘BC’ = search-for-black&circle). Flatter (smaller) 
slopes indicate better performance while steeper (greater) slopes indicate worse performance. (a) The 
first and second columns compare the two luminance target conditions (B vs. W) and the two size target 
conditions (C vs. T), respectively. The third column compares the mean of the black conjunction 
conditions (BC and BT) with the mean of the white conjunction conditions (WC and WT), and the fourth 
column compares the mean of circle conjunction conditions (BC and WC) with the mean of triangle 
conjunction conditions (BT and WT). (b) The first column compares the mean of the luminance conditions 
with the mean of the shape conditions, the second column compares the mean of the luminance conditions 
with the mean of the conjunction conditions, and the third column compares the mean of the shape 
conditions with the mean of the conjunction conditions. These comparisons show that search slopes were 
flattest in the luminance conditions, next flattest in the shape conditions, and steepest in the conjunction 
conditions, and all these comparisons are statistically significant. 
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(a) Comparisons between Feature Dimension Levels 

Contrast 𝐁 − 𝐖 𝐂 − 𝐓 
𝐁𝐂 + 𝐁𝐓

𝟐
−

𝐖𝐂 + 𝐖𝐓

𝟐
 

𝐁𝐂 + 𝐖𝐂

𝟐
−

𝐁𝐓 + 𝐖𝐓

𝟐
 

Mean -0.061 -0.207 2.454 -0.018 

Standard Deviation 2.231 2.280 2.081 4.994 

Upper Bound 1.804 1.699 4.194 4.157 

Lower Bound -1.926 -2.113 0.714 -4.194 

T -0.077 -0.257 3.335 -0.010 

p 0.941 0.805 0.012 0.992 

Bayes Factor 0.337 0.346 5.483 0.336 

 
 

(b) Comparisons across Feature Dimensions 

Contrast 
𝐁 + 𝐖

𝟐
−

𝐂 + 𝐓

𝟐
 

𝐁 + 𝐖

𝟐
−

𝐁𝐂 + 𝐁𝐓 + 𝐖𝐂 + 𝐖𝐓

𝟒
 

𝐂 + 𝐓

𝟐
−

𝐁𝐂 + 𝐁𝐓 + 𝐖𝐂 + 𝐖𝐓

𝟒
 

Mean -3.298 -8.208 -4.909 

Standard Deviation 2.501 2.650 3.132 

Upper Bound -1.207 -5.992 -2.291 

Lower Bound -5.389 -10.424 -7.528 

T -3.730 -8.759 -4.433 

p 0.007 0.000 0.003 

Bayes Factor 8.314 481.024 16.830 

 
 
Table 1.6: Exp. 2 Paired-Samples T-tests of Search Slopes for Negative Trials. Letters refer to target 
conditions, with single letters indicating single-feature target conditions (e.g. ‘B’ = search-for-black) and 
two letters indicating conjunctive target conditions (e.g. ‘BC’ = search-for-black&circle). Flatter (smaller) 
slopes indicate better performance while steeper (greater) slopes indicate worse performance. (a) The 
first and second columns compare the two luminance target conditions (B vs. W) and the two size target 
conditions (C vs. T), respectively. The third column compares the mean of the black conjunction 
conditions (BC and BT) with the mean of the white conjunction conditions (WC and WT), and the fourth 
column compares the mean of circle conjunction conditions (BC and WC) with the mean of triangle 
conjunction conditions (BT and WT). (b) The first column compares the mean of the luminance conditions 
with the mean of the shape conditions, the second column compares the mean of the luminance conditions 
with the mean of the conjunction conditions, and the third column compares the mean of the shape 
conditions with the mean of the conjunction conditions. These comparisons show that search slopes were 
flattest in the luminance conditions, next flattest in the shape conditions, and steepest in the conjunction 
conditions, and all these comparisons are statistically significant. 

 



37 
 

 
 
 
 
 

 
 
 
 
 
Figure 1.14: Exp. 2 Centroid Attention Filters. Each line shows the relative influence of each item type 
(averaged across eight participants) for a particular attention condition. The relative influence, or weight,  
of all the item types sums to 1. For all feature target conditions, the targets consist of two item types. The 
ideal attentional filter would be equally influenced by the two target item types (assigning them each a 
weight of 0.5) and not at all influenced by the two distractor item types (assigning them each a weigh of 
0).  Participants’ actual performance follows these trends. For example, in the attend-to-black condition, 
the two black items (targets) both have weights of about 0.5 while the two white items (distractors) both 
have weights of about 0. For all conjunctive target conditions, the target consists of only one item type. 
The ideal attentional filter would be influenced only by the target item (assigning it a weight of 1), and not 
at all influenced by the three distractor item types (assigning them each a weigh of 0). Again, participants’ 
actual performance is not far off. For example, in the attend-to-black&circle target condition, the black 
circle (target) has a weight of about 0.9, while the black triangle (distractor) has a weight of about 0.1 and 
the remaining white item types  have a weight of about 0. In each conjunctive target condition, the 
distractor that shares the target’s luminance exerts more influence on participants’ centroid judgments 
compared to the other two distractor item types. 
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Figure 1.15: Exp. 2 Centroid Efficiencies. Efficiency estimates a lower bound on the proportion of items 
participant observed. The left side of the graph shows participants’ average Efficiencies for feature target 
conditions, and the ride side shows participants’ average Efficiencies for conjunctive target conditions. 
There were twice as many items in the conjunctive target conditions as in the feature target conditions, so 
lower Efficiency values for conjunctive targets no not necessarily indicate worse performance. Error bars 
reflect 95% confidence intervals.  
 
 
 
 
 
 

 
 
Figure 1.16: Exp. 2 Centroid Selectivity Ratios. The Selectivity Ratio is the mean target weight divided 
by the mean distractor weight, and offers a more direct way to compare performance on feature target 
conditions to performance on conjunctive target conditions. The left side of the graph shows participants’ 
average Selectivity Ratios for feature target conditions, and the ride side shows participants’ average 
Selectivity Ratios for conjunctive target conditions. Error bars reflect 95% confidence intervals. 
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(a) Comparisons between Feature Dimension Levels 

Contrast 𝐁 − 𝐖 𝐂 − 𝐓 
𝐁𝐂 + 𝐁𝐓

𝟐
−

𝐖𝐂 + 𝐖𝐓

𝟐
 

𝐁𝐂 + 𝐖𝐂

𝟐
−

𝐁𝐓 + 𝐖𝐓

𝟐
 

Mean 0.001 -0.008 -0.020 0.011 

Standard Deviation 0.015 0.036 0.018 0.018 

Upper Bound 0.014 0.022 -0.005 0.027 

Lower Bound -0.011 -0.038 -0.035 -0.004 

T 0.210 -0.659 -3.189 1.713 

p 0.840 0.531 0.015 0.131 

Bayes Factor 0.343 0.402 4.686 0.948 

 
 

(b) Comparisons across Feature Dimensions 

Contrast 
𝐁 + 𝐖

𝟐
−

𝐂 + 𝐓

𝟐
 

𝐁 + 𝐖

𝟐
−

𝐁𝐂 + 𝐁𝐓 + 𝐖𝐂 + 𝐖𝐓

𝟒
 

𝐂 + 𝐓

𝟐
−

𝐁𝐂 + 𝐁𝐓 + 𝐖𝐂 + 𝐖𝐓

𝟒
 

Mean 0.112 0.075 -0.036 

Standard Deviation 0.056 0.050 0.025 

Upper Bound 0.158 0.117 -0.015 

Lower Bound 0.065 0.033 -0.057 

T 5.656 4.250 -4.021 

p 0.001 0.004 0.005 

Bayes Factor 51.020 14.074 11.198 

 
 
Table 1.7: Exp. 2 Paired-Samples T-tests of Centroid Efficiencies. Letters refer to target conditions, 
with single letters indicating single-feature target conditions (e.g. ‘B’ = search-for-black) and two letters 
indicating conjunctive target conditions (e.g. ‘BC’ = search-for-black&circle).  Larger efficiency values 
indicate better performance while smaller efficiency values indicate worse performance. (a) The first and 
second columns compare the two luminance target conditions (B vs. W) and the two size target conditions 
(C vs. T), respectively. The third column compares the mean of the black conjunction conditions (BC and 
BT) with the mean of the white conjunction conditions (WC and WT), and the fourth column compares the 
mean of circle conjunction conditions (BC and WC) with the mean of triangle conjunction conditions (BT 
and WT). (b) The first column compares the mean of the luminance conditions with the mean of the shape 
conditions, the second column compares the mean of the luminance conditions with the mean of the 
conjunction conditions, and the third column compares the mean of the shape conditions with the mean of 
the conjunction conditions. These comparisons show that efficiencies were highest in the luminance 
conditions, next highest in the conjunction conditions, and lowest in the shape conditions, and all these 
comparisons are statistically significant. 
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(a) Comparisons between Feature Dimension Levels 

Contrast 𝐁 − 𝐖 𝐂 − 𝐓 
𝐁𝐂 + 𝐁𝐓

𝟐
−

𝐖𝐂 + 𝐖𝐓

𝟐
 

𝐁𝐂 + 𝐖𝐂

𝟐
−

𝐁𝐓 + 𝐖𝐓

𝟐
 

Mean 0.207 0.145 0.009 -0.002 

Standard Deviation 0.128 0.254 0.078 0.136 

Upper Bound 0.314 0.358 0.074 0.112 

Lower Bound 0.100 -0.067 -0.056 -0.116 

T 4.586 1.619 0.332 -0.045 

p 0.003 0.149 0.750 0.965 

Bayes Factor 19.493 0.863 0.352 0.337 

 
 

(b) Comparisons across Feature Dimensions 

Contrast 
𝐁 + 𝐖

𝟐
−

𝐂 + 𝐓

𝟐
 

𝐁 + 𝐖

𝟐
−

𝐁𝐂 + 𝐁𝐓 + 𝐖𝐂 + 𝐖𝐓

𝟒
 

𝐂 + 𝐓

𝟐
−

𝐁𝐂 + 𝐁𝐓 + 𝐖𝐂 + 𝐖𝐓

𝟒
 

Log10 Mean 0.512 0.166 -0.346 

Standard Deviation 0.494 0.269 0.336 

Upper Bound 0.924 0.391 -0.065 

Lower Bound 0.099 -0.059 -0.626 

T 2.933 1.745 -2.914 

p 0.022 0.124 0.023 

Bayes Factor 3.547 0.979 3.474 

 
 
Table 1.8: Exp. 2 Paired-Samples T-tests of Centroid Selectivity Ratios. Letters refer to target 
conditions, with single letters indicating single-feature target conditions (e.g. ‘B’ = search-for-black) and 
two letters indicating conjunctive target conditions (e.g. ‘BC’ = search-for-black&circle). Larger selectivity 
ratios indicate better performance while smaller selectivity ratios indicate worse performance. (a) The 
first and second columns compare the two luminance target conditions (B vs. W) and the two size target 
conditions (C vs. T), respectively. The third column compares the mean of the black conjunction 
conditions (BC and BT) with the mean of the white conjunction conditions (WC and WT), and the fourth 
column compares the mean of circle conjunction conditions (BC and WC) with the mean of triangle 
conjunction conditions (BT and WT). (b) The first column compares the mean of the luminance conditions 
with the mean of the shape conditions, the second column compares the mean of the luminance conditions 
with the mean of the conjunction conditions, and the third column compares the mean of the shape 
conditions with the mean of the conjunction conditions. These comparisons show that selectivity ratios 
were highest in the luminance conditions, next highest in the conjunction conditions, and lowest in the 
shape conditions, though not all these comparisons are statistically significant. 
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We conducted paired-samples t-tests (the same as the as we conducted on our search slope 

data) on efficiency (Table 1.7) and selectivity (Table 1.8). Considering both these measures, 

we find that centroid performance is better in attend-to-black and attend-to-white 

conditions than in attend-to-circles and attend-to-triangles conditions. Additionally, 

performance on the conjunctive target conditions is better than performance on the attend-

to-circles and attend-to-triangles conditions. There were also several cases in which black 

targets outperformed white targets. 

 

1.2.3 Conclusions 

Again, our search results follow the expected pattern in which single-feature targets always 

outperform conjunctive targets. Expressed as an inequality, we find Luminance > Size > 

Conjunction. 

Our centroid results, on the other hand, deviate from this expected pattern. Instead, we find 

Luminance > Conjunction > Size. Interestingly, this pattern is more compelling in the 

context of our efficiency data than it is in the context or out selectivity data. However, it is 

worth noting that all the selectivity ratios in the Experiment 2 were quite high, suggesting 

there may be a ceiling effect. 

 

1.4 GENERAL DISCUSSION 

We draw two main conclusions from our present findings. 
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(1) In visual search tasks, performance (as measured by reaction time slope) is better 

on all feature conditions compared to all conjunction conditions. In Experiment 1, 

reaction time slopes were flattest when participants searched for color targets. The 

next flattest slopes were observed for size targets, and the steepest slopes for color-

size conjunctive targets. In Experiment 2, reaction time slopes were flattest when 

participants searched for luminance targets. The next flattest slopes were observed 

for shape targets, and the steepest slopes for luminance-shape conjunctive targets.  

(2) In centroid tasks, performance (as measured by selectivity ratio) follows a different 

pattern: it is possible for performance on conjunction conditions to exceed 

performance on feature conditions. In Experiment 1, the attend-to-color conditions 

produced the greatest selectivity ratios, followed by the attend-to-conjunctions 

conditions, while the attend-to-size conditions produced the lowest. In Experiment 

2, the attend-to-luminance conditions produced the greatest selectivity ratios, 

followed by the attend-to-conjunctions conditions, while the attend-to-shape 

conditions produced the lowest. 

Our first conclusion, on its own, poses no challenge to FIT (or any current FBA theory, for 

that matter). Rather, these patterns of results precisely match the FIT’s predictions about 

feature versus conjunctive targets. However, our second conclusion, in which performance 

on conjunction conditions exceeds performance on constituent-feature conditions in the 

centroid task, directly contradicts FIT’s predictions. In previous visual search studies, there 

were a handful of cases in which performance on conjunction conditions was comparable 

to performance on single-feature conditions (e.g., Nakayama & Silverman, 1986; Theeuwes 

& Kooi, 1994). Here, however, we have evidence not just of comparable performance, but 
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improved performance in conjunction conditions. These results motivate a reexamination 

of FIT and of the task demands of visual search. For instance, it is possible that particiapnts 

are relying on feature contrast rather than the features themselves. When there is only one 

target in a display and it is defined by a single feature, the contrast between the target and 

distractors is often highly salient. However, the conjunctive targets remove the contrast 

clue, which could explain poorer performance for conjunction conditions in visual search. 

By using multiple targets in the centroid paradigm, we can rule out the possibility that 

participants are merely relying on feature contrast, rather than the features themselves, to 

perform the task. (For more on how the centroid paradigm can eliminate feature contrast 

clues, see Inverso, Sun, Chubb, Wright, & Sperling, 2016.) 

Our centroid conjunction results also call into question the role of attention in binding 

features together. Given the relatively shallow search slopes we found even for conjunctive 

targets, participants should have had enough time to scan every item in centroid 

conjunction displays and bind together the relevant features, according to FIT. However, 

the shallow slopes would also suggest that they would have more than enough to scan 

every individual item in the centroid feature displays, even though they should not need to 

in order to perform the attend-to-size and attend-to-shape feature tasks. What, then, 

explains the improved performance on conjunction conditions in the centroid task? One 

possibility is that there are obligatory filters for certain features in certain contexts. Color, 

for example, could be one such feature. The display could be segmented into red and green 

items whether the viewer wants it segmented this way or not. When the task requires her 

to filter based on both color and shape, half the work is already done for her, thanks to the 

obligatory filter. When she must filter by color alone, her performance is superb. But when 
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the task requires her to filter only by shape, the (task-irrelevant) obligatory color filter gets 

in the way, impairing performance. This explanation, however, cannot yet explain our 

visual search results—in which there appears to be no such interference from task-

irrelevant obligatory filters—or what is relevantly different about the “context” of search 

versus centroid tasks. 

Another possible explanation of our results is the Guided Search model (described in its 

most current form in Wolfe, 2007).  The Guided Search (GS) model proposes two stages of 

attention in which output from the first stage can guide attention in the second stage, after 

passing through a bottleneck of processing. The first stage can process basic features of the 

visual scene in parallel. Through feature channels tuned to particular properties (such as 

the color red), it can locate particular regions to be processed in more detail in the second 

stage. These regions are represented in the form of “peaks” in activation maps. The second 

stage employs an asynchronous diffusion model to process up to a few items at a time, 

making a decision about whether each item is a target or a distractor. One possibility is 

that, in our centroid tasks, the stimulus clouds were displayed long enough to allow for a 

guided search in the centroid conditions. However, a guided search in which the first stage 

identifies the locations of all red items in a red-big conjunction task (for instance), cannot 

fully explain improved performance on conjunction conditions relative to the size feature 

conditions. At best, the guided search would limit the second stage to processing only eight 

items—the same number of items in the feature centroid displays. Still, we addressed this 

concern by repeating the centroid tasks of Experiments 1 and 2 using a short display time 

and more items per cloud for one participant. The stimulus cloud was now displayed for 

only 180 ms, followed by a blank for 10 ms screen and a visual mask for 20 ms. The number 
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Figure 1.17: Replicated Exp. 1 Centroid Results. One participant repeated the centroid task with a 
shorter display time and more items per display. The basic pattern of results from Exp. 1 remains more or 
less intact, although the one participant’s idiosyncrasies are more noticeable. 
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of items was increased to 12 (three times each of the four item types) items in feature 

conditions, and to 24 (six times the number of item types) items in conjunction conditions, 

so each condition had 6 targets. We also reduced the size of each item in order to fit the 

additional items in the cloud. Figure 1.17 shows the participant’s complete results from the 

Experiment 1 replication, while Figure 1.18 shows efficiency and selectivity aggregated 

over the attend-to-color, attend-to-size, and attend-to-conjunctions conditions. Similarly, 

Figure 1.19 shows the participant’s complete results from the Experiment 2 replication, 

and Figure 1.20 shows efficiency and selectivity aggregated over the attend-to-luminance, 

attend-to-shape, and attend-to-conjunctions conditions. Compared to the results of 

Experiments 1 and 2, these results are certainly noisier, but the basic pattern is more or 

less the same. That is, we still find evidence of improved performance on conjunctive target 

conditions relative to some constituent-feature target conditions. 

 
 
Figure 1.18: Replicated Exp. 1 Centroid Results (Aggregated). These are the same Efficiencies and 
Selectivity Ratios shown in Figure 1.17, but aggregated by relevant feature dimension(s). ‘Color’ is the 
average of the red and green target conditions, ‘Size’ is the average of the big and small target conditions, 
and ‘Conjunction’ is the average of all four conjunction conditions. While Efficiency is slightly lower in the 
Conjunction conditions than in the Size conditions, there were twice as many items in the former. 
Selectivity in the Conjunction condition is worse than in the Color condition, but better than in the Size 
condition. 
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Figure 1.19: Replicated Exp. 2 Centroid Results. One participant repeated the centroid task with a 
shorter display time and more items per display. The basic pattern of results from Exp. 2 remains more or 
less intact, although the one participant’s idiosyncrasies are more noticeable. 
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Another difficulty for the GS model is how to explain the differences in performance on the 

visual search and centroid tasks. If guided search can improve performance on conjunction 

conditions relative to some feature conditions in the centroid task, why are those same 

conjunction conditions not easier in the visual search task? One possibility is that the 

second stage in GS accumulates information at different rates for the different tasks. 

However, this naturally leads to the question of why these rates should differ when the 

targets are defined in exactly the same way (so the same top-down mechanisms could be 

use) and the displays were are similar as the tasks the would allow. 

Finally, it is worth noting that the centroid results are not merely explained by the difficulty 

of disjunctive targets, since all the feature targets used in both Experiment 1 and 

Experiment 2 were disjuncts. If disjunctive targets were that much more difficult, we would 

expect conjunctive targets to consistently out-perform disjunctive ones. Instead, we found 

that all feature (disjunctive) targets were easier to find than all conjunctive targets in visual 

 
 
Figure 1.20: Replicated Exp. 2 Centroid Results (Aggregated). These are the same Efficiencies and 
Selectivity Ratios shown in Figure 1.19, but aggregated by relevant feature dimension(s). ‘Luminance’ is 
the average of the black and white target conditions, ‘Shape’ is the average of the circle and triangle target 
conditions, and ‘Conjunction’ is the average of all four conjunction conditions. Both Efficiency and 
Selectivity in the Conjunction condition are worse than in Luminance condition but better than in Shape 
condition. 
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search, and that conjunction target conditions were easier than some feature (disjunctive) 

target conditions but harder than other feature (disjunctive) target conditions in the 

centroid task. 

This reordering of performance by task is truly the most interesting—and difficult to 

explain—finding we present. Existing accounts of feature-based attention can explain 

either the search results or the centroid results, but none, to our knowledge, can explain 

both. One reason for this difficulty is the ubiquitous use of visual search in the FBA 

literature. With one task dominating the current research, it is unclear how to separate out 

the peculiarities of visual search task demands from inalienable properties of feature-based 

attention. We hope to motivate a reexamination of existing FBA accounts using converging 

evidence from multiple tasks, and we propose the centroid paradigm as one viable 

supplement to visual search. 
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CHAPTER 2 

EXPERIMENT 3: TARGET-DISTRACTOR SIMILARITY 

 

2.1 INTRODUCTION 

In visual search, “feature targets” (e.g., a red square among green squares) exhibit a “pop-

out” effect, making them easy to detect irrespective of the number of distractors in the 

display. By contrast, conjunctive targets (e.g., a red square among green squares and red 

disks) lose the “pop-out” effect and become increasingly difficult to detect as display size 

increases (Treisman & Gelade, 1980). This improved performance for feature search 

compared to conjunctive search has been replicated in a variety of contexts (e.g. Bergen & 

Julesz, 1983; Egeth, Virzi, & Garbart, 1984; Nakayama & Silverman, 1986; Wolfe & Franzel, 

1988) and has informed much of the feature-based attention literature. 

However, our previous work offers preliminary evidence that a different pattern of results 

emerges in the centroid paradigm (Winter, Wright, Chubb, & Sperling, 2016). We ran two 

experiments, each with visual search and centroid tasks. In the first experiment, we 

presented red and green, large and small items on a gray background. Targets could be 

defined by either color (red or green), size (large or small), or by a conjunction of color and 

size (red & large, red & small, green & large, or green & small). In the search task, 

performance was best in the search-for-color conditions, followed by the search-for-size 

conditions, and worst in the search-for-conjunction conditions. However, in the centroid 
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task, performance was best in the attend-to-color conditions, followed by the attend-to-

conjunction conditions, and worst in the attend-to-size conditions. In the second 

experiment, we presented black and white circles and triangles items on a gray 

background. Targets could be defined by either luminance (black or white), shape (circle or 

triangle), or by a conjunction of color and size (black circle, black triangle, white circle, or 

white triangles). Again, we found the expected results for the search task (performance was 

best in the search-for-luminance conditions, next best in the search-for-shape conditions, 

and worst in the search-for-conjunction conditions) and some unexpected results in the 

centroid task (performance was best in the attend-to-luminance conditions, next best in the 

attend-to-conjunction conditions, and worst in the attend-to-shape conditions). In short, 

we found evidence from both experiments for improved performance on conjunctive 

centroid judgments compared to constituent-feature centroid judgments. 

It is important to keep in mind, though, that our previous work offers only preliminary 

evidence. Given the surprising nature of our conjunctive-target findings, replication is 

particularly important. So, in the present study, we seek to replicate and extend our 

previous centroid results, while also addressing some limitations of the previous 

experiments. The major limitation was the use of the gray background. In each experiment, 

the gray background was intermediate between the two levels of one feature dimension; 

that is, the gray background fell in between the red and green color levels in the first 

experiment, and between the black and white luminance levels in the second. It is possible, 

then, that the gray background allowed for an automatic segmentation of redder/greener 

(darker/lighter) items in the centroid task, thus facilitating performance on color-size 

(luminance-shape) conjunction conditions relative to size (shape) feature conditions. To 
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remove this potential confound in the current study, we presented various gray items on a 

white background. In addition, we varied the similarity of the levels of each feature 

dimension. We found that not only are conjunctive targets better than one constituent-

feature target, but there are also cases in which conjunctive targets are better than or equal 

to both constituent-feature targets. 

 

2.2 METHODS 

In the centroid paradigm, participants briefly view a stimulus cloud then strive to mouse-

click the centroid, or center or mass, of the target items while ignoring any distractors. The 

 
 
Figure 2.1: Example Exp. 3 Centroid Trial. The participant’s task is to estimate the centroid, or center of 
mass, of the targets (for example, the darkest items) while ignoring the distractors. She briefly views the 
stimulus display containing the items, which is followed by a blank screen and a visual mask. She then 
enters her response via mouse-click and receives feedback before advancing to the next trial. The 
feedback screen shows her response as a small, black square and the actual centroid as a bullseye. 

Targets = Darkest Items
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target items can be defined by a single feature (such as luminance) or a combination of 

features (such as luminance and shape). Figure 2.1 shows a sample centroid trial for this 

experiment. A more detailed description of centroid methodology, as well as other 

applications, can be found in Sun et al, 2015.  

 

2.2.1 Display Types 

In the current study, there were eight different display types. Every item used in these 

displays had one of three luminances and one of three shapes. The possible luminances 

were L0 (3.846 cd/m2), L1 (22.16 cd/m2), and L2 (43.37 cd/m2), all of which were presented 

on a white background (107.6 cd/m2). The possible shapes were S0 (a circle whose radius 

subtended approximately 0.2417 degrees of visual angle), S1 (a triangular shape with 

rounded edges that subtended approximately 0.2935 degrees of visual angle from its 

center to each vertex), and S2 (a triangle that subtended approximately 0.3281 degrees of 

visual angle from its center to each vertex), all of which were presented within a display 
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region that subtended approximately 13.7467 degrees of visual angle. Figure 2.2 shows all 

possible item types. 

Let t(j,k) be the item-type with luminance Lj,  j = 0,1,2 and shape Sk, k = 0,1,2. Then displays 

of type 

LS8 (LS16) contained 2 (4) each of items of type t(0,0), t(0,1), t(1,0) and t(1,1). 

LS8 (LS16) contained 2 (4) each of items of type t(0,0), t(0,2), t(1,0) and t(1,2). 
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LS8 (LS16) contained 2 (4) each of items of type t(0,0), t(0,1), t(2,0) and t(2,1). 

LS8 (LS16) contained 2 (4) each of items of type t(0,0), t(0,2), t(2,0) and t(2,2). 

An example of each of these eight display types is shown in Figure2. 3. 

 

2.2.2 Experimental Conditions 

A given condition was defined by (1) the type of display used in that condition, and (2) the 

attention instruction for that condition. All attention instruction conditions were tested in 

separate blocks, and the different display type conditions were intermixed throughout 

those blocks. In each condition, the attention construction designated some item-types (in 

the display type used in that condition) as targets and the others as distractors. The task 

was to mouse-click the centroid of the target-item locations ignoring distractors. 

Attention instructions: 

1. Targets=Darkest: target items were the two types with luminance L0. 

2. Targets=Circles: target items were the two types with shape S0. 

3. Targets=DarkestCircles: target items were of type t(0,0). 

We tested the following conditions: 

1. With each of attention instructions Targets=Darkest and Targets=Circles, each 

participant was tested in separately blocked conditions with display types 

a. LS8 

b. LS8 
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c. LS8 

d. LS8 

2. With attention instruction Targets=DarkestCircles, each participant was tested in 

separately blocked conditions with display types 

a. LS16 

b. LS16 

c. LS16 

d. LS16 

In the four conditions using the Targets=Darkest attention instruction, all targets will have 

luminance L0, and all distractors will have a different fixed luminance (the distractor 

luminance will be L1 (L2) in conditions using displays LS8 or LS8 (LS8 or LS8)). Similarly, in 

the four conditions using the Targets=Circles attention instruction, target items will all be 

circles, and all distractors will have a fixed non-circular shape. Thus in all of the 

Targets=Darkest and Targets=Circles conditions, targets differ from distractors along a 

single feature-dimension (either in luminance or in shape). For this reason, we call these 

conditions “feature” conditions. 

By contrast, in each of the four conditions using the Targets=DarkestCircles attention 

instruction, the targets are identical to some of the distractors in luminance and they are 

identical to other of the distractors in shape. Thus, in order to correctly identify an item as 

a target item, one must confirm both that it has shape S0 and also luminance L0. For this 

reason, we call these conditions, “conjunction” conditions. 
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The reader will note that all of the conjunction conditions use displays with twice as many 

items as the displays used in the feature conditions. Less obvious is the fact that the items 

in the 16-item displays are more densely packed in space than are the items in the 8-item 

displays. The point of these manipulations is to keep the number and spatial distribution of 

target items identical in the feature and conjunction conditions. 

The items were presented in a cloud stimulus display measuring 800x800 pixels. The 

dispersion on the stimulus cloud is given by: 

Dispersion(𝑥, 𝑦) = [
1

2𝑁𝑐𝑙𝑜𝑢𝑑 − 1
∑ (𝑥𝑖

𝑁𝑐𝑙𝑜𝑢𝑑

𝑖=1

− 𝑋̅)2 + (𝑦𝑖 − 𝑌̅)2]

1
2

 

where 𝑁𝑐𝑙𝑜𝑢𝑑 is the total number of items in the cloud, 𝑥 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑁𝑐𝑙𝑜𝑢𝑑
) and 

𝑦 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑁𝑐𝑙𝑜𝑢𝑑
) are the vectors of x- and y-coordinates of the items,  and 𝑋̅ (𝑌̅) is the 

mean of vector 𝑥 (𝑦). Each cloud had a fixed dispersion of 116
2

3
  (2.3019 degrees of visual 

angle), or one-sixth of the 800-pixel (13.7467 degrees of visual angle) stimulus display. 

Participants were eight undergraduate and graduate students at the University of 

California, Irvine. Those with no prior centroid experience completed 500 trials of target-

only centroid training prior to the experiment. All participants began the experiment with 

120 practice trials identical to the experimental trials (40 trials per target condition). After 

the practice trials, there were two experimental sessions with 600 trials each, for a total of 

1,200 trials. There were 400 trials per target condition and 100 trials per target condition 

and display type. The two feature conditions (Targets=Darkest and Targets=Circles) were 

grouped, so the conjunction condition (Targets=DarkestCircles) appeared either at the very 
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beginning or the very end of the session. The order of the feature conditions were 

counterbalanced across the two sessions for each participant, as was the order placement 

of the conjunction condition at either the beginning or the end of the session. So, a 

participant who completed the attention conditions in a Targets=Darkest, Targets=Circles, 

Targets=DarkestCircles order during the first session would complete the attend 

conditions in a Targets=DarkestCircles, Targets=Circles, Targets=Darkest order during the 

second session. 

 

2.3 RESULTS 

 We used the methods described in Sun et al. (2016) to analyze our centroid data. The 

model of Sun et al. (2016) assumes that the x- and y-coordinates of the participant’s 

response on each trial in a given condition C are given by 

𝑅𝑥 = 𝜇𝑥 + 𝑄𝑥           and          𝑅𝑦 = 𝜇𝑦 + 𝑄𝑦   

for 𝑄𝑥 and 𝑄𝑦 independent, normally distributed random variables with mean 0 and some 

standard deviation 𝜎 and 

𝜇𝑥 =
∑ 𝑓𝐶(𝜏𝑖)𝑥𝑖

∑ 𝑓𝐶(𝜏𝑖)
          and           𝜇𝑦 =

∑ 𝑓𝐶(𝜏𝑖)𝑦𝑖

∑ 𝑓𝐶(𝜏𝑖)
 

where each sum is over all items 𝑖 in the stimulus cloud, 𝜏𝑖 is the type of item 𝑖, and 𝑥𝑖  and 

𝑦𝑖 are the x- and y- coordinates of item 𝑖, and 𝑓𝐶  is the attention filter achieved by the 

participant.  
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These methods enable us to estimate (1) the attention filter 𝑓𝐶  achieved by the participant 

in condition C, and (2) the Efficiency with which the participant was able to deploy the filter 

𝑓𝐶 . The attention filter 𝑓𝐶  defines the relative influence exerted on the participant’s 

responses by all four types of items occurring in the stimulus. Figure 2.4 shows the 

attention filters achieved in all 12 conditions averaged across eight participants. The 

function 𝑓𝐶  is constrained to sum to 1; however, it is possible for 𝑓𝐶  to assign negative 

values to some item types. The participant’s Efficiency in deploying 𝑓𝐶  is the minimum 

possible proportion of items that had to be included, on average, in the participant’s 

centroid computation to achieve predicted responses of the accuracy observed. Efficiency 

is estimated by assuming that all residual error (i.e., the deviations of responses predicted 

by the model from actual responses) is due to removing a fixed proportion 𝑄 of randomly 

chosen items from the display on each trial and applying the model to the decimated 

display without additional error; Efficiency is then taken to be equal to 1 − 𝑄. See Figure 

2.5 for the average Efficiency for all 12 conditions.  

In “binary” centroid tasks of the sort used in this paper in which the target filter assigns 

equal weight to a specific set of target item-types and weight 0 to the remaining distractor 

item-types, it is convenient to summarize the effectiveness of the attention filter 𝑓𝐶  

achieved by the participant by the ratio of (numerator) the mean of 𝑓𝐶(𝑡) taken across all 

target items 𝑡 divided by (denominator) the mean of |𝑓𝐶(𝑑)| taken across all distractor 

items𝑑. This statistic (Selectivity Ratio) provides a convenient index of the degree to which 

the attention filter achieved by the participant accentuates target items while filtering out 

distractor items. A Selectivity Ratio of ten or higher is considered excellent. We calculated 

the average Selectivities for participants across the 12 conditions (shown in Figure 2.6). 
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Figure 2.4: Exp. 3 Relative Influence. The plots above show the relative influence of each item type on 
participants’ centroid estimations, averaged across eight participants. The dashed line in each graph 
represents the target filter. (a) In the Targets=Darkest condition, the targets are items t(0,0) and 
t(0,1)/t(0,2). (b) In the Targets=Circles condition, the targets are items t(0,0) and t(1,0)/t(2,0). (c) In the 
Targets=DarkestCircles condition, the targets are item t(0,0).  
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For our statistical analyses, we began with paired-samples t-tests of participants’ 

Efficiencies across display types within each target condition. For each target condition, we 

grouped the display types according to the levels of the relevant feature dimension(s). So, 

in the Target=Darkest conditions, we compared the two display types with L1 distractors 

(LS8and LS8) to the two display types L2 distractors (LS8 and LS8) and found that mean 

Efficiency was significantly higher for the L2-distractor displays than for the L1-distractor 

displays. In the Targets=Circles condition, we compared the two display types with S1 

distractors (LS8and LS8) to the two display types with S2 distractors (LS8 and LS8) and 
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found that the mean  Efficiency was significantly higher for S2-distractor displays than for 

theS1-distractor displays. In the Targets=DarkestCircles condition, both feature dimensions 

were relevant, so we compared the display type with L1 and S1 distractors (LS16) to the 

display with L2 and S2 distractors (LS16) and found that the mean Efficiency for the LS16 

displays was significantly higher than for the LS16 displays. We also compared the display 

type with L1 and S1 distractors (LS16) to the display types with L1 and S2 distractors (LS16) 

and L2 and S1 distractors (LS16) and found the that Efficiency was significantly higher for 

the LS16 and  LS16displays. Additionally, a comparison between the display type with L2 
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and S2 distractors (LS16) and the display types with L1 and S2 distractors (LS16) and L2 

and S1 distractors (LS16) revealed that Efficiency was significantly higher in the former. 

Table 2.1 summarizes all our Efficiency comparisons. 

We performed the same paired-samples t-tests on participants’ Selectivity Ratios and 

found similar trends.  In the Targets=Darkest condition, the mean Selectivity was lower for 

the L1-distractor displays (LS8and LS8) than for the L2-distractor displays (LS8 and LS8). In 

the Targets=Circles condition, the mean Selectivity was lower for the S1-distractor displays 

(LS8and LS8) than for the S2-distractor displays (LS8 and LS8).  In the 

Targets=DarkestCircles condition, the mean Selectivity for the LS16 display condition was 

significantly lower than both the LS16 display condition and the LS16 and LS16 display 

conditions, and the mean Selectivity was higher for the LS16 display condition than the 

LS16 and LS16 display conditions. All our Selectivity comparisons are summarized in Table 

2.2. 

We performed an additional set of paired-samples t-tests for participants’ Selectivity Ratios 

across target conditions for each display type. Table 2.3 shows a complete list of these 

comparisons, but perhaps the most interesting result is that, for each display type, 

Selectivity was significantly higher in the Targets=DarkestCircles condition than in one of 

the constituent feature target conditions. That is, for the LS, LS, and LS display types, 

Selectivity was higher in the Targets=DarkestCircles condition than in the Targets=Circles 

condition; for the LS display type, Selectivity was higher in the Targets=DarkestCircles 
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Targets=Darkest Efficiency 

Contrast 𝑳𝑺 +  𝑳𝑺

𝟐
−

𝑳𝑺 +  𝑳𝑺

𝟐
 𝑳𝑺 −  𝑳𝑺 𝑳𝑺 −  𝑳𝑺 

Mean 0.070 0.002 0.011 
Std. Dev. 0.037 0.056 0.047 
Upper Bound 0.102 0.049 0.050 
Lower Bound 0.039 -0.044 -0.027 
T 5.302 0.117 0.698 
p 0.001 0.910 0.508 
Bayes Factor 37.573 0.338 0.411 

 
 

Targets=Circles Efficiency 

Contrast 𝑳𝑺 +  𝑳𝑺

𝟐
−

𝑳𝑺 +  𝑳𝑺

𝟐
 𝑳𝑺 −  𝑳𝑺 𝑳𝑺 −  𝑳𝑺 

Mean 0.069 0.066 0.075 
Std. Dev. 0.043 0.037 0.040 
Upper Bound 0.105 0.097 0.108 
Lower Bound 0.033 0.035 0.042 
T 4.548 5.012 5.353 
p 0.003 0.002 0.001 
Bayes Factor 18.799 28.981 39.295 

 
 

Targets=DarkestCircles Efficiency 

Contrast 𝑳𝑺 −  𝑳𝑺 𝑳𝑺 −  𝑳𝑺 𝑳𝑺 +  𝑳𝑺

𝟐
− 𝑳𝑺 𝑳𝑺 −

𝑳𝑺 +  𝑳𝑺

𝟐
 

Mean 0.179 0.010 0.084 0.095 
Std. Dev. 0.112 0.094 0.077 0.055 
Upper Bound 0.272 0.089 0.148 0.142 
Lower Bound 0.085 -0.068 0.019 0.049 
T 4.521 0.310 3.050 4.869 
p 0.003 0.766 0.019 0.002 
Bayes Factor 18.319 0.350 4.030 25.421 

 
 
Table 2.1: Exp. 2 Display Type Efficiencies by Target Condition. Within each target condition, display 
types were grouped based on the similarity/difference of the relevant feature dimension(s). Efficiency is 
higher when the two levels of the relevant feature dimension(s) are different and lower when they are 
similar. The upper and lower bounds of the 95% confidence interval are provided. 
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Targets=Darkest Selectivity Ratio 

Contrast 𝑳𝑺 +  𝑳𝑺

𝟐
−

𝑳𝑺 +  𝑳𝑺

𝟐
 𝑳𝑺 −  𝑳𝑺 𝑳𝑺 −  𝑳𝑺 

Log10 Mean 0.980 -0.180 -0.381 
Std. Dev. 0.888 0.579 0.340 
Upper Bound 1.722 0.304 -0.098 
Lower Bound 0.238 -0.664 -0.665 
T 3.122 -0.879 -3.177 
p 0.017 0.408 0.016 
Bayes Factor 4.358 0.459 4.626 

 
 

Targets=Circles Selectivity Ratio 

Contrast 𝑳𝑺 +  𝑳𝑺

𝟐
−

𝑳𝑺 +  𝑳𝑺

𝟐
 𝑳𝑺 −  𝑳𝑺 𝑳𝑺 −  𝑳𝑺 

Log10 Mean 0.962 1.080 0.879 
Std. Dev. 0.633 0.880 0.948 
Upper Bound 1.491 1.816 1.672 
Lower Bound 0.433 0.345 0.086 
T 4.299 3.472 2.622 
p 0.004 0.010 0.034 
Bayes Factor 14.769 6.344 2.520 

 
 

Targets=DarkestCircles Selectivity Ratio 

Contrast 𝑳𝑺 −  𝑳𝑺 𝑳𝑺 −  𝑳𝑺 𝑳𝑺 +  𝑳𝑺

𝟐
− 𝑳𝑺 𝑳𝑺 −

𝑳𝑺 +  𝑳𝑺

𝟐
 

Log10 Mean 1.293 -0.132 0.559 0.735 
Std. Dev. 0.681 0.290 0.245 0.637 
Upper Bound 1.863 0.111 0.764 1.267 
Lower Bound 0.724 -0.374 0.353 0.202 
T 5.370 -1.282 6.438 3.262 
p 0.001 0.241 0.000 0.014 
Bayes Factor 39.884 0.629 96.306 5.070 

 
 
Table 2.2: Exp. 2 Display Type Selectivity Ratios by Target Condition. Within each target condition, 
display types were grouped based on the similarity/difference of the relevant feature dimension(s). 
Selectivity is higher when the two levels of the relevant feature dimension(s) are different and lower 
when they are similar, following the same pattern as the Efficiency data in Table 1. The upper and lower 
bounds of the 95% confidence interval are provided. 
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condition than in the Targets=Darkest condition. Furthermore, in the LS and LS displays, 

Selectivity was at least as high as in the conjunction target condition as it was in both 

constituent feature target conditions. That is, the Targets=DarkestCircles Selectivity was at 

least as high as the Targets=Circles Selectivity in addition to being significantly higher than 

the Targets=Darkest Selectivity in the LS displays, and it was at least as high as the 

Targets=Darkest Selectivity as well as being significantly higher than the Targets=Circles 

Selectivity in LS displays. It is worth noting that we performed these analyses on our 

 
 
 
Table 2.3: Exp. 2 Target Condition Selectivity Ratios by Display Type. For each display type, we 
compared the selectivity ratios of the target conditions. The Targets=Darkest condition is abbreviated D, 
the Targets=Circles condition C, and the Targets=DarkestCircles condition DC. In each display type, the 
Selectivity of the conjunction condition is significantly greater than that of at least one constituent feature 
condition. In the LS and LS display types, the Selectivity of the conjunction condition is greater than or 
equal to that of both constituent feature conditions. The upper and lower bounds of the 95% confidence 
interval are provided. 

 

LS Selectivity Ratio

Contrast D C D DC C  DC

Log10 Mean 1.074 0.510 -0.564

Std. Dev. 0.490 0.619 0.243

Upper Bound 1.484 1.028 -0.361

Lower Bound 0.664 -0.007 -0.768

T 6.198 2.331 -6.554

p 0.000 0.053 0.000

Bayes Factor 79.698 1.830 105.350

LS Selectivity Ratio

Contrast D C D DC C  DC

Log10 Mean -0.178 -0.294 -0.116

Std. Dev. 0.757 0.333 0.770

Upper Bound 0.455 -0.016 0.528

Lower Bound -0.811 -0.573 -0.760

T -0.665 -2.496 -0.427

p 0.527 0.041 0.682

Bayes Factor 0.404 2.193 0.363

LS Selectivity Ratio

Contrast D C D D C C  DC

Log10 Mean 2.229 1.098 -1.131

Std. Dev. 0.604 0.714 0.330

Upper Bound 2.734 1.695 -0.855

Lower Bound 1.724 0.501 -1.407

T 10.438 4.348 -9.688

p 0.000 0.003 0.000

Bayes Factor 1260.015 15.495 833.877

LS Selectivity Ratio

Contrast D S D DC S  DC

Log10 Mean 0.997 -0.084 -1.081

Std. Dev. 1.076 0.927 0.703

Upper Bound 1.897 0.691 -0.493

Lower Bound 0.097 -0.859 -1.669

T 2.620 -0.257 -4.347

p 0.034 0.805 0.003

Bayes Factor 2.514 0.438 15.480
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Selectivity Ratio data but not on our Efficiency data because Efficiency gives a lower bound 

on the proportion of items observed. Since the conjunction target condition displays 

contained twice as many items, the comparison between conjunction and feature target 

conditions would not be a meaningful one. 

Finally, we compared the difference of differences in performance (as measured by both 

Efficiency and Selectivity Ratio) for the Luminance and Shape conditions. For this analysis, 

Efficiency 

Contrast ([
𝐃(𝑳𝑺) + 𝐃(𝑳𝑺)

𝟐
] − [

𝐃(𝑳𝑺) + 𝐃(𝑳𝑺)

𝟐
]) − ([

𝐂(𝑳𝑺) + 𝐂(𝑳𝑺)

𝟐
] − [

𝐂(𝑳𝑺) + 𝐂(𝑳𝑺)

𝟐
]) 

Mean 0.001 
Std. Dev. 0.033 
Upper Bound 0.028 
Lower Bound -0.027 
T 0.046 
p 0.965 
Bayes Factor 0.337 
 

Selectivity Ratio 

Contrast ([
𝐃(𝑳𝑺) + 𝐃(𝑳𝑺)

𝟐
] − [

𝐃(𝑳𝑺) + 𝐃(𝑳𝑺)

𝟐
]) − ([

𝐂(𝑳𝑺) + 𝐂(𝑳𝑺)

𝟐
] − [

𝐂(𝑳𝑺) + 𝐂(𝑳𝑺)

𝟐
]) 

Log10 Mean 0.009 
Std. Dev. 0.635 
Upper Bound 0.540 
Lower Bound -0.522 
T 0.040 
p 0.969 
Bayes Factor 0.337 
 
 
Table 2.4: Exp. 2 Luminance and Shape Difference of Differences. We compared the difference of 
differences for the Targets=Darkest and Targets=Circles conditions to investigate whether the 
performance cost was the same when the levels of the relevant feature dimension were similar compared 
to when they were different. Displays types (LS, LS, LS, and LS) are written as functions of the target 
conditions (D and C). The upper and lower bounds of  the 95% confidence interval are provided. These 
comparisons suggest that this performance cost of target-distractor similarity on the relevant feature 
dimension is likely the same for both these feature target conditions. 
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we grouped the display types in which the levels of the relevant feature dimensions were 

similar (L1-distractor displays in the Targets=Darkest condition, S1-distractor displays in 

the Targets=Circles condition) and the levels in they were different (L2-distractor displays 

in the Targets=Darkest condition, S2-distractor displays in the Targets=Circles condition). 

As shown in Table 2.4, it appears that the performance cost of similarity on the relevant 

dimension was the same for both feature target conditions. 

 

2.4 DISCUSSION AND CONCLUSIONS 

First and foremost, our present study replicates our previous finding that performance on 

the centroid task, as measured by Selectivity Ratio, is better when targets are defined by a 

conjunction of features than by just one of those constituent features. This finding alone 

deviates sharply from the visual search literature, which consistently finds that 

performance is considerably worse for conjunctive targets than feature targets. There are 

some exceptions in the search literature, however, in which conjunctive targets are 

sometimes found to be no worse than feature targets (Theeuwes & Kooi, 1994; Nakayama 

& Silverman, 1986). Evidence of improved performance for conjunctive targets in the 

centroid task, then, is a strikingly new result. Our replication provides reassurance that this 

surprising result was not merely an accident of chance. 

Second, by varying the similarity along both feature dimensions, we were able to find a 

display type (LS) in which Selectivity on both the Target=Circle and Target=DarkestCircle 

conditions is higher than Selectivity on the Target=Darkest condition. In our previous 
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study, it was always the case that Luminance always outperformed Conjunction, which 

outperformed Shape. The new pattern, in which Shape and Conjunction outperform 

Luminance in LS displays, suggests that there is not necessarily anything special about the 

feature dimensions of luminance that aids performance in conjunction conditions. Rather, 

it seems that performance on conjunction conditions depends more on appropriately large 

differences between levels of either feature dimension. 

Finally, our results suggest there is not necessarily any performance cost in the 

Conjunction condition relative to either of the constituent-feature target conditions. 

Specifically, we see this in the LS and LS display types. In the LS display type, Conjunction 

was at least as good as Shape, and both were better than Luminance. In the LS display type, 

Conjunction was at least as good as Luminance, and both were better than Shape. This is all 

the more striking when we consider that the displays themselves were arguably more 

complicated in the Conjunction condition (16-item displays, compared to eight-item 

displays in the feature target conditions). If, for instance, we had run the Shape condition 

using both the eight-item and 16-item displays, we could expect performance on the 16-

item displays to be worse than on the eight-item displays. That is, the 16-item displays 

themselves were likely more difficult, completely independent of the target condition. And 

yet, the Conjunction conditions, even though they used more challenging displays, showed 

no performance cost compared to both constituent-feature target condition in the LS and 

LS display types. Indeed, it even showed a performance benefit compared to one 

constituent-feature target condition. 
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Based solely on the visual search literature, one might predict that conjunctive-target 

centroid tasks would be outright impossible to do. That participants could perform even 

reasonably well on a conjunctive centroid task would be an interesting discovery in its own 

right. However, our finding that conjunctive targets are better than or equal to both 

constituent-feature targets is unprecedented in light of the visual search literature. This 

provides compelling evidence that visual search cannot tell the whole story of feature-

based attention. Every task comes with its own task demands, and neither search nor 

centroids are exceptions. Overreliance on a single methodology runs the risk of conflating 

particular task demands with inherent properties of feature-based attention—such as the 

supposed primacy of feature targets over conjunctive targets. The centroid paradigm is an 

alternative way to study feature-based attention, which can help us better understand what 

patterns of results are merely caused by task demands versus what is true of feature-based 

attention more generally. Of course, the use of even more methodologies would be better 

still. 
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CHAPTER 3 

EXPERIMENT 4: EQUISALIENCE ANALYSIS 

 

3.1 INTRODUCTION 

Feature-based attention research has for decades relied heavily on the visual search task, in 

which observers identify a target in a field of distractors. Treisman & Gelade’s (1980) 

Feature Integration Theory was an early and hugely influential account of the differences 

between feature search (in which a target is defined by a single feature, e.g. color) and 

conjunction search (in which a target is defined by a conjunction of features, e.g. color and 

shape). In short, Feature Integration Theory suggests that feature search can be 

accomplished by parallel processing of all items in the display, while conjunction search 

demands serial processing of the items, so that attentional processes can bind the features 

of each item together. From Treisman & Gelade’s Feature Integration Theory, to Wolfe’s 

ever-evolving Guided Search model (Wolfe, Cave, & Franzel, 1989; Wolfe, 1994; Wolfe & 

Gancarz, 1997; and Wolfe & Gray, 2007), to completely new ways of thinking about feature-

based attention (e.g. Becker, Folk, & Remington, 2010; Buetti, Cronin, Madison, Wang, & 

Lleras, 2016), the visual search task remains the primary means of investigation. Indeed, 

many psychology conferences have sessions—often multiple—dedicated entirely to visual 

search. Clearly, the field is deeply indebted to this particular methodology. 
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However, by relying so heavily on a single task, it becomes increasingly difficult to separate 

out idiosyncratic task demands of visual search from inherent characteristics of feature-

based attention.  For a more complete picture, alternative methodologies need to be 

investigated. One such alternative is the centroid paradigm as developed by Sun, Chubb, 

Wright, and Sperling (2016). In the centroid paradigm, observers briefly view a stimulus 

cloud. The cloud can have target and distractor items, with the targets defined by one or 

more features. The stimulus cloud is then masked to prevent shifts in spatial attention, and 

the observer estimates the centroid—or center of mass—of the target items. Performance 

on the task indicates how well observers are able to attend to the targets while ignoring 

distractors. 

Already, there are compelling reasons to believe that the centroid task is importantly 

different from visual search. While previous studies (e.g. Foster, & Ward, 1991) indicated 

that targets defined by line orientation produced “pop out” in visual search, Inverso, Sun, 

Chubb, Wright, and Sperling (2016) found that performance on an orientation centroid task 

declined rapidly as the number of items in the display increased. Previously, we directly 

compared performance on visual search and centroid tasks, in which targets were defined 

by either a single feature or by a conjunction of features (Winter, Wright, Chubb, & 

Sperling, 2016). We found the expected pattern of results for visual search: performance 

was better for all feature target conditions compared to all conjunctive target conditions. 

However, our centroid results revealed a different pattern of performance. Participants 

performed better when estimating the centroids of conjunctive targets (e.g. black circles) 

than when estimating the centroids of constituent-feature targets (e.g. circles). These 

centroid results pose a direct challenge to Feature Integration Theory, which has been 
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supported almost entirely by visual search studies but makes claims about feature-based 

attention generally. That is, Feature Integration Theory cannot explain the improved 

performance for conjunctive targets relative to feature targets in the centroid task. Indeed, 

the typical visual search results of flat slopes for feature targets and steeper slopes for 

conjunctive targets have been replicated so many times that even alternative theories of 

feature-based attention typically offer some sort of explanation for this phenomenon. 

Importantly, however, the scope of these explanations ought to be limited to feature-based 

attention in the context of visual search when they rely solely on evidence from the search 

task. 

It is possible that centroids are processed differently than are other types of visual stimuli, 

which may contribute to the divergent pattern of results described above. For instance, 

Zhou, Chu, Li, and Zhan (2006) found that centroids automatically capture attention and 

are not subject to inhibition of return. Furthermore, it remains an open question how 

exactly observers estimate centroids in the first place. One seemingly plausible explanation 

is that they count the target items then average those items’ locations. If this were indeed 

the case, we would expect observers to perform better when judging numerosity (which 

requires only counting) than when judging centroids (which, under this explanation, 

requires both counting and averaging). However, Inverso, Chubb, Wright, Shiffrin, and 

Sperling (2016) report higher efficiencies for centroid estimations than for numerosity 

judgments. If there is, in fact, something special about the way centroids are processed, the 

natural next question is what. One possibility is that the centroid paradigm provides access 

to different sorts of information than do other tasks, or at least that it uses the same 



74 
 

information differently. Here, we test this possibility using the equisalience analysis 

outlined by Wright, Chubb, Winkler, and Stern (2013).  

To perform Wright et al.’s (2013) equisalience analysis, a researcher measures a 

participant’s performance in a task for a range of levels of feature dimension X and a range 

a levels of feature dimension Y. She can then fit a Weibull function to the participants data 

for each feature dimension, and use an inverse Weibull function to estimate the physical 

levels of each feature dimension at which the participant performs with various levels of 

accuracy (for instance, 10% accuracy, 20% accuracy, 30% accuracy, and so on). Then, she 

can create a graph with the physical levels of feature dimension X on one axis and the 

physical levels of feature dimension Y on the other and plot the point that corresponds to 

the level at which the participant performed with, for instance, 10% accuracy for each 

dimension. By doing this for a range of performance levels, she finds the X-to-Y 

equisalience function for the task. Repeating this process for another task allows the 

researcher to compare the X-to-Y equisalience functions for the two tasks. Different X-to-Y 

equisalience functions for different tasks suggest that those tasks has access to different 

sorts of information. 

In the current study, we ask whether the luminance-to-shape equisalience function for a 

centroid task using 4 target items and 4 distractor items is the same as the luminance-to-

shape equisalience function for an analogous task using just a single target item and a 

single distractor item. Given that the tasks differ only in the number of items per display 

(two versus eight), one might reasonably expect them to use the same kind of information 

in the same ways. In fact, this is exactly what we had expected: we initially developed the 2-
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item task with the intention of using it to create centroid stimulus displays in which 

luminance and shape discriminability were equally matched for each participant. However, 

our pilot data made it immediately clear that the matched luminance and shape levels in 

the 2-item task did not produced matched levels in the centroid task. For a range of 

distractor luminances that were easily discriminable from the target luminance in the 

centroid task, the “matched” distractor shapes were virtually impossible to distinguish 

from the target shape. This unexpected discovery motivated the present study, in which we 

compare the equisalience functions of the 2-item and 8-item tasks. We find that the 

equisalience functions are indeed different, suggesting that the two tasks differ in their 

access to information carried by item luminance versus item shape. 

 

3.2 METHODS 

 

3.2.1 Participants 

The participants were four UC Irvine graduate students, all of whom had extensive centroid 

training prior to our experiment.  The methods were approved by the UC Irvine IRB, and all 

participants provided signed consent. 
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3.2.2 Procedure 

The experiment consisted of two staircased tasks: a 2-item (two-alternative forced-choice) 

task and an 8-item (centroid) task. For both tasks, we ran three staircases (1up,2down; 

1up,3down; 1up,4down) with intermixed trials in each block in order to accurately 

estimate a range of points along the psychometric function.  

In the 2-item task, one target item and one distractor item appeared for 180 msec, followed 

by a blank screen for 20 msec and a mask for 100 msec. The target was defined by either 
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luminance (in which case the target was always the darker of the two items) or shape (in 

which case the target was always the more circular of the two items). The mask was then 

replaced by a response screen with the cursor positioned in the center of display. The 

participant was instructed to move the cursor and click on the location where the target 

item had appeared. She then received visual correctness feedback before advancing to the 

next trial by pressing the space bar. Her response was considered correct if it was closer to 
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the target than to the distractor and otherwise incorrect. Figure 3.1 shows an example of a 

2-item task trial in which the target was defined by shape. 

In the 8-item task, the stimulus cloud consisted of eight items: four targets and four 

distractors. As in the 2-item task, the stimulus cloud appeared for 180 msec, followed by a 

blank screen for 20 msec and a backward mask for 100 msec. Again, targets were defined 

by either luminance (i.e., the four darker items) or shape (i.e., the four circular items). The 

participant was then asked to estimate the centroid, or center of mass, of the four target 

items while ignoring the distractors. The response screen was the same as in the 2-item 

task: blank except for a cursor in the center. The participant moved the cursor and clicked 

to indicate her response, then received visual correctness feedback. Figure 3.2 shows an 

example of an 8-item task trial in which the target was defined by shape. 

In order to run the 8-item task as staircased procedure, we needed a way to distinguish 

between correct responses and incorrect ones. However, this posed a challenge since 

typical analysis of centroid data involves continuous measures of error and influence. (See 

Sun et al, 20l6, for a more detailed description of centroid methodology and analysis.) Our 

solution was to determine a threshold distance from the true centroid of the targets: if the 

participant’s response was within this threshold distance from the actual centroid, the trial 

was considered a success. Otherwise, the trial was a failure. We estimated a threshold 

distance for each participant in a centroid threshold task prior to the experiment. In the 

centroid threshold task (Figure 3.3), the stimulus cloud contained four targets and no 

distractors. Participants estimated the centroid of these target-only displays and received 

feedback after every trial. There were two sessions, each with two 60-trial blocks, for a 
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total of 240 trials. For each participant, we calculated the distance between her response 

and the actual centroid on each trial, giving us a distribution of error. We then defined the 

participant’s threshold distance as the value that was larger than 95% of the values in the 

error distribution. We later used this participant-specific threshold to determine whether a 

response was correct or incorrect in the staircased 8-item centroid task. 

We introduced one further modification to the 8-item task in order to make it more 

effective as an adaptive staircase procedure. In a typical centroid experiment, there are no 

restrictions on the distance between the target centroid and the distractor centroid. If the 
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responses of the participant are influenced by the distractors as well as the target items, 

then this random variation in the location of the distractor centroid will induce 

corresponding, random, trial-by-trial variation in the distance of the participant’s response 

from the target centroid. The effect of such stimulus-driven response noise would be to 

artificially flatten the psychometric function we seek to measure.  To ensure a more robust 

estimate of the psychometric function, the distance between the target centroid and the 

distractor centroid was always at least 1.5 times the participant’s threshold distance. 

 

3.2.3 Stimuli 

In both the 2-item and 8-item tasks, items were presented in a stimulus region measuring 

600x600 pixels circumscribed by a thin, square black frame.  The dispersion of a stimulus 

cloud is given by 

Dispersion(𝑥, 𝑦) = [
1

2𝑁𝑐𝑙𝑜𝑢𝑑 − 1
∑ (𝑥𝑖

𝑁𝑐𝑙𝑜𝑢𝑑

𝑖=1

− 𝑋̅)2 + (𝑦𝑖 − 𝑌̅)2]

1
2

 

where 𝑁𝑐𝑙𝑜𝑢𝑑 is the total number of items in the cloud, 𝑥 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑁𝑐𝑙𝑜𝑢𝑑
) and 

𝑦 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑁𝑐𝑙𝑜𝑢𝑑
) are the vectors of x- and y-coordinates of the items,  and 𝑋̅ (𝑌̅) is the 

mean of vector 𝑥 (𝑦). Each cloud had a fixed dispersion of 100 pixels (approximately 1.73 

degrees of visual angle), or one-sixth of the 600-pixel (approximately 10.33 degrees of 

visual angle) stimulus display. By fixing the dispersion across the two tasks, we ensured 

that each item (regardless of task) had an equal chance of falling in the center or the 

periphery of the participant’s visual field. 
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Figure 3.4: Exp. 4 Luminance Levels. Luminance discriminations were made in the context of either 
circular items (top row) or triangular items (bottom row).  The target luminance (leftmost column) was 
fixed and always darker than the distractor luminance (all other columns). Lower distractor luminance 
levels (e.g. Level 10) indicate greater target-distractor similarity while higher distractor luminance levels 
(e.g. Level 50) indicate less target-distractor similarity. 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 3.5: Exp. 4 Shape Levels. Shape discriminations were made in the context of either darker items 
(top row) or lighter items (bottom row).  The target shape (leftmost column) was fixed and always more 
circular than the distractor shape (all other columns). Lower distractor shape levels (e.g. Level 10) 
indicate greater target-distractor similarity while higher distractor shape levels (e.g. Level 50) indicate 
less target-distractor similarity. 
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Also in both tasks, the target level was fixed and the distractor level changed to be more or 

less similar to the target.  This meant that, in luminance discriminations, target items 

always had the same nearly-black luminance (0.41 cd/m2) from trial to trial while 

distractor items increased or decreased in luminance in increments of approximately 0.43 

cd/m2 and presented against a white background (107.6 cd/m2); similarly, in shape 

discriminations, the target item always had the same nearly-circular shape while the 

distractor items appeared more or less triangular. The shape of the items was formed by 

the intersection of three circles. For the most circular items, the three intersecting circles 

used to form the shape had almost complete overlap. For more triangular items, the radii of 

the circles were longer and the centers were spaced further apart. The distance from the 

item’s center to a vertex subtended between 0.24 (for the most circular items) and 0.33 

(for the most triangular items) degrees of visual angle. Figure 3.4 shows examples of 

various luminance levels, and Figure 3.5 examples of various shape levels. 

 

3.2.4 Design 

The relevant feature dimension was tested at two levels of the irrelevant feature 

dimension. So, participants made luminance discriminations between identically-circular 

items in one condition, and identically-triangular items in the other condition. Likewise, 

participants made shape discriminations between identically-dark items in one condition 

and identically-light items in the other condition. Figure 3.6 provides examples of such 

stimuli for each feature dimension and condition for the 2-item task, and Figure 3.7 

provides equivalent examples for the 8-item task. For both tasks, the two conditions of 
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Figure 3.6: Exp. 4 Stimulus Displays for the 2-Item Task. In the 2-item task, only two items were 
displayed—one target and one distractor. In the luminance feature dimension (left column), the target 
was always darker than the distractor. Luminance discrimination was tested at two levels of the irrelevant 
feature dimension: shape. In the first luminance condition, both the target and distractor were nearly-
perfect circles; in the second luminance condition, both the target and distractors were more triangular. In 
the shape feature dimension (right column), the target was always more circular than the distractor. 
Shape discrimination was also tested at two levels of the irrelevant feature dimension: luminance. In the 
first shape condition, both the target and distractor were a darker, nearly black gray; in the second shape 
condition, both the target and distractors were a lighter gray. 
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Figure 3.7: Exp. 4 Stimulus Displays for the 8-Item Task. In the 8-item task, eight items were 
displayed—four targets and four distractors. In the luminance feature dimension (left column), the targets 
were always darker than the distractors. Luminance discrimination was tested at two levels of the 
irrelevant feature dimension: shape. In the first luminance condition, both targets and distractors were 
nearly-perfect circles; in the second luminance condition, both targets and distractors were more 
triangular. In the shape feature dimension (right column), the targets were always more circular than the 
distractors. Shape discrimination was also tested at two levels of the irrelevant feature dimension: 
luminance. In the first shape condition, both targets and distractors were a darker, nearly black gray; in 
the second shape condition, both targets and distractors were a lighter gray. 
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each feature dimension were blocked. There were two blocks per session and four sessions 

in the experiment. There were 2,400 total trials, with 1,200 trials per task, 600 trials per 

task and feature dimension, and 300 trials per task, feature dimension, and condition block. 

The tasks followed an AABB order paired with feature dimensions in a CDDC order to make 

up the four sessions. The condition order was randomized. The task order and feature 

dimension order were counterbalanced across the four participants. 

 

3.3 RESULTS 

 The first analysis compared the two conditions within a feature dimension and task. We 

sought to determine whether luminance discriminations in the context of circular items 

produced a different psychometric function than did luminance discriminations in the 

context of triangular items, and whether shape discriminations in the context of darker 

items produced a different psychometric function than did shape discriminations in the 

context of lighter items. For example, to test whether the psychometric functions for 

luminance derived using circular items versus using triangular items were different, we 

used a likelihood ratio test to compare the fit provided by a nested model in which the two 

Weibull functions share the same threshold parameter α and steepness parameter β versus 

a fuller model in which the two Weibull functions can have different threshold parameters 

α𝑐𝑖𝑟𝑐 and α𝑡𝑟𝑖  and steepness parameters β𝑐𝑖𝑟𝑐 and β𝑡𝑟𝑖. Figures 3.8 through 3.11 show each 

participant’s psychometric functions and the results of the likelihood ratio tests for all four 

pairs of task and feature dimension. Interestingly, these likelihood ratio tests did indeed 

decisively reject the null hypothesis that Weibull functions being compared shared the 
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Figure 3.8: Comparison of Exp. 4 Conditions for Participant 1. The plots shows Participant 1’s 
psychometric functions for each condition. In the Luminance dimension, circle markers show the 
participant’s raw data for Condition 1 (circular items) and the solid line the line of best fit; triangle 
markers show the participant’s raw data for Condition 2 (triangular items) and the dashed line the line of 
best fit. In the Shape Dimension, black markers show the participant’s raw data for Condition 1 (darker 
items) and the solid black line the line of best fit; gray markers show the participant’s raw data for 
Condition 2 (lighter items) and the dashed gray  the line of best fit. We performed likelihood ratio tests for 
all conditions and give the chi-square score (Χ) for each. For this participant, none of the differences were 
significant. 
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Figure 3.9: Comparison of Exp. 4 Conditions for Participant 2. The plots shows Participant 2’s 
psychometric functions for each condition. In the Luminance dimension, circle markers show the 
participant’s raw data for Condition 1 (circular items) and the solid line the line of best fit; triangle 
markers show the participant’s raw data for Condition 2 (triangular items) and the dashed line the line of 
best fit. In the Shape Dimension, black markers show the participant’s raw data for Condition 1 (darker 
items) and the solid black line the line of best fit; gray markers show the participant’s raw data for 
Condition 2 (lighter items) and the dashed gray  the line of best fit. We performed likelihood ratio tests for 
all conditions and give the chi-square score (Χ) for each. For this participant, the difference between 
conditions in the Luminance dimension of the 8-item task is significant. 
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Figure 3.10: Comparison of Exp. 4 Conditions for Participant 3. The plots shows Participant 3’s 
psychometric functions for each condition. In the Luminance dimension, circle markers show the 
participant’s raw data for Condition 1 (circular items) and the solid line the line of best fit; triangle 
markers show the participant’s raw data for Condition 2 (triangular items) and the dashed line the line of 
best fit. In the Shape Dimension, black markers show the participant’s raw data for Condition 1 (darker 
items) and the solid black line the line of best fit; gray markers show the participant’s raw data for 
Condition 2 (lighter items) and the dashed gray  the line of best fit. We performed likelihood ratio tests for 
all conditions and give the chi-square score (Χ) for each. For this participant, the difference between 
conditions in the Shape dimension of the 2-item task is significant. 
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Figure 3.11: Comparison of Exp. 4 Conditions for Participant 4. The plots shows Participant 4’s 
psychometric functions for each condition. In the Luminance dimension, circle markers show the 
participant’s raw data for Condition 1 (circular items) and the solid line the line of best fit; triangle 
markers show the participant’s raw data for Condition 2 (triangular items) and the dashed line the line of 
best fit. In the Shape Dimension, black markers show the participant’s raw data for Condition 1 (darker 
items) and the solid black line the line of best fit; gray markers show the participant’s raw data for 
Condition 2 (lighter items) and the dashed gray  the line of best fit. We performed likelihood ratio tests for 
all conditions and give the chi-square score (Χ) for each. For this participant, the difference between 
conditions in the Shape dimension of the 8-item task is significant. 
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same parameters for some participants in some conditions; however, this was only the case 

for three comparisons (one each for three participants) out of the sixteen total 

comparisons (four participants x two tasks x two feature dimensions) and these results 

were idiosyncratic across participants. 

Having established that there were no consistent differences across participants, we 

aggregated the data for each irrelevant feature dimension condition for our equisalience 

analysis. For each participant, we used an MCMC procedure to fit a Weibull function to the 

aggregated data. This produced 10,000 samples each of the α𝐿 , β𝐿, α𝑆, and β𝑆 parameters 

for each task. We cleaned the samples by discarding the first 2,000 and then keeping only 

every fifth sample to correct for a small degree of autocorrelation. From these samples, we 

used the median parameter values to fit an equisalience function for each task. We also 

estimated the credible interval for each task by fitting the equisalience function to the 

paired α and β parameters that fell between 2.5% and 97.5% of the distribution of the 

cleaned samples. Figure 3.12 shows each participants equisalience function for the 2-item 

task (solid line) and the 8-item task (dotted line), with luminance level presented on the x-

axis and shape level on the y-axis. 

Each point along the equisalience function corresponds to a stimulus level at which task 

performance is matched for two feature dimensions. Since the target level was fixed, 

stimulus level always refers to the level of the distractor. For both feature dimensions, low 

levels indicate more similarity between targets and distractors while high levels indicate 

less similarity between the two. Another way to think of the stimulus levels is in terms of 

the difference between the target(s) and distractor(s). For each participant, the solid line 
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Figure 3.12: Exp. 4 Equisalience Plots. The Luminance-to-Shape equisalience plots are shown for each 
participant. The solid line represents the equisalience function for the 2-item task and the dotted line 
represents the equisalience function for the 8-item task. The tick marks indicate levels of performance, 
and the outer lines represent 95% confidence intervals. For each participant, the lines diverge, depicting 
statistically significant differences (Χ) in the Luminance-to-Shape equisalience of the two tasks. 
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(2-item task) and the dotted line (8-item task) lines diverge, indicating that the luminance-

to-shape equisalience functions of the tasks are indeed different. In each case, the 8-item 

task required larger shape differences than did the 2-item task to match the performance 

for a given level of luminance. A likelihood ratio test confirms that these differences are 

highly significant. 

 

3.4 DISCUSSION AND CONCLUSIONS 

The different luminance-to-shape equisalience functions suggest that the two tasks either 

have access to different kinds of information or access the same information in different 

ways. Specifically, the equisalience functions suggest that shape differences—relative to 

luminance differences—have less salience in the 8-item task than they do in the 2-item 

task. This is consistent with the informal observation that motivated our present study: 

that the 2-item task failed to produce perceptually matched luminance and shape levels for 

an 8-item centroid task, and that the resulting centroid shape discriminations were much 

more difficult that the corresponding centroid luminance discriminations. 

Given the similarities between the two tasks, their different equisalience functions are 

surprising indeed. We used the same procedure to assign item locations in both tasks; we 

displayed the stimulus clouds for the same amount of time in both tasks; participants 

tracked item location information and entered their responses via mouse click for both 

tasks. (It should be noted, however, that none of these task similarities are required to 

perform an equisalience analysis between tasks.) A priori, it would seem that the 2-item 
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task and the 8-item should have access to exactly the same information in exactly the same 

way. And yet their strikingly different equisalience functions suggest this is not the case. 

One possible explanation for our results is that crowding reduces the shape salience 

relative to the luminance salience in the 8-item task compared to the 2-item task. While 

plausible, more research is needed in order to determine how much of a role, if any, 

crowding plays in these differences. This could be tested using an equisalience analysis of 

two centroid tasks, each with a different number of items. 

We believe it is an uncontroversial assertion that our 2-item task and 8-item task are much 

more similar than are a typical search task and centroid task. If two highly-similar tasks (2-

item and 8-item) produce markedly different equisalience functions, we would predict that 

less similar tasks (search and centroid) would produce even more markedly different 

equisalience functions. Of course, this prediction needs to be tested, but we believe this will 

be another fruitful line of investigation. If the centroid task does, in fact, have access to 

different sorts of information than other feature-based attention tasks, that would help 

explain why centroid results can diverge so dramatically from typical search results. 
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CONCLUSION 

Experiments 1 and 2 both demonstrate that centroid and search tasks can produce 

different patterns of results. In the search task, performance in all constituent-feature 

target conditions is better than performance in conjunctive target conditions. These search 

results can be summarized Color > Size > Conjunction (Experiment 1) and Luminance > 

Shape > Conjunction (Experiment 2). In the centroid task, however, performance in the 

conjunctive target conditions is intermediate between the constituent-feature target 

conditions. These centroid results can be summarized Color > Conjunction > Size 

(Experiment 1) and Luminance > Conjunction > Shape (Experiment 2). We believe these 

results provide two important, novel contributions to the literature. First, our centroid 

findings show that conjunctive targets can actually outperform constituent-feature targets. 

While there already exists evidence of efficient processing of conjunctive targets in some 

circumstances (e.g., Houck & Hoffman, 1986; Nakayama & Silverman, 1986; and Theeuwes 

& Kooi, 1994), there are no reported cases—to our knowledge—of conjunctive targets 

producing better task performance compared to constituent-feature targets. This finding 

becomes more surprising still when one considers that the conjunctive target displays had 

twice as many items the feature target displays, making them perceptually more 

complicated. Second, the differences in the centroid and search results provide compelling 

evidence that visual search is not, on its own, sufficient for investigating feature-based 

attention. A variety of tasks are needed in order to develop a richer understanding feature-

based attention in a broad range of situations. 
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Experiment 3 shows that centroid performance is modulated by target-distractor similarity 

and indicates that, under some conditions, there may be no performance cost at all for 

conjunctive targets. We can borrow the inequality reporting convention used above to 

describe the pattern of results in Experiment 3. For consistency and ease of comparison to 

Experiment 2, we refer to the Targets=Darkest condition as Luminance, the Targets=Circles 

condition as Shape, and the Targets=DarkestCircles condition as Conjunction. We also 

introduce the “≥” symbol to denote performance differences that do not reach statistical 

significance. The results of Experiment 3 can then be characterized: 

(i) Luminance ≥ Conjunction > Shape for LS display conditions, 

(ii) Conjunction ≥ Shape ≥ Luminance for LS display conditions, 

(iii) Luminance > Conjunction > Shape for LS display conditions, and 

(iv) Conjunction ≥ Luminance > Shape for LS display conditions. 

These results replicate and extend those of Experiment 2 by demonstrating that 

conjunctive centroid judgments can be better than or equal to both constituent-feature 

centroid judgments. They also suggest that targets defined by one feature dimension are 

not necessarily easier than targets defined by another because of the particular feature 

dimensions themselves; for example, attending to  luminance targets is not always easier 

than attending to shape targets, as evidenced by the improved performance for shape 

target condition relative to luminance target condition summarized in (ii). Rather, these 

results suggest that task performance is influenced by the salience of the contrast between 

the levels of each feature dimension. 
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Experiment 4 reveals different luminance-to-shape equisalience functions for a centroid (8-

item) task compared to another, highly similar (2-item) task. This suggests that the two 

tasks access information differently, thus lending support to the idea that there may be 

something special about the way in which centroids are processed. Specifically, it seems the 

centroid task requires greater shape salience (relative to luminance salience) compared to 

the analogous task. 

Together, the results of these four experiments suggest that centroids may be processed 

differently than other sorts of visual stimuli. However, this line of investigation is still in its 

infancy, so we think it prudent to avoid making strong claims at this time about how 

centroids might be processed. These results also motivate many exciting future areas of 

research. In particular, it will be interesting to see whether or not other visual search 

results, such as search asymmetries, replicate in the context of the centroid paradigm. In 

addition, we anticipate the equisalience analysis will prove to be a useful tool for 

comparing the centroid task to other feature-based attention tasks—mostly notably, visual 

search.  We also reaffirm the importance of studying feature-based attention in a range of 

different tasks in order to gain a fuller understanding of how features guide visual 

attention. 
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