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Abstract

Traffic data is crucial for traffic operation and management. Traffic sensors serve as one of the

most important sources for such data. One important mission of the traffic sensor is to provide an

accurate and reliable general picture of the traffic system.

In this dissertation, a new sensor location model is developed to maximize the observability of

link densities in a dynamic traffic network described using a piecewise linear ordinary differential

equation system. We develop an algebraic approach based on the eigenstructure to determine the

sensor location for achieving full observability with a minimal number of sensors. The proposed

Algebraic Approach is efficient and generic and it can be applied to any dynamical system with

direct state observation. Additionally, a graphical approach based on the concept of structural

observability is developed. By exploiting the special property of flow conservation in traffic net-

works, we derive a simple analytical result that can be used to identify observable components in

a partially observable system.

The graphical and algebraic properties of observability are then integrated into a sensor location

optimization model considering a wide range of traffic conditions. Through numerical experiments,

we demonstrate the good performance of our sensor deployment strategies in terms of the average

observability and estimation errors.
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Chapter 1

Introduction

In the era of booming data, we are surrounded by an abundance of information. Within

the realm of transportation, intelligent transportation systems (ITS) are transforming our daily

lives—ranging from e-hailing taxi services and real-time navigation to the advent of self-driving

vehicles. These innovations are powered by data and the insights derived from it. However, critical

questions remain regarding what information to collect, where to collect it, and when it should be

gathered, as we still face the challenge of incomplete data coverage.

Accurate and reliable traffic data is crucial for effective traffic operation and management. For

instance, data on vehicle speeds, traffic volumes, and congestion patterns are essential for optimiz-

ing traffic flow, reducing delays, and improving road safety. Traffic sensors, which capture these

vital pieces of information, are among the most important data sources for transportation plan-

ners. However, given the constraint of limited budgets, deploying these sensors poses a significant

challenge: How can we strategically place a finite number of sensors to maximize the value of the

data collected? The objective is to ensure that the information gathered is as comprehensive and

insightful as possible, enabling more informed decisions and efficient management of transportation

systems.

In the context of maximizing the richness of information in a traffic network, the concept

of observability has been a key focus. Observability refers to the ability to determine whether a
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given set of measurements is sufficient to uniquely infer the states of a traffic network, such as

flows, speeds, and densities. This concept has driven much of the existing research on traffic sensor

placement.

Most traffic sensor placement literature on observability focused on aggregated flow counts and

are thus referred to as the static observability problem in Castillo et al. (2015). Previous studies have

provided simple and efficient exact solutions for achieving both full and partial observability in static

scenarios. This body of work has significantly advanced our understanding of how to strategically

place sensors to gather aggregated flow data across a network. However, these approaches are

primarily focused on static, time-invariant data, which limits their applicability in dynamic traffic

environments.

In dynamical systems, observability refers to the ability to infer the internal states of a system

based on its external outputs from sensors. This concept, alongside its counterpart controllability,

has been extensively explored in control theory. Recent research has applied the concept of ob-

servability to sensor placement in dynamic traffic systems. Studies have explored sensor placement

strategies within nonlinear dynamic traffic network models, addressing the challenges posed by non-

linearity either through linearization around an equilibrium point or by assuming a known sample

path of the dynamic process. However, due to the variability in traffic conditions and the limita-

tions of fixed equilibrium points or strong prior information, there is still a need for a systematic

and effective sensor placement method that can maximize information gain while accommodating

a wide range of dynamic traffic conditions.

An extended concept of observability, structural observability, has emerged, focusing on the

structural aspects of the algebraic conditions of a system. Structural observability simplifies the

need for precise knowledge of system dynamics and can often be equivalent to standard observabil-

ity in some contexts. This concept has also been applied to traffic network studies. However, most

results have been derived for general dynamical systems. This study aims to explore specific prop-

erties related to traffic network density dynamics and develop new theories incorporating domain

knowledge.
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This dissertation seeks to address these limitations by proposing sensor location optimization

methods that consider the observability of traffic density under various dynamic traffic conditions.

The dynamics of a highway network are captured using a piecewise-linear macroscopic traffic model,

and the research explores both algebraic and graphical properties of such systems. The main

contributions of this research are as follows:

• We establish new understanding of graphical and algebraic properties of observability beyond

what has been known for general linear dynamic systems by exploiting unique characteristics

of traffic networks. Our results advance the current understanding of observability concept

in the transportation science literature.

• We incorporate the structural observability concept to the design of an optimal sensor lo-

cation problem to maximize information gain from sensors under various traffic conditions.

Numerical experiments demonstrate the effectiveness of our optimal sensor location strategies

in terms of observability and traffic estimation quality.

• The analytical and computational advantages of our results are made possible by exploiting

special features of the dynamic traffic networks, which showcases how domain expertise from

the transportation field could be integrated with and extend the current state of knowledge

of complex systems.

The rest of the dissertation is organized as follows. In Chapter 3, we introduce the mathe-

matical modeling of the traffic network density dynamics and develop the Algebraic Approach to

find sensor locations for full (exact) observability with a minimum number of sensors. In Chapter

4, we establish the mathematical properties and analyses associated with structural observabil-

ity to identify the observable components in a partially observable system. We then incorporate

this understanding to develop a sensor location optimization based on the Graphical Approach.

In Chapter 5, we present numerical examples to evaluate the quality of sensor location solutions

derived from our models, demonstrating that the proposed optimization strategies result in high-

quality traffic estimations. Finally, the dissertation concludes with a discussion of our findings and

potential directions for future research.
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Chapter 2

Literature Review

2.1 Traffic sensor location problem

In the early literature, the sensor location problem has been mostly addressed as a sub-problem

of the broader OD demand estimation problem (Yang and Zhou (1998), Bianco et al. (2001), Ehlert

et al. (2006)), rather than as an independent problem. In such problems, some prior knowledge

such as prior OD demand or link usage proportion matrix is needed. The common practice is

to formulate the sensor location problem as an integer programming to guarantee a reliable OD

demand estimation. A famous example is the OD covering rule (Yang and Zhou, 1998) that a

certain portion of trips between any OD pair should be observed by a sensor. More rule-based

optimization examples can be found in the synthesis paper in Gentili and Mirchandani (2012).

In addition to the optimization framework, assuming some statistical priori distribution, Fei

et al. (2007), Zhou and List (2010) and Fei et al. (2013) applied the Kalman filter to maximizes the

information gain while minimizing the uncertainties of the estimated OD demand matrix. Under

this framework, however, it is not feasible to derive a global optimal set of sensor location when

the dimension of problem becomes large. Recent sensor location problems can be found in the

synthesis paper of Gentili and Mirchandani (2012) and Castillo et al. (2015).

In Gentili and Mirchandani (2012), the traffic sensor location problem is divided into two
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categories: (a) flow estimation problems and (b) observability problems. In the estimation problem,

we are not able to directly observe or infer all the flows. Instead, some prior knowledge about the

flow itself (OD trips, route flow or link flow) is needed. Such information is obtained through survey

or historical data. The aforementioned OD estimation sensor location problem literature belong to

this category.

With the continuing advances in traffic surveillance, the technology is becoming more reliable

and cost-effective. The growing need to fully understand traffic pattern and performance urges

people to deploy sensors that we can infer all the information. As a result, the observability concept

from the control theory is introduced to the transportation community by Castillo et al. (2008a).

In their work, observability is referred to the ability to infer a subset of OD pair or link flows based

on a subset of observed OD pair and link flows. The observability in traffic networks can either

refer to the static case (states satisfy a linear system of equations based on flow conservation) or

the dynamic case (states is described using a dynamical system). In the following two subsections,

we will briefly discuss the related literature in both cases.

2.2 Static observability

Under the static condition, flow conservation holds as a linear system of equations. After

brought up in Castillo et al. (2008a), observability analysis under the static case is being extensively

studied. Many of the discussion centered on the algebraic techniques of the null-space method

(Castillo et al. (2006), Castillo et al. (2008b), Castillo et al. (2010), Castillo et al. (2013)) since the

observability problem is to find the inverse from a system of equations.

Existing approaches already provide simple and elegant exact solutions for full observability in

the static case. Hu et al. (2009) first introduced the problem of finding the smallest subset of links

to locate counting sensors for full observability. The matrix algebraic method based on the reduced

row echelon form (RREF) of the link-path incidence matrix is very efficient to solve. To avoid the

large dimension of the link-path incidence matrix, Ng (2012) developed a node-based formulation

of the problem. He (2013) addressed the same problem from a graphical point of view and showed
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that a minimum spanning tree of the modified network will give exactly the smallest subset for full

observability.

Full observability requires 60%-70% (Hu et al. (2009)) of the network links to be equipped

with sensors. Viti et al. (2014) argued that this number is too large for realistic traffic networks

and therefore studied the partially observable systems. They proposed a null space metric to

evaluate the degree of partial observability and developed a heuristic sensor deployment algorithm

to maximize the null space metric. Also, some researchers addressed the stochasticity in the sensor

location problem. Salari et al. (2019), Li and Ouyang (2011) and Danczyk et al. (2016) examined

the sensor locations considering the failure of sensors.

2.3 Dynamic observability

For dynamical systems, observability is a measure of how well the internal states of a system can

be inferred from knowledge of external outputs (from sensors). Observability and its mathematical

dual controllability have been well-studied in the control theory since introduced by Kalman (1960).

To distinguish it from the static observability, Castillo et al. (2015) referred to the observability

in dynamic case as the dynamic observability. They also pointed out that unlike the static case

which has been widely discussed in the existing literature, the dynamic observability in traffic

systems remains as an interesting and important direction for future exploration. Compared with

the static case where a linear relationship is used to describe the system, the dynamic case considers

the observability throughout the time, indicating that we need to consider the traffic network as a

dynamical system.

It is worth noting that in Fei et al. (2007), time-varying network flow is considered by slicing

the time in pieces and apply a dynamic traffic assignment in each time slice. However, this is still

inherently different from considering a dynamic evolving traffic system.

Contreras et al. (2015) first addressed the dynamic observability in detail on highway seg-

ments. In this work, traffic dynamics is modeled using a nonlinear ODE system considering flow

conservation and the link density is the state variable. Observability condition is investigated

6



for local densities of highway segments by utilizing linearized traffic dynamics about steady state

flows. To extend the discussion to network level observability, Agarwal et al. (2015) considered

both density dynamics and routing dynamic in an ODE traffic model. The knowledge of routing

dynamics makes it possible to keep track of real-time split ratio. However, in real traffic systems,

routing dynamics is often unknown since few sensing technologies can give such information. In

both Agarwal et al. (2015) and Contreras et al. (2015), the observability condition is examined.

Both highway corridor and network lead to the similar conclusion that under uncongested case,

downstream links are more important for observability; and under congested situation, upstream

links are more important. However,in the existing literature for dynamic observability,

there is no systematic and efficient algorithm to obtain the sensor location scheme

that guarantees full observability.

2.3.1 Structural observability and graph-theoretic approaches

More recently, graph-theoretic approaches have been developed to explore an extended concept

of observability, structural observability, which focuses on the structure of the algebraic conditions

(Lin, 1974; Liu et al., 2011, 2013). Structural observability bypasses the need for accurate/exact

knowledge of system dynamics and in many cases, it is equivalent to observability. This concept

and the graphical approaches are also borrowed in recent traffic network observability studies.

Bekiaris-Liberis et al. (2017) developed traffic state estimation approach for per-lane density es-

timation and investigated the structural observability property based on the graphical approach.

Rostami-Shahrbabaki et al. (2020) studied the state estimation problem in urban traffic networks

and studied the sensor location problem based on the Strongly Connected Component method in

Liu et al. (2013). Mousavi and Kouvelas (2020). Mousavi and Kouvelas (2020) discussed the struc-

tural observability of density dynamics on a motorway ring road, also based on graph-theoretic

approaches.

In recent years, more sensor placement studies incorporated the observability concept in a

dynamic traffic system (Agarwal et al., 2015; Bekiaris-Liberis et al., 2017; Contreras et al., 2015).

For example, based on nonlinear dynamic traffic network modeling, sensor placement strategies
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have been studied in Contreras et al. (2015) and Nugroho et al. (2021). The non-linearity has to

be addressed by either linearizing the problem around an equilibrium point or assuming a known

sample path of the dynamic process. However, traffic conditions are subject to variations and a

fixed equilibrium point may not exist. A known sample path is too strong as a prior information.

Therefore, a systematic and effective sensor placement method that could maximize

information gain while being capable of handling a large spectrum of dynamic traffic

conditions is still in need.
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Chapter 3

Algebraic Approach for Full

Observability

3.1 Traffic network as a dynamical system

In order to investigate an optimal sensor deployment for information collection on dynamic

traffic networks, we first need a dynamical model to describe the traffic system. Our choice here

are macroscopic traffic models since we are only interested in the aggregate behavior of vehicles.

To derive the mathematical properties, simple analytical models are desired. Although it might

oversimplify the highly nonlinear, complicated real traffic network, the capability to analyze the

system properties can provide valuable insights.

The famous LWR model proposed by Lighthill and Whitham (1955) and Richards (1956) is a

macroscopic traffic flow model that captures shock and rarefaction waves of fluid-like traffic. The

flow conservation equation can be written as:

∂k(x, t)

∂t
+

∂q(x, t)

∂x
= 0 (3.1)

where k and q denote the traffic density and flow, respectively. In addition, an equilibrium speed-

flow relationship is assumed which refers to the fundamental diagram. This model is a partial
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differential equation model.

The cell transmission model (CTM) is developed to approximate the LWR model (Daganzo,

1994, 1995). The CTM model divides a link into small cells with the same length and defines

each cell’s demand (maximum sending flow) and supply (maximum receiving flow) to describe

interactions between adjacent freeway cells as well as shockwaves. The actual flow transmitted is

determined by the minimum of the upstream demand and downstream supply. There are different

ways to define demand and supply functions based on the assumption of the fundamental diagram.

To avoid the overwhelmingly large number of cells for better efficiency, Yperman (2007) proposed

the Link Transmission Model which requires only one sending flow and one receiving flow for an

entire link. However, such demand and supply functions are delayed functions in in- and out-flows,

making it less suitable for observability-based sensor location problems.

To avoid the nonlinearity in CTM, the switching-mode model (SMM) was proposed by Muñoz

et al. (2003). The SMM is a piecewise affine system that switches among different sets of linear dif-

ference equations (representing different traffic states of the freeway), depending on boundary flow

and the congestion status of the cells in a freeway segment and assuming a triangular fundamental

diagram. Adopting traffic density as the state variable, the SMM permits the uneven cell lengths,

which greatly reduces the dimension of the system. However, this model works only for highway

segments as it does not include merge and diverge behaviors.

Link Queue Model

To develop a traffic network model whose junction model is realistic and link model is mathemati-

cally tractable, Jin (2021) developed a deterministic queueing model, the link queue model (LQM).

The LQM is a system of ordinary differential equations and the state variable is the queue length

(number of vehicles on a link). Similar to the CTM, the LQM defines the demand and supply of a

queue as functions of the queue length to determine the actual flow between 2 links. The LQM is

defined as:

K̇(t) = f(K(t))− g(K(t)) (3.2)
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where K(t) is the set of the numbers of vehicles on all links, and f(K(t)) and g(K(t)) are the sets

of in- and out-flows computed from the K(t) based on the demand and supply.

We adopt the equivalent LQM by using link density as the state variable instead of link queue

length. Let ka and la, respectively, denote the traffic density and length of link a, Eq.(3.2) is

rewritten as:

k̇a(t) =
fa(t)− ga(t)

la
(3.3)

Though LQM allows for various types of fundamental diagrams, we use triangular fundamental

diagrams in the further discussion for simplicity. A fundamental diagram depicts the flow-density

relationship. A triangular fundamental diagram is shown in Figure 3.1a, where v is the free-flow

speed and w is the congestion wave speed. The maximum possible flow rate C, also known as

the capacity, is achieved at the critical density kc. As shown in Figure 3.1b 3.1c, the demand and

supply functions of link of density k is defined as:

d(t) =


vk(t), if not congested(k(t) < kc)

C, if congested(k(t) ≥ kc)

(3.4a)

s(t) =


C, if not congested(k(t) < kc)

−w(k(t)− kj), if congested(k(t) ≥ kc)

(3.4b)

where kc, kj are the critical density and jam density of the link, respectively.

(a) Triangular fundamental diagram (b) Link demand (maximum sending
flow)

(c) Link supply (maximum receiving
flow)

Figure 3.1: Fundamental diagram, demand and supply functions
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Compared with the SMM, the LQM defines the merge and diverge behaviors and therefore

is capable of describing the traffic network dynamics. We will briefly illustrate the formulation of

three types of fundamental junctions in highway networks, namely the linear, merge, and diverge

junctions, as shown in Figure 3.2.

For a linear junction with upstream link 1 and downstream link 2 in Figure 3.2a, the flux

between link 1 and 2 can be derived as follows:

g1(t) = f2(t) = min{d1(t), s2(t)} (3.5)

For a merge with two upstream links, 1 and 2, and a downstream link, 3, as shown in Figure

3.2b, the flux can be derived if we assume a merging priority:

f3(t) = min {d1(t) + d2(t), s3(t)} , (3.6a)

g1(t) = min {d1(t),max {s3(t)− d2(t), αs3(t)}} , (3.6b)

g2(t) = f3(t)− g1(t). (3.6c)

where α is the merging priority of link 1. If link 1 and link 2 have the same priority to merge,

the situation is called a fair merge1 and α = C1
C1+C2

. Note that, any choice of α will be fine and fair

merge is not the only choice.

(a) A linear junction (b) A merge (c) A diverge

Figure 3.2: Three Types of Junctions

1Note that fair merge is only presented as an example. Our model and analyses presented in this paper can
accommodate various node merge models, not only fair merge. As long as the merge node model after the min, max,
median function results in piecewise linear functions, the results are applicable.

12



For a diverge with an upstream link 1, and two downstream links, 2 and 3, as shown in

Figure 3.2c, the flux can be derived if all vehicles have predefined route choices and follow the

density-proportional diverging rule:

g1(t) = min

{
d1(t),

s2(t)

ξ1→2(t)
,

s3(t)

ξ1→3(t)

}
, (3.7a)

f2(t) = ξ1→2(t)g1(t), (3.7b)

f3(t) = ξ1→3(t)g1(t). (3.7c)

where ξ denotes the split ratio at the junction. In our following discussion, we assume the split

ratio is known and remains as constant throughout the time.

Figure 3.3: A toy merge junction

Now we see that the LQM is a system of first-order, nonlinear ordinary differential equations.

However, similar to the SMM, the LQM system equations will remain the same when state variables

stay within some range. The range here refers to the polyhedron formed by the state variables.

Therefore, the LQM is a piecewise affine system. To illustrate the idea, we show a toy example of

a merge junction.

Example In a toy network shown in Figure 3.3, we know all the boundary flows f1, f2, g3, and the

free-flow speed v1, v2, v3 and the congestion wave speed w1, w2 and w3. Assume the link lengths

l1, l2 and l3 are the same, and equal to 1 for simplicity. Assume the initial density of each link is

zero and the in-flow is large enough for us to observe a bottleneck at link 3.

Before bottleneck occurs, all the links are uncongested and there is no bottleneck:

s3 > d1+d2, therefore f3 = min(s3, d1+d2) = d1+d2 = v1k1+v2k2, g1 = d1 = v1k1, g2 = d2 = v2k2.
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The system of equations is:

k̇1 =
f1 − g1

l1
= f1 − v1k1

k̇2 =
f2 − g2

l2
= f2 − v2k2

k̇3 =
f3 − g3

l3
= v1k1 + v2k2 − g3

(3.8)

In matrix form, 
k̇1

k̇2

k̇3

 =


−v1 0 0

0 −v2 0

v1 v2 0



k1

k2

k3

+


f1

f2

−g3

 (3.9)

which is a linear time-invariant system.

After bottleneck occurs, assume all the links are still uncongested but the difference is: s3 <

d1+d2, therefore f3 = min(s3, d1+d2) = s3 = k3v3, if we assume a fair merge rule g1 =
C1

C1+C2
s3 =

C1
C1+C2

C3, g2 =
C2

C1+C2
s3 =

C2
C1+C2

C3. The system of equations is:

k̇1 =
f1 − g1

l1
= f1 −

C1

C1 + C2
C3

k̇2 =
f2 − g2

l2
= f2 −

C2

C1 + C2
C3

k̇3 =
f3 − g3

l3
= C3 − g3

(3.10)

In matrix form, 
k̇1

k̇2

k̇3

 =


0 0 0

0 0 0

0 0 0



k1

k2

k3

+


f1 − C1

C1+C2
C3

f2 − C2
C1+C2

C3

C3 − g3

 (3.11)

The dynamic system will remain the same until link 3 becomes congested and the supply is no

longer C3; instead, it will be a function of k3 again.

This toy example illustrate the point that the LQM can be considered as a piecewise affine

system. When the link density is within a certain range, the LQM is a linear ODE system. As a

result, many methodologies developed in the linear systems analysis can be used.
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LQM validation using PeMS data

Figure 3.4: Segment of I280W divided into several links

(a) Weekly flow pattern (b) Upstream

(c) Middle region (d) Downstream

Figure 3.5: Simulated density using LQM compared with real data
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To validate the LQM, we also examined its performance on describing traffic dynamics using

real traffic data on a subsection of I-280 West. As shown in Figure 3.4, the road segment we choose

is approximately 2 miles in length, with four mainline lanes, three mainline loop detector stations

labeled Myrtle (ML 34.05), Huntington (ML 33.05), Santa Anita (ML 32.20), and additional de-

tector stations on each ramp. The loop detector collects the data of the boundary flows as well

as the occupancy (which can be used to compute density) at a precision of 30 seconds. We use

data from Caltrans Performance Measurement System (PeMS) during 4:00AM to 12:00PM on May

11th, 2021 and verified there is no special events affecting the flow pattern in that day which is

shown in Figure 3.5a. The boundary flows are adjusted using the method in Muñoz et al. (2003)

to maintain realistic flows. The simulated traffic density by the LQM is compared with the ground

truth in Figure 3.5. Despite being less accurate when there are large spikes in density, We find that

the LQM provides satisfactory result, capturing the overall tendency of traffic density evolution.

However, we need to note that in this example, the link length is quite short. For large networks,

we need to divide long links into smaller links to guarantee better performance.

Here, we want to re-emphasize why we choose the link queue model: (1) the junction model

is realistic and link model is mathematically tractable; (2) the piecewise affine property greatly

simplifies further analysis and the rich literature on linear systems can be borrowed; (3) it captures

the traffic dynamics at least qualitatively.

3.2 Preliminary on observability

For the reader’s convenience, this section introduces the concept of observability for linear

time-invariant systems. It includes a review of existing theorems and lemmas related to this topic.

Consider the following time-invariant dynamical system with x being the state variable (link

densities) and u being the known input,

ẋ(t) = Ax(t) + u(t), x(t0) = x0 = unknown (3.12)
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With sensors, we obtain the corresponding measurements

y(t) = Cx(t) (3.13)

of dimensions x ∈ Rn, y ∈ Rp, A ∈ Rn×n and C ∈ Rp×n. C is the mapping from the states to

measurements and p is the number of measurements.

Since the control input u(t) is known, we conclude that knowing x(t0) is sufficient to determine

x(t) at any time. To solve for x(t0), we can solve a linear system of equations:

y(t0) = Cx(t0)

ẏ(t0) = Cẋ(t0) = CAx(t0) + Cu(t0)

ÿ(t0) = Cẍ(t0) = CA2x(t0) + CAu(t0) + Cu̇(t0)

...

y(n−1)(t0) = Cx(n−1)(t0) = CAn−1x(t0) + CAn−2u(t0) + · · ·+ Cun−2(t0)

This is a system of np linear equations. In matrix form,



y(t0)

ẏ(t0)

ÿ(t0)

...

y(n−1)(t0)



(np)×1

=



C

CA

CA2

...

CAn−1



(np)×n

× x(t0) +D



u(t0)

u̇(t0)

ü(t0)

...

un−2(t0)



n(n−1)×1

(3.14)

where D =



0 0 0 . . . 0

C 0 0 . . . 0

CA C 0 . . . 0

...
...

...

CAn−2 CAn−3 CAn−4 . . . C



(np)×n(n−1)

.
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Notice that, the only unknown in Eq. (3.14) is x(t0). Rearrange the terms, we obtain



y(t0)

ẏ(t0)

ÿ(t0)

...

y(n−1)(t0)


−D



u(t0)

u̇(t0)

ü(t0)

...

un−2(t0)


=



C

CA

CA2

...

CAn−1


× x(t0) = Ox(t0) (3.15)

The LHS of Eq. (3.15) is known. In order to be able to solve for x(t0), matrix O has to be

full ranked (= n).

Kalman’s rank test

The observability matrix O is defined as O =



C

CA

...

CAn−1


. The system is observable when

rank(O) = n (the observability matrix has full column rank) and x0 can be uniquely determined.

This condition is called theKalman’s rank test. This is also referred to as the exact observabil-

ity since the exact parameterization of the system dynamics is known. One might recall that in a

static problem, observability is also measured by the rank of a matrix. The difference is the matrix

- in a static network problem, one focuses on the matrix from the system of linear equations based

on flow conservation, which only reflects the connection of various information pieces (such as link

flows) over the spatial dimension. While in a dynamic problem, the focus is on the observability

matrix O, which reflects the connection of various information pieces (i.e. state variables such as

link densities) in both spatial and time dimensions described by the system of ordinary differential

equations (ODEs).

Example We now show a simple example to illustrate observability in dynamic traffic systems.

In the toy network in Figure 3.3, when all the links are uncongested and sum of the demands is
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less than the supply, we would get a system like in Eq. (3.9):


k̇1

k̇2

k̇3

 =


−v1 0 0

0 −v2 0

v1 v2 0



k1

k2

k3

+


f1

f2

−g3



Now, if we have a sensor on link 3, the corresponding matrix C =

[
0 0 1

]
. The observability

matrix is

O =


C

CA

CA2

 =


0 0 1

v1 v2 0

−v21 −v22 0

 , (3.16)

O is of full rank iff v1 ̸= v2.

From this example, we recognize that the parameter of the system does affect the observability

conclusion. Placing a sensor on link 3 is sufficient to guarantee full observability in most cases. We

would like to point out that if we only consider the static network and topological relationship, we

would never be able to fully observe the system with only one sensor. The traffic dynamics give

us richer information although it is more demanding in terms of the prior knowledge of system

parameters.

Observability and similarity transformation

An important concept of observability is the observable/unobservable subspace. The similarity

transformation is needed for such a separation. Before introducing the similarity transformation,

the invariant subspace of the observability matrix O is discussed.

Definition 3.1 (Invariant subspace). A subspace V of Rn or Cn (if A is complex) is called A-

invariant or an invariant subspace of A, if for every v ∈ V the vector Av is also in V.

Lemma 3.2. Null space of O, N (O) is A-invariant: ∀v ∈ N (O) ⇒ Av ∈ N (O).
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Proof. Based on Cayley-Hamilton theorem, N





C

CA

...

CAn−1




= N





C

CA

...

CAn+k




, ∀k ≥ 0.

We know ∀v ∈ N (O),



C

CA

...

CAn−1


v = 0. To check whether Av ∈ N (O), we compute

OAv =



C

CA

...

CAn−1


Av =



CA

CA2

...

CAn


v.

It is obvious that the null spaces have the following relationship

N





CA

CA2

...

CAn




⊆ N





C

CA

...

CAn




= N





C

CA

...

CAn−1




Therefore v ∈ N (O) implies Av ∈ N (O).

Lemma 3.3. If rank(O) = n0 < n, then there exists a similarity transformation matrix T such

that x̂ = T−1x, Â = T−1AT , Ĉ = CT , and Â and Ĉ take the form:

Â =

Ao 0

A21 Au

 , Ĉ =

[
Co 0

]
,

where Ao has dimension n0 × n0 and (Co, Ao) is observable.
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Proof. Let O =



C

CA

...

CAn−1


denote the observability matrix, and let N (O) be its null space, which

has dimension n− n0. Let {v1, . . . , vn−n0} be a basis for N (O). Define

T =

[
Tn0 v1 . . . vn−n0

]
,

where Tn0 is a matrix with n0 linearly independent columns, chosen so that T is non-singular.

To show that Â = T−1AT has the desired form, note that

AT =

[
ATn0 Av1 . . . Avn−n0

]
.

Since N (O) is A-invariant, Avi lies in N (O), so each Avi can be expressed as a linear combination

of {v1, . . . , vn−n0}, resulting in the 0’s in the block form for Â.

Similarly, for Ĉ = CT , we have

Ĉ =

[
CTn0 Cv1 . . . Cvn−n0

]
.

Since vi ∈ N (O), Cvi = 0, which leads to Ĉ =

[
Co 0

]
.

Lemma 3.4. Observability is not affected by similarity transformations.

Proof. Let Â = T−1AT and Ĉ = CT for some nonsingular T , then:

Ô =



Ĉ

ĈÂ

ĈÂ2

...

ĈÂn−1


=



CT

CAT

CA2T

...

CAn−1T


=



C

CA

CA2

...

CAn−1


T = OT
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Nonsingularity of T implies that rank(Ô) = rank(O)

The Popov-Belevitch-Hautus Test (PBH rank test)

With the above lemmas, we are ready to show a very important theorem for observability

condition, which is equivalent to the Kalman’s rank test.

Theorem 3.5. The pair (A,C) is observable if and only if there exists no x ̸= 0 such that

Ax = λx, Cx = 0

Proof. We prove this by proving its contrapositive statement:

The pair (A,C) is unobservable if and only if there exists x ̸= 0 such that (1) holds.

⇐=: if there exists x ̸= 0 such that Ax = λx,Cx = 0, then

CAx = λCx = 0,

CA2x = λCAx = 0,

...

CAn−1x = λCAn−2x = 0

Therefore, O(A,C)x = 0 for some x ̸= 0. O(A,C) cannot be full rank, which implies unobservabil-

ity.

=⇒: Assume that (A,C) is not observable. Based on Lemma 3.3, we can transform it into the

equivalent observable/unobservable realization where

Â =

Ao 0

A21 Au

 Ĉ =

[
Co 0

]
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Consider x ̸= 0 such that

Aux = λx

Then Ao 0

A21 Au


0

x

 = λ

0

x

 ,

[
Co 0

]0

x

 = 0

which is

T−1AT

0

x

 = λ

0

x

 , CT

0

x

 = 0

AT

0

x

 = λT

0

x

 , CT

0

x

 = 0

That is there exists a vector z = T

0

x

, such that

Az = λz

Cz = 0

The PBH test implies that to evaluate observability, we only need to examine the eigenvectors

of the system matrix A. If there does not exist any eigenvector x of A such that Cx = 0, the system

is observable. Recall that the mapping C between states and measurements in our case is simple

and special since we directly observe a single state with one sensor. Any row of C is a unit vector

ej , with 1 at the jth element if the jth link is observed. For example, if we observe link 1 and link

3 in the toy network in Figure 3.3, we would have C =

1 0 0

0 0 1

.
To ensure observability, every eigenvector x of A must satisfy that Cx ̸= 0. This is equivalent

to say, for any eigenvector of A, the elements corresponding to the sensor location cannot all be
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zero. We will illustrate this statement by the following example.

Example: Again, let us consider the 3-link merge toy network. If we only observe link 3, the free

flow travel speed of link 1 and link 2 is crucial to determine observability as shown in Eq.(3.16).

With C =

[
0 0 1

]
,

A =


−1 0 0

0 −2 0

1 2 −3

 is observable, and A =


−1 0 0

0 −1 0

1 1 −3

 is not observable

Let us examine the first case, where A =


−1 0 0

0 −2 0

1 2 −3

.

The eigenvalues are -3 -2 and -1. The corresponding eigenvectors are


0

0

1

,


0

1

2

 and


2

0

1

 . The

matrix C =

[
0 0 1

]
will choose the 3rd element and all the eigenvectors have nonzero value.

Therefore, the system is observable.

Let us examine the second case, where A =


−1 0 0

0 −1 0

1 1 −3

.

The eigenvalues are -3 -1 and -1. The corresponding eigenvectors are


0

0

1

,


0

2

1

 and


2

0

1

 . There

seems to be no problem here, as the 3rd elements are all non zero. However, we know this case is

not observable.

Here, we have repeated eigenvalue -1. There are 2 linearly independent eigenvectors corresponding
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to this eigenvalue, and any linear combination of these 2 eigenvectors is also an eigenvector. For

example,


1

−1

0

 is an eigenvector. For this eigenvector, the 3rd element is 0 and therefore the PBH

test concludes that the system is unobservable.

If we know the sensor location, it is easy to verify the observability using Kalman’s test.

Unfortunately, that does not give us a sensor deployment strategy. PBH test seems to be a better

method for determining sensor location to ensure observability. It is clear at this point that the

observability is strongly related to the eigenvectors of the system matrix. Thanks to our simple

structure of C, the problem can be further simplified. However, the repeated eigenvalue seems to

be problematic. We cannot enumerate all linear combination of the eigenvectors and check all the

zero locations. This is infeasible when the dimension is large. This calls for a systematic approach

to find a sensor location scheme that guarantees full observability.

3.3 Algebraic Approach for full observability

In the current subsection, we propose a new Algebraic Approach to identify sensor locations

that guarantee full observability of an LTI traffic system. Furthermore, we demonstrate the op-

timality of this approach by proving its ability to achieve the minimal number of sensors. Note

that the proposed Algebraic Approach works for any possible realization of the parameters in

A. Our theoretical contribution is made possible by exploring the unique algebraic structure of

the observability test within the transportation network, where each sensor directly measures its

corresponding link density.2

We build our Algebraic Approach on the Popov-Belevitch-Hautus Test (PBH rank test). PBH

rank test is equivalent to Kalman’s rank test and it reveals the connection between observability

and eigenvalues as discussed in the last section. Based on the PBH rank test, we restate the PBH

rank test in the following equivalent theorem:

2This is different from the context studied in the general complex systems literature where a sensor may measure
a linear combination of the system states.
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Theorem 3.6. A linear time-invariant system pair (A,C) is observable, if and only if for any

eigenvalue λ of A, we have rank


A− λI

C


 = n.

The sensor location problem now reduces to finding an observation matrix C to satisfy the

above condition. Yuan et al. (2013) developed an algebraic procedure to minimize the number of

driver nodes in complex networks for exact controllability. Due to the mathematical duality of

observability and controllability, the result can be applied to find the minimum number of sensors.

However, in complex networks, a driver node has the ability to control multiple components’

states simultaneously. When applying this approach to observer design, it means sensors can

measure a linear combination of the component states, resulting in rows in C that are not unit

vectors. Traffic sensors, on the other hand, can only observe the state of one link, not a combination

of states. Thus, each row of the matrix C is a unit vector and this extra constraint makes this

problem harder to solve.

The rows of C are unit vectors with ith element to be 1 if the ith link is equipped with a sensor

and its density is directly observed. Due to the simple yet special structure of C, we developed

an algebraic algorithm to find sensor location that guarantees full observability using the minimal

number of sensors. This approach can be summarized in the following 4 steps:

Algebraic Approach

Step 1 : Compute the eigenvalues of matrix A.

Step 2 : For each eigenvalue λ, choose C s.t.

A− λI

C

 is of full rank. This is done by finding the

non-pivot columns in the reduced row echelon form (RREF) of A− λI.

Step 3 : Combine the necessary sensor locations found for each eigenvalue to finalize the sensor location

for full system observability

Step 4 : Examine if any sensor is redundant. This is to compute the column rank of O (Kalman’s

rank test) with a modified observation matrix. This modification involves removing the ith
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row in C for all i, one at a time. If the column rank remains n after excluding a sensor, it

will be dropped from the necessary sensor list.

The Algebraic Approach ensures full observability. Step 2 and Step 3 return a sensor set

that is sufficient for full However, Step 2 and Step 3 alone might induce redundant sensors, as

shown in the example in Appendix A. Step 4 will guarantee the sensor locations that are necessary

for full observability, without including redundant sensors.

In contrast to optimization model-based methods, which often encounter numerical challenges

due to their combinatorial nature, this Algebraic Approach is numerically efficient, making it par-

ticularly suitable for tackling large-scale problems.

Theorem 3.7. The Algebraic Approach gives an optimal sensor placement strategy with minimum

number of sensors for full observability.

Proof. We prove our claim by contradiction. C ∈ Rp×n is the observation matrix obtained by our

Algebraic Approach. Assume there is an optimal observation matrix C∗ ∈ Rq×n (q < p) that uses

fewer sensors and yet satisfies the PBH rank test.

Based on Step 2, for all λ of A, we have rank


A− λI

C


 = n. Also, Step 4 ensures that

removing any row in C will leads to unobservability, i.e., ∃λi, rank


A− λiI

C


 = n and each

row in C is linearly independent of the rows in A− λiI. Since C contains orthogonal unit vectors,

A− λiI has rank n− p.

For the optimal observation matrix C∗, we also have rank


A− λiI

C∗


 = n. However, the

maximum rank of matrix

A− λiI

C∗

 = rank (A− λiI) + rank (C∗) = n− p+ q < n, which leads to

a contradiction.

Therefore, we conclude that there cannot exist any C∗ that has a fewer dimension than C

constructed through steps 1-4, meaning C constructed in our Algebraic Approach is optimal in the
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sense of a minimal number of sensors used.

The Algebraic Approach works for any realization of the parameters in A without imposing

restrictions on the structure of the system matrix. Thus, this approach is applicable for any

dynamical system, not limited to transportation network density dynamics. The only requirement

is that the rows of observation matrix C consist of unit vectors.

Next, we apply our approach to the following example and demonstrate that caution is needed

while translating conclusions from other fields to a domain specific context where problem structure

and assumptions may differ.

Consider the system matrix A =



−1 0 0 0 0 0

0 −1 0 0 0 0

1 2 −2 0 0 0

0 0 0 −2 0 0

0 0 1 2 0 0

0 0 0 1 0 0


.

Step 1

Compute the eigenvalues of A. The eigenvalues are -1, -2 and 0, all with algebraic multiplicity

2.

Step 2

1. For λ = −1,

A−λI =



0 0 0 0 0 0

0 0 0 0 0 0

1 2 −1 0 0 0

0 0 0 −1 0 0

0 0 1 2 1 0

0 0 0 1 0 1


, our sensor placement (choice of C) should ensure

A− λI

C



to be full column ranked. Since each row in C is a unit vector, we can identify the columns that
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need a leading 1 by using the row reduction. To make

A− λI

C

 full ranked, we can construct the

row reduced echelon form of RREF


A− λI

C


 since elementary row operations do not change

the rank.

RREF (A−λI) =



1 2 0 0 1 0

0 0 1 0 1 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0


, for columns without a leading 1 (column 2 and column

5), we need to include a 1 in matrix C. Thus, C has to include rows

0 1 0 0 0 0

0 0 0 0 1 0

, meaning

placing sensors on link 2 and 5.

2. For λ = −2,

A− λI =



1 0 0 0 0 0

0 1 0 0 0 0

1 2 0 0 0 0

0 0 0 0 0 0

0 0 1 2 2 0

0 0 0 1 0 2


and RREF (A− λI) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 2 −4

0 0 0 1 0 2

0 0 0 0 0 0

0 0 0 0 0 0


C has to include rows

0 0 0 0 1 0

0 0 0 0 0 1

.
3. For λ = 0,
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A− λI =



−1 0 0 0 0 0

0 −1 0 0 0 0

1 2 −2 0 0 0

0 0 0 −2 0 0

0 0 1 2 0 0

0 0 0 1 0 0


and RREF (A− λI) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0


C again has to include rows

0 0 0 0 1 0

0 0 0 0 0 1

.
Step 3

Combining all the necessary rows in C, we obtain the sensor locations that guarantee full

observability. In this example, final choice of C is


0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

.
Step 4

Not observing any one of the link 2, 5 and 6 will lead to unobservability (remove the each row

on at a time and check the rank of observability matrix). Thus, there is no redundant sensor.

It concludes that for full system observability, sensors are needed on Link 2, 5, and 6 (after the

ordering of node indices). Note that the conclusion in Yuan et al. (2013) of using the maximum

geometric multiplicity (which is µ(λM ) = 2 in this example) to determine the minimum sensor

requirement for full system observability is not applicable here. This is due to the more strict

constraint for our observer design, i.e. one sensor can only observe the density of one link.

Remark on computing the eigenvalues

In the Algebraic Approach, the first step is to calculate the eigenvalues of the system matrix

A. Due to the special structure of A for traffic network dynamics, the eigenvalues are likely to be

the diagonal elements of A. This point is illustrated in the next Chapter section 4.2 where the

graphical properties are introduced.
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Chapter 4

Graphical Approach for Structural

Observability

4.1 Structural observability and inference diagram

Structural observability is an extended concept of observability stemmed from structural con-

trollability, first introduced by Lin (1974). Compared to the exact observability, whose analysis

requires knowing the value of matrix A, the structural observability only considers the structure of

matrices A and C, meaning whether the matrices’ elements are either fixed zeros or independent

free parameters.

Definition 4.1 (Structural observability). The system (A,C) is observable for at least some re-

alizations of parameters, without changing the structure (i.e. the location of zero and nonzero

elements) of the system matrix and observation model (A,C).

This concept is particularly relevant to the context of this study for the following reasons.

Firstly, for a dynamic traffic system, the exact values of parameters in the system matrix A may

change depending on the traffic condition, and one may not be able to always measure the parame-

ters. Secondly, sensor deployment strategies are typically designed for a long-term planning period,

during which the exact traffic situation (which determines the exact values of system parameters)
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may evolve but the connectivity of the physical road infrastructure that would affect the structure

of the system is likely to be stable. Thirdly, even though a structurally observable system may not

be observable in theory, for such occasion to happen in a dynamic traffic network is rare (ex. 2

merging links have exactly the same free-flow travel speed).

Structural observability/controllability is found to be closely related to the graph theory (Lin,

1974; Liu et al., 2011, 2013). We adopt the same method in Liu et al. (2013) to construct an

inference diagram from the system matrix A.

Definition 4.2 (Inference diagram). Each state variable is considered as a node in the inference

diagram and we draw a directed edge from node i pointing to node j if xj appears in xi’s state

update equation (aij ̸= 0 in A).

The edge indicates that the information of state j is captured by state i.

Let us use a 6-link toy network (shown in Figure 4.1) as an example to show how we construct

the inference diagram. This toy network, even though is small, has a linear junction, a merge, and

a diverge, which are building blocks of a highway network.

Figure 4.1: 6-link network example

Consider a mode where link 5 is congested and all other links are uncongested. In this case,

the downstream links of uncongested links capture information about the upstream links. Link 5 is

congested and the flow from link 4 and 5 is determined by supply of link 5, which is a function of

link 5 density. The inflow for link 6 is thus also a function of link 5 density. The inference diagram

corresponding to this mode, and the matrix A, with the (i, j)th element denoted as aij , are plotted

in Figure 4.2. Apparently, different traffic modes can result in different matrix A and inference

32



diagram, as demonstrated by the examples given in subsection 4.4.1.

Figure 4.2: Inference diagram for the 6-link network

Definition 4.3 (Self-edge). A self-edge is an edge starting from a node and pointing to the same

node.

In the above example, node 1,2,3,5 have a self-edge. In some literature, self-edge is called a

self-loop.

Definition 4.4 (Reachable node). A reachable node in the Inference Diagram is a node such that

there exists a sequence of adjacent nodes (i.e. walk) from a given observed node (such as a sensor

location) to it. A k-step reachable node is a node that is reached from an observed node by a walk

with k edges.

Using Figure 4.2 as an example, node 1 is reachable from node 4. It is 2-step reachable from

node 4 through edge (4,3) → edge (3,1). Also, it is 3-step reachable from node 4 through edge (4,3)

→edge (3,3) → edge (3,3), or edge (4,3) → edge (3,1) → edge (1,1).

4.2 Notes on computation of the Algebraic Approach exploiting

the network structure

In the Algebraic Approach, the first step is to calculate the eigenvalues of the system matrix

A based on the special structure of A for traffic network dynamics. The following assumption is

made for the inference diagram we construct for the system dynamics:

Assumption: The inference diagram of the traffic density dynamics is an acyclic graph.
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This assumption holds true if the information does not flow in one direction that forms a loop.

If the physical network does not contain any cycle, this assumption will be true. Even if it contains

cycles, the information is unlikely to flow in one direction (all links are free-flow or congested),

which is also a case that we are not very interested in.

With this assumption, our Algebraic Approach has some advantageous properties.

Proposition 1. Since the inference diagram is acyclic, there exists a topological ordering such that

the matrix A is lower-triangular. Moreover, the eigenvalues are simply the diagonal elements of A.

A (reverse) topological ordering is a vertex ordering for a directed acyclic graph such that

for every directed edge (i, j) from vertex i to vertex j, i comes after j in the ordering. After the

topological sort, aij = 0 if i < j and A is lower-triangular. This is for analytical convenience only,

as the eigenvalues are the diagonal elements for an upper or lower triangular matrix.

We implement the (reverse) topological ordering and obtain matrix A as a lower triangular

matrix. For the 6-link network example in Figure 4.1, the reordered graph and its system matrix A

is shown in Figure 4.3. The node 4 and 5 are switched to satisfy the ordering requirement. Matrix

A is now an lower triangular matrix.

Figure 4.3: 6-link network example: after the topological ordering

4.3 A Graphical Approach to identify observable components

The existence of self-edges in an inference diagram (see Proposition 2 and its proof) is a special

feature in the dynamic traffic network context, which may not be true for general complex networks.

The existence of self-edges greatly increases observability, as we shall see later.

Proposition 2. In an inference diagram of a traffic system, any node with an incoming edge also
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has a self-edge.

Proof. A node with an incoming edge implies the flow between this node and its neighbor(s) is

determined by this node’s own density. Due to the flow conservation, this flow will also act on the

node itself, causing a self-edge.

As an example, in Figure 4.2, the nonzero entry a43 of system matrix A indicates the change

of density of link 4 is a function of density of link 3. This implies the flow between link 4 and 3 is

determined by the density of link 3. This flow also affects link 3 itself, leading to a nonzero entry

a33 in A. Consequently, we observe a self-edge in the inference diagram, reflecting the influence of

link 3’s density on its own dynamics.

We are now ready to show the following important theorem to identify observable states

(network link densities):

Theorem 4.5. Based on the inference diagram, any reachable nodes from observed nodes are also

(structurally) observable. Moreover, if each node has at most one outgoing edge (excluding self-

edge), the observability is exact.

Proof. Each row of observation matrix C is a unit vector. Assume the ith row of C is unit vector

eTk where all the elements are zero except for the kth element. The ith sensor is used to observe

the kth state. Consider the observability matrix Oi=



Ci,:

Ci,:A

Ci,:A
2

...

Ci,:A
n−1


where Ci,: is the ith row of C

(i.e., eTk ). Since multiplying Ci,: to a matrix is simply selecting the kth row of the matrix, the

rows of matrix Oi contain kth row of A,A2, ..., An−1, leading to a matrix whose columns are 0 for

unreachable nodes starting from node k. In the case where each node has at most one outgoing

edge, the leading nonzero element positions of the nonzero columns are different. Therefore, the

nonzero columns are linearly independent.
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In the general case, due to the existence of the self-edges, entries under the first nonzero

entry will not vanish for each column. The structural assumption on our system leads to linearly

independent nonzero columns (more discussion on this is provided in the remark below). Thus,

the nonzero linearly independent columns of Ok form a full column rank observability matrix,

representing an observable subsystem consisting of the observed node and its reachable nodes.

This is true for any k. The observed nodes and the consequent reachable nodes are the observable

components. For unreachable nodes, we can consider them as if they are not part of the system

and they will not affect the observability of the reachable nodes.

Remark on structural assumption: Readers familiar with the complex systems literature may

recall that the structural assumption leading to the conclusion that the nonzero columns are linearly

independent was based on the assumption that all entries in matrix A are independent variables.

This is certainly not the case in the traffic dynamic network case. For example, consider the

problem shown in Figure 4.2, a11 = −v1
l1

and a31 =
v1
l3

where v1 is the free-flow travel speed on link

1 and l1, l3 are the link lengths of link 1 and link 3, respectively. Regardless of the choice of the free

parameter v1, entries a11 and a31 are dependent: a11 = − l3
l1
a31. With these dependent elements

in A, can we still assume linear independence of the nonzero columns in the observability matrix?

We answer this question next.

Proposition 3. We denote the inference diagram as graph G(V,E). ∀(i1, j1), (i2, j2) ∈ E, the

corresponding entries in A, ai1j1 and ai2j2 are independent parameters given j1 ̸= j2.

Proof. For nonzero parameters ai1j1 and ai2j2 , the flows between (i1, j1) and (i2, j2) are functions

of the link densities of j1 and j2 respectively. Consequently, the parameters ai1j1 and ai2j2 are

solely dependent on the fundamental diagrams of different links j1 and j2, each possessing inde-

pendent characteristics such as free-flow travel speed. Thus, the two parameters ai1j1 and ai1j2 are

independent.

To prove Theorem 4.5, we claimed that the structural assumption will make the column vectors

linearly independent in the observability matrix O. It is evident that if all the nonzero leading
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entries of the columns are positioned in distinct rows, these columns will be linearly independent.

The problem remains to verify for the case where the nonzero leading entries of two columns reside

in the same row, and the columns can still be linearly independent. The (i, j)th entry of Ak is the

sum of the products of all weights of all walks from node i to node j of length exactly k. For each

of the two columns (denoted by j1 and j2) in O to be verified, assuming they are k-step reachable,

the leading nonzero entries is the product of all weights of the k-length walk from the observed

node (denoted by i) to the column node. Thus, the leading nonzero entries for column j1

and j2 are functions of aij1 and aij2 respectively, which are independent parameters based on

Proposition 2. The entries under the leading nonzero entries are the products of the weights in

(k+1)-length, which are functions of aij1 · aj1j1 and aij2 · aj2j2 . Since Proposition 2 implies ajj ̸= 0

if aij ̸= 0, moreover, aij and ajj are dependent parameters, scaled by a factor, the two entries

under the leading nonzero entires of column j1 and j2 are functions of a2ij1 and a2ij2 .

Therefore, there exist choices of parameters aij1 and aij2 , such that columns j1 and j2 are linearly

independent.

Remark on the importance of self-edges: In the example of 6-link network with the inference

diagram of Figure 4.2, if a sensor is placed on link 4, the observability matrix is then in the following

form, where we use × to indicate a nonzero entry:



0 0 0 × 0 0

0 0 × 0 × 0

× × × 0 × 0

× × × 0 × 0

× × × 0 × 0

× × × 0 × 0



Ci,: (note: link 4 is directly observed by the sensor)

Ci,:A (links 3 and 5 are 1-step reachable from link 4)

Ci,:A
2 (links 1, 2, 3 and 5 are 2-step reachable from link 4)

Ci,:A
3

Ci,:A
4

Ci,:A
5

The structural observability assumption leads to the conclusion that the nonzero columns are

linearly independent. Thus, the observability matrix of the subsystem consisting of link 1,2,3,4, and
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5 has full column rank. This subsystem will be observable. Now imagine if the inference diagram

did not have the self-edges. All the nodes in the graph that are previously k-step reachable are no

longer (k + 1)-step reachable, leading to the following observability matrix:



0 0 0 × 0 0

0 0 × 0 × 0

× × 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



Ci,:

Ci,:A

Ci,:A
2

Ci,:A
3

Ci,:A
4

Ci,:A
5

where the first 5 columns can never be linearly independent no matter what values the non-zero

elements take. This example shows the importance of the self-edges in increasing the observability.

In summary, Theorem 4.5 provides an efficient way to identify the observable subspace of the

states - the number of reachable nodes in the inference diagram measures the observability, and the

reachable nodes correspond to the observable states. This is important since it provides an explicit

quantification of the quality of observability (unlike other metrics such as observability Gramian).

It enables us to evaluate a sensor placement strategy for a partially observable system. A natural

follow-up result is that to fully observe all link densities, traffic sensors should be located at links

corresponding to the source nodes (nodes that have only outgoing edges) in the inference diagram.

The result is consistent with the graph-theoretical approaches developed in Liu et al. (2011) and Liu

et al. (2013): observing the source nodes is indeed the solution applying the maximum matching

algorithm. Note that the graph-theoretical approaches developed in Liu et al. (2011) and Liu

et al. (2013) find sensor location for full observability only. Our finding on the partial observability

property is blessed by the special graphical properties of the traffic density dynamics. To our

knowledge, this is the first study to reveal the partial observability property of the dynamic traffic

system in the literature.
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4.4 A mathematical programming model maximizing number of

observable components under various traffic conditions

In the above sections, we have established algebraic and graphical approaches for observability

analysis of an LTI traffic system. However, the dynamics of traffic network density can only be

modeled by an LTI dynamical system for short periods of time with consistent traffic conditions.

A single set of linear equations is inadequate for capturing the evolving nature of traffic conditions

within networks. In this section, we integrate observability and mode switching concepts in a

mathematical programming modeling framework to maximize observable components under various

traffic conditions.

Let us first explain the mode switching concept. Due to the min function to determine the

actual flow in Eq (3.5), (3.6) and (3.7), the system is nonlinear. However, with a triangular

fundamental diagram, the whole system can be considered as a piecewise linear system, switching

within different linear models, which we call modes. Using Fig 3.2a as an example, when the two

links are free-flow with length 1 and the demand of link 1 is less than supply of link 2, the system

dynamics is described as: k̇1
k̇2

 =

−v1 0

v1 0


k1
k2

+

 f1

−g2

 (4.1)

When link 2 becomes congested, the supply of link 2 is less than the demand of link 1, the system

dynamics then evolves to:

k̇1
k̇2

 =

0 w2

0 −w2


k1
k2

+

 f1 − w2kj,2

−g2 + w2kj,2

 (4.2)

In a more concise form, the above system with two modes can be expressed as a piecewise affine

system:

ẋ(t) = A(λt)x(t) + b(λt) + u(t) (4.3)

where x is the continuous state variables, u(t) =

[
f1 − g2

]T
is the boundary flow vector. A and
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b are mode specific, which switch among K different modes λt ∈ {1, 2, · · · ,K}. In ??, we show a

bigger example of mode switching in the 6-link network.

Now we are ready to present our sensor optimization model that considers a wide spectrum

of traffic modes. Let the binary decision variable zi control the sensor location and the auxiliary

binary variable xk,i indicate the inferred observability.

let zi =


1, if a sensor is put on link i,

0, otherwise

, xk,i =


1, if link i is observable in mode k,

0, if link i is not observable in mode k

where i = 1, 2, ..., n and k = 1, 2, ...,K, K is the total number of different modes of the sys-

tem under consideration. Note that in a typical decision environment, K does not need to include

all possible modes; one may only include representative modes that are more likely to appear. The

importance of each mode k may be expressed by a non-negative weight factor wk. In practice, this

can refer to the frequency of occurrence of a mode. A practical way of obtaining major modes and

their occurrence rates is introduced in the case study in Section 4.5.

We then have the following mixed-integer program formulation:

max
z,x

K∑
k=1

wk

n∑
i=1

xk,i (4.4a)

s.t.
∑
i

zi = p (4.4b)

xk,i ≤
∑

(i−,i)∈δ−k (i)

xk,i− + zi,∀k, i (4.4c)

zi ∈ {0, 1},∀i (4.4d)

xk,i ≤ 1, ∀k, i (4.4e)

where δ−k (i) is the set of incoming edges of node i (here, the self-edges are not considered as

incoming edges) in the inference diagram of the k-th mode. The objective function (4.4a) maximizes

the average number of observable states across all possible modes, in a weighted sense. Constraint

(4.4b) specifies the total number of sensors to be placed where p is pre-specified. Constraints
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(4.4c) impose that a node is not observable if it is not directly observed or it has no observable

predecessor nodes in the inference diagram. One might notice that x is not enforced to be binary in

the formulation. This is not a mistake as the objective function and constraints will naturally push

x to be binary. With a non-negative weight wk,i, xk,i will be binary given constraints (4.4c) and

(4.4e). This could provide computational advantages because handling integer constraints typically

adds burden to large-scale linear programming problems.

It is beneficial to recognize that the mathematical model (4.4) is indeed a stochastic program

when the weight factor wk is set to be probability of mode k. Recall a general two-stage stochastic

nonlinear program (Ruszczyński and Shapiro, 2003)

min
x

L(x) + Eξ[Q(x, ξ)]

s.t. g1i (x) ≤ 0

with

Q(x, ξ) = min
y

f(y;x, ξ)

s.t. g2i (y;x, ξ) ≤ 0

(4.5)

Typically, the goal can be interpreted as to make a planning decision that minimizes the total costs

including the current and the expected future costs. The first stage planning decision x with cost

L(x) has to be made before any possible outcome of the random parameter ξ becomes certain. In

the second stage, the actual realization of ξ becomes known and a recourse decision y can be taken.

Q(x, ξ) is the objective function of the second stage problem given a particular choice of x and a

realization of ξ.

In the current context, each mode k corresponds to an uncertain scenario with a probability

of wk. The sensor placement decision z corresponds to the planning decision. Note we do not

impose a sensor deployment cost, so there is no L(x). Instead, we limit the budget of sensor

deployment by imposing a hard constraint on the total number of sensors. The observability of

links x corresponds to the operational decisions in a classic stochastic programming (SP) framework.

The second-stage subproblem Q(x, ξ) = miny f(y;x, ξ) in the generic formulation (4.5) becomes
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Q(z, k) = maxx
∑n

i=1 xk,i subject to the feasibility constraints of x (4.4c and 4.4e) in the current

context.

We make an association of our model with classic SP framework so that one can exploit the

very rich SP literature such as the various decomposition approaches (Carøe and Schultz, 1999;

Collado et al., 2012; Rockafellar and Wets, 1991) developed for solving large-scale SP models if

needed, even though numerical treatment is not an emphasis of this study.

4.4.1 A numerical example of mode switching and the MILP model for sensor

location

In this numerical example, we use the aforementioned 6-link network example as shown in

Figure 4.1. The mode-switching is illustrated in this example. The system dynamics are shown in

the discrete time-invariant system derived from the LQM. There are two modes in consideration,

with mode importance weights w1 and w2:

Mode 1: all links are uncongested and the system is operating at free-flow condition:
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

k1(t+ 1)

k2(t+ 1)

k3(t+ 1)

k4(t+ 1)

k5(t+ 1)

k6(t+ 1)


=



1− v1
∆T
l1

0 0 0 0 0

0 1− v2
∆T
l2

0 0 0 0

v1
∆T
l3

v2
∆T
l3

1− v3
∆T
l3

0 0 0

0 0 v3
∆T
l4

1− v4
∆T
l4

0 0

0 0 0 ξ4→5(t)v4
∆T
l5

1 0

0 0 0 ξ4→6(t)v4
∆T
l6

0 1


×



k1(t)

k2(t)

k3(t)

k4(t)

k5(t)

k6(t)


+



0

0

0

0

0

0


+



f1(t)/l1

f2(t)/l2

0

0

−g5(t)/l5

−g6(t)/l6



(4.6)

Mode 2: link 5 is congested and becomes the bottleneck. The flow from link 4 to link 5 is now

dominated by the supply of link 5, which is (kj,5 − k5)w5. The outflux of link 4 is g4 = s5/ξ4→5(t).
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The influx of link 6 is ξ4→6(t)g4:



k1(t+ 1)

k2(t+ 1)

k3(t+ 1)

k4(t+ 1)

k5(t+ 1)

k6(t+ 1)


=



1− v1
∆T
l1

0 0 0 0 0

0 1− v2
∆T
l2

0 0 0 0

v1
∆T
l3

v2
∆T
l3

1− v3
∆T
l3

0 0 0

0 0 v3
∆T
l4

1 w5∆T
ξ4→5(t)l4

0

0 0 0 0 1− w5∆T
l5

0

0 0 0 0 −w5∆T
l6

ξ4→6(t)
ξ4→5(t)

1


×



k1(t)

k2(t)

k3(t)

k4(t)

k5(t)

k6(t)


+



0

0

0

−kj,5w5∆T
ξ4→5(t)l4

kj,5w5∆T
l5

kj,5w5∆T
l6

ξ4→6(t)
ξ4→5(t)


+



f1(t)/l1

f2(t)/l2

0

0

−g5(t)/l5

−g6(t)/l6



(4.7)

Figure 4.4 compares the inference diagram for the two modes. Observing links 1,2,3,4 leads to

4 links observable in mode 1 and 5 links observable in mode 2. Note that when we construct the

inference diagram, a self-edge may only be added if the diagonal element of the continuous system

matrix is nonzero. Here, since Eqs. (4.6) and (4.7) correspond to the discretized system matrix,

if the diagonal element is 1 (the corresponding continuous system matrix will have a zero diagonal

element), self-edges will not be added.

(a) Mode 1 (b) Mode 2

Figure 4.4: Inference diagram for mode 1&2

44



Integer programming formulation

Here we want to locate 4 sensors on the 6-link network to maximize observability, thus we have

n = 6, p = 4.

let zi =


1, if a sensor is put on link i,

0, otherwise

, xk,i =


1, if link i is observable in mode k,

0, if link i is not observable in mode k

where i = 1, 2, ..., 6 and k = 1, 2 the total number of modes in this case is 2, for simplicity. Let w1

and w2 denote the mode frequencies. The observability maximization problem is formulated as:

max w1(x1,1 + x1,2 + x1,3 + x1,4 + x1,5 + x1,6) + w2(x2,1 + x2,2 + x2,3 + x2,4 + x2,5 + x2,6)

s.t. z1 + z2 + z3 + z4 + z5 + z6 = 4

x1,1 ≤ x1,3 + z1

x1,2 ≤ x1,3 + z2

x1,3 ≤ x1,4 + z3

x1,4 ≤ z4

x1,5 ≤ x1,4 + x1,6 + z5

x1,6 ≤ z6



mode 1

x2,1 ≤ x2,3 + z1

x2,2 ≤ x2,3 + z2

x2,3 ≤ x2,4 + z3

x2,4 ≤ x2,5 + x2,6 + z4

x2,5 ≤ z5

x2,6 ≤ z6



mode 2

z1, z2, z3, z4, z5, z6 ∈ {0, 1}

xk,i ≤ 1, ∀k ∈ {1, 2}, i ∈ {1, · · · , 6}
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4.5 Mode importance: a prior knowledge that can be obtained

from other data sources

To formulate the optimization in 4.4, the mode importance wk is needed. In this section, we

present a case study conducted using real traffic data collected on the I80 East Davis - Sacra-

mento highway corridor, which experiences regular afternoon peak congestion. This case study is

included to demonstrate how one might implement our model in practice, including how to prepare

information regarding traffic modes and their weights that is required in the sensor location model.

The highway network consists of 21 mainstream links and 11 on- and off-ramps that form

merging and diverging junctions, as depicted in Figure 4.5. The 10.6-mile long mainstream is

segmented into links that are separated using the orange pins on the map. We collected real-time

travel speed information through the Google Maps API every 10 minutes from 2 PM to 7 PM,

Monday through Thursday, throughout the months of April to June 2023. The speed profiles for

three days in June are visualized in Figure 4.6. We observe a recurring pattern of congestion

propagation every day and the data serves as the prior knowledge of the various traffic conditions.

The weight factor wk is obtained based on the occurrence frequency of the conditions. From all the

traffic modes, we choose the ones that occurred more than 10 times. A total of 47 different modes

are selected, which takes approximately 44% of all-time occurrence. Note that even though we have

link speed information as ground truth, it does not directly translate to link density information

as there is not a one-to-one relationship between speed and density under the uncongested region.

Therefore, the question of observing link density is not trivial.
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Figure 4.5: I80 East Davis-Sacramento

Figure 4.6: Speed profile of I80 East evolution in time
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Figure 4.7: Optimal sensor locations for varying numbers of sensors to be deployed

Figure 4.8: Violin plot for observability under different numbers of sensor to be deployed

We solve the optimization problem in (4.4) to obtain the best sensor location solutions under

various p. As an illustration, the optimal sensor locations for p = 3, 6, 9 are plotted in Figure

4.7. Links 4 and 7 are of highest priority since there is usually free-flow traffic before link 4 and

congested traffic after link 7. Off-ramps are also prioritized since their information is not captured

by the mainstream when the main congestion source is the downstream mainstream segment.

Note that while preparing modes as an input to the optimization model (4.4), we take a quite

48



coarse approach to translate speed to density under the uncongested regime – for an uncongested

link (a link where speed is within 90% of its free-flow speed), we use half of its critical density to

determine the supply and demand relation between this link and its immediate downstream links.

The reason we take such a coarse approach is that before sensors are placed, we are not supposed

to have much precise information about the traffic conditions. One can see from the optimal sensor

location solutions that even though the information of modes entered to the optimization model is

prepared in a quite coarse manner, the sensor placement strategies made good sense. For example,

no sensor is suggested for links 1, 2, 3, which is consistent with the fact that they are never congested

based on the Google Maps data.

Figure 4.8 reports the performance of the optimal sensor location strategies (obtained under

different p) across various traffic modes. Each violin corresponds to a given p. The shape of violin

shows the distribution of the number of observed links across different modes, together with the

max, min, and the average number of observability. Based on the results shown in Figure 4.8, we

have the following findings:

• When sensors are strategically placed, they can lead to more inferred information. For ex-

ample, placing 13 sensors in the 32-link network could lead to inference of link densities of

about 28 links on average.

• More sensors could not only improve the average observability, but also reduce the risk of

not observing many links (indicated by the narrower observability range and heavier skew

towards larger observability as the number of sensors increases).

• The marginal benefit on observability gained from additional sensors slows down as more sen-

sors are deployed, indicating that strategic budgeting may be considered along with strategic

location problem.

Notably, when only one sensor can be deployed, the optimal sensor will at most observe 17 links and

at least observe 7 links among the 47 different modes. One should be mindful that the knowledge

of the exact mode itself contains a significant amount of information. Without such information, a
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single sensor observing multiple segment downstream may be questionable, particularly considering

traffic density dynamics is subject to noise.
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Chapter 5

Traffic Observability and State

Estimation

This chapter includes numerical experiments on different networks, with a purpose of showcas-

ing the applicability of the proposed observability measures and sensor placement approach under

different network settings.

Traffic state estimation (TSE) refers to the process of the inference of traffic state variables

using partially observed traffic data. The state variables can be traffic flow, density, speed, etc.

Observability is the property of uniquely determining the state variables from the observation.

Observability is a prerequisite for effective state estimation. If a system is not observable, it

is impossible to uniquely determine the system’s state from its outputs, making reliable state

estimation impossible.

In this chapter, the observability is quantified as the average number of observable components

across all possible modes, computed in Eq.(4.4a). We aim to show that the sensor location with

our observability maximization will lead to better state estimation quality.

In Section 5.1, the TSE algorithm Interacting Multiple Model Filtering is introduced. In

Section 5.2, a small toy network is used to illustrate the idea of mode switching as the system gets

congested. This example also showcases that better observability leads to better estimation quality
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even when the actual traffic dynamics deviate from the LQM model on which the observability

analysis is based. In Section 5.3, we study the observability in a larger network to further investigate

the benefit of higher observability considering various possible modes for state estimation.

5.1 Traffic state estimation

Traffic state estimation plays an important role in traffic operations and planning. It is the

primary step to understand the traffic system before any control (such as ramp metering and

dynamic pricing) can be implemented.

The highway state estimation has been studied for decades and various estimation methods

have been proposed. Seo et al. (2017) examines the highway state estimation methods in 3 cat-

egories: model-driven, data-driven, and streaming-data-driven. The model-driven approaches are

based on traffic flow models describing traffic dynamics. The parameters in the traffic flow model

need to be calibrated before estimation. The data-driven approach relies extensively on historical

data. Recent popular machine learning models belong to this category. It does not require prior

knowledge of the physical model. However, it requires a large amount of historical data.

Among the many traffic state estimation methodologies (Seo et al., 2017), we adopt the In-

teracting Multiple Model (IMM) filtering, which has demonstrated its effectiveness in traffic state

estimation, both in urban and freeway traffic systems (Panda et al., 2019; Thai and Bayen, 2014;

Wang and Work, 2014; Zhang and Mao, 2015). The IMM filtering is a powerful yet cost-effective

filtering algorithm with the capability of estimating the state of a dynamic system that may switch

across different traffic modes, which makes it a suitable choice for our needs. To implement the

IMM filtering, one needs to describe the stochastic process to be estimated. For the estimation

purpose, the stochastic process is described following stochastic LQM to incorporate process noise

and measurement noise:

xt+1 = Aλtxt + bλt + ut + ωt (5.1)
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yt = Cxt + νt (5.2)

where x is the discretized state variables, whose dynamics is switching among a number of K dif-

ferent modes λt ∈ {1, 2, · · · ,K}. ωt and νt are zero-mean Gaussian noises with known covariances

Q and R. This model is similar to the one in Thai and Bayen (2014).

In IMM filtering, at each time step, the model is no longer in a single true mode; instead, it

is a probabilistic combination of all possible modes (K different modes). This filtering algorithm

dynamically recalibrates and updates the likelihood of different modes for the current state based

on the observed data. The filtering operates in parallel, employing Kalman filters for each mode,

and the resulting individual estimates are combined to produce the final estimate.

Interacting Multiple Model filtering overview

The Interacting Multiple Model (IMM) algorithm is a widely used estimation technique in

systems with multiple dynamic models. It is effective in tracking system states where the system can

switch between different modes, each represented by a different model. The IMM filtering operates

by running multiple filters in parallel, each corresponding to a different mode, and then combining

their outputs based on probabilistic mode weights. The nature of this estimation algorithm fits

well with our mode-switching traffic dynamics.

The IMM algorithm operates by maintaining a set of K models, each represented by a Kalman

filter. To avoid notation confusion with the Kalman Gain K, we denote the total

number of modes in consideration as Nm.

The state estimate at time t is given by the following distribution:

p(xt|y1:t) ≈
Nm∑
i=1

µi
tN (xt; x̂

i
t|t,Σ

i
t|t)

where:

• p(xt|y1:t) is the posterior distribution of the system state xt given the observations y1:t up to

time t. It represents the probability of the state being xt given all the observations so far.
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• N (xt; x̂
i
t|t,Σ

i
t|t) is a multivariate Gaussian distribution with mean x̂i

t|t and covariance Σi
t|t for

the ith mode. This distribution describes how likely different values of xt are, assuming the

ith mode is the true mode.

• µi
t = P (λt = i|y1:t) is the posterior mode probability, which represents the probability that

the ith mode λt = i is the true mode at time t, given the observations y1:t.

• The sum
∑Nm

i=1 over Nm modes implies that the overall state distribution is approximated

by a weighted sum of the individual Gaussian distributions for each mode, with the weights

being the mode probabilities µi
t.

The overall posterior mean x̂t|t and covariance Σt|t can be calculated as follows:

x̂t|t =

Nm∑
i=1

µi
tx̂

i
t|t

Σt|t =

Nm∑
i=1

µi
t

[
Σi
t|t + (x̂i

t|t − x̂t|t)(x̂
i
t|t − x̂t|t)

⊤
]

• x̂t|t is the overall state estimate at time t, calculated as the weighted sum of the state estimates

x̂i
t|t from each mode.

• Σt|t is the overall covariance of the state estimate at time t, reflecting the uncertainty in

the estimate. It is computed as a weighted sum of the covariances Σi
t|t of each mode, plus

discrepancy between the individual mode estimates x̂i
t|t and the overall mean x̂t|t.

IMM details

Suppose we have the previous sufficient statistics {x̂it−1|t−1,Σ
i
t−1|t−1, µ

i
t−1}

Nm
i=1. Then, a single

step of the IMM algorithm to obtain the current sufficient statistics {x̂it|t,Σ
i
t|t, µ

i
t}

Nm
i=1 is given as

follows:

• Mixing:
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– Calculate the mixing probabilities {µji
t−1|t−1}

Nm
i,j=1 as:

µji
t−1|t−1 =

πjiµj
t−1∑Nm

ℓ=1 π
ℓiµℓ

t−1

Here, the mode switching probability πij = P (λt = j|λt−1 = i) is the ij th element in

the mode transition matrix Π. The mode transition is governed by a finite state Markov

chain. The mode transition matrix is obtained by incorporating the mode evolution in

our simulation. However, the performance of the IMM algorithm is insensitive to the

mode switching probabilities as reported in Thai and Bayen (2014).

– Calculate the mixed estimates {x̂0it−1|t−1}
Nm
i=1 and covariances {Σ0i

t−1|t−1}
Nm
i=1 as:

x̂0it−1|t−1 =

Nm∑
j=1

µji
t−1|t−1x̂

j
t−1|t−1

Σ0i
t−1|t−1 =

Nm∑
j=1

µji
t−1|t−1

[
Σj
t−1|t−1 + (x̂jt−1|t−1 − x̂0it−1|t−1)(x̂

j
t−1|t−1 − x̂0it−1|t−1)

⊤
]

• Mode Matched Filtering:

Mode Matched Prediction Update:

– For the ith model, i = 1, . . . , Nm:

Calculate the predicted estimate x̂it|t−1 and covariance Σi
t|t−1 from the mixed estimate

x̂0it−1|t−1 and covariance Σ0i
t−1|t−1 as:

x̂it|t−1 = A(i)x̂0it−1|t−1 + b(i) + ut

Σi
t|t−1 = A(i)Σ0i

t−1|t−1A
(i)⊤ +Q

Note, the update is following Eq.5.1. A(i) and b(i) correspond to mode i.

Mode Matched Measurement Update:

– For the ith model, i = 1, . . . , Nm:
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Calculate the updated estimate x̂it|t and covariance Σi
t|t from the predicted estimate x̂it|t−1

and covariance Σi
t|t−1 as:

x̂it|t = x̂it|t−1 +Ki
t(yt − ŷit|t−1)

Σi
t|t = Σi

t|t−1 −Ki
tS

i
tK

i⊤
t

Here, the predicted measurement ŷit|t−1, innovation covariance Si
t , and Kalman gain Ki

t

are given by:

ŷit|t−1 = Cx̂it|t−1

Si
t = CΣi

t|t−1C +R

Ki
t = Σi

t|t−1C(Si
t)

−1

Note, in our current setting, D(i) is also an identity matrix.

Calculate the updated mode probability µi
t as:

µi
t =

N (yt; ŷ
i
t|t−1, S

i
t)
∑Nm

j=1 π
jiµj

t−1∑Nm
ℓ=1N (yt; ŷℓt|t−1, S

ℓ
t )
∑Nm

j=1 π
jℓµj

t−1

• Output Estimate Calculation:

– Calculate the overall estimate x̂t|t and covariance Σt|t as:

x̂t|t =

Nm∑
i=1

µi
tx̂

i
t|t

Σt|t =

Nm∑
i=1

µi
t

[
Σi
t|t + (x̂it|t − x̂t|t)(x̂

i
t|t − x̂t|t)

⊤
]

The IMM algorithm is used as a model-based state estimation algorithm in our study. We aim

to show the optimal sensor location based on observability analysis has a value in traffic surveillance.

The estimation qualities are compared for different sensor locations, and we attempt to find the

correlation between observability and estimation quality.
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Two numerical examples are used in the following sections: 1. A 6-link network traffic dynamics

is simulated using SUMO. 2. A 22-link network simulated using the stochastic LQM in Eq.5.1.

5.2 A 6-link toy network

Let us first start with the aforementioned 6-link network example shown in Figure 4.1. The

traffic is simulated using the simulation software SUMO. The ground truth data is intentionally

generated using simulation rather than the LQM to answer the following questions: What if the

traffic network dynamics does not exactly follow the LQM, which after all is a simplification of the

reality? Is the observability property calculated based on the mode-switching link queue model still

meaningful?

In the simulation, each link is set to be 200 meters long. Link 1,3,4,5 are considered as the

mainstream corridor and have higher free-flow travel speeds than link 2 and 6 (on- and off-ramps).

The fundamental diagrams are fitted both for the mainstream and ramps:

• Link 1,3,4,5: vf = 108km/h, w = 18km/h, kj = 135veh/km

• Link 2,6: vf = 72km/h, w = 15km/h, kj = 140veh/km

The outflow at link 5 is intentionally controlled to generate congestion that propagates to link

1, 2, 3, and 4. During the simulation, boundary flows are captured by additional loop detectors at

the immediate upstream/downstream of the 6-link network. Real-time occupancy data collected at

the midpoint of each link is then converted to density, serving as the ground truth. Note that the

ground truth simulated by SUMO is independent of our choice of the macroscopic traffic model.

The layout of the sensors in the SUMO network is shown in Figure 5.1.

Figure 5.1: SUMO network
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To quantify the observability in Eq.4.4a, we first need to model the traffic dynamics in the

LQM. The fundamental diagram and the error covariance are estimated. The fitted LQM and the

SUMO simulation are well allign, as shown in Figure 5.2.

Figure 5.2: The fitted LQM vs the actual simulated link density

The evolution of link densities and the corresponding mode switches in this experiment is

illustrated in Figure 5.3. Starting from free-flow condition, the queue spillback generates 7 dis-

tinct traffic conditions. The SUMO network and its setup can be found at https://github.com/

Xinyue-H/Sensor-Location-Optimization.
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Figure 5.3: Link densities and mode switches in the 6-link network experiment

Let us first look at the results showing how different sensor location strategies could impact

the observability outcome. We set the number of sensors to be deployed as 4. By solving the

optimization problem in Eq. (4.4), we identify the optimal sensor locations as links 1, 2, 5 and

6, which leads to 5.82 observable links on average. This optimal sensor deployment strategy is

compared with all other possible sensor location choices, which lead to an average observability

ranging between 4.31 and 5.59. Detailed result is reported in Table 5.1.

Next, we address possible questions that reader might be wondering: the definition and analysis

associated with observability seem to be centered around a piecewise linear dynamic traffic model,

which might deviate far from the reality. Besides serving our intellectual curiosity in a theoretical

sense, does the established observability understanding have any practical meaning? The following

experiment shows that increased observability leads to better estimation quality, which indicates

that a sensor placement strategy that maximizes observability should benefit downstream traffic

state estimation applications.

Table 5.1 compares the degree of observability with the estimation quality, measured by the

Mean Absolute Percentage Error (MAPE), under different sensor location strategies. The MAPE
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Table 5.1: Different sensor locations comparison

Sensor location Observability MAPE (%)

(1, 2, 5, 6) 5.82 17.18
(1, 2, 4, 6) 5.59 38.73
(1, 3, 5, 6) 5.59 26.54
(1, 4, 5, 6) 5.52 33.06
(2, 3, 5, 6) 5.27 344.64
(1, 3, 4, 6) 5.27 58.87
(1, 2, 3, 6) 4.96 91.85
(1, 2, 3, 5) 4.96 394.37
(2, 3, 4, 6) 4.95 382.66
(1, 2, 4, 5) 4.95 199.81
(2, 4, 5, 6) 4.89 25.24
(1, 2, 3, 4) 4.64 548.89
(1, 3, 4, 5) 4.62 547.34
(3, 4, 5, 6) 4.62 288.71
(2, 3, 4, 5) 4.31 1200.27

aggregated across all n links and T time steps is computed as:

MAPE =
1

nT

n∑
i=1

T∑
t=1

∣∣∣∣∣x(i)t − x̂
(i)
t

x
(i)
t

∣∣∣∣∣× 100

where x
(i)
t represents the actual value at time step t for the i-th link time series data, and x̂

(i)
t

is the corresponding estimated value.

From these results, we hope to observe the correlation between observability and state estima-

tion. This is not trivial because good observability does not necessarily guarantee good estimation

quality since estimation also involves the identification of the mode switches – for estimation, the

exact mode switching time and the true mode remain unknown and are inferred simultaneously with

the state estimation; the only given information are the boundary flows, fundamental diagrams,

and the covariance of the Gaussian noise term.

We observe that the highest observability sensor location corresponds to the lowest estimation

error. Also, sensor placement with higher observability generally results in better estimation quality.

Conversely, instances of poor observability can lead to substantial MAPE, primarily because loss

of observability leads to uninformed guesses of the state and a lack of correction. For example,
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our IMM algorithm does not enforce the link density to be in the range from zero to jam density.

When a state is unobservable under the current system mode, the measurement lacks information

about the unobservable state. Consequently, the estimation quality for the unobservable states is

very poor. Let us take a closer look at the case of sensor placement (1,2,3,4) as shown in Figure

5.4. During the period when both link 5 and 6 are unobservable, the estimation error consistently

grows. When link 5 becomes observable at 430 seconds, the estimation of link 5 density now can

be corrected by the measurement and the estimated density aligns closely with the actual value.

Subsequently, when link 5 becomes unobservable again, the estimation quality soon deteriorates.

While for link 6, since it is not observable throughout the entire period, its estimated state is

consistently poor. Thus, although observability and state estimation are two different concepts, we

demonstrate that it is advantageous to place sensors in a way that maximizes the average number

of observable components. This holds true even when the mode switching time and identification

are not provided.

Figure 5.4: Estimation with sensor located on link 1,2,3,4
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5.3 A fabricated 22-link network

Now let us show a numerical example using the network used in Rinaldi (2018) (see Figure

5.5). The experiment is set up as follows. The traffic is simulated based on Eqs. 5.1 and Eq.

5.2. We acknowledge that simply adding a Gaussian process noise to the LQM indeed leads to

an oversimplified stochastic traffic flow model. For more sophisticated stochastic traffic modeling,

interested readers can refer to Jabari and Liu (2013) and Sumalee et al. (2011). Our purpose here

is not to develop a stochastic traffic model, but rather to use one to generate traffic ground truth

that deviates from the LQM used in our analysis.

5.3.1 Observability and estimation quality

We intentionally controlled boundary flows to generate 585 different congestion modes. Links

10 and 11 are set to be bottlenecks. Modes are weighted based on the duration of their occurrence.

Details of the parameter setup of the experiment can be found at https://github.com/Xinyue-H/

Sensor-Location-Optimization.
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Figure 5.5: Numerical example: a 22-link network

First, let us explore the performance of different sensor location strategies in terms of both

observability and estimation quality. The total number of sensors takes a value between 16 and 19.

The optimal sensor location solution for each p is obtained by solving the optimization problem

in Eq. 4.4. The optimal sensor location solutions and their resulted average observabilities and

MAPE are reported in the Table 5.2. To generate different sensor location strategies for comparison

purpose, we enumerated all sensor location combinations for p =17, 18, or 19. For p = 16, we

sampled 6000 possible sensor location combinations, 1500 in each bin. Figure 5.6 reports the

estimation errors from different sensor location strategies that are categorized based on their average

observability. Each box plot shows the max, 75% quartile, median, 25% quartile, and the min

MAPE resulted from various sensor location solutions within the corresponding observability bin1.

The red dashed line corresponds to the optimal sensor location solution. Using p = 16 as an

example, our optimal sensor location leads to an average MAPE around 54%.

1For the case of 16 sensors, since there are very few sensor location strategies resulted in an observability between
16-17 and 21-22, the bins are merged with 17-18 and 20-21, respectively.
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Table 5.2: Optimal sensor placement solutions

Sensor Num Sensor location Observability MAPE (%)
16 (1, 2, 3, 5, 6, 7, 8, 9, 14, 15, 16, 17, 18, 19, 20, 21) 21.52 53.69
17 (1, 2, 3, 5, 6, 7, 8, 9, 14, 15, 16, 17, 18, 19, 20, 21, 22) 21.74 16.97
18 (1, 2, 3, 5, 6, 7, 8, 9, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22) 21.90 14.86
19 (1, 2, 3, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22) 21.96 11.41

(a) 16 sensors (b) 17 sensors

(c) 18 sensors (d) 19 sensors

Figure 5.6: Impact of observability on estimation quality

Based on the results in Figure 5.6, we have the following findings:

• The optimal sensor location solutions from our max-observability sensor location model per-

form consistently well in terms of traffic state estimation measured by MAPE.

• Overall, sensor placement with better observability tends to result in improved estimation

quality, indicated by lower MAPE values.

• Sensor placement with high observability is associated with a reduced risk of extreme inac-
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curacies in estimation.

These results indicate that maximizing observability across various traffic conditions should be a

key consideration in the sensor placement problem due to its demonstrated significance in dynamic

traffic state estimation, which is a key for real-time traffic surveillance.

In the experiment above, the number of sensors is relatively large. Readers might wonder

whether the concept of obervability still matters in case one has only a small number of sensors to

deploy. Now, let us show an example of placing only 4 sensors in the 22-link network. By solving

the optimization problem in Eq. 4.4 with p = 4 and the 585 modes being incorporated, we identify

the optimal sensor locations as links 7, 13, 14, 16, which leads to 11.76 observable links on average.

This max-observability sensor location strategy is compared with a naive choice of placing sensors

on links 10, 11, 12 and 13 to cover all four paths connecting the three OD pairs. The naive choice

leads to 8.89 observable links on average. Figure 5.7 provides more details of the comparison of

the two sensor location choices. Darker green indicates better observability. If a link is observable

all-time, the corresponding value should be 1. This example shows that even with very few sensors

to work with, strategically placing them still makes a significant difference.

(a) Naive solution based on path-covering rule (b) Optimal sensor location solution

Figure 5.7: Comparison of observability resulted from two sensor location solutions
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In Figure 5.7a, the links on the lower left corner (link 14, 15, 16, 17, 20, 21) are poorly observed.

This can cause very limited information on those links’ dynamics.

5.3.2 Advantage of observability: a comparison with greedy sensor placement

strategies

Observability maximization vs greedy sensor placement strategies

Although the previous example shows the our sensor placement based observability maximiza-

tion leads to better estimation quality, one may wonder how observability based sensor location

performs compared with other sensor placement strategies. In this subsection, we proposed 3 greedy

sensor location strategies which are potentially good strategies for traffic state estimation:

• Greedy 1 (maximum variance): locate sensors on links where the link densities vary the

most

• Greedy 2 (maximum flow): locate sensors on links with maximum traffic flow

• Greedy 3 (maximum density): locate sensors on most congested links

All of these greedy sensor placement strategies maximize information in some sense. In the

previous subsection example, the 22 links have 2 different fundamental diagrams. The same pa-

rameters cause the problem of symmetry which undermines observability. To better illustrate the

effectiveness of observability maximization, we implement a new simulation where structural ob-

servability leads to exact observability. Out of the 22 links, we show for different number of sensors

(p = 11, 12, ..., 19), the observability maximization sensor location strategy outperforms the greedy

algorithms, as summarized in Table 5.3:

The lowest MAPE for each sensor number p is highlighted. From this result, the sensor

location by observability maximization has the best performance in state estimation compared

with the proposed greedy sensor placement strategies. Similar to Figure 5.6, we enumerated all

sensor location combinations for p =17, 18, or 19. For p = 16, we sampled 6000 possible sensor
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p Max var (%) Max flow (%) Max density (%) MAPE maxobs (%)

11 4.70 4.96 5.46 4.51
12 4.13 4.57 4.57 3.82
13 3.72 4.12 4.12 3.45
14 3.44 3.72 3.77 3.34
15 3.31 3.37 3.37 2.90
16 2.81 2.97 2.97 2.39
17 2.47 2.47 2.47 2.08
18 2.24 1.88 1.88 1.70
19 1.65 1.65 1.34 1.34

Table 5.3: MAPE in estimation: observability maximization vs greedy sensor placement

location combinations, 1500 in each bin. Figure 5.8 reports the estimation errors from different

sensor location strategies that are categorized based on their average observability.

(a) 16 sensors (b) 17 sensors

(c) 18 sensors (d) 19 sensors

Figure 5.8: Impact of observability on estimation quality (when structural observability is equivalent
to exact observability)
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5.3.3 Observability quality: when structural observability is not equivalent to

exact observability

Structural observability does not always imply (exact) observability. First, we show an example

where structural observability and exact observability may differ. Note that in this example the

parameters of some links are intentional altered (to set to be identical) to create symmetry, with

the intention to generate a case where structural observability differs from observability. The mode

matrix A in this case is:



0 0 0 0 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −108 −18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −18 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −18 0 0 0 9 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −18 0 0 0 0 18 0 0 0 0 0 0 0 0 0

0 0 0 108 0 0 0 0 0 −108 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −108 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −18 0 0 0 0 0 36 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −18 0 0 0 0 0 18 0 0 0

0 0 0 0 0 0 0 0 0 108 0 0 0 −108 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 54 0 0 0 −108 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 54 0 0 0 0 −108 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −108 −18 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −18 0 0 0 9

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −18 0 0 9

0 0 0 0 0 0 0 0 0 0 0 0 0 108 108 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 108 108 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −18



Since exact observability requires knowledge of the exact values of parameters, we will imple-

ment the experiment in the “most likely” mode (the one that occurs the most during the simulation).

The inference diagram and the necessary sensors are shown in Figure 5.9. For structural observ-

ability, our Graphical Approach concludes only the source nodes (link 1, 2, 3, 6, 9, 20, 21) have to

be observed, as shown in green. However, for exact observability considering the link weights, extra

sensors must be put on link 15 and link 17 (colored in blue). In link pairs (14, 15) and (16, 17),

the individual links within a pair cannot be distinguished due to symmetry with only the upstream
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being observed. As a result, extra sensors are needed on at least one individual component within

a pair.

Figure 5.9: Sensor placement for exact observability for one of the modes

With this example, we understand that structural observability does not guarantee exact ob-

servability. When exact observability cannot be achieved, the proposed structural observability

maximization result might be deteriorated. After all, the so-called observable system may no

longer be observable any more. We demonstrate this using 2 more simulation settings on the same

22-link network example.

Case 1: 22 links with only 2 Fundamental diagrams

In this example, the 22 links only have 2 different fundamental diagrams. The same param-

eters in the fundamental diagrams lead to loss of observability, even if structural observability

is achieve. To fully observe the system, extra sensors are needed and the conclusion from the

structural observability should be treated with caution.

The comparison between observability maximization and greedy sensor placement strategies

are summarized in Table 5.5:
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p Max var (%) Max flow (%) Max density (%) MAPE maxobs (%)

11 175.57 13.89 30.47 13.70
12 205.79 10.96 22.93 13.22
13 223.66 9.32 11.88 12.12
14 221.37 7.91 10.89 20.02
15 138.64 7.37 9.16 18.07
16 71.28 6.07 9.12 19.34
17 69.99 5.42 8.05 16.82
18 6.52 3.62 5.81 6.13
19 4.22 2.38 4.40 3.82

Table 5.4: Case 1: 22-link network simulated with 2 fundamental diagrams

Case 2: 22 links with 10 Fundamental diagrams

In this example, the 22 links have 10 different fundamental diagrams. Link 14, 15, 16, 17 have

the same fundamental diagram, causing a symmetry leading to loss of observability.

The comparison between observability maximization and greedy sensor placement strategies

are summarized in Table 5.5:

p Max var (%) Max flow (%) Max density (%) MAPE maxobs (%)

11 20.07 7.14 16.10 9.01
12 4.42 6.70 12.06 8.89
13 4.19 5.57 5.62 7.43
14 3.74 3.81 4.81 6.85
15 3.15 3.33 3.33 4.95
16 2.62 2.80 2.95 4.83
17 2.23 2.22 2.54 2.10
18 1.77 1.62 2.00 1.50
19 1.53 1.42 1.42 1.13

Table 5.5: Case 2: 22-link network simulated with 10 fundamental diagrams

From these two additional examples, we have two observations:

• The observability maximization is generally a good sensor location strategy for accurate state

estimation, although it might not be the best compared with other good greedy strategies

when observability is deteriorated.

• The estimate accuracy is undermined for these two examples. This is due to the lack of
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observability when the symmetry in parameters occurs.

With the examples in this chapter, we conclude that observability maximization is good strat-

egy for sensor placement to understand the traffic density dynamics. When observability is deteri-

orated due to symmetry of parameters, the significance of observability is undermined. It implies

that the exact parameterization matters in state estimation. Other metrics of observability such

as observability Gramian and condition number of observability matrix O can be examined.
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Chapter 6

Discussion and Conclusion

In this study, we have leveraged the algebraic and graphical properties of traffic network

dynamics to design optimal sensor deployment solutions to ensure full observability or maximize

observability. We have proposed a systematic Algebraic Approach to identify sensor locations for

full observability with a minimal number of sensors. The Algebraic Approach remains applicable

regardless of the choice of parameter, and thus is an exact observability method. Additionally, by

exploiting special features of dynamic traffic systems, we are able to establish new analytical and

computational methods beyond what has been reported in the general complex systems literature.

Our sensor location model takes into account a wide range of traffic conditions, and provides

an optimal solution that performs well in an average sense. This design philosophy supports the

growing interest in moving away from a deterministic mentality and achieving a system design that

could cope with broader future uncertainties. It is true that observability analysis of a dynamical

system would require some prior knowledge of the system. In the I80 East case study, we showcased

that even with coarse information about the modes based on speed information from Google Maps,

we are able to identify good sensor location solutions. In a sense, one can consider the preparation

of the information about traffic modes equivalent to the exercise of uncertainty modeling when one

is constructing a stochastic optimization model. Consistent with the widely adopted practice in the

stochastic programming field, the modes and their associated weights/probabilities that are input
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to the sensor location model do not need to cover the entire distribution of the uncertain traffic

condition, rather it is meant to provide a good representation of the important traffic scenarios

that are considered significant to the system operator.

Despite the progress presented in this dissertation, the understanding of observability in dy-

namic traffic systems is still in its preliminary stage and demands much further research. For

example, to incorporate the various traffic conditions, either simulations or real data can be used

to provide such prior knowledge, as we demonstrated in the numerical example and case study. For

future research, one may consider incorporating the simultaneous identification or detection of mode

changes in a sensor placement problem. Also, the numerical examples included in this dissertation

only include varying traffic conditions as a source of uncertainty. There could be other sources in a

traffic system that might generate uncertainties. For example, an incident might change the shape

of the fundamental diagram of involved links. The stochastic programming based sensor location

model indeed can handle a wide range of uncertainty scenarios, but to prepare input characterizing

those uncertainties is not a trivial task, which itself requires deep domain expertise. In addition,

the sensor optimization model (4.4), which is equivalent to a two-stage stochastic programming

model, treats different traffic modes as possible snapshots of uncertain scenarios, despite the dy-

namic evolution of these modes. If one wishes to model the sequence of the occurrence of various

modes caused by dynamic evolution, one may consider a multi-stage stochastic programming frame-

work, where uncertainty evolves over time as a scenario tree. However, such additional modeling

flexibility would come at a price of computational difficulty. Another potential direction is to inte-

grate observability and estimation quality in the context of sensor placement problems. Through

numerical examples, we have demonstrated a positive correlation between observability and traffic

state estimation quality. How to explicitly express estimation quality in the optimal sensor location

model, whether through constraints or in the objective function, would be an interesting question

to explore. Moreover, the current optimization model aims for an average performance. When

estimation quality comes to the picture, there could be many creative ways of expressing a targeted

performance, such as in terms of reliability or robustness, depending on one’s risk preferences. Fi-

nally, our structural observability analyses are based on piecewise linear systems. Even though we
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are able to show the effectiveness of incorporating structural observability in dynamical systems

that deviate from the piecewise linear model, it would be too naive to assume there could not be

more suitable information measures than what we introduced in this work. Exploring other ways

of measuring information richness to guide sensor placement strategies would be a worthy effort for

future research.
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multistage stochastic programming problems. Annals of Operations Research, 200(1):147–170,

November 2012. ISSN 0254-5330. doi: 10.1007/s10479-011-0935-y. Funding Information: This

research was supported by the NSF award CMII-0965689.

Sergio Contreras, Pushkin Kachroo, and Shaurya Agarwal. Observability and sensor placement

problem on highway segments: A traffic dynamics-based approach. IEEE Transactions on Intel-

ligent Transportation Systems, 17(3):848–858, 2015.

Carlos F Daganzo. The cell transmission model: A dynamic representation of highway traffic

consistent with the hydrodynamic theory. Transportation Research Part B: Methodological, 28

(4):269–287, 1994.

Carlos F Daganzo. The cell transmission model, part ii: network traffic. Transportation Research

Part B: Methodological, 29(2):79–93, 1995.

Adam Danczyk, Xuan Di, and Henry X Liu. A probabilistic optimization model for allocating

freeway sensors. Transportation Research Part C: Emerging Technologies, 67:378–398, 2016.

76



Anett Ehlert, Michael GH Bell, and Sergio Grosso. The optimisation of traffic count locations in

road networks. Transportation Research Part B: Methodological, 40(6):460–479, 2006.

Xiang Fei, Hani S Mahmassani, and Stacy M Eisenman. Sensor coverage and location for real-time

traffic prediction in large-scale networks. Transportation Research Record, 2039(1):1–15, 2007.

Xiang Fei, Hani S Mahmassani, and Pamela Murray-Tuite. Vehicular network sensor placement

optimization under uncertainty. Transportation Research Part C: Emerging Technologies, 29:

14–31, 2013.

Monica Gentili and Pitu B Mirchandani. Locating sensors on traffic networks: Models, challenges

and research opportunities. Transportation research part C: emerging technologies, 24:227–255,

2012.

Sheng-xue He. A graphical approach to identify sensor locations for link flow inference. Trans-

portation Research Part B: Methodological, 51:65–76, 2013.

Shou-Ren Hu, Srinivas Peeta, and Chun-Hsiao Chu. Identification of vehicle sensor locations for

link-based network traffic applications. Transportation Research Part B: Methodological, 43(8-9):

873–894, 2009.

Saif Eddin Jabari and Henry X Liu. A stochastic model of traffic flow: Gaussian approximation

and estimation. Transportation Research Part B: Methodological, 47:15–41, 2013.

Wen Long Jin. A link queue model of network traffic flow. Transportation Science, 55(2):436–455,

2021. ISSN 15265447. doi: 10.1287/TRSC.2020.1012.

Rudolf E Kalman. On the general theory of control systems. In Proceedings First International

Conference on Automatic Control, Moscow, USSR, pages 481–492, 1960.

Xiaopeng Li and Yanfeng Ouyang. Reliable sensor deployment for network traffic surveillance.

Transportation research part B: methodological, 45(1):218–231, 2011.

77



Michael James Lighthill and Gerald Beresford Whitham. On kinematic waves ii. a theory of traffic

flow on long crowded roads. Proceedings of the Royal Society of London. Series A. Mathematical

and Physical Sciences, 229(1178):317–345, 1955.

Ching-Tai Lin. Structural controllability. IEEE Transactions on Automatic Control, 19(3):201–208,

1974.

Yang-Yu Liu, Jean-Jacques Slotine, and Albert-László Barabási. Controllability of complex net-
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Appendix A

As we mentioned in the Algebraic Approach, the procedure may induce redundant sensors.

This is due to the fact that Step 2 is not aware of the sensor placement result corresponding to

different eigenvalues. The numerical example corresponding to Figure 5.9 in Section 5.3 has the

following system matrix A:



0 0 0 0 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −108 −18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −18 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −18 0 0 0 9 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −18 0 0 0 0 18 0 0 0 0 0 0 0 0 0

0 0 0 108 0 0 0 0 0 −108 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −108 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −18 0 0 0 0 0 36 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −18 0 0 0 0 0 18 0 0 0

0 0 0 0 0 0 0 0 0 108 0 0 0 −108 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 54 0 0 0 −108 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 54 0 0 0 0 −108 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −108 −18 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −18 0 0 0 9

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −18 0 0 9

0 0 0 0 0 0 0 0 0 0 0 0 0 108 108 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 108 108 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −18



If we implement Step 1-3, we will get extra sensors needed (link 7, 13) as shown in Figure

A.1. These two sensors are identified to be redundant.
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Figure A.1: Without Step 4: redundant sensors

Step 4 detects and removes the redundant sensors by implementing the following steps:

• The initial solution require to observe link 1, 2, 3, 6, 7, 9, 13, 15, 17, 20, 21.
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• The corresponding observation matrix C is:



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0


• For each sensor, check if not using that sensor still leads to full observability: remove the

corresponding row in C, use the reduced matrix C∗ for the observability test (Kalman’s rank

test). If the system is observable, then the sensor is redundant.
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