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Abstract

BACKGROUND: Postoperative respiratory failure (PRF) is associated with increased hospital
charges and worse patient outcomes. Reliable prediction models can help to guide postoperative
planning to optimize care, to guide resource allocation, and to foster shared decision-making with
patients.

RESEARCH QUESTION: Can a predictive model be developed to accurately identify patients at
high risk of PRF?

STUDY DESIGN AND METHODS: In this single-site proof-of-concept study, we used
structured query language to extract, transform, and load electronic health record data from 23,999
consecutive adult patients admitted for elective surgery (2014-2021). Our primary outcome was
PRF, defined as mechanical ventilation after surgery of > 48 h. Predictors of interest included
demographics, comorbidities, and intraoperative factors. We used logistic regression to build a
predictive model and the least absolute shrinkage and selection operator procedure to select
variables and to estimate model coefficients. We evaluated model performance using optimism-
corrected area under the receiver operating curve and area under the precision-recall curve and
calculated sensitivity, specificity, positive and negative predictive values, and Brier scores.

RESULTS: Two hundred twenty-five patients (0.94%) demonstrated PRF. The 18-variable
predictive model included: operations on the cardiovascular, nervous, digestive, urinary, or
musculoskeletal system; surgical specialty orthopedic (nonspine); Medicare or Medicaid (as the
primary payer); race unknown; American Society of Anesthesiologists class = 111; BMI of 30 to
34.9 kg/m?; anesthesia duration (per hour); net fluid at end of the operation (per liter); median
intraoperative FI1O,, end title CO», heart rate, and tidal volume; and intraoperative vasopressor
medications. The optimism-corrected area under the receiver operating curve was 0.835 (95%
Cl1,0.808-0.862) and the area under the precision-recall curve was 0.156 (95% ClI, 0.105-0.203).

INTERPRETATION: This single-center proof-of-concept study demonstrated that a structured
query language extract, transform, and load process, based on readily available patient and
intraoperative variables, can be used to develop a prediction model for PRF. This PRF prediction
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model is scalable for multicenter research. Clinical applications include decision support to guide
postoperative level of care admission and treatment decisions.

Keywords

bootstrapping; least absolute shrinkage and selection operator; phenotyping; postoperative;
predictive model; respiratory failure

Postoperative respiratory failure (PRF), defined as requiring mechanical ventilation (MV)
after surgery of > 48 h, is a major source of morbidity.! With an incidence of 0.2% to
7.5%,174 PRF is associated with increased hospital charges, hospital and ICU lengths of
stay, and in-hospital and postdischarge morbidity and mortality.>~8 Risk factors for PRF in
patients undergoing a broad spectrum of surgical procedures have been analyzed in prior
predictive models.1-9:10

However, consensus among these models is lacking because of differences in PRF
definition, population, and predictors of interest. Other studies have focused on
homogeneous patient populations, such as abdominal,1! neurological 2 or cardiovascular!3
surgery patients, often including both elective and emergent surgical procedures. The
Centers for Medicare & Medicaid Services includes PRF that occurs after elective surgery
in the Hospital-Acquired Condition Reduction and Hospital Compare Public Reporting
Programs, yet progress in reducing the incidence of PRF has been hindered by this lack

of consensus in identifying the most at-risk patients. Identifying patients at increased risk
of PRF after elective surgery is an important step toward developing clinical workflows to
improve postoperative care and outcomes while appropriately allocating hospital resources.
Such workflows include postoperative level of care, admission location, monitoring, and
treatment orders for at-risk patients.

Herein we describe an automated structured query language (SQL)-based extract, transform,
and load (ETL) procedure that enables rapid acquisition of data exclusively from an
electronic health record (EHR). We then used the selected and validated data to develop

a single-site proof-of-concept predictive model* for PRF after elective surgery in adults.
Our aim was to develop a model that considered a patient’s pre-existing risk factors,
intraoperative care and physiologic parameters, and status on exiting the operating room

to identify patients at risk of PRF. We hypothesized that our model would have at least

good discrimination and would be well calibrated across its range of predicted probabilities.
Our methods will allow us to expand our SQL ETL process across the five centers of our
University of California Critical Care Research Collaborative for further model development
and validation. Generating standardized, automated approaches to large-scale multicenter
research using real-world data is crucial in predictive modeling of rare adverse events, such
as PRF.

Study Design and Methods

This retrospective cohort study was approved by the institutional review board at the
University of California, Davis; the requirement for informed consent was waived. This
article adheres to the Strengthening the Reporting of Observational Studies in Epidemiology
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Statement!® and the Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis Or Diagnosis'® guidelines.

Study Design, Setting, and Population

We analyzed 23,999 consecutive adult patients undergoing elective surgery at a single
academic center (2014-2021). The start date was selected based on the conversion from
paper to EHR clinical documentation for perioperative services and the end date was
selected to provide access to 8 full calendar years of data for ETL. Inclusion criteria

were adults aged 18 years and older, elective surgical admissions, undergoing an operation
within 24 h of admission, and general anesthesia. Exclusion criteria were transfers from
another hospital and a tracheostomy present on admission. The primary outcome was PRF.
Secondary outcomes included hospital and ICU length of stay and discharge disposition.

Data ETL Procedure

PRF was defined as > 48 h of MV, from the anesthesia end time to hospital discharge.
Predictors of interest spanned the preoperative and intraoperative care continuum and
included demographics, pre-existing comorbidities, and preoperative and intraoperative
factors (e-Table 1). We used SQL coding to perform the data ETL procedure from our Epic
EHR (e-Appendix 1). Two clinicians validated data acquisition by comparing ETL output
for 100% of patients with PRF and a random 10% of patients without PRF via manual
independent chart review until agreement reached 100%. All variables had < 2.5% missing
data; missingness was imputed to the cohort mode for categorical variables and median for
continuous variables. Although other studies have included preoperative laboratory values,
despite also having > 50% missing datal” and emergency surgery8-20 in their models, we
opted not to include either. Although our health system, like others, has used an SQL ETL
process for clinical data, this was our first use of this method for perioperative flow sheet
data from the Epic OpTime module.

Descriptive Statistics

We report the median and interquartile range for continuous variables and total number and
percentage for categorical variables. We used Pearson’s XZ test and the Wilcoxon rank-sum
test to compare patients with PRF with patients without PRF for categorical and continuous
variables, respectively. Significance was set a priori at £< .05. Data were analyzed using
Stata MP version 18 software (StataCorp) and R version 4.2.2 software (R Foundation for
Statistical Computing).

Predictive Model Development and Evaluation

We used logistic regression to build the predictive model# and least absolute shrinkage
and selection operator (LASS0)?! regularization to select variables and estimate model
coefficients (e-Table 2). Our conceptual model for the analysis considered a patient’s pre-
existing risk factors, intraoperative factors, and status on exiting the operating room to
identify patients at risk of PRF (Fig 1).

Before model fitting, we dichotomized all categorical variables and standardized all numeric
variables to have a mean of 0 and an SD of 1. To select the regularization parameter in
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the logistic LASSO model, we used a 10-fold cross-validation procedure and application of
the 1-SE rule. This helps to ensure the generalizability and interpretability of the model by
encouraging parsimony.22 We retained variables with nonzero coefficients from the fitted
logistic LASSO model in the final prediction model. Given the small number of patients
with PRF and the need to develop a model representative of the real-world prevalence

of PRF, we used the entire data set in model development. To evaluate the performance

of the model while controlling for overfitting, we used an optimism-corrected bootstrap
procedure.23 We drew 250 bootstrap samples from the training data stratified by PRF group,
maintaining the overall sample prevalence, and repeated the logistic LASSO modeling
procedure on each bootstrap sample. We estimated optimism-corrected performance using
the bootstrap models following Steyerberg.23 We additionally used a bootstrap procedure
in combination with the logistic LASSO2* model fitting procedure to evaluate the stability
of the variable selection procedure by calculating the frequency at which each variable was
selected in the bootstrap models. This approach has the advantage of providing a robust
feature selection performance and a more accurate estimate of coefficients. By training
multiple LASSO models on different bootstrap samples of data, this method accounts

for data variability and helps to identify features that consistently are important across
different samples. We evaluated model performance using area under the receiver operating
characteristic curve (AUC) and area under the precision-recall curve (AUPRC). Sensitivity,
specificity, positive and negative predictive values, and Brier scores were calculated using a
cutoff that maximized Youden’s index (Fig 2).

Sensitivity and Robustness Analyses

Results

We conducted secondary analyses to verify the optimism-corrected bootstrap procedure
results and to evaluate robustly the model’s performance. For these analyses, data were split
temporally into a training set (2014-2018) and a test set (2019-2021). First, the training set
was used to develop a model in the same manner as the primary analysis and was evaluated
on the test set. Second, again using the training set, we developed models using 1,000
bootstrapped data sets with equal numbers of patients with PRF and patients without PRF by
randomly sampling from among patients without PRF. These models also were evaluated on
the test set (e-Appendix 2). We also conducted a sensitivity analysis to determine the effect
of the Elixhauser comorbidity count and score on model performance (e-Appendix 3).

Pre-existing Patient and Intraoperative Characteristics

After 23,999 consecutive surgical encounters, PRF developed in 225 patients (0.94%).
Patients with PRF were older, male, covered by Medicare, not obese, and admitted with
multiple comorbidities (Table 1).25:26 Patients with PRF underwent longer anesthesia and
surgery durations and more often underwent surgery on the cardiovascular system (Table

2). Patients with PRF also showed lower operative tidal volume and greater net positive
fluid balance at the end of surgery and 24 h after surgery. Patients with PRF received

more morphine equivalent units and more often received vasopressor medications. The most
frequently used vasopressor medication in patients with PRF was norepinephrine and in
patients without PRF was phenylephrine. Among all patients, the first oxygen device outside
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of the operating room was supplemental oxygen (47.3%), followed by room air (45.9%),
MV (4.9%), noninvasive positive pressure ventilation (0.8%), and high-flow nasal cannula
(0.05%). Patients with PRF left the operating room while receiving MV more often than
patients without PRF (49.8% vs 4.5%) and while receiving room air less often (14.2%

vs 46.3%; P<.001). Patients with PRF underwent a median of 164 h of postoperative
MV (Table 2). Nearly one-half of patients with PRF continued to receive MV for > 48 h
immediately after surgery, whereas 52% were reintubated and returned to MV for > 48 h.
The median time to reintubation for patients with PRF was 51.4 h.

Ninety-nine percent of patients with PRF were admitted to an ICU from the operating room,
compared with only 17% of patients without PRF (P < .001). Patients with PRF underwent
longer hospital and ICU lengths of stay (Table 3). Twenty-four percent of patients with PRF
died in the hospital, compared to < 1% of patients without PRF. Of the 171 patients with
PRF who survived to discharge, 95 patients (42%) were discharged to another facility (eg,
skilled nursing, long-term acute care), rather than home.

Predictive Model Performance

The LASSO procedure retained 18 predictors in the logistic regression (Table 4). Duration
of anesthesia (hours), net fluid balance at operating room departure (liters), operations

on the cardiovascular system, Medicare (as the primary payer), and American Society of
Anesthesiologists class of = 111 were selected as predictors in all bootstrap samples and
increased the odds of PRF. Other predictors included operations on the cardiovascular,
nervous, digestive, urinary, or musculoskeletal system; surgical specialty orthopedic
(nonspine); Medicaid (as the primary payer); race unknown; BMI of 30 to 34.9 kg/m?;
median F10,, end-tidal CO, (EtCO5), heart rate, and tidal volume; and intraoperative
vasopressor medications. All predictors except race unknown and EtCO, were retained in =
80% of bootstrap samples (Table 4).

This model achieved an observed AUC of 0.851 (95% ClI, 0.824—0.878) and an optimism-
corrected AUC of 0.835 (95% Cl, 0.808-0.862) (Fig 3). The observed AUPRC was 0.174
(95% Cl, 0.123-0.221) with an optimism-corrected value of 0.156 (95% CI, 0.105-0.203)
(Fig 4). The calibration curve indicates that the predicted probabilities are a strong match for
the actual outcomes (Fig 5).

We used Youden’s index?’ to identify a potential threshold for discriminating patients with
PRF from patients without PRF. A predicted probability of PRF of 1.315% maximized
Youden’s index, achieving an optimism-corrected sensitivity of 0.647 (95% CI, 0.593—
0.713) and specificity of 0.858 (95% CI, 0.851-0.86) (Table 5). Other performance metrics
(positive predictive value, negative predictive value, Brier score) are provided in Table 5.
The confusion matrix shows 3,372 of 23,774 as false-positive findings and 69 of 225 as
false-negative findings (Table 6).

Sensitivity and Robustness Analyses

In the secondary analyses (e-Appendix 2), the predictors retained in the LASSO logistic
regression and their coefficients like were the primary model (e-Table 2). Performance
metrics of models developed with the training set and applied to the holdout test sets
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were slightly worse than the optimism-corrected metrics for the primary model. The
AUC declined from 0.835 to between 0.763 and 0.786 in the supplementary analyses,
whereas the AUPRC values increased from 0.156 for the primary model to 0.172 in the
comparable secondary analysis (e-Table 3, approach 1). We also performed sensitivity
analysis to determine the effect of including Elixhauser comorbidity count and score on
model performance (e-Appendix 3; e-Table 5, e-Figure 1, e-Figure 2). This resulted in a
13-variable predictive model with a negligible increase in optimism-corrected AUC from
0.835t0 0.84 and an AUPRC from 0.156 to 0.162 (e-Table 4).

Discussion

We developed a prediction model for PRF that used readily available patient preoperative
and intraoperative data from 23,999 consecutive adult elective surgeries using an automated
SQL ETL process. Our model includes 18 variables; duration of anesthesia, net fluid balance
at operating room departure, operations on the cardiovascular system, Medicare coverage,
and American Society of Anesthesiologists class = 111 were selected as predictors in all
bootstrap samples. Other predictors included operations on the cardiovascular, nervous,
digestive, urinary, or musculoskeletal system; surgical specialty orthopedic (nonspine);
Medicaid coverage; race unknown; BMI of 30 to 34.9 kg/m?2; median FIO,, EtCO,, heart
rate, and tidal volume; and intraoperative vasopressor medications. The model showed good
discrimination and calibration. Secondary analyses validated our primary findings.

This study extends prior work in several important ways. In contrast to our previous PRF
research that used manual chart abstraction,28-30 our current study developed and validated
an automated ETL process to enable efficient, standardized acquisition of real-world data
from the EHR. The potentially extensible nature of SQL ETL processes should allow
adaptation of our methods to the EHRs of other research sites, thereby enabling data
acquisition and large-scale research into rare events like PRF that would not be feasible if
data collection were restricted to manual chart review. Although our prior work focused on
developing an explanatory model, our current study aimed to develop a model optimized for
prediction that eventually might be incorporated into clinical decision support (CDS)-aided
clinical workflows. Our work is distinct from the work of others in that we excluded
emergent surgical procedures and preoperative laboratory findings and focused exclusively
on elective surgical procedures. We also narrowed our outcome of interest to PRF, rather
than the broad continuum of all postoperative pulmonary complications.

In this predictive model, we aimed to estimate accurately the probability that PRF

would develop based on preoperative and intraoperative factors. Other published predictive
models (eg, Assess Respiratory Risk in Surgical Patients in Catalonia [ARISCAT],18
Prospective Evaluation of a Risk Score for Postoperative Pulmonary Complications

in Europe [PERISCOPE],1? and Local Assessment of Ventilatory Management During
General Anesthesia for Surgery [LAS VEGAS]20) focused on all postoperative pulmonary
complications, ranging from atelectasis to respiratory failure, which occurred in 5% to

11% of patients. These models also included emergency surgeries. Despite the good
discrimination of all three models, the focus on all postoperative pulmonary complications
and the inclusion of emergency surgeries makes extrapolation to elective surgery populations
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challenging and external validation of the models in the patient population impossible.
Importantly, the ARISCAT and PERISCOPE studies did not include intraoperative fluid,
medications, or MV parameters in their predictive models. The LAS VEGAS study
evaluated intraoperative predictors, but the inclusion of emergency surgeries precludes direct
comparison with our model. The more recent Respiratory Support, Prolonged Intubation, or
Reintubation. Accuracy (RESPIRE)Y’ single-site predictive model for PRF was EHR based
and had good accuracy; however, in addition to using a consensus definition for PRF that
differed from ours, it included outpatient, same-day, and emergency surgeries and did not
include intraoperative treatment factors, although surgical site was included.

To create a targeted and readily interpretable model for CDS, we chose a fundamentally
different approach by considering both pre-existing patient comorbidities and intraoperative
treatment. Our goal was to consider the effect of a patient’s pre-existing risk factors,
intraoperative care and physiologic parameters, and status on exiting the operating room

to determine risk and to assist in postoperative level of care and treatment decisions. This
approach is congruent with the theory of cascade iatrogenesis, 3132 in which adverse events
may occur if trigger events are not recognized and addressed. An example of cascade
iatrogenesis is intraoperative fluid overload in a patient with pre-existing heart failure,
leading to pulmonary edema, respiratory failure, and invasive MV. We also chose a different
statistical approach than others, logistic regression, because we sought to develop a model
that was readily interpretable by clinicians and that could be developed into a risk score-
based, real-time CDS tool.

Possible clinical applications of our model include identification of at-risk patients who
could benefit from postoperative admission or upgrade to the ICU; implementation

and monitoring of adherence to the daily Assess, Prevent, and Manage Pain, Both
Spontaneous Awakening Trials and Spontaneous Breathing Trials, Choice of Analgesia and
Sedation, Delirium: Assess, Prevent, and Manage, Early Mobility and Exercise, and Family
Engagement and Empowerment bundle33; and the postoperative application of procedure-
specific, evidence-based enhanced recovery after surgery34 protocols. For example, although
enhanced recovery after surgery implementation has been shown to improve outcomes in
almost all major surgical specialties,34 as a multidisciplinary and multimodal approach, it
can be resource intensive, thus limiting its widespread use. Application of well-calibrated
PRF prediction models may allow patient-level risk stratification and subsequent ICU
admission; Assess, Prevent, and Manage Pain, Both Spontaneous Awakening Trials and
Spontaneous Breathing Trials, Choice of Analgesia and Sedation, Delirium: Assess, Prevent,
and Manage, Early Mobility and Exercise, and Family Engagement and Empowerment
bundle implementation; and enhanced recovery after surgery application for only those
patients identified as at risk, simultaneously optimizing patient outcomes and the efficiency
of care delivery by avoiding underuse or overuse of critical care resources.3° Early
identification of patients at risk of PRF, creation of supportive infrastructure, and
implementation of prevention strategies helped one health system reduce PRF by 35%.36

Strengths of our study include our easily interpretable statistical approach, use of a large
and diverse patient population, and restriction to elective surgeries and the outcome of PRF
to reduce heterogeneity. Our development of an SQL ETL data extraction method enabled
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us to analyze all 23,999 consecutive elective surgical encounters over an 8-year period.
This approach could improve the ability to build scale in studies of PRF and to support
implementation and validation of predictive models across health systems. Our focus on

a more narrowly defined population and single serious adverse event should enable future
researchers both to refine predictive models and to test the effects of incorporating model
outputs into CDS-enabled clinical workflows designed to prevent adverse outcomes such as
PRF in at-risk patients.37-38

Limitations of our current study include the single-center proof-of-concept design and

a relatively small number of patients with PRF, which we addressed through optimism-
corrected analyses. With our SQL ETL, we were limited to analyses of data found in
discrete fields, rather than free-text notes. This constrained our definition of the primary
outcome to MV after surgery of > 48 h without further qualification of the reason for
prolonged MV. Thus, it is possible this cohort of 225 patients with PRF includes patients
who required prolonged MV for airway protection, not respiratory failure. In our prior work,
4.3% of patients flagged for PRF had airway compromise, not respiratory failure.28 We also
acknowledge that not all cases of PRF can be prevented. Patients at risk may still opt to
undergo an elective surgical intervention to address quality-of-life issues such as chronic
pain or reduced life expectancy (eg, laminectomy, lung resection). Furthermore, our ETL
procedure was developed in a standard EHR deployment from a single vendor, and it is
possible that extension of our methods to a nonstandard Epic implementation or another
EHR vendor’s data model would require cost-prohibitive adaptation of our methods. Finally,
the model was developed using data from one hospital, and external validation in other
cohorts is needed to confirm its performance.

Feasible multicenter analysis is key to the study of rare adverse events such as PRF. We have
described a method using an SQL ETL that could be deployed at other centers effectively

to automate the abstraction of tens of thousands of charts, work that would not be feasible
through manual chart abstraction. The ability to predict patients at risk of PRF reliably using
readily available patient preoperative and intraoperative variables is valuable for clinicians
and may afford individualized, optimized postoperative planning. Future research is needed
to validate our findings in other centers, to conduct clustered machine learning to identify
subgroups (eg, low, moderate, and high risk), and to develop, test, and operationalize a risk
score for real-time use by clinicians.

In conclusion, we developed a prediction model for PRF based on readily available patient,
preoperative, and intraoperative data using an automated procedure to extract large volumes
of data from the EHR. If validated in other centers, our model may represent an intuitive
and practical tool for prediction of PRF. With improved prediction, clinician scientists can
understand PRF better, can begin to classify phenotypes, and can discern if heterogeneity of
treatment effect exists. This eventually might lead to improved care and outcomes for PRF,
which is associated with high morbidity and mortality.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Take-home Points
Study Question:

In this study, we sought to determine if a predictive model, using readily available patient
and intraoperative factors, could identify patients at high risk of postoperative respiratory
failure accurately.

Results:

We developed an 18-variable predictive model for PRF that included operations on the
cardiovascular, nervous, digestive, urinary, or musculoskeletal system; surgical specialty
orthopedic (nonspine); Medicare or Medicaid (as the primary payer); race unknown;
American Society of Anesthesiologists class = I11; BMI of 30 to 34.9 kg/m?; anesthesia
duration (per hour); net fluid at end of the operation (per liter); median intraoperative
F10,, end-tidal carbon dioxide, heart rate, and tidal volume; and intraoperative vasoactive
medications.

Interpretation:

A predictive model for postoperative respiratory failure, based on readily available
patient and intraoperative variables, achieved an optimism-corrected area under the
receiver operating characteristic curve of 0.835 (95% CI, 0.808-0.862) and an area under
the precision-recall curve of 0.156 (95% CI, 0.105-0.203).
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Intraoperative Factors
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Conceptual framework of predictive model for postoperative respiratory failure. ASA =
American Society of Anesthesiologists; PRF = postoperative respiratory failure.
*Comorbid conditions included in the Elixhauser: congestive heart failure, cardiac
arrythmias, valvular disease, pulmonary circulatory disorders, peripheral vascular disorders,
hypertension (uncomplicated), hypertension (complicated), paralysis, other neurological
disorders, chronic pulmonary disease, diabetes (uncomplicated), diabetes (complicated),
hypothyroidism, renal failure, liver disease, peptic ulcer disease excluding bleeding,

AIDS/HIV, lymphoma, metastatic cancer, solid tumor without metastasis, rheumatoid

arthritis/collagen vascular diseases coagulopathy, obesity, weight loss , fluid and electrolyte
disorders, blood loss anemia, deficiency anemia, alcohol abuse, drug abuse, psychoses,

depression.2> Elixhauser comorbidity score is calculated by assigning weights to each

comorbidity based on van Walraven et al.26 NOTE: Elixhauser was only used in e-Appendix

3 sensitivity analysis.
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Estimate
Model
Coefficients
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PRIMARY ANALYSIS SECONDARY ANALYSIS

Select Assess Model Combine Assess Robustness of
Regularization Performance Bootstrapping Model Performance
Parameters and Control with LASSO to
Overfitting Evaluate Stability
of Variable Selection

Diagram showing steps in the model derivation and validation process. M = mean; LASSO =
least absolute shrinkage and selection operator.

Figure 2 —.
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Figure 3 -

RCg)C curve for fitted least absolute shrinkage and selection operator logistic regression
predicting postoperative respiratory failure. This model achieved an observed area under
the ROC curve (AUC) of 0.851 (95% Cl, 0.824-0.878) and an optimism-corrected AUC
of 0.835 (95% ClI, 0.808-0.862). AUC = area under the operating curve; ROC = receiver
operating characteristic.
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Precision-Recall curve
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Figure 4 —.

Prgecision-recall curve for fitted least absolute shrinkage and selection operator logistic
regression predicting postoperative respiratory failure. This model achieved an observed area
under the precision-recall curve of 0.174 (95% CI, 0.123-0.221) with an optimism-corrected
value of 0.156 (95% CI, 0.105-0.203).
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Figure 5 —.

Caglibration plot for the least absolute shrinkage and selection operator logistic regression
model predicting postoperative respiratory failure. To create this plot, predicted probabilities
were binned into 10 equally sized groups. The mean predicted probability and 95% CI were
calculated for each bin and were plotted against the observed proportion of events in each
bin. Because of the very low prevalence of events, the mean predicted probability remains
small (approximately 5%), even for the bin containing the largest predicted probabilities.
The mean predicted probabilities are close to the 45° line, reflecting good agreement
between predicted probabilities and observed probabilities, and hence good calibration.
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TABLE 6]
Confusion Matrix of Predicted Patients With PRF and Patients Without PRF?

Variable Patients Without PRF | Patients With PRF
Predicted no PRF 20,402 69
Predicted PRF 3,372 156

Data are presented as No. PRF = postoperative respiratory failure.

a. . ——
Using 1.315% as classification threshold.
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