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Technical note with Supporting Results for
Outlier Accommodation State Estimation:

A Risk-Averse Performance-Specified Approach
Elahe Aghapour, Farzana Rahman, Jay A. Farrell

Department of Electrical and Computer Engineering,
University of California, Riverside, 92521.
{eaghapour, frimi, farrell}@ee.ucr.edu.

This tech note extends the discussion of the numerical
results in [1]. The main article should be read first. This
technical note includes numerical results that could not fit
within the journal page constraints. It presents the statistics of
the vertical error for the nonlinear (INS) model and discusses
the interplay between the error, risk, and GDOP metrics for
portions of an experiment using the linear (PVA) model. The
error, risk and PVA metrics are defined in Sections VIII-C and
VIII-E of [1].

Each table and figure herein considers five algorithms, as
summarized in Section VIII-B of [1]. Four of the algorithms
are the NP-(E)KF with four different values of the decision
parameter γ . The final algorithm is the RAPS approach.

I. NONLINEAR (INS) MODEL: VERTICAL ERROR

The vertical position accuracy for the nonlinear (INS aided)
system is summarized in Table I. The table is divided into two
sections, each containing five rows. The top section presents
the statistics for the experiment with µ = 2 and is labeled
with NP-EKF1 and RAPS1. The bottom section presents the
statistics for the experiment with µ = 7 and is labeled with
NP-EKF2 and RAPS2.

RAPS performance is almost the same for both µ = 2
and µ = 7 because it chooses the minimum risk selection
vector b at each time from all feasible b vectors. As the

TABLE I: GNSS-INS Vertical Performance Statistics
For µ = 2 (top) and µ = 7 (bottom).

Methods Mean of Std. of Error Maximum

error (m) error (m) < 2 m error (m)

NP-EKF1 γ = 5 1.89 0.52 0.62 3.46

NP-EKF1 γ = 4 1.92 0.51 0.61 3.46

NP-EKF1 γ = 3 1.42 0.61 0.83 2.90

NP-EKF1 γ = 2 0.59 0.47 1 1.85

RAPS1 0.37 0.39 1 1.63

NP-EKF2 γ = 5 0.39 0.36 1 1.86

NP-EKF2 γ = 4 0.39 0.36 1 1.86

NP-EKF2 γ = 3 0.38 0.35 1 1.74

NP-EKF2 γ = 2 0.36 0.37 1 1.70

RAPS2 0.39 0.40 1 1.82

magnitude of generated outliers increases, they become easier
for the threshold test to detect; therefore, the NP-EKF becomes
increasingly successful at removing outliers, which improves
its performance. However, its performance varies significantly
with respect to outlier magnitude µ and decision threshold γ .

It is also important to note that the vertical position er-
ror behaves well, even though the performance specification
included in the RAPS optimization process only constrained
the horizontal portion of the position error (see eqn. (44) in
[1]). This is because every satellite line-of-sight vector (i.e.,
hs

k defined in Section VI.A of [1]) has a non-zero element
corresponding to the vertical position error.

II. LINEAR (PVA) MODEL PERFORMANCE COMPARISON

Fig. 1 in [1] presents a graph indicative of the performance
of each estimator for the PVA model as a function of the
decision parameter γ , when the value of µ is changed from
0 to 20. That graph was created using Monte Carlo analysis
averaging over 10 trials. Fig. 1 herein presents graphs of the
horizontal error (top), risk Rk (middle) and GDOP (bottom)
for a portion of a single experiment using the GNSS data
with the linear PVA model. All subfigures include a curve for
each of five mentioned algorithms in Section VIII-A of [1].
At some times, some curves may not be visible due to their
overlapping.

Tables IIa and IIb provide vertical and horizontal positioning
accuracy statistics, respectively, for the five linear estimation
algorithms using the PVA model. In both Tables, the top
section is for µ = 6 and the bottom sections is for µ = 17.

Fig. 1 allows performance comparison between the five
algorithms for two different values of the outlier mean magni-
tude µ . Fig. 1a presents data for µ = 6 (i.e. outliers magnitude
distributed in U [4.5,7.5]). Fig. 1b presents data for µ = 17 (i.e.
outliers magnitude distributed in U [15.5,18.5]).

For µ = 6, RAPS both achieves the minimum risk at all
times and the best horizontal position accuracy at most times.
The lowest risk is clearly expected as RAPS minimizes risk.
The best positioning performance is less obvious, especially as
the GDOP of RAPS is highest. A reason why RAPS achieves
the best positioning performance is due to its having the lowest
risk of outlier inclusion. For any of the algorithms, once an
outlier is included, then both the prior mean and covariance are
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wrong, which affects the validity of all subsequent estimation
and decisions about which measurements to use. Minimizing
the risk of outlier inclusion therefore has obvious benefits
for accuracy and reliability, especially when there are more
measurements available than are required to meet a stated
specification.

The performance of NP-KFs improves for µ = 17 relative
to the case where µ = 6. This is because outliers with
larger magnitude are more likely to be detected for any fixed
value of the decision parameter γ . When all the algorithms

correctly remove the outliers, their curves are overlapping.
RAPS performance is almost the same for both scenarios,
because it considers all feasible solutions and selects the one
with minimum risk. Hence, its error is robust for different
values of µ .
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(a) Horizontal Position Error, Risk, and GDOP for µ = 6 (b) Horizontal Position Error, Risk, and GDOP for µ = 17

Fig. 1: Performance comparison using GNSS data with the linear PVA model. The yellow, green, blue and black curves display the results for NP-KF
approach γ =2, 3, 4, and 5, respectively. The red curve shows the RAPS performance.

TABLE II: GNSS-PVA Performance Statistics

(a) Vertical: µ = 6 (top) and µ = 17 (bottom).

Methods Mean of Std. of Error Maximum

error (m) error (m) < 2 m error (m)

NP-KF1 γ = 5 2.85 0.76 0.12 5.04

NP-KF1 γ = 4 2.82 0.74 0.10 5.02

NP-KF1 γ = 3 2.20 0.83 0.38 4.11

NP-KF1 γ = 2 0.68 0.60 0.96 3.30

RAPS1 0.56 0.46 0.99 2.07

NP-KF1 γ = 5 0.55 0.48 0.99 2.39

NP-KF1 γ = 4 0.55 0.48 0.99 2.39

NP-KF1 γ = 3 0.55 0.48 0.99 2.39

NP-KF1 γ = 2 0.55 0.48 0.99 2.40

RAPS2 0.56 0.46 0.99 2.09

(b) Horizontal: µ = 6 (top) and µ = 17 (bottom).

Methods Mean of Std. of Sub-meter Maximum

error (m) error (m) accuracy error (m)

NP-KF1 γ = 5 0.72 0.52 0.74 2.30

NP-KF1 γ = 4 0.66 0.42 0.76 1.79

NP-KF1 γ = 3 0.64 0.41 0.78 1.79

NP-KF1 γ = 2 0.37 0.33 0.92 1.45

RAPS1 0.35 0.31 0.95 1.41

NP-KF2 γ = 5 0.37 0.32 0.96 1.45

NP-KF2 γ = 4 0.37 0.32 0.96 1.45

NP-KF2 γ = 3 0.37 0.32 0.96 1.45

NP-KF2 γ = 2 0.33 0.31 0.96 1.45

RAPS2 0.33 0.31 0.96 1.45




