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Abstract

The focus of this research project is to perform survival analysis on two medical data sets - the

Mayo Clinic Primary Biliary Cholangitis (PBC) data and COVID-19 data collected by the Open

COVID-19 Data Working Group. The PBC data was collected between 1974 and 1984 to identify

factors (such as age, sex, and other comorbidities) affecting the risk of death for patients with PBC, a

disease that destroys small bile ducts in the liver. The COVID-19 data, collected between February

2020 andMarch 2021, provides patient-level information that is used to understand factors (such as

demographics and initial symptoms) contributing to the risk of death from COVID-19. The initial

step in the analyses is data wrangling to format and prepare the data to be analyzed. Exploratory

data analysis methods such as descriptive statistics and statistical graphics are employed to sum-

marize and visualize the data. The survival data analysis methods include obtaining Kaplan-Meier

estimators to explore how the risk of the event of interest, which is death for our data applications,

changes over time and applying Cox proportional hazards models to determine the effect of each

factor on the risk of death. The analysis is performed in R statistical software and the R code is

publicly available.
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1 Introduction

Survival data analysis methods are widely used in engineering and medical fields to identify factors

associated with time to an event of interest such as death, occurrence of a disease, and failure of

a machine. Traditional regression models are not suitable for this type of data for two reasons.

First, the outcome, that is, time to an event, should always be positive and usually has a skewed

distribution; therefore, methods that rely on normality are not directly applicable. Second, in this

type of analysis, we need to take censoring into account. The defining feature of censoring is that

the time to an event is not observable for all subjects; in other words, some subjects never developed

a disease or experienced death during the study, so their time to event is missing in the data set.

Traditional statistical models assume that we have complete information on all subjects, and when

applied to this type of outcome, they would produce biased estimates. Due to these reasons, special

methods for survival data analysis have been developed. Among these methods, in this project, we

discuss Kaplan-Meier (KM) estimators, Cox proportional hazards models, and parametric survival

models.

Our motivation for this project comes from two data sets: the Primary Biliary Cholangitis (PBC)

data, which is gathered by Mayo Clinic on patients with this condition and the COVID-19 data

gathered by the Open COVID-19 Working Group. PBC is a disease that slowly destroys the small

bile ducts in the liver. The PBC data consists of 424 PBC patients and was administered for 10

years (1974-1984). The first 312 subjects were part of a randomized clinical trial and the remaining

112 subjects did not participate in the trial but still had their measurements recorded for the study.

COVID-19 is an infectious disease that began to spread in December 2019. The COVID-19 data

consists of over two million observations and was collected from 147 countries around the world.

The goal of this project is to understand factors that are significant to risk of death from PBC and

COVID-19.

Before applying the survival data analysis methods to the motivating data sets, we discuss the

basic quantities for analysis of time-to-event outcomes. The four quantities for analysis of time-
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to-event outcomes are the survival function, hazard (risk) function, probability density function,

and the cumulative distribution function. In particular, the survival function is the probability of

an individual surviving until the time of interest. The hazard (risk) function is the probability that

a subject who survived the time of interest might experience the event in the next instant. The

probability density function is used to quantify probabilities linked to the time of interest. Finally,

the cumulative distribution function is the probability that a subject survives at most until the time

of interest.

In terms of advanced survival analysis methods, we first analyze the motivating data sets with KM

estimator. In practice, this method is mostly utilized to investigate the effect of categorical variables

on time to an event, in other words, to compare the survival probabilities among different groups.

The limitation of KM estimators is that it can only be used on categorical covariates. Therefore,

in order to identify the effects of quantitative covariates, in addition to the categorical covariates,

we employ Cox proportional hazards model. To test the validity of the Cox proportional hazards

model, diagnostics are performed using Schoenfeld and Martingale residuals. More specifically,

the Schoenfeld residuals are employed to test the proportional hazards (PH) assumption, that is,

the hazard/risk of an event does not change over time. In the condition that the PH assumption is

not satisfied, one solution is to apply parametric survival models. The parametric survival models

are applied to examine the significance and the effect of categorical and quantitative covariates on

risk of an event through a pre-defined probability distribution, such as the Weibull or log-logistic

distributions. The diagnostics for these models involve evaluating the validity of the probability

distribution employed in the modeling scheme. We demonstrate an application of these models for

both data sets.

The remainder of this project is organized as follows. A brief review of themain features of survival

data, along with advanced statistical methods for this type of data, are presented in Section 2. In

Section 3, we provide the analysis of PBC and COVID datasets via advanced survival data analysis

methods. We conclude with a brief discussion in Section 4.
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2 Survival Analysis

Survival analysis is an essential statistical tool, primarily used on clinical data when the main focus

is to analyze time until a prespecified event of interest occurs. In these studies, the variable of

interest is the time until that event, that is, survival time, which is a random variable denoted as T.

The distribution of 𝑇 is characterized by survival (𝑆(𝑡)), hazard (ℎ(𝑡)), cumulative hazard (𝐻(𝑡)),
probability density (𝑓(𝑡)), and cumulative distribution (𝐹(𝑡)) functions. The survival function is
the probability of a subject surviving to time 𝑡 and is defined as

𝑆(𝑡) = 𝑃𝑟(𝑇 > 𝑡),

where 𝑆(𝑡) denotes the survival probability of the individual and 𝑃𝑟(𝑇 > 𝑡) is the probability that
the subject surpasses time 𝑡. Another function in survival data analysis is the hazard (risk) function,
which is the probability that an individual who survived until time 𝑡 might experience the event in
the next instant. This function is given as follows,

ℎ(𝑡) = lim
Δ𝑡→0

𝑃 [𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡|𝑇 ≥ 𝑡]
Δ𝑡 ,

where ℎ(𝑡)Δ𝑡 can be viewed as the “approximate” probability of a person experiencing the event
in the next instant. A related measure is the cumulative hazard function, 𝐻(𝑡), which represents
the accumulated probability of experiencing the event until time 𝑡 and is defined by

𝐻(𝑡) = ∫
𝑡

0
ℎ(𝑢)𝑑𝑢 = − log[𝑆(𝑡)],

where log represents the natural logarithm. Next, the probability density function, 𝑓(𝑡), can be uti-
lized to calculate probabilities associated with time 𝑡. Lastly, the cumulative distribution function,
𝐹(𝑡) = 𝑃𝑟(𝑇 ≤ 𝑡), is the probability that a patient survives at most to time 𝑡. In practice, these
functions are used to showcase different aspects of the distribution of the time-to-event outcome
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𝑇 , and once one of these functions is known, the rest can be uniquely determined. In particular,
the survival function can be found as the complement of the cumulative distribution function, that

is, 𝑆(𝑡) = 1 − 𝐹(𝑡). The survival function is also the integral of the probability density function,
that is, 𝑆(𝑡) = 𝑃 𝑟(𝑇 > 𝑡) = ∫∞

𝑡 𝑓(𝑥)𝑑𝑡; thus, 𝑓(𝑡) = −𝑑𝑆(𝑡)
𝑑𝑡 (Klein and Moeschberger, 2003).

An important consideration of time-to-event data is censoring, which creates a missing data chal-

lenge in the analysis. In particular, due to censoring, we do not observe the “true event time”,

denoted as 𝑇 ∗, for all subjects, instead, for some subjects, we only observe the censoring time 𝐶 .

The censoring time is usually recorded as the end of the study; in other words, the last time we

know that the subject has not experienced the event. Let 𝑇𝑖 represent the “observed event time”

for the 𝑖th subject. If the subject has experienced the event during the study, 𝑇𝑖 = 𝑇 ∗
𝑖 , since the

true event time for the 𝑖th subject is known. However, if the subject has not experienced the event
during the study, 𝑇𝑖 = 𝐶𝑖. That is, the subject is censored and their true event time is unknown,

only the last time they were free of the event has been recorded.

The incorporation of censoring in survival data analysis depends on the type of censoring. In

particular, we have the following categorization: right, left, and interval. Right censoring occurs

when not all subjects experience the event during the study time. In other words, there are subjects

that survive the event during the study time and experience the event after the study. In this type of

censoring, all subjects are free of the event at the beginning of the study. Left censoring happens

when the event of interest has already occurred for some of the individuals before they are observed

in the study. Interval censoring is when the time until an event of interest is not known accurately

and is only known to fall into a particular interval (Radke, 2003).

2.1 Kaplan-Meier Estimator

Kaplan-Meier (KM) estimation is the first method we discuss in terms of survival data analysis

methods. In this nonparametric approach, our interest is in estimating the survival function. Specifi-

cally, we estimate the survival function at the event times and observe how the survival probabilities
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change over time. The KM estimator is formulated as follows,

̂𝑆(𝑡) = ∏
𝑡𝑖≤𝑡

1 − 𝑑𝑖
𝑌𝑖

,

where 𝑡𝑖 is the time where at least one event happened, 𝑑𝑖 is the number of events that happened

at time 𝑡𝑖, 𝑌𝑖 is the number of subjects that are at risk at time 𝑡𝑖, and 𝑖 = 1, … , 𝑛, with 𝑛 as the

number of subjects. To draw inference on the survival function 𝑆(𝑡), we use the (1 − 𝛼)100%
pointwise confidence interval

̂𝑆(𝑡) ± 𝑧𝛼/2 × { ̂𝑉 [ ̂𝑆(𝑡)]}1/2,

where ̂𝑆(𝑡) is the estimated survival function, 𝑧𝛼/2 is the 100×(1−𝛼/2) percentile of the standard
normal distribution, and { ̂𝑉 [ ̂𝑆(𝑡)]}1/2 is the estimated standard error of the KM estimator obtained

using Greenwood’s formula

̂𝑉 [ ̂𝑆(𝑡)] = ̂𝑆(𝑡)2 ∑
𝑡𝑖≤𝑡

𝑑𝑖
𝑌𝑖(𝑌𝑖 − 𝑑𝑖)

.

Our goal in using the KM estimator is to illustrate the effect of variables of interest on survival time

and investigate their significance.

2.2 Cox Proportional Hazards Model

The second method we consider in this project is the Cox proportional hazards model. This ap-

proach allows researchers to investigate the effects of predictors (risk factors) on survival time.

The advantage of this method over the KM estimator is it can include multiple predictors, which

can be both categorical and numeric, whereas KM estimation is limited to observing the effects of

categorical predictors only. Let ℎ(𝑡) be the hazard/risk of an event at time 𝑡. That is, as previously
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defined, ℎ(𝑡) is the probability that an individual might experience the event at the next instant.
The Cox proportional hazards model (Cox, 1972) is given as

ℎ(𝑡) = ℎ0(𝑡) exp(𝑍T𝛽), (1)

where ℎ0(𝑡) is the baseline risk/hazard of the event indicating the hazard/risk of an event when all
covariates/factors in the model are equal to zero, 𝑍 = (𝑍1, … , 𝑍𝑝)T denotes the covariates with
𝛽 = (𝛽1, … , 𝛽𝑝)T as the vector of corresponding coefficients and 𝑝 as the number of covariates.

Our goal in this model is to estimate the coefficients in 𝛽, which quantify the effect of each factor
on the risk of the event, via the partial likelihood approach proposed by Cox (1972). Let 𝑡1 < 𝑡2 <
… < 𝑡𝐷 denote the ordered event times and 𝑅(𝑡𝐷) be the risk set at the 𝐷th event time 𝑡𝐷, that

is, the set of all individuals in the study that have not experienced the event until 𝑡𝐷. In order to

construct the partial likelihood, we start with calculating the probability of failure at the 𝑖th event
time, 𝑡𝑖, using the following formula:

exp [∑𝑝
𝑘=1 𝛽𝑘𝑍(𝑖)𝑘]

∑𝑗∈𝑅(𝑡𝑖) exp [∑𝑝
𝑘=1 𝛽𝑘𝑍𝑗𝑘],

where 𝑍(𝑖)𝑘 and 𝑍𝑗𝑘 are the covariates measured at time 𝑡𝑖 for 𝑖th subject whose failure time is
𝑡𝑖 and 𝑗th subject who is in the risk set at time 𝑡𝑖, respectively, with the corresponding regression

coefficient 𝛽𝑘, 𝑖 = 1, … , 𝑛 with 𝑛 as the total number of subjects, 𝑘 = 1, … , 𝑝 with 𝑝 as the total

number of covariates, and 𝑗 is the index for the subjects within the risk set 𝑅(𝑡𝑖) at time 𝑡𝑖. Once

these probabilities are multiplied over all individuals, we obtain the partial likelihood as follows:

𝐿(𝛽) =
𝐷

∏
𝑖=1

exp [∑𝑝
𝑘=1 𝛽𝑘𝑍(𝑖)𝑘]

∑𝑗∈𝑅(𝑡𝑖) exp [∑𝑝
𝑘=1 𝛽𝑘𝑍𝑗𝑘],

where D is the total number of events. We obtain the estimated coefficients ̂𝛽 = ( ̂𝛽1, … , ̂𝛽𝑝)T by
maximizing the partial log-likelihood,
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𝐿𝐿(𝛽) = log𝐿(𝛽) =
𝐷

∑
𝑖=1

𝑝
∑
𝑘=1

𝛽𝑘𝑍(𝑖)𝑘 −
𝐷

∑
𝑖=1

log⎡⎢
⎣

∑
𝑗∈𝑅(𝑡𝑖)

exp(
𝑝

∑
𝑘=1

𝛽𝑘𝑍𝑗𝑘)⎤⎥
⎦

.

Similar to all statistical models, Cox proportional hazards model also has a set of assumptions about

the data generating process, and estimation and inference would be misleading if these assumptions

do not hold for the data. We employ the Schoenfeld, Martingale, deviance, and score residuals to

check the assumptions of the Cox proportional hazards model and test the validity of these models

for our data sets. The first residual we discuss is the Schoenfeld residuals (Schoenfeld, 1982).

These residuals are calculated for each subject 𝑖, 𝑖 = 1, … , 𝑛, at each failure time. For any subject
𝑖, who is in the risk set at a failure time 𝑡𝑚, the Schoenfeld residual is the difference between the

covariate values for that subject, 𝑍𝑖, and the weighted average of covariates for all subjects that

are in the risk set 𝑅(𝑡𝑚). The sum of the Schoenfeld residuals over all subjects that fail at time 𝑡𝑚

gives the Schoenfeld residuals corresponding to time 𝑡𝑚

𝑟𝑠,𝑚 = ∑
𝑖∈𝑅(𝑡𝑚)

𝛿𝑖𝑚{𝑍𝑖 − ̄𝑍(𝑡𝑚)}, (2)

where 𝛿𝑖𝑚 equals to one if the subject fails at 𝑡𝑚 and zero otherwise, and ̄𝑍(𝑡𝑚), which is the
weighted average of the covariate values for individuals in the risk set𝑅(𝑡𝑚)with weights𝑤𝑗(𝑡𝑚),
is defined as

̄𝑍(𝑡𝑚) = ∑
𝑗∈𝑅(𝑡𝑚)

𝑍𝑗𝑤𝑗(𝑡𝑚) with 𝑤𝑗(𝑡𝑚) = exp( ̂𝛽𝑇 𝑍𝑗)
∑𝑙∈𝑅(𝑡𝑚) exp( ̂𝛽𝑇 𝑍𝑙)

.

The main idea behind the formulation of the Schoenfeld residuals is the same as the construction

of the partial likelihood, that is, comparing the covariates of a subject that experienced the event

at a certain time (𝑡𝑚) to the rest of the subjects that are in the risk set at that time point. The

goal of the Schoenfeld residuals is to check for the proportional hazards (PH) assumption, which is

the assumption that each covariate has a multiplicative effect in the hazards function that does not
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change through time. When the PH assumption holds, the Schoenfeld residuals are uncorrelated

and have a mean of zero.

The second residuals we focus on are Martingale residuals (Lagakos, 1981; Barlow and Prentice,

1988; Therneau et al., 1990, Fleming and Harrington, 1991) which are defined as

𝑀̂𝑖 = 𝛿𝑖 − 𝐻̂0(𝑡𝑖) exp(
𝑝

∑
𝑘=1

𝑍𝑖𝑘 ̂𝛽𝑘) ,

where for the 𝑖th subject, 𝛿𝑖 is the event indicator, 𝑍𝑖𝑘 represents the 𝑘th covariate with the cor-
responding estimated coefficient ̂𝛽𝑘, and 𝐻̂0(𝑡𝑖) is the cumulative baseline hazard rate calculated
using Breslow’s estimator at the event time 𝑡𝑖 (Breslow, 1972) , with 𝑘 = 1, … , 𝑝, and 𝑖 = 1, … , 𝑛.
The Martingale residuals are used to examine the overall model fit and whether transformations are

required in covariates after the rest of the covariates have already been included in themodel. Under

the correct model formulation, the Martingale residuals exhibit a linear pattern.

The next step in our model diagnostics is the identification of outliers. In terms of survival data

analysis, an outlier is an unusual failure-time observation given the covariate values; in other words,

these are subjects that our model does not fit appropriately. To determine potential outliers in our

analysis, we utilize deviance residuals (Therneau et al., 1990)

𝐷𝑖 = 𝑠𝑖𝑔𝑛[𝑀̂𝑖]{−2[𝑀̂𝑖 + 𝛿𝑖 log(𝛿𝑖 − 𝑀̂𝑖)]}1/2,

where for the 𝑖th subject, 𝑠𝑖𝑔𝑛[𝑀̂𝑖] is the sign of the Martingale residual, 𝛿𝑖 is the event indica-

tor, and 𝑖 = 1, … , 𝑛. Note that although Martingale residuals are used to calculate the deviance

residuals, they cannot be directly used to identify outliers as their distribution is heavily skewed.

Deviance residuals can be seen as standardized Martingale residuals, which are more symmetrical

around zero, and therefore, make them a better measure of outliers. In addition, the distribution

of deviance residuals can be approximated by the Gaussian distribution; thus, we can assess an

observation as an outlier if their deviance residual is outside the range of (-3, 3) or even (-2.5, 2.5),
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to be more conservative.

The last step in model diagnostics is to establish influential observations. An observation is iden-

tified as influential for a covariate if it strongly influences the estimated regression coefficient cor-

responding to that covariate. In order to determine these observations, we can either use delta-beta

values or score residuals. Delta-beta values (Belsley, 1980) are obtained as follows,

Δ𝑖𝑘 = ̂𝛽𝑘 − ̂𝛽(𝑖)
𝑘

whereΔ𝑖𝑘 is the delta-beta value for the 𝑖th subject 𝑘th coefficient, ̂𝛽𝑘 is the estimate of 𝛽𝑘 from the

whole data set, and ̂𝛽(𝑖)
𝑘 is the estimate of 𝛽𝑘 from the data set with the 𝑖th subject removed. Delta-

beta values indicate which subject or subjects are influential for the 𝑘th covariate. An ideal plot
has delta-beta values symmetric around zero; influential observations deviate from the symmetry.

The score residual for the 𝑖th subject and the 𝑘th covariate is computed as follows (Cain and Lange,
1984; Reid and Crépeau, 1985)

𝑆𝑖𝑘 = 𝛿𝑖[𝑍𝑖𝑘 − ̄𝑍𝑘(𝑡𝑖)] − ∑
𝑡𝑏≤𝑡𝑖

[𝑍𝑖𝑘 − ̄𝑍𝑘(𝑡𝑏)] exp( ̂𝛽T𝑍𝑖)[𝐻̂0(𝑡𝑏) − 𝐻̂0(𝑡𝑏−1)],

where 𝛿𝑖[𝑍𝑖𝑘 − ̄𝑍𝑘(𝑡𝑖)] is the Schoenfeld residual for the kth covariate (see equation 2), that is,
the difference between covariate value 𝑍𝑖𝑘 at the failure time 𝑡𝑖 and the expected value of the

covariates at 𝑡𝑖, ̂𝛽 are the estimated coefficients, 𝑍𝑖 is all the covariates for subject 𝑖, 𝑡𝑏 is any

time point before the event time 𝑡𝑖, and 𝐻̂0(.) is the estimated cumulative baseline hazard with
𝑖 = 1, … , 𝑛 and 𝑘 = 1, … , 𝑝. We calculate the score residuals with respect to every covariate in

the Cox model. A large magnitude of the score residual of an individual with respect to a particular

covariate indicates heavy influence of that individual in the estimation of the regression coefficient

of that covariate. Score residuals must be symmetric around zero to indicate that there are no

influential observations.
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2.3 Parametric Survival Model with Weibull distribution

The third method is parametric survival models. Parametric survival models are used to estimate

survival probability for censored data through a specified probability distribution (generally the

Weibull or the log-logistic distribution). In practice, these models are often utilized when the pro-

portional hazard assumption for the Coxmodels is not satisfied. In our data applications, we employ

the Weibull distribution as under this distribution we can flexibly model the hazard function, that

is, the hazard can be allowed to increase, decrease, or stay constant over time. In other words, the

parameter of the Weibull distribution allows us to model multiple situations in our practical world.

The result is a log linear model with parameters 𝜆 = 𝑒𝑥𝑝(−𝜇/𝜎) and 𝜎 = 1/𝛼. Under this

framework, the time to event, 𝑇 , is modeled as

𝑌 = log𝑇 = 𝜇 + 𝜎𝑊,

where 𝑊 is the apex value distribution with the probability density function, 𝑓𝑊 (𝑤) = 𝑒𝑥𝑝(𝑤 −
𝑒𝑤), and survival function, 𝑆𝑊 (𝑤) = 𝑒𝑥𝑝(−𝑒𝑤). Therefore, the probability density and survival
functions of Y, respectively, are obtained as

𝑓𝑌 (𝑦) = (1/𝜎)𝑒𝑥𝑝 [(𝑦 − 𝜇)/𝜎 − 𝑒[(𝑦−𝜇)/𝜎]] ,

𝑆𝑌 (𝑦) = 𝑒𝑥𝑝 (−𝑒[(𝑦−𝜇)/𝜎]) .

The estimation of the parameters 𝜇 and 𝜎 are performed via the maximum likelihood approach.The

likelihood function for a parametric model with Weibull distribution is calculated as follows,

𝐿(𝛽) =
𝑛

∏
𝑖=1

[𝑓𝑌 (𝑦𝑖)]𝛿𝑖[𝑆𝑌 (𝑦)](1−𝛿𝑖),
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𝐿(𝛽) =
𝑛

∏
𝑖=1

[ 1
𝜎𝑓𝑊 (𝑦𝑖 − 𝜇

𝜎 )]
𝛿𝑖

[𝑆𝑊 (𝑦𝑖 − 𝜇
𝜎 )]

(1−𝛿𝑖)
.

The parameters 𝜇 and 𝜎 are estimated using numerical algorithms such as the Newton-Raphson al-

gorithm. Although the modeling scheme presented above does not include predictors, it is possible

to incorporate them as follows

𝑌 = 𝜇 + 𝛾T𝑍 + 𝜎𝑊,

where 𝛾T is a vector of regression covariates, 𝑍 is the baseline time to event divided by the accel-

eration factor and 𝑊 is the conventional extreme value distribution, which leads to a proportional

hazards model with Weibull distribution, calculated as follows,

ℎ(𝑡|𝑍) = (𝛼𝜆𝑡𝛼−1)𝑒𝑥𝑝(𝛽T𝑍),

where ℎ(𝑡|𝑧) is the baseline risk of the event indicating the hazard of an event when all covari-
ates in the model are equal to zero, 𝛼 = 1/𝜎 at time 𝑡, 𝜆 = 𝑒𝑥𝑝(−𝜇/𝜎), 𝛽 = −𝛾/𝜎, and
𝑍 = (𝑍1, … , 𝑍𝑝)T indicates the covariates with 𝛽 = (𝛽1, … , 𝛽𝑝)T as the vector of correspond-
ing coefficients and 𝑝 as the number of covariates. To verify that the Weibull distribution is the

correct distribution to use for our data set, we first fit an accelerated failure time (AFT) model

with Weibull distribution (Wei, 1992), which explains the relationship between 𝑌 = 𝑙𝑜𝑔𝑇 and

covariates as follws,

𝑌𝑖 = 𝑍T
𝑖 𝛽 + 𝑊𝑖, (3)

where 𝑌𝑖 is the log of 𝑇𝑖, 𝑍𝑖 is a vector of covariates with 𝛽 as the corresponding coefficients,

and 𝑊𝑖 are the residuals that are assumed to follow a Weibull distribution. After residuals from

the AFT model (see equation 3) are obtained, we compare them to the residuals obtained via a KM
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estimator. If the KM plot demonstrates that the AFT residuals obtained from equation 3 are covered

by the 95% confidence interval of the KM estimate, the Weibull distribution fits the data strongly.

3 Data Analysis

3.1 Data Description

3.1.1 Mayo Clinic Primary Biliary Cholangitis (PBC) Data

The Mayo Clinic Primary Biliary Cholangitis (PBC) data focuses on patients who have been diag-

nosed with (PBC), a disease that affects the small bile ducts in the liver. The study followed patients

for a ten-year period from 1974 to 1984. Of 424 total patients that participated in the study, 312

cases in the data set participated in the randomized trial. The rest of the patients, 112 cases, did

not participate in the clinical trial but consented to have basic measurements recorded and to be

followed for survival. In this report, we study 393 cases out of the 424 cases as the patients that

had a transplant were excluded from the analysis. We aim to examine the effect of risk factors such

as existing comorbidities and demographics on the survival of patients with PBC. This data set is

publicly available in the survival package of R statistical software (R Core Team, 2020).

In the PBC study, among the 312 patients that were on the randomized trial, 148 were given D-

penicillamine, 145 were given a placebo, and the rest were not randomized. According to Figure 1,

we observe a small difference between the survival rates of patients in treatment (56%) and placebo

(59%) groups.
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Figure 1: The light grey color represents patients who survived or were censored and the dark grey
color represents patients who died during the study. The percentages refer to relative frequency
within each group.

Patient-level covariate information for this study is summarized in Table 1. According to this

table, the study cohort included patients with a mean age of 50.528 (SD 10.556), where 88.7%

were females. The average levels of albumin and AST, which are proteins made by the liver,

were calculated as 3.519 (SD 0.424) and 121.893 (SD 57.898), respectively. The mean bilirubin (a

yellow pigment that is caused by red blood cells breaking down) and copper levels are 3.280 (SD

4.660) and 95.928 (SD 84.498), respectively. Finally, another important factor in liver health, that

is, the standardized blood clotting time (protime) is recorded as 10.751 (SD 1.024) on average.

Table 1: Descriptive statistics of PBC data.

Variable Mean / Count SD / Percent

Age 50.528 10.556

Female 258 0.887
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Variable Mean / Count SD / Percent

Albumin (g/dl) 3.519 0.424

AST (U/ml) 121.893 57.898

Bilirubin (mg/dl) 3.280 4.660

Copper (ug/day) 95.928 84.498

Protime 10.751 1.024

Ascites, which is the accumulation of fluid in the peritoneal cavity causing abdominal swelling,

was also observed in patients with PBC. Figure 2 (a) illustrates that patients with ascites (4%) have

a lower survival rate than patients without ascites (62%). PBC has four stages - 1, 2, 3, 4 - based

on the amount of damage present in the liver. More specifically, stage 1 causes inflammation to the

portal areas of the liver, stage 2 causes inflammation and fibrosis to the portal and periportal areas

of the liver, stage 3 is bridging fibrosis, and stage 4 is cirrhosis. Figure 2 (b) highlights that stages

1-3 have more survivors (94%, 74%, 62%) than deaths (6%, 26%, 38%) but an increase in deaths

can be seen as the PBC stages progress from 1 to 3. On the other hand, we observe more deaths

(64%) than survivors (36%) in stage 4.
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Figure 2: These plots display the frequency of patients (a) with/without ascites and (b) in each
stage of PBC. The light grey color represents patients who survived or have been censored while
the dark grey color represents patients who have died in the study. The percentages refer to relative
frequency within each group.

3.1.2 COVID-19 Data

The COVID-19 data set is collected by the Open COVID-19 DataWorking Group (Xu et al., 2020).

COVID-19 is an infectious disease that began to spread in the year 2020. One of the most notable

COVID-19 complications is that infected people have respiratory problems. The COVID-19 data,

collected between February 2020 and March 2021, provides patient-level information including

age and sex. The data consists of subjects from 140 countries and includes information on the

initial symptoms of the patient and locations they traveled. The goal of our analysis is to identify

significant factors that contribute to death caused by COVID-19 across various nations.

Table 2 provides descriptive statistics of age, sex, and chronic disease for patients with COVID-19.

The mean age in the study was recorded as 58.720 (SD 18.434). Of all patients in the study, 61.2%

were males and 6.3% had a chronic disease present.
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Table 2: Descriptive statistics of COVID-19 data

Variable Mean / Count SD / Percent

Age 58.720 18.434
Male 477 0.612
Chronic Disease Present 49 0.063

Chronic disease refers to any illness that lasts for 1 year or longer and is in constant need of medi-

cation such as diabetes, cancer, and stroke. According to Figure 3 (a), 63% of patients with chronic

disease and 79% of patients without a chronic disease died during the study.

In the examination of the COVID-19 data, the difference in survival rates of females and males is

negligible with 22% and 21% among males and females, respectively. Figure 3 (b) shows that for

both the female and male sample populations, there are more deaths than there are survivors.

Figure 3: In barplot (a) and (b) the light grey color represents patients who survived or have been
dischargedwhile the dark grey color represents patients who have died in the study. The percentages
refer to relative frequency within each group.
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3.2 Data Application

3.2.1 Mayo Clinic Primary Biliary Cholangitis (PBC) Data

3.2.1.1 Kaplan-Meier (KM) Estimators In this section, we perform survival data analysis of

the PBC data using the KM estimator. As discussed in Section 2.1, the KM estimator can be

used to explore the difference in survival probabilities between the levels of a categorical variable

such as stage of the disease, ascites, sex, and treatment in the PBC data. Figure 4 shows the KM

estimates for (a) stage, (b) ascites, (c) sex, and (d) treatment. According to Figure 4 (a), the survival

probability of patients decreases as the stage in PBC increases. Next, in Figure 4 (b), the survival

rate of patients with ascites dramatically decreases as time progresses compared to patients that do

not have ascites. None of the patients with ascites survived until the end of the study. Lastly, Figure

4 (c) and (d) illustrate that survival probabilities of sex and treatment vs. placebo are not different

because they intersect throughout the years.

Figure 4: KM estimator for (a) stage, (b) ascites,(c) sex, and (d) treatment.
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3.2.1.2 Cox Proportional Hazards Model Although the KM estimator is informative in iden-

tifying the significance of categorical variables, in order to explore the effect of continuous and

categorical variables while controlling for other risk factors, we employ Cox proportional hazards

model. The PBC study originally contained 17 predictor variables including sex, amount of al-

bumin, amount of copper, triglycerides, and cholesterol. Predictors were systematically removed

to find the optimal Cox proportional hazards model, that is, the model with the smallest Akaike

Information Criterion (AIC). The final set of predictor variables included in the optimal model

are albumin, aspartate aminotransferase (AST), bilirubin, copper, standardised blood clotting time

(protime), age, ascites and PBC stage. The optimal model is given as:

ℎ(𝑡) = ℎ0(𝑡)𝑒𝑥𝑝(𝑧1𝛽1+𝑧2𝛽2+𝑧3𝛽3+𝑧4𝛽4+𝑧5𝛽5+𝑧6𝛽6+𝑧7𝛽7+𝑧8𝛽8+𝑧4
∗𝑧5𝛽9+𝑧4

∗𝑧6𝛽10+𝑧7
∗𝑧8𝛽11), (4)

where ℎ0(𝑡) is the baseline hazard function, 𝑧1 = AST, 𝑧2 = bilirubin, 𝑧3 = protime, 𝑧4 = age, 𝑧5 =

copper, 𝑧6 = albumin, 𝑧7 = stage, 𝑧8 = ascites, and 𝛽𝑘 are the corresponding regression coefficients

with 𝑘 = 1, … , 11. Table 3 presents the results of our model fit. We observe that all covariates in

the model, with the exception of albumin, are statistically significant (p-value<0.05). Albumin is

marginally significant with a p-value between 0.05 and 0.10.

Table 3: Results of the Cox proportional hazards model (4)

Variable estimate( ̂𝛽) exp( ̂𝛽) SE( ̂𝛽) Z P-value

AST 0.005 1.005 0.002 3.216 0.001

Bilirubin 0.095 1.100 0.018 5.162 0.000

Protime 0.311 1.364 0.090 3.441 0.001

Age 0.282 1.326 0.091 3.114 0.002

Copper 0.021 1.021 0.005 4.257 0.000
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Variable estimate( ̂𝛽) exp( ̂𝛽) SE( ̂𝛽) Z P-value

Albumin 2.453 11.627 1.368 1.794 0.073

Stage 0.486 1.626 0.141 3.450 0.001

Ascites 3.532 34.193 1.570 2.250 0.024

Age*Copper -3.138e-04 1.000 0.000 -3.583 0.000

Age*Albumin -0.061 0.941 0.025 -2.461 0.014

Stage*Ascites -0.860 0.423 0.430 -2.003 0.045

3.2.1.3 Diagnostics The diagnostics for the Cox Proportional Hazards presented in model (4)

are performed via the residuals as described below.

3.2.1.3.1 Schoenfeld Residuals The Schoenfeld residuals proportional hazards assumption ta-

ble (Table 4) identifies multiple violations in the Cox proportional hazards model (4). The variables

bilirubin, protime, and stage have a p-values below the significance level, 0.05. Thus, the null hy-

pothesis, which indicates the assumption is valid, is rejected.

Table 4: Results of Schoenfeld test for model (4)

Variable Chi.sq df P-value

AST 2.2384 1 0.1346

Bilirubin 8.3838 1 0.0038

Protime 5.0019 1 0.0253

Age 1.2896 1 0.2561

Copper 0.0006 1 0.9805

Albumin 0.5787 1 0.4468
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Variable Chi.sq df P-value

Stage 4.5812 1 0.0323

Ascites 1.1418 1 0.2853

Age*Copper 0.0471 1 0.8281

Age*Albumin 0.0753 1 0.7838

Stage*Ascites 1.2022 1 0.2729

Global 26.3125 11 0.0058

3.2.1.3.2 Martingale Residuals Martingale residuals were employed to check for the true func-

tional form for the quantitative covariates, which is only age in this application. To satisfy the true

functional form for each particular covariate, the plotted residuals must show linearity. According

to Figure 5, our model meets the assumption of linearity because the Martingale residuals are close

to zero and illustrate linearity.
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Figure 5: Martingale residuals for the covariate age in model (4). The red dotted line is a horizontal
line at zero and the blue dotted line is line of best fit of the Martingale residuals.

3.2.1.4 Parametric Survival Model with Weibull Distribution for PBC data application In

the previous Cox proportional hazards model (4), multiple covariates failed to satisfy the propor-

tional hazards (PH) assumption (refer to the p-values smaller than 0.05 in Table 4). The two most

common approaches to handling non-proportionality when quantitative variables fail to satisfy the

PH assumption is to either include interactions between these covariates and time or employ a dif-

ferent model such as the parametric survival models. We preferred the latter as the former approach

would be computationally intensive given that wewould need to include several interaction terms in

the Cox model. In the parametric survival models we fit, we assumed the baseline hazard function

follows a Weibull distribution. This parametric survival model takes the following form,
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ℎ(𝑡|𝑍) = 𝛼𝜆𝑡𝛼−1𝑒𝑥𝑝(𝑧1𝛽1+𝑧2𝛽2+𝑧3𝛽3+𝑧4𝛽4+𝑧5𝛽5+𝑧6𝛽6+𝑧7𝛽7+𝑧8𝛽8+𝑧4
∗𝑧5𝛽9+𝑧4

∗𝑧6𝛽10+𝑧7
∗𝑧8𝛽11), (5)

where ℎ(𝑡|𝑍) is the expected hazard at time 𝑡, 𝛼𝜆𝑡𝛼−1 represents the hazard when all predictors

are equal to zero, 𝑧1 = AST, 𝑧2 = bilirubin, 𝑧3 = protime, 𝑧4 = age, 𝑧5 = copper, 𝑧6 = albumin, 𝑧7 =

stage, 𝑧8 = ascites, and 𝛽1, … , 𝛽11 are the regression coefficients, respectively. Table 5 indicates

that AST, bilirubin, protime, stage, ascites, age, copper, the interaction of age * copper, and the

interaction of age * albumin are significant since the p-values are below the significance level, 0.05.

Also, albumin and the interaction between stage and ascites are marginally significant since their

p-values are between 0.05 and 0.10. It can be concluded that AST, bilirubin, and protime contribute

to a lower relative risk of death by 0.3%, 5.5%, and 18.4% respectively (when controlling for other

factors). To calculate the effect of copper, albumin, and ascites both the interaction and the main

effect are used for calculation. Controlling for all other covariates in the model, copper levels

increase by one unit, copper leads to a decreased relative risk of death by 1.3% (exp(1.92e-04 -

0.013) = 0.987), if albumin levels increase by one unit, albumin contributes to a decreased risk of

death by 78.4%. (exp(-1.570 + 0.038) = 0.216). Furthermore, as a patient’s condition in terms of

stage of the disease gets worse, we estimate that the hazard of death increases by 20.6% (exp(0.485-

0.298) = 1.206). Finally, subjects who have ascites have a decreased hazard of 78.9% (exp(-2.040

+ 0.485) = 0.211).

Table 5: Results of parametric survival model (5)

Variable estimate( ̂𝛽) exp( ̂𝛽) SE( ̂𝛽) Z P-value

AST -0.003 0.997 0.001 -3.32 0.001

Bilirubin -0.057 0.945 0.010 -5.58 0.000

Protime -0.203 0.816 0.055 -3.71 0.000
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Variable estimate( ̂𝛽) exp( ̂𝛽) SE( ̂𝛽) Z P-value

Age -0.175 0.839 0.054 -3.27 0.001

Copper -0.013 0.987 0.003 -4.46 0.000

Albumin -1.570 0.208 0.809 -1.94 0.052

Stage -0.298 0.742 0.086 -3.46 0.001

Ascites -2.040 0.130 0.970 -2.10 0.035

Age*Copper 1.92e-4 1.000 0.000 3.72 0.000

Age*Albumin 0.038 1.039 0.015 2.60 0.009

Stage*Ascites 0.485 1.624 0.265 1.83 0.067

3.2.1.5 Diagnostics The diagnostics for the parametric survival model withWeibull distribution

(5) is performed as described in Section 2.3. Figure 6 demonstrates a comparison of a survival

function corresponding to residuals obtained via an AFT model (solid red line) versus the KM

estimate (solid black line). According to this figure, as the KM estimate and the survival function

of the extreme value distribution align very well, theWeibull distribution was an appropriate choice

for our parametric survival model.

3.2.2 COVID-19 Data

3.2.2.1 Kaplan-Meier Estimators In parallel to the previous section, KM estimators are also

employed in the COVID-19 data to further investigate binary covariates sex and chronic disease.

Both plots in Figure 7 illustrate that there is not a difference of the survival probabilities between

males and females (a), nor between no chronic disease and chronic disease (b). Since neither co-

variate is a significant predictor for survival, further investigation is required using the Cox model.
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Figure 6: KM plot estimating AFT residuals of parametric survival model (5).

Figure 7: KM estimator for (a) sex and (b) chronic disease.

3.2.2.2 Cox Proportional Hazards Model Patients in the COVID-19 data provided informa-

tion on their age, symptoms, and demographics. To get the most favorable model, we performed

the same methods that were used to obtain the Cox proportional hazard model for the PBC data and
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chose the model with the lowest AIC value. Our final model consists of predictors age, sex, and

chronic disease, stated as follows:

ℎ(𝑡) = ℎ0(𝑡)𝑒𝑥𝑝(𝑧1𝛽1 + 𝑧2𝛽2 + 𝑧3𝛽3), (6)

where ℎ(𝑡) is the expected hazard at time 𝑡, ℎ0(𝑡) represents the baseline hazard, 𝑧1 = age, 𝑧2

= sex, 𝑧3 = chronic disease, and 𝛽 are the corresponding coefficients. According to Table 6, the

covariates age and chronic disease are significant because they have a p-value below 0.05. Although

the covariate sex is not significant, it is kept in the model to control for its effect.

Table 6: Results of Cox proportional hazards model (6)

estimate( ̂𝛽) exp( ̂𝛽) SE( ̂𝛽) Z P-value

Age 0.023 1.023 0.003 8.808 0.000
Sex 0.026 1.026 0.085 0.303 0.762
Chronic Disease -0.601 0.548 0.186 -3.229 0.001

3.2.2.3 Diagnostics The diagnostics for the Cox Proportional Hazards presented in model (6)

are performed via the residuals as described below.

3.2.2.3.1 Schoenfeld Residuals The Schoenfeld residuals were utilized to check the propor-

tional hazards (PH) assumption, that is, each covariate has a multiplicative effect in the hazards

function that does not change through time. In Table 7, all of the p-values from the covariates are

below 0.05 indicating that the PH assumption is not satisfied.
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Table 7: Results of Schoenfeld test for model (6)

Variable Chi.sq df P-value

Age 16.3581 1 0.0001
Sex 4.2521 1 0.0392
Chronic Disease 10.3311 1 0.0013
Global 32.3064 3 0.0000

3.2.2.3.2 Martingale Residuals Similar to the PBC data, Martingale residuals were also used

to check for the true functional form for the quantitative covariate, which is age for this data. Ac-

cording to Figure 8, our model satisfies the assumption of linearity since the Martingale residuals

are close to zero and illustrate linearity.

Figure 8: Martingale residuals for the covariate age in model (6). The red dotted line is a horizontal
line at zero and the blue dotted line is line of best fit of the Martingale residuals.
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3.2.2.4 Parametric Survival model with Weibull Distribution for COVID-19 data applica-

tion In the Cox proportional hazards model in (6), multiple covariates failed to satisfy the propor-

tional hazards (PH) assumption through the Schoenfeld test because the p-values were below 0.05.

Since the Cox proportional hazards model is not valid, we utilized a parametric survival model with

Weibull distribution. The model is as follows,

ℎ(𝑡|𝑍) = 𝛼𝜆𝑡𝛼−1𝑒𝑥𝑝(𝑧1𝛽1 + 𝑧2𝛽2 + 𝑧3𝛽3), (7)

where ℎ(𝑡|𝑍) is the expected hazard at time 𝑡, 𝛼𝜆𝑡𝛼−1 represents the hazard when all predictors

are equal to zero, 𝑧1 = age, 𝑧2 = sex, 𝑧3 = chronic disease. In Table 8, chronic disease and age are

significant as they have p-values below 0.05. Although the covariate sex is insignificant, we kept

it in our model to control for its effect. The results in Table 8 show that as patients get one year

older, they have a decreased relative risk of death by 1.8% and patients who have a chronic disease

have an increased relative risk of death by 55.6% compared to subjects who do not have a chronic

disease (when controlling for other factors).

Table 8: Results of parametric survival model in (7)

Variable estimate( ̂𝛽) exp( ̂𝛽) SE( ̂𝛽) Z P-value

Age -0.018 0.982 0.002 -8.529 0.000

Sex -0.025 0.975 0.066 -0.383 0.702

Chronic Disease 0.442 1.556 0.145 3.051 0.002

3.2.2.5 Diagnostics As previously discussed, the diagnostics for the parametric survival model

with Weibull Distribution (7) is achieved by comparing a survival function corresponding to resid-

uals from an AFT model (solid red line) against the KM estimate (solid black line). Figure 9
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illustrates that the Weibull distribution fits the COVID-19 data well because the survival function

of the extreme value distribution strongly aligns with the KM estimate.
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Figure 9: KM plot estimating AFT residuals of parametric survival model in (7).
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4 Conclusion

In this project, we presented a brief overview of survival data analysis methods motivated by two

medical data sets. In particular, we first applied KM estimation to study the estimated survival

probabilities over time in both data sets. Our results for the PBC data indicated that the survival

probability of patients decrease with later stages of PBC, patients with ascites have a significantly

lower survival probability compared to patients with no ascites, survival probabilities of males

are statistically different from females, and the survival probabilities of patients that were treated

with D-penicillamine are statistically different from patients that were treated with a placebo. In

terms of the COVID-19 data analysis, we observed that the survival probabilities of males are

statistically different from females and the survival probabilities of patients with chronic disease are

statistically different from patients without a chronic disease. However, due to the limitation of the

KMestimation, that is, this method can only be used to examine the effects of categorical predictors,

we also applied Cox proportional hazards model to each data. The main drawback we experienced

in terms of the Cox model application is that our analysis failed to satisfy the proportional hazards

assumption. We utilized parametric survival models with Weibull distribution to overcome this

challenge and the fitted models satisfied the assumptions. As a result of our analysis of PBC data

via these models, we concluded that albumin, AST, bilirubin, copper, protime, age, ascites, PBC

stage, the interaction of age * copper, and age * albumin are significant factors to death rate of

PBC, while albumin and stage * ascites are marginally significant. In particular, all of the covariates

decreased the risk of death for those with PBC, except for the stage of the disease, which contributed

to an increase in the hazard of death. For the COVID-19 data, we discovered that chronic disease

and age are significant covariates in the death rate of COVID-19 patients. Specifically, COVID-

19 patients have an increased risk of death due to chronic disease. The R codes for this project

are publicly available at https://drive.google.com/drive/folders/0AChOwKbOm59dUk9PVA; the

PBC data is available in the R survival package, and COVID-19 data can be accessed via https:

//www.nature.com/articles/s41597-020-0448-0.
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