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Rapid sensing of hidden objects and defects
using a single-pixel diffractive
terahertz sensor

Jingxi Li 1,2,3, Xurong Li 1,3, Nezih T. Yardimci 1,3, Jingtian Hu1,2,3,
Yuhang Li1,2,3, Junjie Chen4, Yi-Chun Hung1, Mona Jarrahi 1,3 &
Aydogan Ozcan 1,2,3

Terahertz waves offer advantages for nondestructive detection of hidden
objects/defects in materials, as they can penetrate most optically-opaque
materials. However, existing terahertz inspection systems face throughput and
accuracy restrictions due to their limited imaging speed and resolution. Fur-
thermore, machine-vision-based systems using large-pixel-count imaging
encounter bottlenecks due to their data storage, transmission and processing
requirements. Here, we report a diffractive sensor that rapidly detects hidden
defects/objects within a 3D sample using a single-pixel terahertz detector,
eliminating sample scanning or image formation/processing. Leveragingdeep-
learning-optimized diffractive layers, this diffractive sensor can all-optically
probe the 3D structural information of samples by outputting a spectrum,
directly indicating the presence/absence of hidden structures or defects. We
experimentally validated this framework using a single-pixel terahertz time-
domain spectroscopy set-up and 3D-printed diffractive layers, successfully
detecting unknown hidden defects inside silicon samples. This technique is
valuable for applications including security screening, biomedical sensing and
industrial quality control.

Inspecting hidden structures within materials or samples represents a
critical requirement across various applications, such as security
screening, industrial manufacturing and quality control, medicine,
construction, and defense. Non-invasive detection systems based on
terahertz technology offer unique opportunities for this purpose due
to the ability of terahertz waves to penetrate through most optically-
opaque materials and grasp the molecular fingerprint information of
the sample through the rich spectral signatures of different materials
in the terahertz band1–12. For example, terahertz time-domain spec-
troscopy (THz-TDS) systems have been extensively used in various
non-destructive quality control applications since they can provide
frequency-resolved and time-resolved responses of hidden objects13–16.
However, existing THz-TDS systems (including reflective versions) are

single-pixel and require raster scanning to acquire the image of the
hidden features, resulting in relatively low-speed/low-throughput
systems.Nonlinear optical processes can alsobeutilized to convert the
terahertz information of the illuminated sample to the near-infrared
regime to visualize the hidden structural information of the sample
through anoptical camerawithout raster scanning17–20. However, these
imaging systems offer relatively low signal-to-noise ratio (SNR) levels
and require bulky and expensive high-energy lasers to offer acceptable
nonlinear conversion efficiencies. Alternatively, terahertz information
of the illuminated sample can be encoded using spatial light mod-
ulators and the image data can be resolved using computational
methods without raster scanning21–28. This approach, often known as
terahertz computational ghost imaging, can achieve high image SNR
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with a decent spatial resolution. However, the physical constraints of
spatial light modulators operating at terahertz wavelengths limit the
speed, and increase the size, cost, and complexity of these imaging
systems. In addition to these, currently available terahertz focal-plane
arrays based on field-effect transistors and microbolometers offer a
limited spatial resolution and do not provide time-resolved and
frequency-resolved image data, limiting the types of structural infor-
mation that can be detected29,30. Due to these limitations, the space-
bandwidth products (SBPs) of existing terahertz imaging systems are
orders of magnitude lower than their counterparts operating in the
visible band, thereby constraining the system’s overall information
throughput and its capacity to adequately capture the desired details
of the hidden structures of interest.

Apart from these limitations of existing terahertz imaging sys-
tems, the identification of hidden structural features in test volumes
through the processing of large-pixel-count image data is, in general,
bottlenecked and challenging to reach high throughputs needed in
many applications (e.g., industrial quality control and security
screening) due to the digital storage, data transmission, and image

processing/classification requirements that are demanding for con-
tinuous imaging and sensing systems.

Here, we present a diffractive sensor (Fig. 1) that can rapidly
detect hidden defects or objects within a target sample volume using a
single-pixel spectroscopic terahertz detector. Unlike traditional
approaches that involve point-by-point scanning and digital recon-
struction of the target sample volume using a computer, this single-
pixel diffractive sensor rapidly inspects the volume of the test sample
illuminated with terahertz radiation, without the formation or digital
processing of an image of the sample. Stated differently, rather than
formulating the detection and classification of defects or hidden
objects as part of a standard machine vision pipeline (i.e., image,
digitize, and then analyze using a computer), instead, we treat the
detection system as a coherent diffractive optical system that pro-
cesses terahertz waves on demand, which can all-optically search for
and classify undesired or unexpected sources of secondary waves
generated by diffraction through hidden defects or structures. In this
sense, the diffractive defect sensor can be considered an all-optical
sensor for unexpected or hidden sources of secondary waves within a
test volume, which are detected through a single-pixel spectroscopic
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Fig. 1 | Schematic of a diffractive terahertz sensor for rapid sensing of hidden
objects or defects using a single-pixel spectroscopic detector. a, Illustration of a
single-pixel diffractive terahertz sensor. The analysis and sensing of hidden defects
are performed all-optically using passive and spatially-structured diffractive layers
that encode the presence or absence of unknown defects hidden within the target
sample volume into the output terahertz spectrum, which is then detected using a
single-pixel spectroscopic detector. The input illumination of the system shown

here is provided by an ultrashort terahertz pulse, with an overall duration of
~320 ps. For illustrative purposes, only the segment with a significant magnitude is
shown. b Working principle of the all-optical hidden object/defect detection
scheme. The spectral intensity values, s λ1

� �
and s λ2

� �
, sampled at two pre-

determinedwavelengths λ1 and λ2 by the single-pixel detector are used to compute
theoutput score for indicating the existenceof hidden3Ddefects/structureswithin
the sample volume. λm = (λ1 + λ2) / 2.

Article https://doi.org/10.1038/s41467-023-42554-2

Nature Communications |         (2023) 14:6791 2



detector. Our design is comprised of a series of diffractive layers,
optimized tomodify the spectrum of the terahertz radiation scattered
from the test sample volume according to the absence or presence of
hidden structures or defects. The diffractive layers are jointly opti-
mized using deep learning, and contain tens of thousands of sub-
wavelength phase features. Once their deep learning-based training is
complete (which is a one-time effort), the resulting diffractive layers
are physically fabricated using 3D printing or additive manufacturing,
which forms an optical neural network31–44. When the test object
volume is illuminated with terahertz radiation, the scattered terahertz
waves from the object volume are all-optically processed by the dif-
fractive network and sampled by a single-pixel spectroscopic detector
at the output aperture of the system. The measured spectrum reveals
the existence of hidden defects/structures within the sample volume
all-optically, without the need for raster scanning or any image
reconstruction or processing steps. Since these target structures or
defects of interest are hidden within a solid volume, traditional
machine vision approaches that operate at visible wavelengths cannot
provide an alternative approach for these tasks. We demonstrated a
proof-of-concept of this diffractive terahertz sensor by detecting hid-
den defects in silicon samples, which were prepared by stacking two
wafers; one wafer containing etched defects and the other wafer
covering the defective regions. The diffractive layers were designed to
introduce adifferential variation in the peak spectral intensity near two
predetermined terahertz wavelengths. This diffractive defect sensor
was realized using a single-pixel THz-TDS system with a plasmonic
nanoantenna-based source45,46 generating pulsed terahertz illumina-
tion and a plasmonic nanoantenna-based detector47 sampling the ter-
ahertz spectrum at the output aperture. We numerically analyzed the
performance of our diffractive defect sensor by evaluating its detec-
tion sensitivity as a function of the size and the position of the hidden
defects within the detection field-of-view (FOV), also covering small
feature sizes that are close to the diffraction limit of light. We fabri-
cated the optimized diffractive layers using a 3D printer and con-
ducted experimental tests for hidden defect detection. Our
experimental results on silicon wafers with various unknown defect
sizes and positions showed a good agreement with our numerical
analysis, successfully revealing the presence of unknown hidden
defects.

Although the diffractive defect sensors reported in this workwere
primarily designed for the terahertz band, the underlying concept and
design approaches are also applicable for defect detection in other
parts of the spectrum, including infrared, visible, and X-ray. These
unique capabilities of performing computational sensing without a
digital computer or the need for creating a digital 3D imagewill inspire
the development of new task-specific all-optical detection systems and
smart sensors. These systems can find diverse applications, such as
industrial manufacturing and quality control, material inspection,
detection/classification of hidden objects, security screening, and anti-
counterfeitingmeasures. The non-destructive and non-invasive nature
of this technology platform also makes it a valuable tool for sensitive
applications, e.g., cultural heritage preservation and biomedical sen-
sing. We believe that this framework can deliver transformative
advances in various fields, where defect detection and materials
diagnosis are of utmost importance.

Results
Our reported approach demonstrates all-optical detection of hidden
structures within 3D samples, enabled by a single-pixel spectroscopic
terahertz detector, entirely eliminating theneed to scan the samples or
create, store, anddigitally process their images.Our designemploys an
optical architecture featuring a passive diffractive encoder that gen-
erates structured illumination impinging onto the 3D sample of
interest, coupled with a diffractive decoder that performs space-to-
spectrum transformation, achieving defect detection based on the

optical fields scattered from the sample volume. Leveraging this
synergy between the two diffractive networks and their joint training/
optimization, this single-pixel defect processor offers distinct advan-
tages compared to the existing terahertz imaging and sensing systems
used for the same purpose. First, the hidden defect detection is
accomplished using a single-pixel spectroscopic detector, eliminating
the need for a focal plane array or raster scanning, thus greatly sim-
plifying and accelerating the defect detection process. Second, the
diffractive layers we employ are passive optical components, enabling
our diffractive defect sensor to analyze the test object volume without
requiring any external power source except for the terahertz illumi-
nation and single-pixel detector. Third, our all-optical end-to-end
detection process negates the need for memory, data/image trans-
mission, or digital processing using e.g., a graphics processing unit
(GPU), resulting in a high-throughput defect detection scheme. Over-
all, these characteristics render our single-pixel diffractive terahertz
sensors particularly well-suited for high-throughput screening appli-
cations such as in industrial settings, e.g., manufacturing and security.
These applications require high-throughput defect detection, where
the hidden defects or objects of interest are often rare, but critically
important to catch. Unlike conventional imaging-based methods,
which are often hindered by the 3D image data overload due to
redundant information and limited frame rates of 2D image sensors,
our non-imaging and single-pixel defect detection approach can deli-
ver markedly higher sensing throughput while offering cost-
effectiveness and simplicity.

Design of the single-pixel diffractive terahertz sensor
Figure 1 illustrates the basic principles of the proof-of-concept for our
single-pixel diffractive terahertz sensor design. The forward model of
this design can be treated as a coherent optical system that processes
spatially coherent terahertz waves at a predetermined set of 2 wave-
lengths (λ1 and λ2), where the resulting diffraction and interference
processes are used for the defect detection task. As depicted in Fig. 1a,
a set of diffractive layers is positioned before the sample under test to
provide spatially coherent, structured broadband illuminationwithin a
given detection FOV, acting as an all-optical front-end network that is
trainable. Another group of diffractive layers, positioned after the test
sample, acts as the jointly trainedback-endnetwork,which all-optically
performs the detection of hidden defects inside the target sample by
encoding the defect information into the power spectrum at the
single-pixel output aperture. This output spectrum ismeasured at two
predetermined wavelengths, λ1 and λ2, producing the spectral inten-
sity values s λ1

� �
and s λ2

� �
that yield a normalized detection score

sdet =
s λ1ð Þ

s λ1ð Þ+ s λ2ð Þ (sdet ∈ (0,1)); see Fig. 1b. By comparing sdet at the single-

pixel output with a pre-selected threshold sth, the defect inference is
performed to predict the existence of hidden defects within the target
sample volume, i.e., sdet ≥ sth for a defect, while sdet<sth indicates no
defect. As will be detailed later on, we selected an unbiased threshold
of sth = 0.5 in our numerical analysis and experimental validation and,
therefore a simple differential decision rule of s λ1

� �
≥ s λ2
� �

indicates

the existence of hidden defects, and s λ1
� �

< s λ2
� �

indicates a defect-
free (negative) sample. More details about the forward physical model
and the joint training of the front-end and back-end diffractive layers
of Fig. 1a are provided in the Methods section.

To demonstrate the feasibility of our non-destructive diffractive
defect detection framework, we designed a proof-of-concept single-
pixel diffractive terahertz sensor that can effectively detect pore-like
hidden defects within silicon materials; these defects are not visible
from the outside. Such a capability is highly sought after in numerous
industrial applications due to its high prevalence and significance in
determining e.g., the quality, reliability, and performance of manu-
factured parts/products. To achieve this capability, as depicted in
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Fig. 2a, we created test samples with hidden defects by forming a stack
of two silicon wafers that are in close contact with each other, where
the surface of one of the wafers contained defect structures fabricated
using photolithography and etching (see “Methods” section for
details). The inspection FOV of each test object was chosen as 2×2 cm.
As illustrated in Fig. 2a, an exemplary defect is located somewhere
inside the detection FOV at the interface between the two wafers.
Supplementary Fig. S1 includes additional photographs of a silicon test
sample, showcasing its structure across 3 cross-sectional planes:
planes F and B for the front and back surfaces of the stacked wafers,
respectively, and plane D for the contact interface of the two silicon
wafers. Such hidden defects cannot be inspected by visible or infrared
cameras and would normally demand scanning imaging systems using
terahertz wavelengths to form a digital image of the test object to
visualize or detect potential defects using a computer.

To achieve all-optical detection of such hidden defects using our
single-pixel diffractive terahertz sensor, we empirically selected
λ1 = 0.8mm and λ2 = 1.1mm, and accordingly optimized the archi-
tecture of the diffractive terahertz sensor and its layers using deep
learning (see the Methods section). Our single-pixel diffractive sensor
design consists of four diffractive layers, with two positioned before
the target sample and two positioned after the target sample, i.e.,
forming the front-end and back-end diffractive networks, respectively.
Each of these diffractive layers is spatially codedwith the samenumber
of diffractive features (100×100), each with a lateral size of ~0.53λm,
where λm = (λ1 + λ2) / 2 = 0.95mm. The layout of this diffractive design
is provided in Fig. 2b.

Since our diffractive sensor needs to effectively detect the hidden
defects of unknown shapes and sizes that may appear anywhere in the
target sample volume, we adopted a data-driven approach by simu-
lating a total of 20,000 silicon test samples with hidden defects of
varying sizes and shapes for training our diffractive sensor model. The

defects within these simulated test samples were set to be rectangular,
with their lateral sizes (Dx and Dy) randomly generated within a range
of 1–3mm and a depth (Dz) randomly chosen between 0.23 and
0.27mm. The positions of these defects (xd, yd) were also randomly set
within the detection FOV. We also modeled a test sample that has no
defects in our numerical simulations, which forms the negative sample
in our training data. To avoid our diffractivemodel being trainedwith a
heavy bias towards positive samples (i.e., test samples with defects),
during the formation of our training dataset, we created 20,000
replicas of our defect-free sample and mixed them with the
20,000 samples with defects, such that the final training set had a
balanced ratio of positive and negative samples. We also generated a
blind testing set composed of 2000 samples with various defects fol-
lowing the same approach; all these defective test samples were cre-
ated using different combinations of parameters (Dx,Dy,Dz, xd, yd) that
are uniquely different than any of those used by the training samples.

Note that our data-driven training process is a one-time effort,
similar to the training effort that a digital defect analyzer based on a
THz camerawouldneed to go through (using e.g., supervised learning)
in an industrial or security setting. In the training of our diffractive
designs, we used a focal cross-entropy loss; see theMethods section48.
This type of loss function can effectively reduce the penalization from
samples that can be easily classified, such as those containing large
hiddendefects, therebyprovidingbetter detection sensitivity formore
challenging samples, such as those with smaller-sized hidden defects.
Moreover, in the training loss function, we also incorporated a term to
impose constraints on the energy distribution of the output power
spectrum (see theMethods section). This loss term aimed tomaximize
the output diffraction efficiency at λ1 and λ2, while minimizing it at
other neighboring wavelengths, which helped us enhance the single-
pixel SNR at the desired operational wavelengths (λ1 and λ2). This
design choice reduced the single-pixel output at other wavelengths,
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Fig. 2 | Design of the single-pixel diffractive terahertz sensor for detecting
hidden defects in silicon wafers. a Side view schematic of the sample under test,
comprising two silicon wafers stacked with a hidden defect structure fabricated on
the surface of one of the wafers through photolithography and etching. The opa-
que regions are covered with aluminum to block the terahertz wave transmission,
leaving a square-shaped opening of 2 × 2 cm that serves as the detection FOV. The
photos showing cross-sections of a sample structure at planes F, D and B are

provided in Supplementary Fig. S1. The direction of terahertz wave propagation is
defined as the z direction, while the x and y directions represent the lateral direc-
tions. b Physical layout of the single-pixel diffractive terahertz sensor set-up, with
the sizes of input/output apertures, the size of the detection FOV, and the axial
distances between the adjacent components annotated. c Thickness profiles of the
designed diffractive layers.
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increasing our designs’ experimental robustness. Additional details
regarding the training data generation and the loss function that we
used can be found in the Methods section.

Numerical results and performance analysis
Figure 2c shows the resulting diffractive layers after the training was
complete. We numerically tested this diffractive sensor design using
the testing set containing 2,000 defective samples that we generated
without any overlap with the training defective samples, as well as a
test sample without any defects. By using an unbiased classification
threshold of sth = 0.5, we found that 89.62% of the defective test
objects were successfully classified, and the defect-free test sample
was also correctly identified. These results confirm that our diffractive
model with sth = 0.5 could achieve 100% specificity (false positive rate,
FPR =0%), while possessing a high sensitivity (i.e., true positive rate,
TPR = 89.62%) to successfully detect various hidden defects with
unknown combinations of shapes and locations, demonstrating its
generalization for hidden defect detection. Optimization of the value
of sth based on the training or validation sets results in sth = 0.4989,
which further improves our blind detection sensitivity (TPR) to 90.48%
for the defective test samples, while maintaining a specificity of 100%.
However, the value of the threshold in this case (sth= 0.4989) is very
close to the output score of a defect-free sample (i.e.,
sdetðnegativeÞ = 0.4988 <sth), and this can potentially introduce false
positives under experimental errors. Therefore, to be resilient to
experimental imperfections and suppress potential false positives, we
selected an unbiased threshold of sth = 0.5, where s λ1

� �
≥ s λ2
� �

indi-
cates the existence of hidden defects and s λ1

� �
< s λ2
� �

indicates a
defect-free sample.

To comprehensively evaluate the efficacy of our single-pixel
diffractive defect detection framework with a decision threshold of
sth = 0.5, we performed an in-depth analysis of the performance of
our diffractive sensor. First, we evaluated the impact of the defect
geometry on the detection performance by testing samples with
rectangular defects of various dimensions (Dx, Dy, and Dz) located
randomly within the detection FOV. For a given combination of Dx,
Dy, and Dz, we simulated 100 test defective samples and obtained
the corresponding detection sensitivity; see Fig. 3a and b. By sepa-
rately scanning the values of Dx, Dy, and Dz, we summarized the
resulting defect detection accuracies of our diffractive sensor in
Fig. 3c-h. We observe that, as the lateral size (Dx or Dy) of the hidden
defect reduces, the detection sensitivity decreases considerably,
regardless of Dz. For instance, for a relatively large defect of size
Dx =Dy = 3mm and Dz = 0.3mm located randomly across the detec-
tion FOV, the detection sensitivity (i.e., TPR) of our diffractive sensor
is 100%, while it drops to 57% when both Dx and Dy reduce to
0.75mm, which is smaller than λ1 and λ2. Additionally, the overall
detection performance also shows a degradation trend as the defect
depth Dz is reduced. For example, for test samples with Dx and Dy in
the range of [2.5, 3] mm, located randomly within the detection FOV,
the detection sensitivity reaches ~99.7% when Dz is 0.3 mm, but
drops to ~81.2% asDz reduces to 0.15mm,which ismuch smaller than
λ1 and λ2. These analyses further reveal that, for a given detection
sensitivity threshold of, e.g., TPR = 75%, our diffractive sensor design
can achieve accurate detection of hidden defects that are Dx,
Dy ≥ ~1.25mm ( ~ 1.32λm) and Dz ≥ ~0.21 mm ( ~ 0.22λm) within a FOV
of 2×2 cm ( ~ 21λm×21λm). It should be noted that the smallest defect
used in our analysis has a size close to the diffraction limit of light in
air ( ~ 0.5λm). Despite the fact that the diffraction limit would be
smaller in a high-refractive-index material like silicon, the medium
between the sample under test and the detector is air, which sets an
upper limit of 1 on the effective numerical aperture (NA) of the
detection system. Such small defects in general present SNR chal-
lenges for conventional imaging systems even if a diffraction-limited
image were to be formed and acquired to be digitally processed.

We further evaluated the capabilities of our diffractive terahertz
sensor to detect small defects located at different positions across the
detection FOV (see Fig. 3i). For this analysis, the entire detection FOV
of 2×2 cmwasdivided into a series of concentric circles of equal radius,
forming ring-like regions denoted as R1 to R6 from the center to the
edges. For each one of these regions, we performed
n = 100 simulations of hidden defect detection, and in each simulation,
a small hidden defect of size Dx =Dy = 0.75mm and Dz = 0.18mm was
positioned at a random location within the corresponding region; see
Fig. 3j. We observed that, when the hidden defect randomly appears
within R1 to R4 regions, the detection sensitivity is maintained at
~100%, but it drops to <70% when the hidden defect falls within R5
(TPR = 65%) and R6 (TPR = 20%). These results reveal an outstanding
detection sensitivity in a circular region with a diameter of 1.6 cm
( ~ 16.84λm) at the center of the detection FOV. Stated differently,
compared to utilizing the entire detection FOV of 2 × 2 cm, if we
slightly reduce this inspection FOV to a diameter of 1.6 cm, the
detection performance of our diffractive design can be significantly
improved, allowing successful detection of even smaller hidden
defects of Dx, Dy > ~0.75mm ( ~ 0.79λm) and Dz > ~0.18mm ( ~ 0.19λm)
with a sensitivity of TPR > 79%.

Experimental validation of the diffractive terahertz sensor
Next, we performed an experimental validation of our diffractive
design using a THz-TDS set-up with a plasmonic photoconductive
source and single-pixel detector; see Fig. 4a. The diffractive layers of
the design were fabricated through 3D printing, and the photos of
these fabricated diffractive layers are shown in Fig. 4b. After their
fabrication, these layers were assembled and aligned with the test
samples using a 3D-printed holder, forming a physical diffractive ter-
ahertz defect sensor that is integrated with a THz-TDS set-up; see
Fig. 4c, d. Ten different exemplary silicon test samples, with or without
hidden defects, were prepared for this experimental testing, where the
hidden structures of these samples at plane D are shown in Fig. 5b.
Among these test samples, No. 1–9 contained a hidden defect that
cannot be visibly seen as the defect is located at plane D (between the
two wafers); these defects possess different sizes and shapes (defined
by Dx, Dy, and Dz). Importantly, the combinations of the parameters
(Dx,Dy,Dz, xd, yd) for these test sampleswere never used in the training
set, i.e., these 9 test samples containing defects were new to our
trained diffractive model. Furthermore, the defect samples No. 8 and
No. 9 hadunique characteristics in their defect structures: the defect in
test sample No. 8 is a rectangle of 1 × 5mm, a shape never included in
the training set; and the defect in test sample No. 9 is a 1×3mm rec-
tangle but rotated 45°, where such a rotation was never seen by the
diffractive model in the training stage. The specific geometric para-
meters (Dx,Dy,Dz, xd, yd) of each test object areprovided in Fig. 5e. The
other test sample, i.e., sample No. 10, contains no defects, i.e., repre-
sents the negative test sample.

During our experiments, each test sample was measured 5 times,
producing output power spectra shown in Fig. 5e (solid lines), which
are compared to their numerically generated counterparts using the
trained forward model (dashed lines). Despite the 3D fabrication
errors/imperfections, possible misalignments, and other sources of
error in our experimental set-up, there is a good agreement between
our experimental results and the numerical predictions. However, the
measured spectral curves shown in Fig. 5e exhibit minor random
fluctuations and some small shifts towards longer wavelengths. To
improve our SNR and build experimental resilience for hidden defect
detection, we averaged the 5 spectral measurements for each test
object and used the two peak spectral values at the resulting average
spectrum for s λ1

� �
and s λ2

� �
; see Fig. 5c. Stated differently, these 5

measurements collectively contributed to the representation of a
single data point (i.e., the final detection score ŝexp λð Þ) in Fig. 5c. Since
we chose an unbiased detection threshold of sth = 0.5, the straight line

Article https://doi.org/10.1038/s41467-023-42554-2

Nature Communications |         (2023) 14:6791 5



a)

x

z

Silicon 
wafers

Defect

Dz
Detection

FOV

(nsample = 100)

Dy

Dx

x

y

b)

i) j)

Region

Se
ns

iti
vi

ty
(%

)

R1
R2
R3
R4
R5 R6

R6R6

R6

(nsample = 100 for each of R1-R6)

2 mm

f)

c)

Dx (mm)

D
y
(m

m
)

Dz = 0.15 mm

Dx (mm)

D
y
(m

m
)

Dz = 0.18 mm

Dx (mm)

D
y
(m

m
)

Dz = 0.21 mm

Dx (mm)

D
y
(m

m
)

Dz = 0.24 mm

Dx (mm)

D
y
(m

m
)

Dz = 0.27 mm

Dx (mm)

D
y
(m

m
)

Dz = 0.30 mm
Sensitivity
(%)g)

d)

h)

e)

(n
sa

m
pl

e
= 

10
0

fo
re

ac
h 

co
m

bi
na

tio
n 

of
(D

x,
D

y,
D

z))
xx

RR

Fig. 3 | Performance analysis of the single-pixel diffractive terahertz sensor
design for detecting defects with different geometrical parameters and posi-
tions hidden inside the silicon test sample. a, b Illustration for analyzing the
impact of the shape and size of the hidden defect, defined by the lateral sizes, Dx

and Dy, and the depth, Dz, on the detection sensitivity of the diffractive terahertz
sensor design. For a given combination of (Dx, Dy, Dz), a total of nsample = 100 test
samples were numerically generated for each region (R1-R6), with each sample
containing a hidden defectwith a dimension of (Dx,Dy,Dz) located randomly across
the detection FOV. c-h, Defect detection accuracies as a function of the defect

dimensions (Dx,Dy andDz) that are defined in a andb. i Illustration for analyzing the
impact of the position of the hidden defect within the detection FOV on the
detection sensitivity of the diffractive terahertz sensor. For this analysis, the entire
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regions of the detection FOV that are defined in i using randomly located hidden
defects with Dx =Dy = 0.75mm and Dz = 0.18mm.
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of s λ1
� �

= s λ2
� �

is used as the boundary for judging the presence or
absence of defects: s λ1

� �
≥ s λ2
� �

indicates the existence of hidden
defects and s λ1

� �
< s λ2
� �

indicates a defect-free sample. As shown in
Fig. 5c, the spectral data points corresponding to test samples No. 1–9
all lie above this decisionboundary, indicating that these sampleswere
predicted by our diffractive sensor to contain hidden defects,
demonstrating successful detection (true positive decisions). Mean-
while, the spectral data point for sample No. 10, which is defect-free,
fell on the other side of this decisionboundary, also revealing a correct
inference (a true negative decision). Note that in our experiments, the
smallest defects we used have a size of 1×3 mm2 (3×1 mm2), and such
defects in samples No. 4, 6, and 7were all located near the edges of the
detection FOV, presenting particularly challenging detection cases.
This small defect area of 3mm2 approaches the smallest hidden feature
that our diffractive sensor can detect as characterized in our simula-
tion analysis (1.25mm× 1.25mm≈ 1.56mm2). Therefore, these experi-
mental results constitute compelling evidence demonstrating the
practical feasibility of our diffractive defect sensor.

Next, we explored the false positive rate of our diffractive defect
sensor and conducted new experiments with another defect-free
(negative) test sample that was measured 10 times through repeated
measurements. We formed 252 unique combinations of these
10 spectral measurements in groups of 5, and for each random com-
bination of measurements, we averaged the 5 spectral measurements
for the defect-free test object and used the peak spectral values at the
resulting average spectrum for s λ1

� �
and s λ2

� �
– same as before. The

results of this analysis are reported in Fig. 5d, where we observed an
FPR of ~10.7% for an unbiased detection threshold of sth = 0.5.

Discussion
Wepresented an all-optical, end-to-end diffractive sensor for the rapid
detection of hidden structures. This diffractive THz sensor features a
distinctive architecture composed of a pair of encoder and decoder
diffractive networks, each taking the unique responsibilities of struc-
tured illumination and spatial-spectral encoding, a configuration that
has never been showcased in previous literature on diffractive net-
works. Based on this unique framework, we demonstrated a proof-of-
concept hidden defect detection sensor. The success of our experi-
mental results and analyses confirmed the feasibility of our single-pixel
diffractive terahertz sensor using pulsed illumination to identify var-
ious hidden defects with unknown shapes and locations inside test
sample volumes, with minimal false positives and without any image
formation, acquisition, or digital processing steps.

We would like to further underscore some of the unique aspects
of our reported framework over conventional approaches that utilize
terahertz focal plane arrays or reflective TDS-based machine vision
systems. Let us consider a common scenario in industrial quality
control systems or security applications: hidden defects are dis-
covered in only a minute fraction of the inspected objects, for exam-
ple, just one in every 1000 or 10,000 objects. This means that, inmore
than 99.9% of the inspected cases, the objects encountered are
ordinary and defect-free. However, for every inspected object, tradi-
tional terahertz imaging systems must undergo the following steps,
one by one: (1) recording and reconstructing 3D images of each of
these >1000–10,000 objects using a focal plane array and/or a scan-
ning beam system, (2) sequentially storing these 3D images and
uploading them to a remote or local server, and then (3) running
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machine learning algorithms using GPU clusters to digitally determine
the presence of hidden defects. Consequently, a substantial amount of
imaging and computational resources are wasted in extracting and
processing redundant information, leading to lowered detection
throughput and a massive burden on data/storage and bandwidth.
Even for large defects that are relatively simple todetect using state-of-
the-art algorithms frequently used in machine vision, the throughput
of such imaging-based solutionswould still be limited by the low frame
rate of the 2D image sensor-arrays; this image capture process will be
even slower for various point-scanning-based THz imaging systems. In
contrast, our method effectively circumvents all these steps. It does
not require reconstructing or creating 3D images for each object, nor
does it need to store and upload any images to the cloud, and it also
certainly does not necessitate using GPU clusters to handle large
volumes of data. Using a single-pixel detector and snap-shot dual
illumination wavelengths for defect sensing, our method signifies a
unique paradigm, eliminating the image capture/reconstruction, sto-
rage, and transmission steps needed by GPU-based digital processing
systems. As a result, the volumetric defect detection rate can be ele-
vated to alignwith the exceptional speed of single-pixel sensors, which
can have a response time of <1 µs49. Therefore, with our presented
framework the efficiency of terahertz defect inspection/detection can
be dramatically enhanced, and concurrently the cost per inspection

can be substantially reduced using the presented diffractive defect
sensors.

In our experimental results reported earlier using our single-pixel
diffractive defect sensor, we adopted a strategy of taking the average
ofNavg = 5measurements to improve the detection SNR and the defect
detection performance of the system. To delve deeper into this aver-
aging strategy, similar to Fig. 5d, from the 10 spectralmeasurements of
this defect-free sample, we randomly selected Navg samples to form a
group for averaging, and accordingly took the spectral peaks in the
resulting spectrumas s λ1

� �
and s λ2

� �
to obtain the detection score sdet.

After analyzing all the detection results corresponding to all the pos-
sible combinations, i.e., Cð 10

Navg
Þ, we calculated the false positive rate,

FPR, as a function of the averaging factor Navg. Figure 6 reports the
impact of Navg on the FPR in our detection results. These findings
indicate that when Navg is 1, i.e., no averaging is used, the FPR reaches
as high as ~30%.However, asNavg increases, the reported FPR begins to
decrease significantly. Specifically, whenNavg = 5, the FPR falls to 10.7%,
which aligns with our earlier results in Fig. 5d. When Navg further
increases to 8, the FPR drops to 0%, indicating that false positives can
be eliminated by this averaging strategy (see Fig. 6).

Another aspect we would like to discuss pertains to the variation
of our diffractive defect sensor’s performance at different sub-regions
within the detection FOV. For this, we simulated the terahertz wave
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Fig. 5 | Experimental results for detecting defects hidden inside the test sam-
ples using the single-pixel diffractive terahertz sensor. a Illustration of the
sample under test. b Photographs of the exemplary test samples used for the
experimental blind testing, which reveal the hidden structures at the cross-
sectional plane D (not visible from outside). The first nine of the test samples (i.e.,
samples No. 1–9) contain etched defects that have different shapes and are posi-
tioned at different locations within the detection FOV, while the last sample (i.e.,
sample No. 10) has no defects. These photos were captured by removing the
smaller silicon wafer at the front, i.e., the left wafer in a. cNormalized experimental
spectral scores for the test samples shown in b. d Histogram showing the dis-
tribution of the 252 experimental differential detection scores, which were
obtained through measuring a defect-free (negative) sample 10 times through

repeated experiments and combining these 10 spectral measurements in unique
groups of 5, each resulting in an experimental differential detection score, sdet , exp,
based on the average spectrum. Note that Cð105 Þ= 252, where C refers to the com-
bination operation. e Normalized experimental spectral intensity (solid lines) for
the different test samples shown in b, compared with their numerically simulated
counterparts (dashed lines). Each test samplewasmeasured 5 times and the results
of all 5 measurements are shown in the same graph. For the test samples with
defects (i.e., samples No. 1–9), the lateral sizes (Dx and Dy) and positions (xd, yd) of
the defects are shown in italicized texts, and Dz = 0.25mm. The experimental dif-
ferential detection scores, sdet , exp, are calculated for each test sample based on
averaging the 5 spectral measurements, which are also compared with their
numerical counterpart sdet ,sim, reported at the bottom of each panel.
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field EdetFOV within the detection FOV at plane D, i.e., the plane where
the incoming terahertzfield interactswith the potential hiddendefects
(Supplementary Fig. 2a). The amplitude and phase distributions of
EdetFOV at the two predetermined wavelengths (λ1 = 0.8mm and
λ2 = 1.1mm) are shown in Supplementary Fig. 2b–e. Interestingly,
EdetFOVðλ1Þ exhibits a relatively uniform amplitude and phase distribu-
tions at the center, with the phase profile beginning to present faster
changes as moving away from the center. On the other hand, the
amplitude and phase distributions present a specific structure, fea-
turing higher intensity in the center and lower intensity around. These
observations suggest that the terahertz light reaching the detection
FOV, after being processed by the encoding diffractive network, pri-
marily forms structured light illumination at λ2, while it largely main-
tains a spherical wave-like illumination pattern at λ1. We further
analyzed the influence of this structured light illumination on the
defect detection results. As illustrated in Supplementary Fig. 2f, we
assumed ahiddendefectwithDx =Dy = 3mm,Dz = 0.25mmthat can be
located anywhere within the detection FOV, identical to the one in
Sample No. 1 used in our experimental validation. We numerically
quantified the output spectral intensity at the two operational wave-
lengths, s λ1

� �
and s λ2

� �
, as a function of the hidden defect’s position

within the detection FOV, and calculated the resulting final detection
score sdet in eachcase. These results are summarized in Supplementary
Fig. 2g–i. As shown in Supplementary Fig. 2j, the detection scores sdet
within the detection FOV exceed the detection threshold sth = 0.5,
indicating 100% true positive detection, except at the edges of the
detection FOV, which have relatively poor representation during the
training phase. It can be seen that, s λ1

� �
presents a fairly uniform dis-

tribution (excluding the edges); in contrast, the overall distribution of
s λ2
� �

shows a significant negative correlation with sdet, and they both
exhibit substantial correspondence with the amplitude distribution of
EdetFOVðλ2Þ as shown in Supplementary Fig. 2d. This finding suggests
that EdetFOVðλ1Þ and EdetFOVðλ2Þ essentially play roles akin to reference
light and probe light, respectively. Here, the intensity structure of
this “probe” light EdetFOVðλ2Þ notably contributes to the distribution of
sdet, which both exhibit features of higher values at the center and
lower values at the periphery, correlating with our observations
in Fig. 3j.

Different approaches can be explored to further enhance the
performance of our defect detection sensor. To achieve a larger
detection FOV, one will need to enlarge the diffractive layers so that
the possible defect information can be effectively processed by the
diffractive layers using a larger NA. Additionally, the number of train-
able diffractive layers in both the front-end and back-end optical net-
works can be increased to improve the approximation power of the
diffractive network by creating a deeper diffractive sensor40,50. Fur-
thermore, if the detection of defects with even smaller features is
required, we can use shorter terahertz wavelengths, with accordingly
smaller diffractive features fabricated as part of each diffractive layer.

In the demonstrated diffractive defect sensor, we utilized only
twowavelength components at the output power spectraof the single-
pixel detector to encode the defect information, and did not leverage
the entire spectral bandwidth provided by the THz-TDS system. Our
decision to use the THz-TDS system was primarily driven by the
availability of hardware resources in our laboratory. Therefore, by
using a THz illumination set-up with two pre-determined wavelengths
(λ1 and λ2), the complexity of our current systemwould be significantly
simplified, with costs substantially reduced. Furthermore, it is also
conceivable to train a diffractive defect sensor that utilizes more
wavelengths, encoding additional information regarding the hidden
defects such as e.g., the size andmaterial type of the defect, whichmay
lead to more comprehensive defect detection and classification cap-
abilities. To achieve spectral encoding of such defect information
using more wavelengths, a larger number of trainable diffractive fea-
tures per design would, in general, be required; this increase would be

approximately proportional to the number of wavelengths used to
encode independent channels of information44.

While the presented single-pixel terahertz sensor enabled high-
throughput detection of defects with feature sizes close to the dif-
fraction limit of light, the maximum thickness of the test sample that
can be probed in transmissionmodewould be limited by the terahertz
absorption or scattering inside the sample volume. For highly
absorbing samples or samples with metal cores, for example, the
proposed transmission systemwill present limitations toprobedeeper
into the test sample volume. However, this limitation is not specific to
our diffractive sensor design, and is in fact commonly shared by all
terahertz-based imaging and sensing systems. In case the terahertz
transmission from certain test samples creates major SNR challenges
due to terahertz absorption and/or scattering within the depths of the
test sample, the presented diffractive defect sensor designs can be
modified to work in reflection mode so that a partial volume of the
highly absorbing and/or reflecting test objects can be rapidly probed
and analyzed by our single-pixel diffractive sensor. In this reflection
mode of operation, the whole deep learning-based training strategy
outlined in thisworkwill remain the same, except thatbetween the test
sample and the encoder diffractive network there will be a beam
splitter (e.g., a mylar film) that communicates with an orthogonally
placed diffractive decoder that will be jointly trained with the front-
end diffractive encoder, following the architecture we reported earlier
in our Results section. Through this reflection mode of the diffractive
sensor, one canextend the applications of our all-optical hiddendefect
sensor to partially probe and analyze highly absorbing and/or scat-
tering test objects that would otherwise not transmit sufficient ter-
ahertz radiation. Compared to conventional reflective THz-TDS defect
detection systems used for similar purposes, which necessitate
mechanical scanning to detect defects at various locations, this
reflective diffractive sensor design would allow for all-optical, rapid
defect detection within a large sample volume, eliminating the need
for mechanical scanning or extensive data storage, transmission and
digital processing.

One additional potential limitation of our framework is uncon-
trolled mechanical misalignments among the diffractive layers that
constitute the diffractive encoder and decoder networks, as well as
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possible lateral/axial misalignments that might be observed between
the diffractive layers and the test sample volume. As a mitigation
strategy, diffractive designs can be “vaccinated” to such variations by
modeling these random variations and misalignments during the
optimization phase of the diffractive sensor to build misalignment-
resilient physical systems. It has been shown in our earlier works that
the evolution of diffractive surfaces during the deep learning-based
training of a diffractive network can be regularized and guided toward
diffractive solutions that canmaintain their inference accuracy despite
mechanical misalignments35,38,43. This misalignment-tolerant dif-
fractive network training strategy models the layer-to-layer misalign-
ments, e.g., translations in x, y, and z, over random variables and
introduces these errors as part of the forward optical model, inducing
“vaccination” against such inaccuracies and/or mechanical variations.
In addition to mechanical misalignments, the same training scheme
can also be extended to mitigate the effects of other potential error
sources e.g., fabrication inaccuracies, refractive index measurement
errors, and detection noise, improving the robustness of single-pixel
defect detector devices.

Finally, our framework can potentially sense the presence of even
smaller hidden defects or objects with subwavelength dimensions.
While our diffractive defect sensor is diffraction-limited, isolated
subwavelength features/defects can still generate traveling waves
(through scattering) to be sensed by our diffractive layers. This, how-
ever, does not mean our diffractive processor can resolve two closely
positioned subwavelength defects or morphologically distinguish
them from larger defects since it can only process propagating waves
from the defect volume, without access to the evanescent waves in the
near-field of a defect that carry the super-resolution information. In
this respect, similar to localization-based microscopic imaging
approaches, it is potentially feasible to sense isolated subwavelength
defects within the sample volumewithout any structural fine details or
the capability to distinguish them from larger defects. This would be
possibleonlywith sufficient detection sensitivity: if theweak scattering
of such small defects, coupled into propagating secondary waves, can
be detectedwithin the SNR of the single-pixel defect detection system.
Moreover, the presented design and the underlying concept can also
be applied to other frequency bands of the electromagnetic spectrum,
such as the infra-red51–53 and X-ray54–57, for all-optical detection of hid-
den objects or defects. With its unique capabilities to rapidly and
accurately inspect hidden objects and identify unknown defects hid-
den within materials, we believe that the presented single-pixel dif-
fractive terahertz sensor can be useful for a variety of applications,
including industrial quality control, material inspection and security
screening.

Methods
Numerical forward model of a single-pixel diffractive
terahertz sensor
Our systemconsists of successive diffractive layers that aremodeled as
thin dielectric optical modulation elements of different thicknesses,
where the ith feature on the kth layer at a spatial location (xi, yi, zk)
represents a complex-valued transmission coefficient, tk , which
depends on the illumination wavelength (λ):

tkðxi, yi, zk , λÞ=akðxi, yi, zk , λÞ exp jϕkðxi, yi, zk , λÞ
� �

ð1Þ

where a and ϕ denote the amplitude and phase coefficients, respec-
tively. The diffractive layers are connected to each other by free-space
propagation, which is modeled through the Rayleigh-Sommerfeld
diffraction equation31,34, with an impulse response of f ki x, y, z, λð Þ:

f ki ðx, y, z, λÞ=
z � zk
r2

1
2πr

+
1
jλ

� �
exp

j2πr
λ

� �
ð2Þ

where r =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � xiÞ2 + ðy� yiÞ2 + ðz � zkÞ2

q
and j =

ffiffiffiffiffiffi
�1

p
. f ki x, y, z, λð Þ

represents the complex-valued field at a spatial location x, y, zð Þ at a
wavelength of λ, which can be viewed as a secondary wave generated
from the source at xi, yi, zk

� �
. Following the Huygens principle, each

diffractive feature in a diffractive network can be modeled as the
source of a secondary wave, as in Eq. (2). As a result, the optical field
modulated by the ith diffractive feature of the kth layer (k ≥ 1, treating
the input object plane as the 0th layer), Ekðxi, yi, zk , λÞ, can be written
as:

Ek xi, yi, zk , λ
� �

= tk xi, yi, zk , λ
� � � X

m2M
Ek�1 xm, ym, zk�1, λ

� � � f k�1
m xi, yi, zk , λ
� �

ð3Þ

where M and z* denote the number of diffractive features on the
(k � 1)th diffractive layer and the z location of the *th layer, respectively.
The axial distances between the input/output aperture, diffractive
layers and the object under test can be found in Fig. 2b.

The amplitude and phase components of the complex transmit-
tance of the ith feature of diffractive layer k, i.e., ak xi, yi, zk , λ

� �
and

ϕk xi, yi, zk , λ
� �

in Eq. (1), are defined as a function of the material
thickness, hk

i , as follows:

akðxi, yi, zk , λÞ= exp � 2πκdðλÞhk
i

λ

 !
ð4Þ

ϕkðxi, yi, zk , λÞ= ðndðλÞ � nairÞ
2πhk

i

λ
ð5Þ

where the wavelength-dependent dispersion parameters nd λð Þ and
κd λð Þ are the refractive index and the extinction coefficient of the
diffractive layermaterial corresponding to the real and imaginaryparts
of the complex-valued refractive index end λð Þ, i.e., end λð Þ=nd λð Þ+ jκd λð Þ.
These dispersion parameters for the 3D-printing material used in this
work were experimentally measured over a broad spectral range (see
Supplementary Fig. S3). The thickness values of the diffractive features
hk
i represent the learnable parameters of our diffractive sensor

devices, which are composed of two parts, htrainable and hbase:

h =htrainable +hbase ð6Þ

where htrainable denotes the learnable thickness parameters of each
diffractive feature and is confined between 0 and hmax = 0.8mm. The
additional base thickness, hbase, is a constant, which is chosen as
0.6mm to serve as the substrate support for the diffractive layers. To
achieve the constraint applied to htrainable, an associated latent
trainable variable hv was defined using:

htrainable =
hmax

2
� sin hv

� �
+ 1

� � ð7Þ

Note that before the training starts, hv values of all the diffractive
features were initialized as 0.

We calculated the propagation of the optical field inside the
sample volume using:

ef kðx, y, z, λÞ= z � zs
r2

1
2πr

+
1
jλ

� �
exp � 2πr

λ
κobjectðλÞ � jnobjectðλÞ
� �� �

ð8Þ

where the wavelength-dependent parameters nobject λð Þ and κobject λð Þ
are the refractive index and the extinction coefficient of the object
material. In this paper, since silicon wafers were used as the test
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objects, nobject λð Þ and κobject λð Þ were set to 3.4174 and 0, respectively
(disregarding the negligible material absorption of silicon at our
wavelengths of interest). After calculating the impulse response of

optical field propagation inside the object volume ef k , the resulting

complex field is calculated using Eq. (3), except that the f k is replaced

by ef k used for the object material. When the propagating optical field
encounters a defect inside the object, we model the defect as a tiny
volume element with a certain size, which can also be considered as a
thin optical modulation element. Due to the difference in the material
properties between the defect and the object, the presence of the
defect introduces additional amplitude and phase changes, which can
be calculated in our forward model using the following formula:

adefect xi, yi, zk , λ
� �

= exp � 2πhdefect

λ
κdefect λð Þ � κobject λð Þ
� �� �

ð9Þ

ϕdefect xi, yi, zk , λ
� �

= ndefect λð Þ � nobject

� � 2πhdefect

λ
ð10Þ

wherendefect λð Þ and κdefect λð Þ are the refractive index and the extinction
coefficient of the object material, hdefect is the depth of the defect
along the axial direction. In our experimental validation, these defects
were fabricated by etching silicon wafers. Therefore, without loss of
generality, air constitutes the material of the defects, i.e., ndefect λð Þ =
nair λð Þ = 1 and κdefect λð Þ = κair λð Þ =0.

Spectral scores for the detection of hidden objects and defects
Assuming that the diffractive design is composed of K layers
(excluding the input, sample, and output planes), a single-pixel spec-
troscopic detector positioned at the output plane (denoted as the
(K + 1)th layer) measures the power spectrum of the resulting optical
field within the active area of the detector D, where the resulting
spectral signal can be denoted as s λð Þ:

s λð Þ=
X
x, yð Þ2D

EK + 1 x, y, zK + 1, λ
� �			 			2 ð11Þ

For the diffractive sensor designs reported in this paper, the sizes
of the detector active area and the output aperture are both set to be
2×2mm. We sampled the spectral intensity of the diffractive network
output at a pair of wavelengths λ1 and λ2, resulting in spectral intensity
values s λ1

� �
and s λ2

� �
. The output detection score sdet of the dif-

fractive sensor is given by:

sdet =
s λ1
� �

s λ1
� �

+ s λ2
� � ð12Þ

For an unbiased detection threshold of sth = 0.5, this Eq. (12) boils
down to a differential detection scheme where s λ1

� �
≥ s λ2
� �

indicates
the existenceof hiddendefects and s λ1

� �
< s λ2
� �

indicates a defect-free
sample. In this paper, λ1 and λ2 were empirically selected as 0.8 and
1.1mm, respectively. To analyze the classification results produced by
our diffractive sensor design, we analyzed the numbers of true posi-
tive, false positive, true negative and false negative samples, denoted
as nTP , nFP , nTN and nFN , respectively. Based on these, we reported the
sensitivity (i.e., true positive rate, TPR), the specificity, the false nega-
tive rate (FNR) and the false positive rate (FPR) using:

Sensitivity =TPR=
nTP

nTP +nFN
= 1� FNR ð13Þ

Specificity =
nTN

nTN +nFP
ð14Þ

Falsepositive rate ðFPRÞ= 1� Specificity =
nFP

nTN +nFP
ð15Þ

During the training of our diffractive terahertz sensor model, we
assumed that the optical field at the input aperture of the system has a
flat spectralmagnitude, i.e., the total power of the illumination beamat
λ1 and λ2 is equal in our numerical simulations. However, the pulsed
terahertz sourceemployed inour experimentalTDS set-up contained a
different spectral profile within the band of operation. To calibrate our
diffractive sensor system, we performed a normalization step for the
experimentallymeasuredoutput power spectra for all the test samples
using a linear correction factor σ λð Þ, which was obtained using:

σ λð Þ=
s rð Þ
sim λ2ð Þ
s rð Þ
exp λ02ð Þ �

s rð Þ
sim λ1ð Þ
s rð Þ
exp λ01ð Þ

λ02 � λ01
ðλ� λ01Þ+

s rð Þ
sim λ1
� �

s rð Þ
exp λ01
� � ð16Þ

where sðrÞexp λ01
� �

and sðrÞexp λ02
� �

represent the experimentally measured
output spectral intensity values corresponding to the spectral peaks
closest to λ1 and λ2, respectively, using the defect-free sample as the

test object after averaging multiple spectral measurements. sðrÞsim λ1
� �

and sðrÞsim λ2
� �

are the numerically computed counterparts of sðrÞexp λ1
� �

and sðrÞexp λ2
� �

, respectively. Based on σ λð Þ, we normalized the experi-
mental spectral curves sexp λð Þ as:

ŝexp λð Þ= σ λð Þsexp λð Þ ð17Þ

By following this calibration/normalization routine outlined
above, our diffractive model can be used under different forms of
input broadband radiation, without overfitting to any experimental
radiation source, which forms an important practical advantage of our
framework. Moreover, even if the experimental system contains cer-
tainmanufacturing errors andmisalignments that result in amismatch
with the ideal forward physical model, the spectral intensity peaks
s rð Þ
exp λ01
� �

and s rð Þ
exp λ02
� �

near the two wavelengths λ1 and λ2 can still be
utilized as references for the calibration of the system. Figure 5e
illustrates the normalized experimental spectral intensity ŝexp λð Þ
defined by Eq. (17) for different test samples, and their normalized
peak spectral intensity values near λ1 and λ2, i.e., ŝexp λ01

� �
and ŝexp λ02

� �
,

are reflected in Fig. 5c. The experimental differential spectral scores
presented in Fig. 5d were computed based on Eq. (12) by replacing
s λ1
� �

and s λ2
� �

with ŝexp λ01
� �

and ŝexp λ02
� �

, respectively.

Training loss functions
The loss function used for training our presented diffractive terahertz
sensor is defined as:

Ltotal =Ldet +αeff �Leff +αed �Led ð18Þ

The first loss term,Ldet, stands for defect detection loss. To train
our diffractivemodel to better classify challenging samples, e.g., those
with small defects, we employed the focal loss48 given by:

Ldet =
�β 1� sdet
� �γ log sdet

� �
, sGT = 1

�ð1� βÞsdetγ log 1� sdet
� �

, sGT =0

(
ð19Þ

where sGT denotes the ground-truth label of the given 3D object
volume, indicating the existence of the hidden defect (sGT = 1) or not
(sGT =0). β denotes the coefficient to balance the loss magnitude for
the positive and negative samples, and γ is the focusing parameter
used to down-weigh the importance of the easy-to-classify samples
(e.g., 3D objects with relatively larger hidden defect(s)). β and γ were
empirically chosen as 0.5 and 4 throughout our training process.

Article https://doi.org/10.1038/s41467-023-42554-2

Nature Communications |         (2023) 14:6791 11



In addition to being sensitive and specific to unknown/random
hidden defects, we also wanted to ensure that the single-pixel dif-
fractive sensor is photon efficient, achieving adecent SNRat its output.
Therefore, in the training loss function,wealso added a loss term,Leff ,
to increase the diffraction power efficiency at the output single-pixel
aperture. Leff is defined as:

Leff =
ηth�ηw, if ηth ≥ η

0, if ηth < η



ð20Þ

where η denotes the diffraction power efficiency at the output
detector and ηth refers to the penalization threshold for η, which was
empirically selected as 0.01 during the training process. η is defined as:

η=
Idetector
Iinput

ð21Þ

where Idetector represents the total power of the optical field calcu-
lated within the active area D of the output single-pixel detector
aperture across the two wavelengths λ1 and λ2, i.e.,
Idetector =

P
λ2fλ1 , λ2g

P
x, yð Þ2DjEK + 1ðx, y, zK + 1, λÞj

2
, and Iinput repre-

sents the total power of the optical field right after the input aperture
P across the two wavelengths λ1 and λ2, i.e.,
Iinput =

P
λ2fλ1 , λ2g

P
ðx, yÞ2P jE0ðx, y, z0, λÞj

2
. For the diffractive sensor

design in this paper, the size of the input aperture P is set as 5 × 5mm.
We also incorporated another loss term, Led, in Eq. (18) to con-

strain the energy distribution of the output power spectrum, such that
the spectral power is maximized at the two predetermined wave-
lengths used for all-optical inference of defects (λ1 and λ2) while
maintaining a relatively low power level at the other neighboring
wavelengths. To achieve this, we used:

Led =
1
4

X
λ2Λ

X
x, yð Þ2D

EK + 1ðx, y, zK + 1, λÞ
			 			2 ð22Þ

where Λ = {0.75, 0.85, 1.05, 1.15} mm.
The hyperparameters, αeff and αed, in Eq. (18) are the weight

coefficients associated with the diffraction efficiency penalty loss term
and the spectral energy distribution loss term, respectively, which
were empirically selected as 0.01 and 0.1 throughout the training
process.

Training details of the single-pixel diffractive terahertz sensor
For the numerical model used in this manuscript, the smallest sam-
pling period for simulating the complex optical fields is set to 0.25mm
(~0.26λm), which is half the lateral size of the diffractive features (i.e.,
0.5mm= ~0.53λm). To build a dataset for training and evaluating the
diffractive sensor model, we generated a total of 24,000 defect sam-
ples with varying sizes (Dx, Dy, Dz) and positions (xd, yd), which were
then divided into three sets: training, validation, and testing, each
containing 20,000, 2000, and 2000 samples, respectively. We also
generated a defect-free sample and mixed the replicas of that with
each of these defect sample subsets at a 1:1 ratio during the training
process, so that the number of sampleswith andwithout defects could
be balanced. We also considered the error in the thickness of the sili-
con wafer in our training forwardmodel. To mitigate its impact on the
detection performance of our diffractive sensor, we modeled the sili-
con thickness value as a random variable that follows a uniform dis-
tribution of [0.52, 0.53] mm in our forward model. This ensures that
the trained diffractive sensor can provide detection performance that
is resilient to the variations in the thickness values of the silicon wafer
test samples.

The single-pixel diffractive sensor model used in this work was
trained using TensorFlow (v2.5.0, Google LLC). We selected Adam
optimizer58, and its parameters were taken as the default values. The

batch size was set as 32. The learning rate was set as 0.001. For the
training of our diffractivemodel, we used aworkstationwith aGeForce
GTX 1080TiGPU (Nvidia Inc.) andCore i7 8700 central processing unit
(CPU, Intel Inc.) and 64 GB of RAM, running Windows 10 operating
system (Microsoft Inc.). The training of the diffractive model was
performed with 200 epochs, which typically required ~10 h. The best
model was selected based on the detection performance quantified
using the validation data set.

Fabrication of the test samples
The defects on the silicon wafers were fabricated through the
following procedure. First, a SiO2 layer was deposited on the
silicon wafers using low-pressure chemical vapor deposition
(LPCVD). Defect patterns were defined by photolithography, and
the SiO2 layer was etched in the defect regions using reactive-ion
etching (RIE). After removing the remaining photoresist, defects
in silicon wafers were formed through deep reactive-ion etching
(DRIE) with the SiO2 layer serving as the etch mask. Finally, the
SiO2 layer was removed through wet etching using a buffered
oxide etchant (BOE). We measured the depth of the defect
regions, Dz, with a Dektak 6M profilometer, which was ~0.25mm
for all the prepared test samples.

The diffractive layers were fabricated using a 3D printer (Form 3,
Formlab). To assemble the printed diffractive layers and input objects,
we employed a 3D-printed holder (Objet30 Pro, Stratasys) that was
designed to ensure the proper placement of these components
according to our numerical design.

Terahertz time-domain spectroscopy set-up
A Ti:Sapphire laser was used to generate femtosecond optical pulses
with a 78MHz repetition rate at a center wavelength of 780 nm. The
laser beam was split into two parts: one part was used to pump the
terahertz source, a plasmonic photoconductive nano-antenna array,
and the other part was used to probe the terahertz detector, a plas-
monic photoconductive nano-antenna array providing a high sensi-
tivity and broad detection bandwidth. The terahertz radiation
generated by the source was collimated and directed to the scanned
sample using an off-axis parabolic mirror, as shown in Fig. 4a. The
output signal from the terahertz detector was amplified with a tran-
simpedance amplifier (Femto DHPCA-100) and detected with a lock-in
amplifier (Zurich Instruments MFLI). By changing the temporal delay
between the terahertz radiation and the laser probe beam incident on
the terahertz detector, the time-domain signal was obtained. The
corresponding spectrum was calculated by taking the Fourier trans-
form of the time-domain signal, resulting in an SNR of 90 dB and an
observable bandwidth of 5 THz for a time-domain signal span
of 320ps.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the data and methods needed to evaluate the conclusions of this
work are presented in the main text and Supplementary Information.
Additional data can be requested from the corresponding author.

Code availability
The codes used in this work use standard libraries and scripts that are
publicly available in TensorFlow.
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