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Abstract 

The current study investigated how interactivity of simulation 
controls affects data collection in science inquiry. A 
chemistry simulation was designed to allow either low or high 
interactivity in setting experimental variables. Adult 
participants were randomly assigned to one of the 
interactivity conditions and solved a series of assessment 
items. The results from the first item indicated that the highly 
interactive controls posed challenges in conducting a 
thorough investigation. Performance in the last item which is 
a repetition of the first item suggested that the participants 
were able to overcome the initial challenges over the course 
of their investigations. The results provide implications for 
designing educational simulations for learning and 
assessment. 

Keywords: interactivity; simulation; science inquiry; 
education; assessment 

Introduction 

Traditional science assessments conducted on a large scale 

have until recently been limited mostly to the paper-and-

pencil format (e.g., Shavelson, Carey, & Webb, 1990). 

These assessments often measured test-takers’ prior 

knowledge of science facts and principles by collecting their 

final responses to multiple choice items. In the last few 

decades, however, criticisms of the traditional assessments 

and advances in educational technology have spurred a 

growing interest in using simulation-based tasks for science 

assessments (Gobert, Sao Pedro, Raziuddin, & Baker, 2013; 

Wieman, Adams, & Perkins, 2008).  

The simulation-based assessments typically provide test-

takers with interactive tools that support multiple science 

inquiry steps such as designing experiments and collecting 

data to test a scientific hypothesis. The interactive nature of 

these simulations raises a question of how simulation 

interactivity impacts cognition and educational outcomes. 

Answering this question is important for designing 

simulation environments where test-takers or learners have a 

sufficient level of freedom to conduct science inquiry. It is  

 

 

also important for ensuring that simulation interactivity does 

not hinder valid measurements of knowledge and skills.  

Interactivity 

The topic of interactivity has been actively researched in the 

field of multimedia learning. While there are various 

approaches to how interactivity can be interpreted (Domagk, 

Schwartz, & Plass, 2010), a number of studies have 

associated interactivity with the amount of control learners 

have over various aspects of the learning system (Kalyuga, 

2007; Moreno & Mayer, 2007). For instance, studies have 

manipulated whether learners can control the sequence of 

the learning materials (Swaak & de Jong, 2007) and whether 

they can select their own answers rather than to receive the 

correct answers selected by the system (Moreno & Mayer, 

2005). While some studies have found that learner-

controlled learning results in better outcomes than system-

controlled learning (Hasler, Kersten, & Sweller, 2007; 

Moreno & Valdez, 2005), others suggest negative outcomes 

associated with the greater learner control (e.g., Moreno & 

Valdez, 2005; Tuovinen & Sweller, 1999).  

Cognitive load theory (Sweller, 1994) provides accounts 

for those seemingly mixed findings on interactivity. The 

main claim of the theory is that cognitive load irrelevant to 

learning results in negative learning outcomes as it takes 

away limited cognitive resources that could otherwise be 

used for learning. On the other hand, cognitive load put into 

creating schemas (i.e., cognitive structures that allow 

organization of information) is beneficial for learning. One 

implication of the cognitive load theory for interactivity 

research is that interactive systems can have positive 

outcomes if they engage learners in deeper cognitive 

processing germane to learning (Hasler, Kersten, & Sweller, 

2007; Kalyuga, 2007). 
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Interactivity in Science Inquiry 

The prior research on interactivity raises a question of how 

those findings apply to science simulations which typically 

provide individuals with a fair amount of freedom to 

conduct science inquiry. In particular, one of the distinctive 

features of simulation-based science assessments is that they 

allow test-takers to collect their own data for scientific 

hypothesis testing. Test-takers can make their own decisions 

on various aspects of data collection such as how much data 

to collect and how exhaustively to search the experimental 

space. This contrasts to traditional assessments in which 

test-takers are typically asked to draw a conclusion based on 

the data prepared by assessment developers.  

Collection of adequate data is one of the critical inquiry 

skills involved in scientific investigations (Kuhn, Schauble, 

& Garcia-Mila, 1992). Prior research found that people 

often exhibit suboptimal data collection behaviors. For 

instance, people often jump to a conclusion based on limited 

observations without sufficiently sampling variables 

(Harrison & Schunn, 2004; Kuhn et al., 1992). To 

understand how simulation interactivity impacts data 

collection behaviors and inquiry outcomes, we manipulated 

the design of slider/button controls in a chemistry 

simulation. While there is a fair amount of human-computer 

interaction research on how design of slider controls 

impacts user behaviors (e.g., Roster, Lucianetti, & Albaum, 

2015), few studies (e.g., Renken & Nunez, 2013) assessed 

its impacts on science inquiry behaviors. 

Concentration Simulation 

Concentration simulation developed by PhET (Wieman, 

Adams, & Perkins, 2008) was modified for the purpose of 

our study. The simulation is an HTML5 application written 

in JavaScript and delivered through a standard web browser. 

The simulation (Figure 1) allows one to design and run 

simulation trials to investigate the relationship among 

solute, water, and concentration level. The top left panel 

displays the slider and button controls used to set the 

amounts of solute and water. Once a trial is run, the solute 

and water are mixed to form a solution. The resulting 

concentration level of the solution and the variable settings 

for the trial appear in the data table located in the bottom 

left panel. In a typical screen, the right panel displays an 

assessment item and response options and/or text entry.  

Method 

Participants 

Adult participants (N = 308) recruited through Amazon 

Mechanical Turk completed the study for monetary 

compensation ($5). There was no particular entry condition 

for participation. Background information about participants 

was collected in a separate survey to which 248 of the 

participants responded (111 females and 137 males, mean 

age 35, age ranged from 20 to 61). Participants were 

randomly assigned to the interactivity conditions. 
 

 
 

Figure 1. Concentration simulation. 

 

 
 

Figure 2. Variable-setting controls in the low (left) and high 

(right) interactivity conditions. 

Design 

The study involved a between-subject design in which three 

features of the simulation were manipulated to allow 

different levels of interactivity. Those features were: 1) the 

slider and button controls, 2) the amount of the data one 

could keep in the data table, and 3) the capability to re-order 

the rows in the data table. Due to the space limit, the current 

paper focuses on discussing the results of the slider/button 

control manipulation. These controls (Figure 2) were 

manipulated to allow different amounts of control over the 

values one could choose for the solute and water variables. 

While the range for each variable was the same in both 

conditions (0-200 g), the smallest amount of adjustment one 

could make using the controls was 25 g in the low 

interactivity condition and 1 g in the high interactivity 

condition. This manipulation offered a far greater number of 

choices for the high condition than for the low condition. 

While the high condition participants could set any of the 

201 integer values for each variable, the low condition 

participants’ choices were limited to 9 values (0, 25… 200). 

In order to adjust a variable, participants could drag the 

slider (blue rectangle in Figure 2) to a desired location on 

the scale and release it. Once released, the slider 

automatically snapped to the closest value available in the 

relevant condition. Participants could also click the tweak 

buttons (buttons with an arrow sign) located next to each 

scale. A button click incurred 25 g of change (left button for 

decrement, right button for increment) in the low condition 
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and 1 g of change in the high condition. In the low 

condition, a tick mark was placed at every available value 

on the scale. In the high condition, only three tick marks 

were placed (0, 100, and 200 g) due to programming 

constraints and space limit. We intentionally chose not to 

make the visuals of the sliders the same for the two 

conditions because of a concern that doing so would bias the 

participants in the high condition prefer those particular 

values with tick marks.  

Experiment 

The experiment consisted of a brief tutorial session followed 

by a main session. During the tutorial session, participants 

were introduced to the terminology used in the simulation 

and were familiarized with various simulation features 

including the slider and button controls. During the main 

session, participants solved seven assessment items 

presented one at a time in a self-paced manner. Participants 

were asked to use the simulation to conduct investigations 

necessary for answering each item. The order of the seven 

items was the same for the two conditions.  

These items were designed to assess understanding of the 

impacts of solute and water amounts on the concentration 

level. All the items were designed around the concept of 

saturation (i.e., concentration
1
 does not further increase once 

maximum is reached). The first and last items were identical 

except for their relative locations in the item series. These 

two items were different from the five items in the middle in 

two major aspects. First, some of the middle items directed 

participants to investigate the impacts of the variables on the 

concentration level under a specified condition such as with 

a larger range of solute values or with a smaller amount of 

water. These directed investigations were expected to 

facilitate observation of saturation. Second, the first and last 

items involved a solute type (“drink mix”) different from 

the one used in the middle items (“chemical A”). While the 

two solutes are different, we expected that some knowledge 

gained from investigations with one solute could be 

transferred to investigations with the other solute. In a 

sense, the first and last items can be viewed as pre- and 

post-tests that allow assessment of learning gained through 

investigations. Due to space limit, the current paper focuses 

on the results in these two items. Participants’ performance 

in the two conditions did not significantly differ in any of 

the middle items. 

Task 

In the first and last items, participants were asked to test the 

following statement: “Does the concentration of a drink mix 

solution increase when you increase the amount of drink 

mix in the container?” Participants were asked to choose 

one of the three response options (“never”, “sometimes, but 

not always”, and “always”) and explain how specific trials 

from the data table support their answer by typing their 

                                                           
1 Before saturation is reached, concentration is mass of solute 

divided by mass of solution (i.e., solute plus water). 

responses to the text entry. The correct answer is 

“sometimes, but not always” because adding more drink 

mix does not further increase the concentration level once 

the saturation point is reached.  

Success in these items largely depends on the ability to 

sample sufficient ranges of the variables. Insufficient 

sampling is likely to lead to either “always” (concentration 

keeps increasing before the saturation point is reached) or 

“never” response (no further increase in concentration past 

the saturation point). In order for the saturation point to be 

observed, the amount of water has to be less than or equal to 

75 g. The amount of drink mix that results in saturation 

depends on the amount of water.  

Results 

We describe the results on response choice (Table 1) and 

multiple measures of inquiry behaviors (Table 2). The 

numbers in the parentheses are adjusted standardized 

residuals in Table 1 and standard deviations in Table 2. The 

F-stats in Table 2 are from the repeated measures ANOVA 

with condition (between) and item (within) as variables.  

First Item 

Choice of Response Table 1(A) shows how many 

participants in each condition chose each of the response 

options. Only 37 of the low and 26 of the high participants 

chose the correct “sometimes” response. The Chi-square test 

was significant (

 (2, N = 308) = 8.4, p = .015), indicating 

the significant effect of being in the interactivity condition 

on the choice of response. The high participants had a 

greater tendency to choose the “always” response compared 

with the low participants. When the incorrect responses 

(“never” & “always”) were combined together, the Chi-

square test was not significant (p = .107).  

 

Time on Task The amount of time spent on solving the 

item did not significantly differ between the low (143.6 s) 

and high (156.5 s) conditions, t(305) = 1.4, p = .158.  

 

Number of Trials The average number of trials run was 

significantly greater in the low condition (low: 5.0, high: 

4.3, t(303) = 2.5, p = .012). 

 

Table 1: Choice of response  
 

(A) First item 

 
Never Sometimes Always Total 

Low 16 (2.2) 37 (1.6) 100 (-2.7) 153 

High 6 (-2.2) 26 (-1.6) 123 (2.7) 155 

Total 22 63 223 308 

(B) Last item 

 
Never Sometimes Always Total 

Low 6 (1) 90 (1) 57 (-1.4) 153 

High 3 (-1) 82 (-1) 70 (1.4) 155 

Total 9 172 127 308 
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Table 2: Results on inquiry measures. 
 

 First item Last item F-stat 

 Low High Low High Condition (C) Item (I) C * I 

Time on task (second) 143.6 (71.7) 156.5 (87.6) 143.6 (82.6) 151.6 (96.5) 1.1 .1 .4 

Number of trials 5.0 (2.8) 4.3 (2.1) 7.5 (4.2) 6.9 (4.7) 5.1
*
 96.7

*
 .0 

Solute sampling range 104.2 (54.3) 91.0 (52.4) 139.7 (50.7) 138.8 (50.5) 2.8
+
 108.8

*
 2.9

+
 

Water sampling range 32.3 (50.0) 24.3 (46.2) 59.8 (61.6) 58.4 (63.6) .9 56.0
* 

.9 
*
: p < .05, 

+
: p < .10         

Sampling Range For each participant who ran at least one 

trial, the sampling range of each variable was obtained by 

getting the minimum and maximum values sampled across 

all trials and subtracting the former from the latter. The 

average sampling range of the solute variable (black bars in 

Figure 3) was significantly greater in the low participants 

(104.2) than in the high participants (91.0) for the first item, 

t(303) = 2.2, p = .032. The average sampling range of the 

water variable (white bars) did not significantly differ 

between the low (32.3) and high (24.3) conditions, t(303) = 

1.5, p =.145.  

 

The results above suggest that while overall performance 

did not significantly differ between the conditions, the high 

participants collected less data and searched a narrower 

experimental space. A further analysis was performed to 

understand what might have contributed to their suboptimal 

data collection behaviors.   

 

Preference for Round Numbers Nowhere in the item were 

participants asked to try any particular amount of solute or 

water. The solute and water amounts set by the high 

participants revealed that even though they could select any 

of the 201 integer values, they preferred “round” numbers 

such as multiples of 50 or 100. Across all the trials run by 

the high participants, 50, 100, and 200g were the three most 

frequently selected values for both solute and water. These 

three values accounted for 28% of the solute values and 

70% of the water values, which is much higher than chance 

(.5%). The low participants also frequently selected the 

three values (43% in solute, 74% in water). 

 

 
 

Figure 3. Average sampling ranges of solute and water. The 

error bars are the standard error of mean. 

Interactions with Simulation The preference for the round 

numbers cost the high participants frequent interactions with 

the simulation. To adjust solute or water, participants could 

drag the slider, click the tweak buttons, or combine the two 

actions. While the two conditions did not differ much in the 

average number of drag actions (low: 5.4, high: 5.7), the 

high participants clicked the tweak buttons much more 

frequently (low: 2.5, high: 22.8). The condition variable was 

a significant predictor of tweak button click counts in a 

negative binomial regression (Wald Chi-square (df = 1) = 

66.4, p < .001). Due to the limited interface space, it was 

almost impossible for the high participants to make very 

fine adjustments with the slider alone. A likely strategy for 

setting a round number is to drag the slider close to the 

desired value and click the tweak buttons to make small 

adjustments.  

Did the high participants’ tweak button use influence their 

sampling range? We categorized participants into two 

groups based on the type of variable-setting actions: “drag-

only” group who used the sliders only and “tweak” group 

who used the tweak buttons at least once. The numbers of 

participants in the drag-only and tweak groups were 107 and 

43 respectively in the low condition, and 57 and 98 

respectively in the high condition. The results of ANOVA 

on the solute sampling range indicated the significant 

interaction between condition and action type (F(1, 301) = 

5.9, p = .016) and the main effect of condition (F(1, 301) = 

3.9, p = .048). The sampling range did not differ much 

between the two groups in the low condition (Figure 4). In 

the high condition, the tweak group (83.5) sampled a 

significantly narrower range than the drag-only group 

(103.8), t(153) = 2.4, p = .020.  

 

 

Figure 4. Sampling ranges of solute for the first item. The 

error bars are the standard error of mean. 
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The above results suggest that the high participants’ 

preference for the round numbers led to greater workload 

involved in making frequent interactions with the 

simulation. One potential interpretation of these results is 

that experiencing the greater amount of workload deterred 

the high participants from searching a sufficient 

experimental space. One may question why the high 

participants preferred the round numbers despite the 

workload. A prior study from our laboratory (Koster van 

Groos & LaMar, 2016) suggests that people choose them 

because they are easy to remember and keep track of. 

Last Item 

Choice of Response Compared with the first item, a greater 

number of participants in both conditions (low: 90, high: 82) 

chose the correct “sometimes” response in the last item 

(Table 1B). An exact McNemar's test indicated that the 

performance improvement was statistically significant (p < 

.001). There was no significant association between the 

interactivity condition and response choice (

 (2, N = 308) 

= .98, p = .32).  

 

Time on Task The participants spent about the same 

amount of time as before (first: 150 s, last: 148 s). There 

was no significant difference between the low (143.6s) and 

high (151.6s) conditions, t(300) = .76, p = .443. 

 

Number of Trials Compared with the first item, the 

participants ran on average 2.5 more trials in the last item 

(first: 4.7, last: 7.2). The difference between the conditions 

was not significant (low: 7.5, high: 6.9, t(301) = 1.2, p = 

.233).  

 

Sampling Range The sampling range increased from the 

first to the last item for both solute (first: 97.5, last: 139.3) 

and water (first: 28.2, last: 59.1). The difference between 

conditions was not significant in neither solute (Figure 3, 

low: 139.7, high: 138.8, t(289) = .1, p = .884) nor water 

(low: 59.8, high: 58.4, t(289) = .2, p = .844) in the last item.  

 

Preference for Round Numbers The participants showed a 

continued preference for the round numbers. The three most 

preferred values of 50, 100, and 200 g accounted for about 

31% of the solute values and 78% of the water amounts in 

the high condition. These values accounted for 44% of 

solute and 73% of water amounts in the low condition. 

 

Interactions with Simulation While the two groups did not 

differ much in the number of drag actions (low: 7.0, high: 

7.5), the high participants used the tweak buttons more 

frequently (low: 4.4, high: 26.5). The condition variable was 

a significant predictor of tweak button click counts (Wald 

Chi-square (df = 1) = 39.85, p < .001). 

 

In the last item, participants in both conditions showed 

improved performance in various aspects. A greater number 

of participants in both conditions selected the correct 

response. The improved correctness of response choice is 

consistent with positive changes in their data collection 

behaviors. While spending about the same amount of time 

as before, participants collected more data and sampled 

greater ranges of solute and water. 

The results on the sampling range (Figure 3) suggest that 

the difference between the two conditions became smaller in 

the last item
2
. The high participants initially sampled a 

smaller range of solute, yet they later sampled 

approximately the same range as the low participants. Some 

other patterns of behaviors, however, did not change much 

between the two items. The high participants continued to 

prefer the round numbers despite the greater workload 

associated with setting those numbers. While the low 

participants also selected those numbers frequently, their 

workload is likely to be low because they could set those 

numbers with a relatively smaller number of button clicks 

and/or drag actions. 

Discussion 

The current study investigated how interactivity in variable-

setting controls impacts simulation-based science inquiry. 

Our results suggest that the greater simulation interactivity 

had initially negative impacts on inquiry performance. Our 

high participants preferred values that were easier to work 

with despite the additional workload involved in setting 

those values. They also ran fewer trials and sampled the 

experimental variables less exhaustively, likely because 

experiencing the greater workload hindered thorough 

scientific investigations.  

However, the results in the last item suggest that the 

initial challenges imposed by the simulation interface 

became less important over time. On various measures, the 

low and high participants achieved an equivalent level of 

performance. It appears that the participants who were 

initially penalized by the highly interactive simulation 

interface were able to overcome their challenges over the 

course of their investigations. One plausible explanation is 

that observing saturation in the middle items made them 

realize the importance of sufficiently sampling variables. It 

is also possible that observing saturation led them to 

intentionally look for a saturation point in the last item by 

sampling more exhaustively. The current results alone do 

not tell us whether the better performance in the last item is 

due to the improvement of skills, content knowledge, or 

both. Identifying the contributions of skills and knowledge 

would be a potentially interesting topic for future research.  

Compared with the high condition, the low condition 

offered much more limited options for variable amounts. 

One can view that the limited options served as scaffolding 

for decisions on data collection such as what amount to 

sample and how exhaustively to sample. The high 

participants who did not have such scaffolding presumably 

                                                           
2 Not all participants sampled more than one solute amount in 

both items. The condition*item interaction in Table 2 is significant 

when we exclude participants whose sampling range is zero in any 

of the items, F(1, 274) = 4.9, p < .05. 
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had to make those decisions on their own. Their decisions 

on data collection were less than optimal at least in the first 

round of their investigations.  

While our results appear to suggest negative outcomes of 

high simulation interactivity, the question of which 

interactivity level is a better choice cannot be answered 

without fully understanding the nature of the workload 

associated with high interactivity. Based on the cognitive 

load theory (Sweller, 1994), a more appropriate question is 

whether the extra workload had any relevance to inquiry 

skills and knowledge. It is possible that our highly 

interactive controls engaged individuals in deeper cognitive 

efforts. They had to figure out what is the optimal grain size 

of data and what is the appropriate sampling range through 

trials and errors. Their performance improvement suggests 

that they achieved some learning on those aspects. If the 

low participants passively followed guidance of the system 

instead of thinking on their own, their seemingly thorough 

data collection behaviors may be an overestimation of their 

genuine inquiry skills and knowledge.  

The current discussion focused on the impacts of the 

variable-setting controls on data collection behaviors. An 

ongoing analysis is in progress to investigate the impacts of 

the other two interactivity manipulations (data sorting 

capability & the amount of data one could keep in the data 

table) on data collection and organization behaviors. Despite 

the limited scope, this study provides several implications 

for designing educational simulations for the purpose of 

learning and assessment. First, interactive features of 

simulations can serve as scaffolding that aids cognitive 

systems to achieve better performance. From the assessment 

point of view, however, the availability of scaffolding may 

make it harder to measure genuine knowledge and skills of 

test-takers. Second, learning and assessment design needs to 

consider the challenges imposed by simulation interactivity. 

Especially with highly interactive simulations, providing 

multiple learning and assessment opportunities seems 

necessary due to the initial challenges individuals may 

experience. Overall, the current research suggests the 

importance of considering how simulation interactivity 

impacts cognition in learning and assessments. 
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