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Coordinates, Structure, and Classical Mechanics

A review of Jill North’s Physics, Structure, and Reality

Thomas William Barrett∗

1 Introduction

Jill North’s 2009 paper “The ‘Structure’ of Physics: A Case Study” (North, 2009)

sparked a renewed interest in a collection of questions about structure and equivalence in

physics. When are two theories are equivalent? What is the structure that a physical

theory posits? Under what conditions does one posit less structure than another? And

how can coordinates and symmetries tell us about the structure and equivalence of

theories? The paper is already as influential as any paper in the literature on structure

and equivalence in physics. It is essential reading for philosophers of physics interested in

these issues.

North’s new book Physics, Structure, and Reality is now essential reading as well

∗Forthcoming in Philosophy of Science. I can be reached at tbarrett@philosophy.ucsb.edu. I’m es-
pecially grateful to JB Manchak and David Malament for detailed comments on earlier versions of the
review, especially on the material in section 2. All of the results there came directly out of discussions
with them. Thanks also to Steven Canet, Jon Charry, Keith Dyck, Neil Dewar, Katherina Gontaryuk,
Hans Halvorson, Mindy Harkness, Alex LeBrun, Jill North, and Jim Weatherall for helpful comments on
earlier drafts.
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(North, 2021). The book expands upon and clarifies her earlier work, while also

introducing many novel and exciting ideas about structure and equivalence. It will not

only be of interest to philosophers of physics currently working on these topics. It is

written in such a way that even the most technical claims about mathematics and

physics that North makes will be accessible to any philosopher. Most anyone working in

philosophy of science or metaphysics will find something of great interest in the book.

The book is an attempt to answer perhaps the central question in philosophy of

physics: “How do we figure out the nature of the world from a mathematically

formulated physical theory?” (p. 1). North assumes a brand of scientific realism which

entails that “we should take the mathematical structures of our best physical theories

seriously in telling us about the nature of the physical world” (p. 4). That is one of the

main themes of the book. Chapters 2 and 3 describe the kind of structure that North is

interested in and provide some tools we might use to figure out exactly what (and how

much) structure a theory posits. One of the novel tools presented in these chapters

involves an appeal to the kinds of coordinates that the theory privileges. Since we

usually think of coordinates as an ‘arbitrary’ or ‘representationally inert’ part of a

theory, it is surprising that we can use them to glean information about the underlying

structure of the theory. This is, indeed, another one of the themes of the book: “the role

of coordinate systems in physics is more subtle and complicated than usually

acknowledged” (p. 9). Chapter 6 further clarifies the kind of realism about structure

that North accepts and defends it against objections.

This discussion of structure is interesting in its own right, but North also applies its

results to recent debates in philosophy of physics. She argues in Chapter 5 that the

debate between substantivalists and relationalists about spacetime can be recast as a
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debate about structure. Doing so revives the debate by bringing it back into contact with

current physics; it also yields a novel argument for substantivalism. Chapters 4 and 7

deal directly with the topic of equivalence of physical theories. North argues in Chapter

4 that, contrary to the standard view, the Newtonian and Lagrangian formulations of

classical mechanics are inequivalent theories, in virtue of the fact that they posit

different amounts of structure. This bring up another overarching theme of the book:

“cases of mere notational variants in physics are harder to come by than people usually

think” (p. 6). North explains in Chapter 7 why she commits to a strict standard of

equivalence. She argues that we should “take [. . . ] a theory’s ‘metaphysical aspects’

seriously” (p. 11). And taking these aspects seriously leads one to “frequently see a

non-equivalence between theories or formulations where others see equivalence” (p. 12).

Many of the arguments in the book are compelling. North’s explanations of how the

topics of the book — equivalence, interpretation, metaphysics, coordinates, structure,

etc. — relate to one another ring true. She displays an impressive knowledge of the

recent philosophy of physics literature. At its best, North’s presentation of the requisite

technical material is clear and engaging. Section 2.4 is particularly impressive in this

regard. She illustrates how one mathematical object might have more structure than

another by patiently walking through an extended example that involves adding levels of

structure to a set — first topological structure, then differentiable structure, then affine

structure, then metric structure, and so on. Even some of the small off-hand remarks she

makes about structure are subtle and enlightening — for example, her claim that “[t]he

number of relations defined on a space is [. . . ] not the final word on how much structure

there is, for we must take into account the natures or definitions of the relations

themselves” (p. 118).

3



The book contains much to admire and learn from, and there is more valuable

material in it than I have space to discuss. So in what follows, I will focus on just two of

the main topics. The first is North’s idea that we can use coordinates as a window into

the structure that a theory posits. The second is North’s argument for the inequivalence

of Lagrangian and Newtonian mechanics. One virtue of the book is that it is accessible

to general philosophers of science and metaphysicians, despite much of the material

being quite technical at its core. North makes a conscious effort “to minimize explicit

use of mathematics and technicality as much as possible” (p. 13). The result will

certainly help to initiate more philosophers into these debates. It is sometimes the case,

however, that minimizing technicality obscures some of the important mathematical

subtleties that underlie the bold philosophical claims. My aim in what follows is to draw

out some of these subtleties.

2 Coordinates and structure

We begin with North’s method of uncovering the structure that a theory posits. Her

basic idea is that the coordinate systems that a theory privileges provide us with a

window into the underlying structure of the theory: “[a] preference for certain

coordinates, in the sense that the laws take a simple or natural form in them, is

indicative of, it is evidence for, underlying structure” (p. 112). This method is

interesting in its own right, but it is also used throughout the book to draw surprising

conclusions — for example, that Newtonian and Lagrangian mechanics are inequivalent

theories. It is therefore worth discussing in detail.

North’s core idea is that a piece of structure can be indirectly characterized by
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singling out a class of privileged coordinates. We will illustrate this idea with her

example of the 2-dimensional Euclidean plane (p. 17–26). One is familiar with the usual

way of directly characterizing the metric structure of the Euclidean plane: we simply

define the standard metric tensor on R2. North’s idea is that although “the metric tensor

more directly encapsulates the geometry of the plane” (p. 23), we can also indirectly

characterize this structure by pointing to a particular collection of ‘privileged

coordinates’. North reminds us that “[f]rom among all the coordinate systems we can

use for the plane, there is a particularly nice kind, the Cartesian coordinate systems,

which have straight, mutually orthogonal coordinate axes, and whose numerical values

reflect the relative locations of the points in a particularly clear manner” (p. 18). These

Cartesian coordinates are the privileged ones for the Euclidean plane. They are the ones

in which the Euclidean metric takes a particularly “simple form” (p. 25). North points

out that if we know that these are the privileged coordinates, we can use this fact to

uncover the structure of the space:

Now think of all the different Cartesian coordinate systems we can use for the

plane, and think of the similarities and differences among them. [. . . ] There

are some things that all these coordinate systems agree on, despite their

disagreement on such things as the coordinate values of a given point or the

differences between the x or y coordinate values of distinct points. All

Cartesian coordinate systems will agree on the distance [. . . ] between two

points [. . . ] We say that the distance between any two points is invariant

under, or unchanged by, such changes in coordinates (p. 18–9)

The fact that all of the privileged coordinates agree on the distance between points
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tells us that the plane comes equipped with metric structure. As North puts it, metric

structure is “part of the intrinsic, objective nature of this space” (p. 19). This example

demonstrates that in some cases singling out a collection of privileged coordinates on a

space suffices to ‘characterize’ or ‘determine’ or ‘implicitly define’ some structures on it

— those structures that are agreed upon by all of the privileged coordinates. North puts

this basic idea as follows: “There are [. . . ] two ways of characterizing a given structure,

and two corresponding routes to learning about it. A structure can be characterized

more directly, as in the case of the Euclidean plane and the metric tensor. Or it can be

characterized less directly, by means of the coordinate systems we can use for the space

and the features that are invariant under transformations of them” (p. 23).

Many parts of this idea merit further attention, but I will examine here the sense in

which singling out a collection of coordinates suffices to characterize a structure. In

particular, I will consider the following ‘conjecture schema’. In what follows, we let

(M, gab) and (M, g′ab) be manifolds with Riemannian metric.1

Conjecture. If (M, gab) and (M, g′ab) have the same privileged coordinates, then

gab = g′ab.

If true, this conjecture would capture a sense in which one can, at least in the case of

a metric, use collections of coordinates to ‘implicitly define’ a piece of structure on a

manifold. By singling out a collection of coordinates as privileged, one would be pointing

to a unique metric. If the conjecture were true for arbitrary structures, rather than

merely metrics on the manifold, then this would allow North to move seamlessly from

claims about theories ‘privileging coordinates’ (by their laws taking a particularly

1See Malament (2012) for preliminaries on differential geometry.
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“simple or natural form” (p. 112) in those coordinates) to claims about the structures

that those theories posit. If the conjecture is false, then coordinates are not a perfect

guide to underlying structure. Providing the collection of privileged coordinates would

not uniquely pick out a structure; the privileged coordinates would not tell us everything

about that structure. The truth of the conjecture would, at least in the case of a metric,

rule out this possibility. North’s discussion provides another way of putting this idea.

She asks: “What is the nature of [the two-dimensional Euclidean plane]? One way of

getting at an answer to this question, though it is somewhat indirect, is to consider the

different kinds of coordinate systems we can use” (p. 17). If the above conjecture is false,

then the privileged coordinates would not in general provide a complete answer to that

question. The conjecture is therefore an important plank in the project of using

coordinates to learn about structure.

Before assessing whether or not it is true, however, we need to make the conjecture

precise. In particular, we need to say exactly what the ‘privileged coordinates’ are for a

manifold with metric. North’s idea is that these are the coordinates in which the

structure looks ‘nice’ or ‘simple’ or ‘natural’. We begin with the following attempt,

which North explicitly suggests (p. 22). Let (U,ϕ) be a coordinate chart on (M, gab)

i.e. U is a subset of M and ϕ : U → Rn is a smooth injective map that assigns

‘coordinate values’ to each point in U . We will say that (U,ϕ) is orthonormal on

(M, gab) if gab =
∑n

i=1 dau
idbu

i in the region U , where the scalar functions ui are the

coordinate functions of φ on U . This is one natural way to make precise the idea that gab

looks nice in the coordinate patch (U,ϕ). One can easily verify that the orthonormal

coordinates on Euclidean space suffice to characterize the Euclidean metric in the sense

of our conjecture: if any metric on Rn has the same orthonormal coordinates as the
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Euclidean metric does, then that metric is just the Euclidean metric.

Unfortunately, this is not the case for arbitrary metrics. The conjecture is false if we

take orthonormal coordinates to be the privileged ones.2

Lemma. Let (M, gab) be a metric with an orthonormal coordinate chart (U,ϕ). Then gab

is flat on U .

Proof. One can easily show that the coordinate derivative operator associated with the

chart (U,ϕ) (Malament, 2012, 1.7.11) is compatible with gab on U . Since the coordinate

derivative operator is flat (Malament, 2012, p. 72), this immediately implies that gab is

flat on U .

Proposition 1. It is not the case that if (M, gab) and (M, g′ab) have the same

orthonormal coordinates, then gab = g′ab.

This result immediately follows from the lemma above. If gab and g′ab are both flat on

no region of M , then they both have no orthonormal coordinates, but they are not

necessarily equal. If we consider orthonormal coordinates to be the privileged ones for a

manifold with metric, then distinct metrics can have the same (empty) collection of

privileged coordinates. We might therefore try to recover the conjecture by considering

more coordinates to be privileged. We will say that a coordinate chart (U,ϕ) on (M, gab)

is diagonal if gab =
∑n

i=1 α
idau

idbu
i in the region U for some smooth scalar functions αi

on U . This is another way to make precise the idea that the metric looks ‘nice’ or

‘simple’ in the coordinate chart. Unfortunately, this makes the conjecture false again.

2North implies as much when she remarks that a “defining feature [of a space that]

is flat and Euclidean [is that] there is a coordinate system in which the metric takes the

simple Pythagorean form”, i.e. an orthonormal coordinate chart in our sense (p. 22).
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Proposition 2. It is not the case that if (M, gab) and (M, g′ab) have the same diagonal

coordinates, then gab = g′ab.

Proof. Let (M, gab) be Euclidean space and consider (M,Ω2gab), where Ω : M → R is

some smooth scalar function that is not everywhere 1. It is easy to verify that both

metrics admit the same diagonal coordinates, but by construction they are not equal.

Of course, this does not show that the conjecture is false for all ways of characterizing

privileged coordinates for a manifold with metric. It only shows that the conjecture is

false for two of the most natural such ways. Further work is required to assess the more

general status of the conjecture.3 But there is another degree of freedom we have when

considering the conjecture. One can formulate corresponding conjectures for geometric

structures other than a metric. We conclude with one case where a structure is perfectly

characterized by a natural class of privileged coordinates. A symplectic form Ωab on a

2n-dimensional smooth manifold M is a smooth tensor field that is closed,

non-degenerate, and antisymmetric. We will say that the coordinate chart (U,ϕ) is

symplectic if

Ωab =
1

2

n∑
i=1

dau
idbu

i+n − dbuidaui+n

in the region U . The symplectic coordinates are those in which the symplectic form

takes a particularly natural and simple form; they are analogous to the orthonormal

coordinates for a metric. Darboux’s theorem states that for every point p in the

symplectic manifold (M,Ωab) there exists a symplectic chart (U,ϕ) with p in U

(Abraham and Marsden, 1978, 3.2.2). This immediately yields the following result.

3In particular, one wonders whether ‘normal coordinates’ could serve as the variety of

privileged coordinates that make the conjecture true.
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Proposition 3. If symplectic manifolds (M,Ωab) and (M,Ω′
ab) have the same symplectic

coordinates, then Ωab = Ω′
ab.

Proof. Let p be in M . By Darboux’s theorem there exists a coordinate chart (U,ϕ)

around p that is symplectic with respect to Ωab. By assumption this is also symplectic

with respect to (M,Ω′
ab). And this implies that Ωab = Ω′

ab at p.

One wonders whether versions of the conjecture are true for other structures as well,

in addition to symplectic forms. The structures for which a version of the conjecture

holds are those structures that can be characterized in North’s ‘indirect’ manner, by

singling out the privileged coordinates. The more such structures there are, the better

the prospects for using coordinates as a window into the underlying structure that a

theory posits. Ensuing work on these questions about coordinates and structure will be

fruitful, and that is a testament to the clarity and creativity that North’s discussion

brings to the topic.4

3 Classical mechanics

We turn to the second topic of this review: the case study of classical mechanics that

North presents in Chapter 4. North previously argued that the Hamiltonian and

Lagrangian formulations of classical mechanics are, contrary to the standard view,

inequivalent theories (North, 2009). A centerpiece of her new book is her argument for

the claim that the standard formulation of Newtonian mechanics is inequivalent to

4See also Wallace (2019), which contains similar claims about coordinates and struc-

ture.
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Lagrangian mechanics. This dissents from “the usual view [that] Lagrangian and

Newtonian mechanics are wholly equivalent theories, mere notational variants, differing

at most in calculational ease” (p. 107). North argues for the following claim.

C. Standard Newtonian mechanics posits more structure than Lagrangian mechanics.

This claim then implies that the two theories do not ‘say the same thing’ about the

world. They disagree in the same way that, for example, the Newtonian and Galilean

theories of spacetime disagree (p. 61). And moreover, insofar as we should prefer theories

that posit less structure, C implies that we have reason to prefer the Lagrangian

formulation.

North’s main argument for C relies on the following two premises.5

5North presents another argument for C later in chapter 4, which claims that “[t]he

Lagrangian statespace has a general structure of which the Newtonian statespace is a

special kind. The flat structure and Euclidean metric of the Newtonian statespace is a

special case of the arbitrary curved structure and Riemannian metric of the Lagrangian

statespace” (p. 116). For the purposes of this review, one brief remark on the argument

will suffice. North argues for the claim that the Newtonian statespace comes equipped

with a Euclidean metric by appealing to P1. Since Newton’s equations privilege Carte-

sian coordinates, “the statespace on which these equations are defined, in particular the

configuration space that represents the physical space the system moves around in, must

admit of such coordinates. This means that the base space is an intrinsically flat (3n-

dimensional) Euclidean space, with a Euclidean metric — the kind of space on which we

can lay down Cartesian coordinates” (p. 114). In what follows, I will argue that P1 stands

in need of further support. And without such support, this second argument will not go
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P1. Newton’s law F = ma privileges Cartesian coordinates.

P2. The Euler-Lagrange equations do not privilege any kind of coordinates.

In brief, North argues that “the Lagrangian equations are invariant under a wider

range of coordinate transformations [than Newton’s law], which indicates that they

require less structure” (p. 116). The dynamical laws of Lagrangian mechanics — the

Euler-Lagrange equations — privilege fewer coordinates than the dynamical law F = ma

of Newtonian mechanics does. P1 and P2 support C by way of North’s method of using

coordinates to learn about structure. If a theory privileges fewer coordinate systems,

that will indicate to North that the theory posits more structure, since there will be

more features that are agreed upon by all of the coordinate systems in this smaller class.

For the purposes of this discussion we will simply grant that North’s method of using

coordinates to learn about structure is successful. At the very least, the basic idea

behind the inference of C from P1 and P2 is clear. P2 indicates that the Euler-Lagrange

equations “do not distinguish or recognize differences among different coordinate systems

[which] means that they do not require or presuppose the mathematical structure that

would underlie a distinguished or preferred type of coordinate system” (p. 109). P1

indicates that Newton’s law does presuppose the mathematical structure that underlies

these privileged coordinates. And so C follows.

We begin with North’s argument for P1: “Newton’s law [. . . ] prefers Cartesian

coordinates, a preference that’s revealed by the change in form of the equation in

non-Cartesian coordinates, and by how the theory treats systems naturally characterized

in terms of such coordinates” (p. 104–5). North points out that the Newtonian equation

through.
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of motion F = ma “when expressed in a different coordinate system, does not always

have the same mathematical form it did in the original coordinate system: the equation

needn’t have the same form when expressed in terms of the new coordinate system as it

did in the old” (p. 110). She carefully works through the special case of Cartesian and

polar coordinates (p. 96), and shows that Newton’s law does indeed take a simpler form

in Cartesian coordinates than it does in polar coordinates. North concludes that

standard Newtonian mechanics privileges Cartesian coordinates.

North’s idea behind P2 — the claim that “Lagrangian mechanics eliminates the

favoritism for any type of coordinate system” (p. 102) — is that the Euler-Lagrange

equations ‘take the same form’ in any generalized coordinates. The mathematical fact

that underlies this claim requires a bit of background. Suppose that we are modeling a

system of n particles in Lagrangian mechanics. The statespace for this system is the 6n

dimensional tangent bundle TQ of configuration space Q. A point in TQ represents the

positions and velocities of all of the particles in the system. The Lagrangian L : TQ→ R

of the system encodes the system’s ‘activity’ or ‘liveliness’. Insofar as the Lagrangian is

sufficiently well behaved, it gives rise to a vector field Xa
L on TQ. The field Xa

L tells us

how the system will evolve. Given a point in TQ representing the initial condition of the

system, there is a unique integral curve of Xa
L through that point. The state of the

system evolves along that integral curve; one can picture the state of the system ‘flowing’

along the vector field Xa
L.

We can now state the following mathematical fact. Let (U,ϕ) be a coordinate chart

on the 3n-dimensional configuration space Q with coordinate functions q1, . . . , q3n. These

coordinates on M naturally induce a coordinate chart (TU, Tϕ) on the tangent bundle
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TQ.6 We use the notation q1, . . . , q3n, q̇1, . . . , q̇3n to denote the coordinate functions for

this induced chart. Now if we are given an integral curve (u(t), v(t)) of Xa
L, then the

Euler-Lagrange equations

d

dt

(
∂L

∂q̇i

)
=
∂L

∂qi

hold in this induced chart (TU, Tϕ) for each i = 1, . . . 3n (Abraham and Marsden, 1978,

3.5.17). This captures the sense in which the Euler-Lagrange equations do not privilege

any coordinate system. They take the same form in any coordinate chart (TU, Tϕ) on

TQ.

I have two main concerns with this argument for C. In brief, it seems that Newtonian

mechanics posits less structure than North suggests, while Lagrangian mechanics posits

more. My first concern is with the argument for P1. North is correct that Newton’s law

privileges particular coordinate systems, but it is not the Cartesian ones. North works

through the special case of polar coordinates and Cartesian coordinates, but it is worth

working through the general case here. Consider standard Newtonian mechanics

formulated on Galilean spacetime (R4, hab, ta,∇), where the derivative operator ∇ is the

‘standard’ derivative operator on R4.7 This theory says that if a particle has mass m,

6The subset TU = ∪p∈UTpQ of TQ is the union of the tangent spaces for all

the points in U . The map Tϕ : TU → R6n is defined by mapping (p, v) to

(q1(p), . . . , q3n(p), q̇1(v), . . . , q̇3n(v)), where the real numbers q̇i(v) are such that v =∑
i q̇

i(v) ∂
∂ui , i.e. they are the components of v in the basis on TpQ induced by the chart

(U,ϕ).
7The derivative operator ∇ is uniquely determined by the condition that ∇n( ∂

∂xi )
a = 0

for each standard coordinate function xi. That is just to say that it is the coordinate

derivative operator for the standard coordinates on R4. The other structures on Galilean
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then it will traverse a smooth timelike curve whose tangent field ξa satisfies taξ
a = 1 and

F a = mξn∇nξ
a (1)

where F a is the vector field representing the net force acting on the particle. This

equation is just F = ma, expressed using the derivative operator ∇; the vector field

ξn∇nξ
a is just the acceleration field of the particle. North points out that this equation

takes a different form in different coordinates. Indeed, one can compute that in a

coordinate patch (U,ϕ) on Galilean spacetime, equation (1) takes the form

F a = m
( 4∑

i=1

4∑
j=1

j

ξ
∂

i

ξ

∂uj
(
∂

∂ui
)a +

4∑
i=1

4∑
j=1

i

ξ
j

ξ(
∂

∂uj
)n∇n(

∂

∂ui
)a
)

where u1, . . . , u4 are the coordinate functions for (U,ϕ) and we write ξn =
∑4

i=1 ξ
i( ∂

∂ui )
n

in these coordinates. Notice that the right-hand term of the acceleration field will vanish

if ∇n( ∂
∂ui )

a = 0, i.e. if the coordinate curves in the patch (U,ϕ) are straight according to

∇. This means that, as North clearly points out, Newton’s equation of motion will take

‘a different form’ in polar coordinates — where the coordinate curves are not straight

according to ∇ — than it does in standard Cartesian coordinates — where the

coordinate curves are straight according to ∇. In the first case, the right-most term of

the acceleration field will not vanish, while in the second case it will. In Cartesian

coordinates F = ma looks simpler, nicer, and more natural than it does in coordinates

whose coordinate curves ‘bend’ according to ∇. North argues that this “reveals that the

[Newton’s law] does distinguish or recognize differences among different coordinate

spacetime are defined in the usual way. See Malament (2012) for details.
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systems — it does not say the same thing regardless. This, in turn, means that the law

requires or presupposes the mathematical structure that underlies the preferred type of

coordinate system” (p. 110). North claims that the preferred type of coordinate system

is the Cartesian coordinates, and the mathematical structure that underlies it is a

Euclidean metric.

This last claim, however, does not follow. The right-hand term in the acceleration

field will vanish for any coordinate system whose coordinate curves are straight

according to ∇, not just for the Cartesian ones. Newton’s equation (1) will take the

same nice form in any ‘straight’ coordinates. The class of privileged coordinate systems

is therefore broader than merely the Cartesian ones, since Cartesian coordinates have

straight coordinate axes that are also mutually orthogonal. Note that there is a sense in

which this is not surprising. Newton’s law explicitly appeals to ‘straightness structure’ in

the form of the covariant derivative operator that appears in its acceleration term. So it

is natural that the straight coordinates are the privileged ones. Indeed, it is a mark in

favor of North’s method of using coordinates to investigate structure that these end up

being the privileged ones. But as far as the above argument is concerned, this means

that P1 is false. Crucially, it means that Newton’s law privileges more coordinates than

what North suggests, which means that it gives rise to less structure than what North

suggests, since a broader class of privileged coordinates will agree on fewer features. In

particular, the coordinates with ‘straight’ coordinate curves will not all have the same

coordinate metric.8 And that is a problem for North’s argument. It means that

8Note that Newtonian mechanics set in Galilean spacetime does posit a kind of Eu-

clidean metric structure hab on space, but it is not in virtue of the fact that the structure

is presupposed by F = ma in the way that North’s method requires. And “the structure
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Newtonian mechanics posits less structure than P1 suggests it does.

My second concern has to do with P2. Recall that the Euler-Lagrange equations hold

in the coordinates (TU, Tϕ) on TQ that are induced by coordinates (U,ϕ) on Q. Not all

coordinates on TQ are of this form, and indeed, one can show that the Euler-Lagrange

equations do not hold in all coordinate systems on TQ. One way to see this is simply by

examining the equations themselves. They do not make sense in an arbitrary coordinate

system on TQ, since they explicitly appeal to the coordinate functions qi and q̇i, which

are only defined when we are working in coordinates (TU, Tϕ). So the Euler-Lagrange

equations do privilege a particular kind of coordinate system, contrary to what P2

asserts.

In sum, my first concern with the argument was that Newton’s equations privilege

more coordinates than P1 suggests, and my second concern was that the Euler-Lagrange

equations privilege fewer coordinates than P2 suggests. Even so, North may argue that

Newton’s equations still privilege fewer coordinate systems than the Euler-Lagrange

equations do. But one then wonders what sense of ‘fewer’ is meant. The two most

natural explications will not work. First, it seems unlikely that the set of coordinates

privileged by Newton’s equations has a smaller cardinality than the set privileged by the

Euler-Lagrange equations. (One would guess that both sets have the same cardinality as

the real numbers.) And second, it cannot be that the former set is a proper subset of the

latter, since the former are coordinates on a spacetime, while the latter are coordinates

on a statespace; elements of the one set of coordinates simply are not elements of the

other. We are therefore left without a compelling argument for C.

required by the theories’ dynamical laws” (p. 111) is the kind of structure that counts for

North.

17



It should be clear, however, that North’s book opens up entirely new and promising

lines of inquiry. It covers a remarkable amount of material. (I have not even touched on

North’s general discussion of equivalence in Chapter 7 nor her contribution to the debate

on substantivalism and relationalism in Chapter 5, both of which will receive much

attention.) And it does so in an original and engaging manner. The ideas put forward in

the book will have an impact in metaphysics, general philosophy of science, philosophy of

mathematics, and philosophy of physics. They will be discussed and debated for years to

come.
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