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Center bias outperforms image salience but not semantics in 
accounting for attention during scene viewing

Taylor R. Hayes1, John M. Henderson1,2

1Center for Mind and Brain, University of California, Davis, CA, USA

2Department of Psychology, University of California, Davis, CA, USA

Abstract

How do we determine where to focus our attention in real-world scenes? Image saliency 

theory proposes that our attention is ‘pulled’ to scene regions that differ in low-level image 

features. However, models that formalize image saliency theory often contain significant scene-

independent spatial biases. In the present studies, three different viewing tasks were used to 

evaluate whether image saliency models account for variance in scene fixation density based 

primarily on scene-dependent, low-level feature contrast, or on their scene-independent spatial 

biases. For comparison, fixation density was also compared to semantic feature maps (Meaning 

Maps; Henderson & Hayes, Nature Human Behaviour, 1, 743–747, 2017) that were generated 

using human ratings of isolated scene patches. The squared correlations (R2) between scene 

fixation density and each image saliency model’s center bias, each full image saliency model, and 

meaning maps were computed. The results showed that in tasks that produced observer center 

bias, the image saliency models on average explained 23% less variance in scene fixation density 

than their center biases alone. In comparison, meaning maps explained on average 10% more 

variance than center bias alone. We conclude that image saliency theory generalizes poorly to 

real-world scenes.
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Real-world visual scenes are too complex to be taken in all at once (Tsotsos, 1991; 

Henderson, 2003). To cope with this complexity, our visual system uses a divide-and-

conquer strategy by shifting our attention to different smaller subregions of the scene over 

time (Findlay & Gilchrist, 2003; Henderson & Hollingworth, 1999; Hayhoe & Ballard, 

2005). This solution leads to a fundamental question in cognitive science: How do we 

determine where to focus our attention in complex, real-world scenes?

One of the most influential answers to this question has been visual salience. Image 

salience theory proposes that our attention is ‘pulled’ to visually salient locations that 
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differ from their surrounding regions in semantically uninterpreted image features like color, 

orientation, and luminance (Itti & Koch, 2001). For example, a search array that contains a 

single red line among an array of green lines stands out and draws our attention (Treisman 

& Gelade 1980; Wolfe, Cave, & Franzel, 1989; Wolfe 1994). The idea of visual salience 

has been incorporated into many influential theories of attention (Wolfe & Horowitz, 2017; 

Itti & Koch, 2001; Wolfe et al., 1989; Treisman & Gelade, 1980) and formalized in various 

computational image saliency models (Itti, Koch, & Niebur, 1998; Harel, Koch, & Perona, 

2006; Bruce & Tsotsos 2009). These prominent image saliency models have influenced a 

wide range of fields including vision science, cognitive science, visual neuroscience, and 

computer vision (Henderson, 2007).

However, an often-overlooked component of image saliency models is the role that image-

independent spatial biases play in accounting for the distribution of scene fixations (Bruce, 

Wloka, Frosst, Rahman, & Tsotsos, 2015). Many of the most influential image saliency 

models exhibit significant image-independent spatial biases to account for observer center 

bias (Rahman & Bruce, 2015; Bruce et al., 2015). Observer center bias refers to the 

common empirical finding that human observers tend to concentrate their fixations more 

centrally when viewing scenes (Tatler, 2007). Tatler (2007) showed observer center bias 

is largely independent from scene content and viewing task, and suggested that it may be 

the result of a basic orienting response, information processing strategy, or it may facilitate 

gist extraction for contextual guidance (Torralba, Oliva, Castelhano, & Henderson, 2006). 

Regardless of the source, these findings highlight the importance of taking observer center 

bias into account in evaluating models of scene attention.

This led us to ask a simple question: Are image saliency models actually predicting where 

we look in scenes based on low-level feature contrast, or are they mostly capturing that we 

tend to look more at the center than the periphery of scenes? The answer to this question is 

important because when image saliency models are successful in predicting fixation density, 

it is often implicitly assumed that scene-dependent, low-level feature contrast is responsible 

for this success in support of image guidance theory (Tatler, 2007; Bruce et al., 2015).

To answer this question, we compared how well three influential and widely cited image 

saliency models (Itti & Koch saliency model with Gaussian blur, Itti et al. (1998), Koch 

and Ullman (1985), and Harel et al. (2006); graph-based visual saliency model, Harel et al. 

(2006); and attention by information maximization saliency model, Bruce and Tsotsos 2009) 

predicted scene fixation density relative to their respective image-independent center biases 

for three different scene viewing tasks: memorization, aesthetic judgment, and visual search. 

These image saliency models were chosen for two reasons. First, they are bottom-up image 

saliency models that allow us to cleanly dissociate low-level image features associated with 

image salience theory from high-level semantic features associated with cognitive guidance 

theory. Second, the chosen image saliency models each produce different degrees and 

patterns of spatial bias. The Itti and Koch and the graph-based visual saliency models both 

contain substantial image-independent spatial center biases with different profiles, while 

the attention by information maximization model is much less center-biased and served 

as a low-bias control. The memorization, aesthetic judgment, and visual search tasks were 

chosen because they produced varying degrees and patterns of observer center bias that 
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allowed us to examine how the degree of observer center bias affects the performance of the 

various image saliency models.

Finally, as an additional analysis of interest, we compared each center bias baseline model 

and image saliency model to meaning maps (Henderson & Hayes 2017, 2018). Meaning 

maps draw inspiration from two classic scene-viewing studies (Antes, 1974; Mackworth & 

Morandi, 1967). In these studies, images were divided into several regions and subjects were 

asked to rate each region based on how easy it would be to recognize (Antes, 1974) or 

how informative it was (Mackworth & Morandi, 1967). Critically, when a separate group of 

subjects freely viewed the same images, they mostly looked at the regions that were rated 

as highly recognizable or informative. Meaning maps scale up this general rating procedure 

using crowd-sourced ratings of thousands of isolated scene patches densely sampled at 

multiple spatial scales to capture the spatial distribution of semantic features, just as image 

saliency maps capture the spatial distribution of image features.

To summarize, the goal of the present article is to test whether image salience theory, 

formalized as image saliency models, offers a compelling answer to how we determine 

where to look in real-world scenes. We tested how well three different image saliency 

models accounted for fixation density relative to their respective center biases across three 

different tasks that produced varying degrees of observer center bias. The results showed 

that for tasks that produce observer center bias, image saliency models actually perform 

worse than their center bias alone. This finding suggests a serious disconnect between 

image salience theory and human attentional guidance in real-world scenes. In comparison, 

meaning maps were able to explain additional variance above and beyond center bias in all 3 

tasks. These findings suggest image saliency models scale poorly to real-world scenes.

Method

Participants

The present study analyzes a corpus of data from five different groups of participants. Three 

different groups of students from the University of South Carolina (memorization, N = 79) 

and the University of California, Davis (visual search, N = 40; aesthetic judgment, N = 53) 

participated in the eye tracking studies. Two different groups of Amazon Mechanical Turk 

workers (N = 165) and University of California, Davis students (N = 204) participated in the 

meaning map studies. All five studies were approved by the institutional review board at the 

university where they were collected. All participants in the eye tracking studies had normal 

or corrected to normal vision, were naïve concerning the purposes of each experiment, and 

provided written or verbal consent.

We have previously used the memorization study corpus to investigate individual differences 

in scan patterns in scene perception (Hayes & Henderson 2017, 2018), as well as for an 

initial study of meaning maps (Henderson & Hayes 2017, 2018). The observer center bias 

data and the comparisons to multiple image saliency and center bias models are presented 

here for the first time.
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Stimuli

The study stimuli were digitized photographs of outdoor and indoor real-world scenes (See 

Fig. 1a). The memorization study contained 40 scenes, the visual search study contained 80 

scenes, and the aesthetic judgment study contained 50 scenes. In the visual search study 40 

of the scenes contained randomly placed letter L targets (excluding the area within 2° of the 

pre-trial fixation cross) and 40 scenes contained no letter targets. Only the 40 scenes that 

did not contain letter targets were included in the analysis to avoid any contamination due 

to target fixations. The memorization and visual search study contained the same 40 scenes. 

The aesthetic judgment study shared 12 scenes with the memorization and visual search 

scene set.

Apparatus

Eye movements were recorded with an EyeLink 1000+ tower-mount eye tracker (spatial 

resolution 0.01°) sampling at 1000 Hz (SR Research, 2010b). Participants sat 85 cm away 

from a 21” monitor, so that scenes subtended approximately 27° × 20.4° of visual angle. 

Head movements were minimized using a chin and forehead rest. Although viewing was 

binocular, eye movements were recorded from the right eye. The experiment was controlled 

with SR Research Experiment Builder software (SR Research, 2010a).

Procedure

In the memorization study, subjects were instructed to memorize each scene in preparation 

for a later memory test, which was not administered. In the visual search study, subjects 

were instructed to search each scene for between 0 and 2 small embedded letter L targets 

and then respond with how many they found at the end of the trial. In the aesthetic judgment 

study, subjects were instructed to indicate how much they liked each scene on a 1–3 scale. 

For all three eye tracking studies, each trial began with fixation on a cross at the center of the 

display for 300 ms. Following central fixation, each scene was presented for 12 s while eye 

movements were recorded.

Eye movement data processing

A nine-point calibration procedure was performed at the start of each session to map eye 

position to screen coordinates. Successful calibration required an average error of less than 

0.49° and a maximum error of less than 0.99°. Fixations and saccades were segmented with 

EyeLink’s standard algorithm using velocity and acceleration thresholds (30/s and 9500°/s2).

Eye movement data were converted to text using the EyeLink EDF2ASC tool and then 

imported into MATLAB for analysis. Custom code was used to examine subject data 

for data loss from blinks or calibration loss based on mean percent signal across trials 

(Holmqvist et al., 2015). In the memorization study, 14 subjects with less than 75% signal 

were removed, leaving 65 subjects for analysis that were tracked well, with an average 

signal of 91.7% (SD = 5.5). In the aesthetic judgment study, three subjects with less than 

75% signal were removed, leaving 50 subjects that were tracked well, with an average signal 

of 90.7% (SD = 5.8). In the visual search study, two subjects with less than 75% signal were 

removed, leaving 38 subjects for analysis that were tracked well, with an average signal of 
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95.00% (SD = 3.69). The first fixation in every trial was discarded as uninformative because 

it was constrained by the pretrial fixation cross.

Fixation density map

The distribution of scene attention was defined as the distribution of fixations within each 

scene. For each task, a fixation density map (Fig. 1c) was generated for each scene across 

all subject fixations (Fig. 1b). Following our previous work (Henderson & Hayes, 2017), 

the fixation frequency matrix for each scene was smoothed using a Gaussian low-pass filter 

with a circular boundary and a cutoff frequency of −6dB to account for foveal acuity and 

eye-tracker error (Judd, Durand, & Torralba, 2012).

Image saliency maps

Saliency maps were generated for each scene using three different image saliency models. 

The Itti and Koch model with blur (IKB, Fig. 1d) and the graph-based visual saliency model 

(GBVS, Fig. 1e) use local differences in image features including color, edge orientation, 

and intensity to compute a saliency map (Itti et al., 1998; Harel et al., 2006). The saliency 

maps for both the IKB and GBVS saliency models were generated using the graph-based 

visual saliency toolbox with default GBVS settings and default IKB settings (Harel et al., 

2006). The attention by information maximization saliency model (AIM, Fig. 1f) uses a 

different approach and computes an image saliency map based on each scene region’s 

Shannon self-information (Bruce & Tsotsos, 2009). The AIM saliency maps were generated 

using the AIM toolbox with default settings and blur (Bruce & Tsotsos, 2009).

Meaning maps

Meaning maps were generated as a representation of the spatial distribution of semantic 

information across scenes (Henderson & Hayes, 2017). Meaning maps were created for each 

scene by decomposing the scene into a dense array of overlapping circular patches at a fine 

spatial scale (300 patches with a diameter of 87 pixels) and coarse spatial scale (108 patches 

with a diameter of 207 pixels). Participants (N = 369) provided ratings of thousands (31,824) 

of scene patches based on how informative or recognizable they thought they were on a 

six-point Likert scale. Patches were presented in random order and without scene context, so 

ratings were based on context-independent judgments. Each unique patch was rated by three 

unique raters.

A meaning map was generated for each scene by averaging the rating data at each spatial 

scale separately, then averaging the spatial scale maps together, and finally smoothing the 

average rating map with a Gaussian filter (i.e., Matlab ‘imgaussfilt’ with sigma=10).

Because meaning maps are generated based on context-independent random patch ratings, 

they by definition reflect content-dependent features. For comparison with the image 

saliency models, each image saliency model’s spatial center bias was applied to the meaning 

maps for each scene by applying a pixel-wise multiplication with each image saliency 

model’s center bias (see Fig. 1g, h, i). This let us examine how the same center bias from 

each saliency model affected meaning map performance, allowing for a direct comparison of 

low-level image features and semantic features under the same center bias conditions.
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Quantifying and visualizing center bias

Each image saliency model has a unique scene-independent center bias. Therefore, the 

center bias was estimated for each image saliency model separately (i.e., IKB, GBVS, and 

AIM) using a large set of scenes from the MIT-1003 benchmark data set (Judd, Ehinger, 

Durand, & Torralba, 2009). Specifically, we used the scene size that was most common in 

MIT-1003 data set (1024 × 768 px) and removed the four synthetic images resulting in 459 

real-world scenes. For each image saliency model, we generated a saliency map for each 

scene (459 scenes × 3 models = 1377 saliency maps). We then placed all the saliency maps 

on a common scale by normalizing each saliency map to have zero mean and unit variance.

In order to visualize each image saliency model’s unique center bias, we first computed 

the relative spatial bias across models (Bruce et al., 2015). That is, the relative spatial bias 

for each model was computed as the difference between the mean across all the saliency 

maps within each model (Fig. 2a, b, c), minus the global mean across all the model saliency 

maps (Fig. 2d). Figure 2e, f, and g show the resulting relative spatial biases for each image 

saliency model. This provides a direct visualization of how the different image saliency 

model biases compare relative to each other (Bruce et al., 2015).

We quantified the strength of the center bias in each image saliency model using the relative 

bias maps and a weight matrix that assigned weights according to center proximity. The 

relative saliency maps for each model (Fig. 2e, f, and g) were jointly rescaled from 0 to 1 

to maintain contrast changes. Next, we needed to define how center bias was going to be 

weighted across image space. We computed the Euclidean distance from the center pixel to 

all other pixels, scaled it from 0 to 1, and then inverted it (Fig. 2d). This served as a weight 

matrix representing center proximity. Each saliency model’s bias was then simply the sum 

of the element-wise product of its relative bias map (Fig. 2e, f, or g) and the center weight 

matrix (Fig. 2h).

These same procedures were used to quantify observer center bias and visualize relative 

observer center bias for each eye-tracking study (see Fig. 3). The only difference is that 

the three studies took the place of the three saliency models, fixation density maps took the 

place of saliency maps, and the scenes that were viewed in each study were used instead of 

the MIT-1003 scenes. The smaller number of scenes in the eye-tracking studies resulted in 

noisier estimates of the observer center bias maps (Fig. 3) relative to the model center bias 

maps (Fig. 2).

Map normalization

The saliency and meaning maps were normalized using image-histogram matching in the 

same manner as Henderson & Hayes (2017, 2018). Histogram matching of the saliency 

and meaning maps was performed using the MATLAB function ‘imhistmatch’ from the 

Image Processing Toolbox. The fixation density map (Fig. 1c) for each scene served as the 

reference image for the corresponding saliency (Fig. 1d, e, f) and meaning (Fig. 1g, h, i) 

maps.
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Results

Image saliency model and observer spatial biases

The image saliency models and the experimental tasks both produced varying degrees and 

patterns of spatial bias (Figs. 2 and 3). In Figs. 2 and 3, panels a, b, and c show the 

average scene-independent spatial bias and panels e, f, and g show the relative spatial bias 

indicating how each model or task differed relative to all other models or tasks respectively. 

We quantified the strength of the center bias in each image saliency model and experimental 

task using the relative bias maps and a weight matrix (Figs. 2h and 3h) that assigned weights 

according to center proximity.

A comparison of the image saliency models showed clear differences in the degree and 

spatial profile of center bias in each model (Fig. 2). GBVS displayed the strongest center 

bias followed by IKB (17.3% < GBVS) and AIM (47.4% < GBVS). The experimental 

tasks also produced varying degrees and amounts of observer center bias (Fig. 3). The 

memorization task produced the most observer center bias followed by the aesthetic 

judgment (3% < memorization) and the visual search tasks (18% < memorization). It will be 

important to keep the relative strength of these spatial biases in mind as we examine model 

performance.

Model performance

The main results are shown in Fig. 4. For each study task (memorization, aesthetic 

judgment, and visual search), we computed the mean squared correlation (R2) across all 

scene fixation density maps (circles) and each image saliency model (Fig. 1d, e, f), each 

saliency model’s center bias only (Fig. 2a, b, c), and meaning maps with the same center 

bias as the image saliency model (Fig. 1g, h, i). In this framework, the center bias-only 

models serve as a baseline to measure how the addition of scene-dependent image saliency 

and scene-dependent semantic features affected performance. Two-tailed, paired sample t 
tests were used to determine significance relative to the respective center bias only baseline 

models.

Figure 4a shows the memorization task results. We found that the three image saliency 

models each performed worse than their respective center biases alone. The full GBVS 

saliency model accounted for 8.1% less variance than the GBVS center bias model 

(t(39)=−3.14, p < 0.01, 95% CI [−0.13,−0.03]). The full IKB model accounted for 

25.5% less variance than the IKB center bias model (t(39)=−9.13, p < 0.001, 95% CI 

[−0.20,−0.31]). Finally, the full AIM model accounted for 33.2% less variance than the AIM 

center bias model (t(39)=−12.02, p < 0.001, 95% CI [−0.28,−0.39]). It is worth noting that 

the full AIM model performed so poorly because its center bias is weaker than the GBVS 

and IKB models (recall Fig. 2g). As a result, scene-dependent image salience played a much 

more prominent role in the AIM saliency maps to its detriment.

Figure 4b shows the aesthetic judgment task results. We found that again the three image 

saliency models each performed significantly worse than their respective center biases alone. 

The full GBVS saliency model accounted for 13.3% less variance than the GBVS center 

bias model (t(49)=−4.50, p < 0.001, 95% CI [−0.07,−0.19]). The full IKB model accounted 
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for 25.8% less variance than the IKB center bias model (t(49)=−7.93, p < 0.001, 95% CI 

[−0.19,−0.32]). Finally, the full AIM model accounted for 32.5% less variance than the AIM 

center bias model (t(49)=−11.86, p < 0.001, 95% CI [−0.27,−0.38]).

Figure 4c shows the visual search task results. Recall that in the visual search task 

participants were searching for randomly placed letters, which greatly reduced the observer 

center bias (Fig. 3g). We found that the three image saliency models each performed slightly 

better (GBVS, 4.8%; IKB, 6.8%; AIM, 5.3%) than their respective center biases alone in 

the visual search task (GBVS, t(39)=3.39, p < 0.001, 95% CI [0.02,0.7]; IKB, t(39)=3.63, p 
< 0.001, 95% CI [0.03,0.11]; AIM,t(39)=2.57, p < 0.05, 95% CI [0.01,0.09]). This change 

is reflective of the much weaker observer center bias in the visual search task relative to 

the memorization and aesthetic judgment tasks. Together, these factors greatly reduce the 

squared correlation of the center bias only model.

In contrast, the distribution of semantic features captured by meaning maps were always 

able to explain more variance than each center bias model alone. In the memorization task, 

meaning maps explained on average 9.7% more variance than center bias alone (GBVS 

bias, t(39)=6.32, p < 0.001, 95% CI [0.08,0.15]; IKB bias, t(39)=6.39, p < 0.001, 95% 

CI [0.06,0.12]; AIM bias, t(39)=6.41, p < 0.001, 95% CI [0.06,0.12]). In the aesthetic 

judgment task, meaning maps explained on average 10.3% more variance than center bias 

alone (GBVS bias, t(49)=3.60, p < 0.001, 95% CI [0.04,0.12]; IKB bias, t(49)=6.65, p < 

0.001, 95% CI [0.08,0.16]; AIM bias, t(49)=5.93, p < 0.001, 95% CI [0.07,0.15]). Finally, 

in the visual search task, meaning maps explained on average 10.0% more variance than 

the center bias only models (GBVS bias, t(39)=8.99, p < 0.001, 95% CI [0.06,0.10]; IKB 

bias, t(39)=10.25, p < 0.001, 95% CI [0.09,0.14]; AIM bias, t(39)=10.27, p < 0.001, 95% CI 

[0.08,0.13]).

There has been some evidence suggesting that early attentional guidance may be more 

strongly driven by image salience than later attention (O’Connel & Walther 2015; Anderson, 

Donk, & Meeter, 2016). Therefore, we performed a post hoc analysis to examine how the 

relationship between fixation density and each model varied as a function of viewing time. 

Specifically, we computed the correlation between the fixation density maps and each model 

in the same way as before, but instead of aggregating across all the fixations, we aggregated 

as a function of the fixations up to that point. That is, for each scene, we computed the 

fixation density map that contained only the first fixation for each subject, then the first 

and second fixation for each subject, and so on to generate the fixation density map for 

each scene at each time point. We then averaged the correlation values across scenes just as 

before.

Figure 5 shows how the squared correlation between fixation density and each model varied 

over time. The results are consistent with the main analysis shown in Fig. 4. Specifically, 

Fig. 5 shows that the respective center bias models are more strongly correlated with the first 

few fixations than the full image saliency models. Second, Fig. 5 shows that in tasks that are 

center biased (i.e., memorization and aesthetic judgment), center bias performs better than 

the full image saliency models regardless of the viewing time, while in tasks that are less 

center biased (i.e., visual search), the image saliency gains a small advantage over center 
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bias that accrues over time. Finally, Fig. 5 shows that the meaning advantage over image 

salience observed in Fig. 4 holds across the entire viewing period including even the earliest 

fixations. This finding is inconsistent with the idea that early scene attention is biased toward 

image saliency.

Taken together, our findings suggest that in tasks that produce observer center bias, adding 

low-level feature saliency actually explains less variance in scene fixation density than a 

simple center bias model, and that the same pattern holds for the earliest fixations ruling out 

an early saliency effect. This highlights that scene-independent center bias and not image 

salience is explaining most of the fixation density variance in these models. In comparison, 

meaning maps were consistently able to explain significant variance in fixation density 

above and beyond the center bias baseline models in each task.

Discussion

We have shown in a number of recent studies that image saliency is a relatively poor 

predictor of where people look in real-world scenes, and that it is actually scene semantics 

that guide attention (Henderson & Hayes 2017, 2018; Henderson, Hayes, Rehrig, & Ferreira, 

2018; Peacock, Hayes, & Henderson, 2019). Here we extend this research in a number 

of ways. First, the present work directly quantified the role of model center bias and 

observer center bias in overall performance of three image saliency models and meaning 

maps across three different viewing tasks. We found that for tasks that produced observer 

center bias (i.e., memorization and aesthetic judgment), the image saliency models actually 

performed significantly worse than their respective center biases alone, while the meaning 

maps performed significantly better than center bias alone regardless of task. Second, our 

previous work has exclusively used the graph-based saliency model (GBVS), whereas here 

we tested multiple image-based saliency models, demonstrating that center bias, image 

saliency, and meaning effects generalize across different models with different center biases. 

Finally, the temporal comparison of model center bias alone relative to the full saliency 

models shows clearly that early fixation density effects are predominantly center bias effects, 

not image saliency effects. Taken together, these findings suggest that image salience theory 

does not offer a compelling account of where we look in real-world scenes.

So why does image salience theory instantiated as image saliency models struggle to 

account for variance beyond center bias? And why do semantic features succeed where 

salient image features fail? The most plausible explanation is the inherent difference 

between the semantically impoverished experimental stimuli that originally informed image 

saliency models, and semantically rich, real-world scenes.

The foundational studies that visual salience theory was built upon used singletons like 

lines and/or basic shapes that varied in low-level features like orientation, color, luminance, 

texture, shape, or motion (For review see Desimone & Duncan 1995; Itti & Koch 2000; 

Koch & Ullman 1985). Critically, the singleton stimuli in these studies lacked any semantic 

content. The behavioral findings from these studies were then combined with new insights 

from visual neuroscience, such as center-surround receptive field mechanisms (Allman, 

Miezin, & McGuinness, 1985; Desimone, Schein, Moran, & Ungerleider, 1985; Knierim & 
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Essen 1992) and inhibition of return (Klein, 2000), to form the theoretical and computational 

basis for image saliency modeling (Koch & Ullman, 1985). When image saliency models 

were then subsequently applied to real-world scene images and found to account for a 

significant amount of variance in scene fixation density, it was taken as evidence that the 

visual salience theory scaled to complex, real-world scenes (Borji, Parks, & Itti, 2014; Borji, 

Sihite, & Itti, 2013; Harel et al. 2006; Parkhurst, Law, & Niebur, 2002; Itti & Koch 2001; 

Koch & Ullman 1985; Itti et al. 1998). The end result is that visual salience became a 

dominant theoretical paradigm for understanding attentional guidance not just in simple 

search arrays but in complex, real-world scenes (Henderson, 2007).

Our findings add to a growing body of evidence that attention in real-world scenes is not 

guided primarily by image salience, but rather by scene semantics. First, our results add to 

converging evidence that a number of widely used image saliency models account for scene 

attention primarily through their scene-independent spatial biases, rather than low-level 

feature contrast during free viewing (Kümmerer, Wallis, & Bethge, 2015; Bruce et al. 2015). 

Our findings generalize this effect to three additional scene-viewing tasks: memorization, 

aesthetic judgment, and visual search tasks. Second, our results show that meaning maps are 

capable of explaining additional variance in overt attention beyond center bias in all three 

tasks. These results add to a number of recent studies that indicate that scene semantics 

are the primary factor guiding attention in real-world scenes (Henderson & Hayes 2017, 

2018; Henderson et al. 2018; Peacock et al. 2019; de Haas, Iakovidis, Schwarzkopf, & 

Gegenfurtner, 2019).

In terms of practical implications, our results together with previous findings (Tatler, 2007; 

Bruce et al., 2015; Kümmerer et al., 2015) suggest that image saliency model results should 

be interpreted with caution when used with real-world scenes as opposed to singleton arrays 

or other simple visual stimuli. Therefore, moving forward, it is prudent when using image 

saliency models with scenes to determine the degree of center bias in the fixation data and 

quantify the role center bias is playing in the image saliency model performance. These 

quantities can be measured and visualized using the aggregate map-level methods used 

here or other recently proposed methods (Kümmerer et al. 2015; Nuthmann, Einhäuser, 

& Schütz, 2017; Bruce et al. 2015). This will allow researchers to determine the relative 

contribution of scene-independent spatial bias and scene-dependent image salience when 

interpreting their data.

So where does this leave us? While image saliency theory and models offer an elegant 

framework based on biologically inspired mechanisms, much of the behavioral work 

suggesting that low-level image feature contrast guides overt attention relies heavily on 

the use of semantically impoverished visual stimuli. Our results suggest that image saliency 

theory and models do not scale well to complex, real-world scenes. Indeed, we found 

prominent image saliency models actually did significantly worse than their center biases 

alone in multiple studies. This suggests something critical is missing from image saliency 

theory and models of attention when they are applied to real-world scenes. Our previous and 

current results suggest that what is missing are scene semantics.
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Fig. 1. 
A typical scene and the corresponding fixation density, image saliency, and meaning maps. 

The top row shows a typical scene a, the individual fixations produced by all participants 

in the memorization study b, and the resulting fixation density map c. The middle row 
shows the saliency maps produced by the Itti & Koch with blur saliency model (IKB, d), the 

graph-based visual saliency model (GBVS, e), and attention by information maximization 

model (AIM, f). The bottom row shows the meaning maps with each of the corresponding 

image saliency model spatial biases applied g, h, i. All maps were normalized using image 

histogram matching with the fixation density map c as the reference image. The dotted white 
lines are shown to make comparison across panels easier
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Fig. 2. 
Image saliency model mean bias, global bias, relative bias, and weight matrix. The mean 

spatial bias is shown for each image saliency model, including a Itti and Koch with blur 

(IKB), b graph-based visual saliency (GBVS), and c attention by information maximization 

(AIM) for the MIT-1003 dataset. The relative spatial center bias for each model e, f, and g 
shows how each saliency model differs relative to the global mean across all model saliency 

maps d. Panel h shows the inverted Euclidean distance from the image center that served as 

the weight matrix for quantifying the degree of center bias in each model
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Fig. 3. 
Eye movement mean observer bias, global bias, relative bias, and weight matrix. The mean 

observer bias is shown for each eye-tracking study, including a scene memorization, b 
aesthetic judgment, and c visual search. The relative spatial center bias for each study e, 

f, and g shows how each study differs relative to the global mean across all task fixation 

density maps d. Panel h shows the inverted Euclidean distance from the image center that 

served as the weight matrix for quantifying the degree of observer center bias in each study
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Fig. 4. 
Squared linear correlation between fixation density and maps across all scenes for each 

scene viewing task. The scatter box plots show the squared correlation (R2) between the 

scene fixation density maps and the saliency center bias maps (graph-based visual salience, 

GBVS; Itti & Koch with blur, IKB; and attention by information maximization saliency 

model, AIM), full saliency maps, and meaning maps for each scene task. The scatter box 

plots indicate the grand correlation mean (black horizontal line) across all scenes (circles), 

95% confidence intervals (colored box) and 1 standard deviation (black vertical line).
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Fig. 5. 
Squared linear correlation between fixation density and maps across all scenes for each 

scene viewing task over time. The line plots show the squared correlation (R2) between 

the fixation density maps and the saliency center bias maps (graph-based visual salience, 

GBVS; Itti & Koch with blur, IKB; and attention by information maximization saliency 

model, AIM), full saliency maps, and meaning maps for each scene task over fixations. The 

lines indicate the grand mean across all scenes for each model up to each time point. The 

error bars indicate 95% confidence intervals
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