
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Artificial Neural Network Impact on Cloud Parameterization and Land-Atmosphere 
Interactions

Permalink
https://escholarship.org/uc/item/16n7460w

Author
Yacalis, Galen

Publication Date
2018

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-ShareAlike 
License, availalbe at https://creativecommons.org/licenses/by-sa/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/16n7460w
https://creativecommons.org/licenses/by-sa/4.0/
https://escholarship.org
http://www.cdlib.org/


 
 

	
	
	
	

UNIVERSITY	OF	CALIFORNIA,	
IRVINE	

	
	

Artificial	Neural	Network	Impact	on	Cloud	Parameterization	and	Land-Atmosphere	
Interactions	

	
THESIS	

	
	

submitted	in	partial	satisfaction	of	the	requirements	
for	the	degree	of	

	
	

MASTER	OF	SCIENCE	
	

in	Mathematical,	Computational,	and	Systems	Biology	
	
	
by	
	
	

Galen	Yacalis	
	
	
	
	
	
	
	

																																																															Thesis	Committee:	
																															Assistant	Professor	Mike	Pritchard,	Chair	

																																					Chancellor’s	Professor	James	Randerson	
																																														Chancellor’s	Professor	John	Lowengrub	

	
	
	
	
	
	

2018	
	 	



 
 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

©	2018	Galen	Yacalis	
	



ii 
 

DEDICATION	
	
	
	
To	
	
	

my	fiancée,	family,	and	friends	
	
	

in	recognition	of	their	unending	love	and	support	
	
	 	



iii 
 

TABLE	OF	CONTENTS	
	

																												Page	
	
LIST	OF	FIGURES	 																												iv	
	
LIST	OF	TABLES	 																												vi	
	
ACKNOWLEDGMENTS	 																											vii	
	
ABSTRACT	OF	THE	THESIS	 																										viii	
	
INTRODUCTION			Background	 																											1	
	 											Energy	Fluxes	 																											1	
	 											Hydrologic	Cycle	 																											4	
	 											Carbon	Cycle	 																											6	
	
CHAPTER	1:		Earth	System	Models	and	Superparameterization	 																											8	
	
CHAPTER	2:		Exploring	the	Potential	of	Intel’s	Many-Core	Technology	
	 		to	Accelerate	SP	Simulations	 																											14	
	
CHAPTER	3:		Artificial	Neural	Networks	 																											23	
	 			CloudBrain	 	 																											30	
	 			CloudBrain	Software	Development	 																											31	
	 			Neural	Network	Specifications	 																											34	
	 			CBRAIN	Results		 																											39	
	 			Neural	Network	Community	Atmosphere	Model	 																											41	
	 			Discussion	 	 																											44	
	
CHAPTER	4:		Land	Response	Effects	to	CBRAIN	 																											46	
	 			NNCAM	Configuration	 																											47	
	 			Community	Land	Model	and	the	Amazon	Basin	 																											50	
	 			Methods	 	 																											53	
	 			Results	and	Discussion:	CAM	vs	SPCAM	vs	NNCAM	 																											61	
	
CHAPTER	5:		Summary	and	Conclusions	 																											75	
	
REFERENCES	 	 																											79	
	
APPENDIX	A:	Euclidean	Distance	and	Dynamic	Time	Warping	 	 																									92	



iv 
 

LIST	OF	FIGURES	

	
	 	 	 	 	 	 	 	 	 	 																								Page	
	
Figure	I1	 Earth	Energy	Balance	 	 	 	 	 																									3	
	
Figure	I2	 Model	Hydrology	 	 	 	 	 	 																									6	
	
Figure	1.1a	 Community	Earth	System	Model	Component	Overview	 																									8	
	
Figure	1.1b	 Community	Earth	System	Model	Grid	Cell	Overview	 																									9	
	
Figure	1.2a	 Superparameterization	and	Cloud	Resolving	Models	 																									12	
	
Figure	1.2b	 CAM	and	SPCAM	Precipitation	Histogram	 	 	 																									12	
	
Figure	2.1	 Sandy	Bridge	and	Knight’s	Landing	Core	Comparison	 																									17	
	
Figure	2.2	 Sandy	Bridge	and	Knight’s	Landing	Test	Performance	 																									19	
	
Figure	3.1	 Diagram	of	Perceptron	 	 	 	 	 																									25	
	
Figure	3.2	 Diagram	of	Neural	Network		 	 	 	 																									28	
	
Figure	3.3a	 Neural	Network	Performance	by	Network	Depth	 	 																									36	
	
Figure	3.3b	 Neural	Network	Performance	by	Quantity	of	Training	Data																					36	
	
Figure	3.4	 CloudBrain	Neural	Network	Model	Summary	 	 																									38	
	
Figure	3.5a	 Shortwave	Heating	Rate	Snapshot	for	CBRAIN	 	 																									39	
	
Figure	3.5b	 Shortwave	Heating	Rate	Snapshot	for	SPCAM	 	 																									39	
	
Figure	3.6	 CBRAIN	R-Squared	Values	for	Vertical	Profile	 	 																									40	
	
Figure	3.7a	 Point	Value	Model	Crash	by	Latitude	and	Longitude	 																									42	
	
Figure	3.7b	 Point	Value	Model	Crash	by	Latitude	and	Vertical	Layers																										42	
	
Figure	3.8	 NNCAM	Column	Moist	Static	Energy	Conservation	 																									43	
	
Figure	4.1	 NNCAM	Process	Summary	 	 	 	 	 																									49	
	
Figure	4.2	 Amazon	Basin	Land	Tile	Location	 	 	 	 																									51	



v 
 

	
Figure	4.3a	 Atmospheric	Forcing	Precipitation	Histogram	 	 																									57	
	
Figure	4.3b	 Atmospheric	Forcing	Precipitation	Time	Series	 	 																									58	
	
Figure	4.4a	 Atmospheric	Forcing	Downwelling	Solar	Flux	Time	Series	 											59	
	
Figure	4.4b	 Atmospheric	Forcing	Specific	Humidity	Time	Series	 																									59	
	
Figure	4.4c	 Atmospheric	Forcing	Surface	Temperature	Time	Series	 																									60	
	
Figure	4.4d	 Atmospheric	Forcing	Wind	Magnitude	Time	Series	 																									60	
	
Figure	4.5a	 Gross	Primary	Productivity	5-Year	Time	Series	 	 																									63	
	
Figure	4.5b	 Net	Ecosystem	Exchange	5-Year	Time	Series	 	 																									63	
	
Figure	4.6	 Photosynthesis	5	Year	Time	Series		 	 	 																									65	
	
Figure	4.7	 CLM	Land-Atmosphere	Interaction	Overview	 	 																									67	
	
Figure	4.8a	 Volumetric	Soil	Water	at	0.007m	5-Year	Time	Series	 																									68	
	
Figure	4.8b	 Volumetric	Soil	Water	at	2.865m	5-Year	Time	Series	 																									69	
	
Figure	4.8c	 Total	Volumetric	Soil	Water	5-Year	Time	Series	 	 																									69	
	
Figure	4.8d	 Precipitation	vs	Evapotranspiration	+	Runoff	+	Drainage																										69	
	
Figure	4.9a	 Total	Vegetative	Carbon	Loss	Due	to	Fire	5	Year	Time	Series																		72	
	
Figure	4.9b	 NEE	Excluding	Fire	Carbon	Loss	5-Year	Time	Series	 																									73	
	
Figure	4.9c	 Total	Ecosystem	Carbon	5-Year	Time	Series	 	 																									73	
	
Figure	A1	 Dynamic	Time	Warping	Matrix	Example	 	 	 																									93	
	
Figure	A2	 Euclidean	Distance	and	Dynamic	Time	Warping	Illustration																			94	
	
Figure	A3a	 Gross	Primary	Productivity	Time	Series	Normalization	 																									95	
	
Figure	A3b	 Net	Ecosystem	Exchange	Time	Series	Normalization	 																									96	
	
	 	



vi 
 

LIST	OF	TABLES	
	

	 	 	 	 	 	 	 	 	 	 																								Page	
	
Table	2.1	 Sandy	Bridge	and	KNL	Hardware	Comparison	 	 																								16	
	
Table	2.2	 Sandy	Bridge	and	KNL	OpenMP	Test	Performance	 																								20	
	
Table	3.1	 Tensorflow	and	Keras	Software	Development	 	 																								33	
	
Table	3.2	 CBRAIN	Input	and	Output	Variables	 	 	 																									35	
	
Table	4.1	 NNCAM	Input	and	Output	Variables	 	 	 																									48	
	
Table	4.2	 GPP	and	NEE	Numerical	Time	Series	Analysis	 	 																									64	
	



vii 
 

ACKNOWLEDGMENTS	

	
I	would	like	to	express	the	deepest	appreciation	to	my	committee	chair,	Assistant	Professor	
Mike	Pritchard.	His	enthusiasm	is	infectious,	and	discussing	research	with	him	is	
energizing.	His	guidance,	encouragement,	and	faith	in	me	has	been	a	tremendously	positive	
influence,	and	I	am	profoundly	grateful.	
	
I	would	like	to	thank	my	committee	member	Chancellor’s	Professor	John	Lowengrub,	who	
has	always	been	my	greatest	advocate	in	pursuing	my	interests.		
	
I	would	like	to	thank	my	committee	member	Chancellor’s	Professor	James	Randerson,	
whose	both	direct	and	indirect	impact	on	me	have	been	a	great	source	of	inspiration	and	
admiration.	
	
In	addition,	a	huge	thank	you	to	Pierre	Gentine	for	his	tireless	efforts	and	support.	Another	
thank	you	to	Stephan	Rasp	both	for	being	a	friend	and	possessing	an	intellect	and	mastery	
to	chase	after.	And	lastly,	a	big	thank	you	to	all	of	my	colleagues	in	the	Earth	System	Science	
department	and	Mathematical,	Computational,	and	Systems	Biology	program	at	the	
University	of	California	Irvine;	none	of	my	efforts	would	have	been	possible	absent	their	
great	assistance,	advice,	and	encouragement.		
	
The	author	acknowledges	the	Texas	Advanced	Computing	Center	(TACC)	at	The	University	
of	Texas	at	Austin	for	providing	HPC	resources	that	have	contributed	to	the	research	
results	reported	within	this	paper.	URL:	http://www.tacc.utexas.edu	
	
	



viii 
 

ABSTRACT	OF	THE	THESIS	
	

Artificial	Neural	Network	Impact	on	Cloud	Parameterization	and	Land-Atmosphere	
Interactions	

	
By	
	

Galen	Yacalis	
	

Master	of	Science	in	Mathematical,	Computational,	and	Systems	Biology	
	

	University	of	California,	Irvine,	2018	
	

Assistant	Professor	Mike	Pritchard,	Chair	
	
	
	

Ecosystem	dynamics	are	heavily	dependent	on	atmospheric	inputs	such	as	rainfall,	and	

are	in	turn	an	integral	part	of	land-atmosphere	coupling	and	the	global	carbon	cycle.	These	

global	interactions	and	cycles	are	commonly	modeled	by	Earth	System	Models	(ESMs),	and	

one	of	the	largest	sources	of	uncertainty	in	current	models	is	cloud	simulation	techniques.		

Superparameterization	(SP)	is	a	proven	method	to	better	resolve	cloud	and	rainfall	

processes	in	ESMs,	but	it	is	prohibitively	computationally	expensive	for	long-term	climate	

simulations.	The	first	part	of	this	thesis	suggests	that	–	although	the	latest	advances	in	

manycore	supercomputing	do	not	provide	a	promising	solution	to	this	problem	–	a	neural	

network	(NN)	can	successfully	be	trained	on	an	SP	version	of	the	Community	Atmosphere	

Model	(CAM)	to	emulate	SP	behavior	at	a	fraction	of	the	cost.	Incorporating	the	NN	into	

CAM	under	idealized	aquaplanet	conditions	results	in	the	Neural	Network	Community	

Atmosphere	Model	(NNCAM).	

For	NNCAM	to	work	in	fully	comprehensive	models	that	include	interactive	vegetation,	

deeper	tests	are	needed.	The	second	and	most	major	contribution	of	this	thesis	is	thus	to	



ix 
 

analyze	the	one-way	coupling	of	NNCAM	onto	the	Community	Land	Model	(CLM).	Gross	

primary	productivity	(GPP)	and	net	ecosystem	exchange	(NEE)	from	ensembles	of	one-way	

atmospheric	forcing	onto	a	CLM	grid	cell	in	the	Amazon	Basin	for	NNCAM	and	SP-CAM	are	

shown	to	be	statistically	different	from	CAM	but	not	each	other.	Additionally,	results	

suggest	that	mean	precipitation	is	the	largest	contributing	factor	to	GPP	and	NEE	in	the	

Amazon	Basin.	

	



1 
 

INTRODUCTION	

Background		

	 Ecosystem	dynamics	are	a	critical	part	of	land-atmosphere	interactions	and	climate	

dynamics.	Land	cover	and	vegetation	type	have	a	huge	impact	on	global	energy	fluxes,	

water	balance,	and	the	carbon	cycle,	with	complex	interactions	and	feedback	effects	

(Stephens	et	al.,	2012;	Miralles	et	al.,	2018).	Forests	in	particular	have	disproportionally	

large	nonlinear	effects	on	the	hydrologic	and	carbon	cycles	through	biological	and	physical	

atmospheric	interactions,	especially	wet	tropical	forests	(Bonan,	2008).	Beyond	presence	

and	absence,	biodiversity,	genetic	diversity,	and	functional	species	grouping	have	

consequential	climate	impacts	(Thompson	et	al.,	2009;	McMahon	et	al.,	2011).	

	

Energy	Fluxes	

	 As	energy	from	the	Sun	in	the	form	of	radiation	warms	the	Earth,	the	flow	of	energy	

among	the	land,	ocean,	and	atmosphere	determines	the	planet’s	climate	behavior.	This	

energy	flow	includes	heat,	moisture,	chemical	concentration,	and	radiation	exchange	(Jung	

et	al.,	2011).		

	 The	energy	flux	between	the	land	and	atmosphere	is	determined	by	patterns	of	

absorbed	and	reflected	solar	and	longwave	radiation,	conduction,	convection,	and	latent	

heat	transference.	All	matter	emits	radiation,	and	the	wavelength	of	that	radiation	is	

determined	by	the	object’s	temperature.	Solar	radiation	is	also	known	as	shortwave	

radiation	because	hotter	objects	emit	radiation	at	shorter,	more	energetic	wavelengths.	

Radiation	emitted	by	the	soil,	atmosphere,	vegetation,	or	any	other	mass	on	Earth	is	known	



2 
 

as	longwave	radiation	because	these	lower	temperatures	objects	emit	longer,	less	energetic	

wavelengths.		

	 Briefly,	all	heat	on	Earth	is	originally	derived	from	solar	radiation(see	Figure	0.1).	At	

each	interaction	with	the	atmosphere,	land,	ocean,	and	ice,	solar	radiation	is	either	

reflected	or	absorbed.	The	surface	property	measuring	how	much	solar	radiation	is	

reflected	by	a	surface	is	albedo.	Dark	objects	absorb	more	radiation	and	have	low	albedo,	

whereas	bright	objects	such	as	ice	have	high	albedo.	As	radiation	from	the	sun	enters	the	

Earth’s	atmosphere,	it	either	is	absorbed,	is	reflected,	or	passes	through	the	air	and	clouds.	

When	the	solar	radiation	reaches	a	solid	object	such	as	ice,	land,	vegetation,	concrete,	and	

water,	a	portion	is	reflected	back	to	the	atmosphere	and	another	portion	is	absorbed	by	the	

object’s	surface.	The	reflected	solar	radiation	again	is	absorbed	by,	reflected	back	by,	or	

passes	through	the	air	and	clouds.	Longwave	radiation	emitted	by	the	Earth’s	surface	and	

atmosphere	follows	a	similar	process;	however,	rate	of	absorption	and	reflection	of	

radiation	is	determined	in	part	by	wavelength	and	the	extent	of	other	absorbing	and	

emitting	bodies	along	the	wavelength’s	path,	and	thus	the	rates	of	absorption	and	reflection	

for	short	and	longwave	radiation	are	not	the	same.		

	 Conduction	and	convection	transfer	energy	from	the	Earth’s	surface	to	the	

atmosphere	in	the	form	of	heat.	Hotter	air	near	the	surface	is	less	dense	that	the	air	above	it	

and	rises,	carrying	the	heat	upwards.	When	water	vapor	is	transported	to	the	atmosphere	

from	plant	transpiration	or	evaporation,	it	also	carries	latent	heat.	Latent	heat	is	the	energy	

required	to	cause	water	to	change	phases,	from	a	liquid	to	a	gas.	When	water	vapor	is	

carried	upwards	into	the	atmosphere,	it	takes	that	energy	with	it,	and	when	it	condenses	

again	into	liquid	form	the	energy	is	released	in	the	form	of	heat.	Because	of	this,	plant	



3 
 

transpiration,	determined	by	stomatal	resistance,	water	and	nutrient	availability,	soil	

properties,	and	other	factors,	plays	an	important	role	in	heat	transference	from	the	land	to	

the	atmosphere	through	water	vapor	fluxes.	

	 The	energy	budget	of	the	climate	refers	to	the	net	absorption	or	reflection	of	heat	by	

radiation.	In	a	closed	system,	net	heat	is	neither	gained	nor	lost.	For	the	Earth’s	climate,	this	

is	generally	true,	but	if	the	Earth	absorbs	more	radiation	from	the	sun	than	it	reflects	back	

to	space,	the	overall	climate	gets	warmer.	As	may	be	apparent,	the	growth	and	decay	of	

different	varieties	of	vegetation	affect	land	surface	albedo,	which	influences	the	energy	

budget	of	the	climate;	and	the	climate	in	turn	influences	the	growth	and	decay	of	

vegetation.	

	

	



4 
 

Figure	I1:	Overview	of	the	energy	flux	of	the	Earth.	Circles	indicate	instances	of	heat	or	

radiation	absorption.	Solar	radiation	is	absorbed	or	reflected	at	each	interaction	with	

matter,	from	the	atmosphere	to	the	surface	and	back.	Longwave	radiation	from	the	Earth	

either	escapes	to	beyond	the	atmosphere	or	is	trapped	by	clouds	and	atmospheric	gases	to	

be	distributed	back	to	the	surface.	Sensible	heat	diffuses	upwards	from	the	surface.	Latent	

heat	is	transported	through	water	vapor	and	released	during	cloud	condensation.	

Description	of	energy	fluxes	and	figure	content	adapted	from	Kiehl	et	al.,	1997;	Trenberth	

et	al.,	2009;	Stephens	et	al.,	2012;	and	Wofsy	et	al.,	2007.	

	

Hydrologic	Cycle	

	 The	hydrologic	cycle	is	the	cycling	of	water	among	the	land,	ocean,	ice,	and	

atmosphere.	Liquid	water	from	the	soil	or	ocean	is	warmed	enough	to	change	phases	and	

become	water	vapor.	When	enough	of	the	water	vapor	accumulates	around	aerosols	in	

clouds,	precipitation	results.	Over	vegetative	land	surfaces,	some	precipitation	is	

intercepted	by	leaves	and	branches	and	quickly	evaporates.	Throughfall	is	the	amount	of	

precipitation	that	passes	through	plant	canopies	and	reaches	the	surface.	Throughfall	is	

absorbed	into	the	soil	until	soil	saturation	is	reached,	and	the	remaining	water	becomes	

runoff.	Soil	moisture	near	the	surface	evaporates,	while	deeper	soil	moisture	is	held	up	to	a	

maximum	concentration	that	is	determined	by	the	soil	type.		

Plant	effects	on	soil	moisture	are	numerous.	Some	plant	roots	have	been	shown	to	

redistribute	soil	water	from	lower,	more	moist	regions	to	regions	near	the	surface	(Bonan,	

2015).	However,	a	far	greater	impact	by	plants	is	the	evaporation	of	soil	moisture	through	

stomata	while	they	are	open	during	photosynthesis,	a	process	known	as	transpiration.	



5 
 

Typically	the	processes	of	transpiration	and	of	evaporation	from	the	soil	and	canopy	are	

combined	into	a	single	parameter,	evapotranspiration.	Overall,	evapotranspiration	heavily	

affects	local	climate,	as	the	land	cycles	about	60%	of	precipitation	it	receives	back	to	the	

atmosphere	(Chen	et	al.,	2013;	Jung	et	al.,	2010;	Oki	&	Kanae,	2006).	

	 Water	is	required	for	photosynthesis,	which,	using	trees	as	an	example,	occurs	in	the	

leaves.	Water	that	lands	on	leaves	is	not	available	for	use	by	the	plant	and	can	quickly	

evaporates.	The	water	that	trees	use	for	both	photosynthesis	and	other	cellular	processes	

is	drawn	from	the	soil.	Photosynthesis	transforms	water	from	the	soil	and	carbon	dioxide	

from	the	atmosphere	into	sugar	and	oxygen.	For	vascular	plants,	the	process	of	

transpiration	transports	water	from	roots	through	xylem	to	the	leaves,	and	makes	it	

available	for	use	during	photosynthesis.	As	the	leaf	stomata	open	to	absorb	carbon	from	

the	atmosphere	for	use	in	photosynthetic	chemical	reactions,	some	of	the	water	in	the	leaf	

becomes	exposed	and	transpires	to	the	atmosphere,	completing	one	possible	path	of	the	

hydrologic	cycle.	Globally,	land	evapotranspiration	is	dominated	by	transpiration	

(Lawrence	et	al.,	2007).	Plants	affect	the	evaporation	of	water	and	availability	of	

precipitation	via	transpiration,	and	precipitation	impacts	soil	moisture	availability	for	

plants	to	use	for	photosynthesis.		

	



6 
 

	

Figure	I2:	The	active	hydrology	of	Community	Land	Model.	Precipitation	from	the	

atmosphere	evaporates	or	infiltrates	into	the	soil.	Soil	water	diffuses	until	the	soil	is	

saturated,	and	further	precipitation	results	in	runoff.	Heavy	episodes	of	precipitation	can	

cause	upper	soil	layers	to	saturate	before	moisture	can	diffuse	into	unsaturated	lower	soil	

layers,	increasing	runoff	compared	to	lighter	episodes	of	the	same	quantity	of	precipitation	

(Bonan,	2015).	Water	uptake	from	vegetation	moves	from	the	roots	to	the	leaves	and	

escapes	into	the	atmosphere	as	water	vapor	through	the	process	of	transpiration.	

Description	of	hydrologic	cycle	and	figure	adapted	from	Lawrence	et	al.,	2011,	and	Bonan,	

2015.	

	

Carbon	Cycle	



7 
 

	 One	of	the	largest	factors	on	the	energy	budget	is	the	composition	of	the	

atmosphere.	For	example,	most	harmful	shortwave	radiation	is	absorbed	or	reflected	by	

the	ozone	layer,	without	which	the	surface	would	be	bombarded	and	life	could	not	exist	as	

it	currently	does	(Solomon,	1999).	Re-radiation	back	to	Earth	of	longwave	radiation	is	

influenced	by	the	presence	of	greenhouse	gasses,	one	of	the	most	important	of	which	is	

carbon	dioxide.	The	specific	concentration	of	carbon	dioxide	in	the	atmosphere	is	

determined	by	geological	processes,	anthropogenic	activity,	and	biological	processes.	The	

carbon	fluxes	of	geological	processes	and	anthropogenic	activity	(combined	approximately	

10PgCyr-1)	are	small	compared	to	biological	processes.	In	particular,	terrestrial	plant	

carbon	flux	via	photosynthesis,	respiration,	growth,	decay,	and	destruction	by	natural	

events	is	estimated	to	be	142.5	PgCyr-1	(Bonan,	2015).	Changes	in	the	terrestrial	plant	

contribution	to	the	carbon	cycle	could	have	large	impacts	on	the	acceleration	of	climate	

change	and	species	distribution	(Cox	et	al.,	2000;	Sellers	et	al.,	1990).	

	 The	measure	of	net	flux	of	carbon	between	the	atmosphere	and	biosphere	is	net	

ecosystem	exchange	(NEE).	It	includes	fire,	land	use,	harvest,	maintenance	respiration	

deficit,	and	gross	primary	production	(GPP),	which	is	calculated	as	photosynthesis	plus	

autotrophic	respiration.	If	NEE	is	positive	then	the	land	is	considered	a	carbon	source,	as	

the	amount	of	carbon	leaving	the	land	exceeds	the	amount	absorbed	or	fixed;	if	NEE	is	

negative,	the	land	is	a	carbon	sink.	Forests	hold	a	large	majority	of	above-ground	biomass,	

and	the	Amazon	rainforest	in	particular	contributes	to	a	large	portion	of	both	forest	

biomass	and	GPP	(Chambers	et	al.,	2000;	Thompson	et	al.,	2009).	

	

	 	



8 
 

CHAPTER	1	

Earth	System	Models	and	Superparameterization		

	 Climate	simulations	are	performed	by	numerical	models	with	multiple	millions	of	

lines	of	code,	written	by	hundreds	of	scientists,	and	are	referred	to	by	many	names,	but	the	

term	preferred	here	will	be	Earth	System	Model	(ESM).	Worldwide	there	are	dozens	of	

independent	ESMs,	such	as	those	used	for	international	IPCC	assessment,	each	with	their	

own	configurable	set	of	equations,	parameters,	and	modeled	processes.	The	most	widely	

used	ESM	worldwide	is	the	Community	Earth	System	Model	(CESM).	CESM	is	modular	and	

able	to	use	a	combination	of	smaller	models	that	are	specific	to	aspects	of	the	Earth	system:	

atmosphere,	land,	sea	ice,	ocean,	land	ice,	and	rivers.	A	coupler	acts	to	allow	the	models	to	

interact	among	themselves	for	complex	climate	simulations.	

	

(a)	 	



9 
 

(b)	 	

Figure	1.1:	(a)	Overview	of	Community	Earth	System	Model	(CESM)	components	and	(b)	

components	of	an	Earth	System	Model	(ESM)	grid	cell.	CESM	has	a	coupler	acting	between	

6	models,	simulating	the	atmosphere,	land,	ocean,	rivers,	land	ice,	and	sea	ice.	An	ESM	grid	

cell	has	a	vertical	column	extending	from	the	Earth’s	surface	to	the	stratosphere;	on	land,	it	

is	fractionally	a	distinct	set	of	land	types,	not	all	of	which	are	included	in	the	figure.	

Vegetation	is	divided	into	multiple	plant	functional	types	(PFTs),	each	with	different	

properties.	

	

	 The	atmospheric	model	used	in	the	experiments	of	this	paper	is	a	legacy	version	of	

the	Community	Atmosphere	Model	(CAM).	Broadly	speaking,	the	behavior	of	the	



10 
 

atmosphere	in	CAM	is	governed	by	the	Navier-Stokes	equations,	which	describe	the	motion	

of	a	fluid;	in	the	case	of	the	Earth’s	atmosphere,	the	fluid	is	a	mixture	of	gases	located	in	

spherical	coordinates	and	is	moving	across	a	rotating	sphere.	The	equations	govern	the	

conservation	of	mass,	momentum	in	three	dimensions,	and	energy.	The	full	set	of	equations	

are	not	solvable	and	are	numerically	approximated	using	physical	scaling	laws	relevant	to	

the	affordable	grid	resolution	of	the	numerical	calculation	(50-100	km	horizontal	

resolution	is	typical	today).	

	 The	largest	cause	of	simulation	spread	among	atmospheric	models,	including	CAM,	

is	the	parameterization	of	cloud	feedbacks	(Flato	et	al.,	2013).	Clouds	are	parameterized	

because	the	physics	involved	in	cloud	formation	occur	at	spatial	scales	that	are	much	

smaller	than	the	minimum	grid	scale	that	a	global	atmospheric	model	can	afford	to	resolve	

on	current	supercomputers.	For	global	simulations,	CAM	and	other	models	within	CESM	

operate	on	grid	cells	that	are	typically	50-200	kilometers	in	width;	convective	processes,	

boundary	layer	turbulence,	microphysics,	entrainment,	and	other	significant	atmospheric	

processes	would	require	grid	cells	of	only	a	few	hundreds	to	thousands	of	meters	across,	

adding	great	computational	complexity	(Parishani	et	al.,	2017).	

	 Cloud	resolving	models	(CRMs)	have	attempted	to	address	this	issue.	ESMs	typically	

contain	atmospheric	grid	columns	at	low	resolution	which	parameterize	cloud	processes.	

The	atmosphere	is	simulated	as	if	clouds	were	not	present,	and	after	each	timestep,	

atmospheric	variables	are	adjusted	based	on	cloud	process	parameterizations	that	rely	on	

limiting	assumptions	about	the	missing	physics.	In	contrast,	CRMs	replace	the	

parameterizations	in	the	low	resolution	grid	column	with	a	finer,	convective-permitting	

resolution	subgrid	that	more	explicitly	simulates	cloud	processes	at	a	shorter	timescale,	



11 
 

such	as	deep	convection,	boundary	layer	turbulence,	and	condensation,	although	some	

parameterizations	still	exist	(Randall	et	al.,	2003).	Superparameterization	(SP)	is	the	

nomenclature	for	the	integration	of	a	CRM	into	an	ESM	to	create	such	a	“multi-scale	

modeling	framework”.	

	 One	of	the	hallmarks	of	SP	is	that	it	typically	simulates	precipitation	extremes	better	

than	conventionally	parameterized	atmospheric	global	models	like	CAM	(Koopermanet	al.,	

2016);	this	allows	it	to	better	simulate	soil	moisture	variability	and	the	hydrologic	cycle,	as	

the	atmospheric	component	is	the	most	uncertain	piece	of	land-atmosphere	interactions	

that	impact	precipitation	(Sun	&	Pritchard,	2016).	Upper	precipitation	extremes	can	

increase	the	level	of	runoff	during	rainstorms	by	supplying	water	faster	that	the	infiltration	

rate	of	the	soil	(infiltration-excess)	(Bonan,	2015),	thereby	decreasing	the	overall	deep	soil	

moisture	in	those	areas	compared	to	the	same	precipitation	quantity	during	a	rainstorm	in	

which	infiltration-excess	runoff	is	absent.	In	ecosystems	such	as	the	Amazon,	deep	soil	

moisture	is	required	by	certain	plants	to	maintain	photosynthesis	during	the	dry	season	

(Allen	et	al.,	2010),	so	the	impact	of	rainfall	events	by	SP	on	deep	soil	moisture	can	

potentially	increase	or	decrease	plant	survivability	and	greatly	impact	rainforest	

population	dynamics	based	around	precipitation	throughfall	and	infiltration-excess.	The	

consequence	of	SP’s	impact	on	soil	moisture	and	soil	temperature	can	also	influence	the	

occurrence	of	fires,	which	greatly	affects	the	vegetative	composition	and	biodiversity	of	

ecosystems	(Thonicke	et	al.,	2001).	Another	hallmark	is	that	its	ability	to	better	resolve	

GCM	subgrid-scale	convective	heating	and	moistening	produces	more	realistic	simulations	

of	mesoscale	processes	such	as	the	Madden-Juilan	oscillation,	an	important	intraseasonal	



12 
 

climate	pattern	that	dominates	tropical	variability	and	impacts	global	climate	(Benedict	&	

Randall,	2009;	Thayer-Calder	&	Randall,	2009).	

	

(a)	 		

(b)	 	

Figure	1.2:	(a)	depicts	an	embedded	CRM	within	an	ESM	grid	cell.	The	CRM	has	a	higher	

resolution	subgrid	that	calculates	atmospheric	processes	separate	from	ESM	and	at	shorter	

time	intervals.	At	each	ESM	timestep,	the	CRM	modifies	the	ESM’s	atmospheric	state	based	

on	calculations	occurring	since	the	previous	ESM	timestep.	(b)	displays	a	histogram	of	the	



13 
 

frequency	of	precipitation	values	averaged	over	176	grid	cells	for	1	year	simulations	from	a	

parameterized	ESM	(CAM)	and	an	ESM	with	embedded	CRMs	(superparameterized	CAM,	

SPCAM).	SPCAM’s	finer	resolution	allows	it	to	capture	more	precipitation	extremes	than	

CAM,	particularly	upper	precipitation	extremes.		

	

	 The	integration	of	SP	into	regular	CAM	involves	replacing	the	conventional	cloud	

parameterization	with	superparameterization,	and	is	called	SPCAM.	As	previously	

mentioned,	the	thousands	of	CRMs	embedded	under	the	SP	approach	do	have	limitations	in	

complexity;	the	CRM	arrays	are	only	2D	and	not	of	3D,	and	still	parameterize	microphysics,	

radiation,	and	small	scale	turbulence.	Accepting	this,	currently	the	main	disadvantage	of	

SPCAM	over	CAM	is	that	it	is	1-2	orders	of	magnitude	more	computationally	expensive	than	

conventional	parameterization	(Randall	et	al.,	2003).	A	symptom	of	this	problem	is	that	no	

major	national	climate	prediction	center,	such	as	those	contributing	to	the	IPCC,	has	yet	to	

adopt	the	SP	method	for	mainstream	climate	science.	Advances	in	computing	technology	

have	made	longer	SPCAM	climate	simulations	more	feasible,	but	the	refactoring	of	the	

underlying	CRM	code	to	fully	utilize	new	hardware	technology	is	not	automatic.	The	next	

section	presents	an	example	of	efforts	to	utilize	more	recent	hardware	to	reduce	the	

computational	limits	of	using	SP.	

	

	 	



14 
 

CHAPTER	2	

Exploring	the	Potential	of	Intel’s	Many-Core	Technology	to	Accelerate	SP	Simulations	

	 To	alleviate	some	of	the	limitations	of	computational	complexity	inherent	to	SP,	

leveraging	recent	advances	in	massively	parallel	high	performance	computing	(HPC)	

technology	via	model	optimization	is	a	clear	strategy	worth	pursuing.	Currently	SP	

simulations	are	limited	to	a	maximum	core	count	of	~	10k	physical	processors	(a	limit	set	

by	the	number	of	embedded	CRMs,	or	horizontal	grid	columns)	of	the	host	planetary	scale	

model.	As	supercomputers	change	from	fast-chip	/	low	core	count	nodes	to	slow-chip	/	

manycore	nodes,	it	becomes	important	to	explore	the	potential	for	a	further	decomposition	

of	the	CRMs	towards	making	use	of	petascale	HPC	resources.	This	is	most	readily	achieved	

through	experimentation	with	offline	experiments	using	the	same	CRM	that	is	usually	

embedded	within	SP;	this	CRM	is	called	The	System	for	Atmospheric	Modeling	(SAM)	

(Khairoutdinov	&	Randall,	2003).		

	 A	project	was	thus	initiated	to	assess	the	parallel	scaling	properties	of	SAM	version	

6.10.6	on	the	next-generation	Intel	architecture	Knight’s	Landing	(KNL).	The	HPC	cluster	

used	for	the	tests	was	Stampede2	at	The	Texas	Advanced	Computing	Center	(TACC),	which	

designs	and	operates	a	number	of	different	supercomputing	clusters.	Stampede2	entered	

full	production	in	2017	and	is	comprised	exclusively	of	KNL	nodes	(Texas	Advanced	

Computing	Center,	2018).	In	addition	to	measuring	the	parallel	scaling	efficiency	of	SAM	on	

KNL	compared	to	its	predecessor	system	at	TACC,	the	Sandy	Bridge	(SB)	cluster,	the	

project	entailed	an	assessment	of	the	model’s	performance	bottlenecks	and	performed	a	

suite	of	sensitivity	tests	that	attempted	to	improve	the	model’s	performance	by	better	

exploiting	the	hardware	capabilities	of	KNL.	



15 
 

	 KNL	breaks	tradition	from	previous	generation	multicore	nodes	by	introducing	

many-core	nodes	(Jeffers	et	al.,	2016a).	The	distinction	between	SB	and	KNL	is	that	instead	

of	the	16	high	performance	cores	per	SB	node,	KNL	implements	nodes	comprised	of	68	

cores	with	approximately	half	the	processing	power,	arranged	into	tiles	designed	for	faster	

memory	sharing	than	previous	generation	hardware	in	order	to	take	advantage	of	modern	

coding	practices	of	vectorization	and	parallelization.	The	multicore	architecture	of	SB	splits	

cores	into	2	sockets,	with	half	of	the	cores	being	placed	in	one	socket	and	the	second	half	in	

the	other	socket;	this	has	different	memory	consequences	than	the	tile	arrangement	of	KNL	

for	vectorization	and	parallelization.	A	few	of	the	most	basic	differences	between	the	

architectures	are	listed	in	Table	2.1.	

	



16 
 

	

Table	2.1:	A	sample	of	differences	between	Sandy	Bridge	and	Knight’s	Landing.	KNL	has	

more	memory	and	is	capable	of	more	threads,	larger	vectors,	and	better	flops	per	watt.	SB	

has	a	higher	processing	power,	2.7	GHz	per	core	versus	KNL’s	1.4	GHz	per	core.	Unless	

software	leverages	the	advantages	of	KNL,	SB’s	better	processing	power	will	overtake	KNL	

during	performance	tests.	

	

	 Differences	in	memory	and	thread	number	account	for	some	of	the	largest	and	most	

important	changes	from	a	multicore	to	many-core	architecture.	Caches	are	small	chunks	of	



17 
 

memory	space	designed	for	fast	reading	and	writing	of	data;	the	order	of	caches	from	

fastest	to	slowest	in	SB	and	KNL	is	L1,	L2,	and	L3.	Beyond	L3	cache,	memory	management	

takes	place	on	slower,	but	higher	memory	capacity	disk	space,	DDR.	Compared	to	SB’s	

multicore	architecture,	which	has	small	L1-L3	caches	and	almost	always	must	interface	

with	DDR	for	memory	storage,	KNL	has	a	large	L3	cache	(16GB)	that	is	shared	within	a	

node	that,	when	properly	leveraged,	can	boost	performance	drastically	for	processes	that	

need	less	than	16GB	of	memory	(Jeffers	et	al.,	2016b).	

	 Regarding	L1	and	L2	cache-sharing,	the	basic	difference	between	architectures	is	

shown	in	Figure	2.1.	In	KNL,	two	cores	(a	single	tile)	share	L2	cache.	This	can	greatly	boost	

performance	of	tasks	if	the	memory	for	a	process	can	be	shared	among	8	or	less	threads.	

	

	

Figure	2.1:	A	display	of	the	fundamental	memory	difference	between	a	single	Sandy	Bridge	

core	and	a	Knight’s	Landing	tile	with	two	cores.	SB’s	core	is	only	capable	of	a	single	thread,	

and	has	small	local	L1	and	L2	cache.	By	contrast,	each	of	KNL’s	cores	on	a	tile	is	capable	of	4	



18 
 

threads	which	all	share	L1	cache,	and	the	8	threads	of	the	tile	share	L2	cache.	If	memory	

and	threading	is	managed	properly,	huge	performance	gains	can	be	made	on	KNL	

hardware.	

	

	 There	was	reason	to	believe	that	KNL	could	make	major	improvements	to	SAM	

performance	over	SB.	Tests	conducted	by	Jeffers	et	al.	2016	on	KNL	effects	on	another	

cloud-resolving	atmospheric	model	code,	the	Weather	Research	and	Forecasting	Model	

(WRF),	a	multipurpose	numerical	weather	prediction	system,	showed	that	KNL	performed	

better	than	previous	generation	processors	because	of	its	higher	memory	bandwidth,	

larger	thread	counts,	and	better	vector	capabilities	(Jeffers	et	al.,	2016c).	The	system	of	

parallelization	in	WRF	is	similar	to	SAM	in	that	it	has	the	capacity	for	decomposition	

through	2	different	parallelization	regimes,	one	for	thread	parallelism	and	one	through	task	

parallelism.	Given	these	similarities	between	WRF	and	SAM,	it	is	logical	that	similar	

performance	gains	might	be	accessible	for	augmented	SP	on	modern	hardware.	In	practice,	

however,	since	all	codes	suffer	unique	bottlenecks,	this	is	important	to	test.	

	 I	tested	two	SAM	versions,	one	only	using	a	1-level	task	parallelization	regime,	and	

the	other	using	a	2-level	task	and	thread	parallelization	regime.	Basic	wallclock	tests	were	

performed.	Initial	conditions	for	all	tests	were	identical,	and	the	single-moment	

microphysics	configuration	of	SAM	was	used.	SB	can	incorporate	a	coprocessor	for	its	

processes,	but	it	was	not	utilized	in	the	tests	performed.	SAM	documentation	suggests	that	

different	domain	sizes	may	have	a	large	impact	on	performance	(Khairoutdinov,	2014),	so	

the	tests	were	performed	for	a	variety	of	domain	sizes;	however,	the	overall	behavior	



19 
 

across	domain	sizes	was	the	same	in	all	cases,	and	only	one	for	the	single-level	

decomposition	case	is	shown	in	the	Figure	2.2.	

	

	

Figure	2.2:	Wallclock	times	for	a	SB	and	KNL	SAM	simulation	lasting	30	timesteps	under	

task-level	parallelism.	The	better	processing	power	of	SB	cores	outperforms	KNL	even	

when	using	more	cores.	This	is	due	to	KNL’s	architecture	not	being	fully	utilized	with	

regard	to	parallelization,	vectorization,	and	memory	sharing.	

	

	 As	could	be	expected,	when	using	only	single	level	decomposition	KNL	performed	

worse	on	a	core-to-core	basis	than	SB,	which	has	more	powerful	individual	cores:	two	SB	

cores	performed	better	than	two	KNL	cores,	and	64	SB	cores	on	four	nodes	performed	

better	than	64	cores	on	one	KNL	node.	However,	results	also	showed	that	KNL	performed	

worse	even	on	a	node-to-node	basis—64	KNL	cores	on	one	KNL	node	performed	worse	

than	16	SB	cores	on	one	SB	node.		

	 The	obvious	conclusion	to	be	made	is	that	the	version	of	SAM	used,	with	task-level	

parallelism	but	not	thread-level,	did	not	fully	take	advantage	of	KNL’s	main	strength,	which	

is	in	parallelizable	code.	Therefore	the	expectation	could	be	made	that	performance	of	SAM	



20 
 

on	a	KNL	node	would	be	improved	once	2-level	parallelization	was	more	fully	

incorporated.	

	 Looking	at	the	most	time-intensive	processes	of	the	code,	which	were	recorded	by	

SAM	timing	reports,	the	most	wallclock	time	was	spent	on	pressure	and	radiation	

processes.	Parallelizing	loops	in	the	underlying	Fortran	code	of	those	processes	was	

expected	to	be	the	most	effective	method	to	test	potential	improvements,	while	making	as	

little	code	changes	as	possible.	This	would	result	in	the	2-level	parallelization	scheme	

similar	to	that	of	WRF.	The	results	can	be	seen	in	Table	2.2.	

	

	

Table	2.2:	Wallclock	comparison	of	the	computation	time	span	per	timestep	between	

Sandy	Bridge	and	Knight’s	Landing	for	a	128x1x128	domain.	OpenMP	is	a	programming	

paradigm	used	for	threading.	Each	test	utilized	only	one	node.	Because	the	test	was	

designed	to	compare	SB	and	KNL	on	a	thread-to-thread	basis,	and	SB	has	one	thread	per	

core,	the	number	of	SB	cores	used	in	each	test	was	required	to	be	equal	to	the	number	of	

threads	used.	KNL	benefits	more	from	utilizing	multiple	threads	than	SB,	but	its	overall	



21 
 

time	is	still	slower—the	fastest	threading	regime	on	KNL	is	slower	than	the	slowest	

threading	regime	on	SB.		

	

	 From	Table	2.2	it	can	be	seen	that	SAM	was	still	slower	on	KNL	than	SB	even	after	

an	additional	parallelization	technique	was	used.	The	table	shows	results	for	only	a	

128x1x128	domain,	but	every	domain	size	tested	had	the	same	relative	performance	in	

that	SB	was	always	faster	than	KNL.	Code	changes	were	made	in	for-loops	of	pressure	and	

radiation	processes	to	utilize	threading;	utilizing	multiple	threads	on	a	single	instance	of	a	

for-loop	meant	that	multiple	iterations	could	be	executed	simultaneously.	However,	not	

enough	memory	was	shared	among	threads	for	the	greater	memory	sharing	capabilities	of	

KNL	to	have	a	large	advantage	over	SB.	The	conclusion	was	that	KNL	could	not	be	properly	

leveraged	without	significant	refactoring	of	the	underlying	SAM	code.	Further	investigation	

revealed	that	the	changes	would	have	to	be	of	a	non-trivial,	fundamental	nature	to	see	

great	improvement.	

	 The	largest	issue	for	performance	on	KNL	is	that	SAM	subdomains	are	explicitly	

core-mapped	(Khairoutdinov,	2014).	The	number	of	cores	to	be	used	for	a	simulation	are	

required	to	be	specified	before	code	compilation,	and	is	intended	for	core-level	parallelism,	

not	thread-level	parallelism.	This	makes	sense	given	that	SAM	was	originally	programmed	

to	be	parallelizable	on	hardware	systems	that	were	widespread	when	the	code	was	

originally	written	in	the	early	2000’s.	On	SB,	single	cores	are	very	powerful	and	threading	

is	not	as	beneficial	as	it	is	on	KNL.	Even	implementing	a	far	more	extensive	thread-level	

parallelization	regime	than	was	tested	would	be	limited	in	its	effectiveness	on	KNL:	

mapping	each	subdomain	to	a	single	core	precludes	the	main	advantage	of	KNL,	which	is	



22 
 

allowing	multithreading	among	cores	for	memory-sharing	intensive	tasks,	and	especially	

on	tiles.	Properly	leveraging	KNL	would	require	SAM	code	to	be	refactored	to	allow	for	

subdomains	to	be	thread-mapped	across	multiple	KNL	tiles,	which	would	fundamentally	

change	the	coding	paradigm.	

	 Other	issues	for	implementing	SAM	on	KNL	exist	as	well.	One	method	for	

discovering	the	best	domain	sizes	on	KNL	is	to	fix	the	cores	used	and	vary	the	domain	size	

(Jeffers	et	al.,	2016).;	the	obvious	problem	is	that	often	in	an	experiment	the	domain	size	is	

very	intentional.	Additionally,	new	hardware	architectures	are	being	developed	at	a	

constant	rate,	and	refactoring	SAM	for	KNL	use	might	quickly	become	outdated	as	new	

technology	is	introduced,	such	as	TACC’s	new	Skylake	cluster	(Texas	Advanced	Computing	

Center,	2018),	or	more	advanced	GPUs.	These	issues	may	be	the	reason	Intel	has	decided	to	

discontinue	the	hardware	KNL	is	based	on.	Other	groups	of	scientists	in	the	HPC	

community	have	had	similar	problems	of	requiring	large	amount	of	refactoring	for	

performance	gains	on	KNL	(Trader,	2018).		

	

	 	



23 
 

CHAPTER	3	

Artificial	Neural	Networks	

	 In	Chapter	1	we	have	reviewed	the	conceptual	and	philosophical	advantages	of	

explicit	cloud-resolving	atmospheric	simulation	for	improving	the	accuracy	of	biosphere	

simulations	and	their	climate	feedbacks.	Leveraging	modern	hardware	and	software	

improvements	to	make	SP	less	computationally	cumbersome	is	thus	essential.	While	

Chapter	2	has	shown	that	hardware	advances	do	not	provide	a	practical	solution	without	

major	code	refactoring,	a	more	relatively	heretofore	unexplored	methodology	is	the	

integration	of	machine	learning	techniques	into	climate	simulations.	This	chapter	will	

review	proof-of-concept	work	in	which	software	engineering	work	done	by	me	as	part	of	

this	thesis	led	to	new	machine	learning	tools	resulting	in	a	publication	on	which	I	am	a	co-

author	(Gentine	et	al.,	2018)	in	which	an	artificial	neural	network	(	abbreviated	here	as	

simply	neural	network,	NN)	is	successfully	trained	on	SPCAM	data	to	emulate	the	basic	

physics	of	SP	within	a	CAM	simulation	at	a	fraction	of	the	computational	cost.	

	 What	is	a	neural	network?	Broadly	speaking,	a	simple	NN	is	an	ordered	series	of	sets	

of	two	matrices;	each	set	consists	of	a	“weight”	parameters	matrix,	a	“bias”	parameters	

matrix,	and	one	or	more	functions	serving	to	introduce	an	element	of	non-linearity	into	the	

series	(“activation	functions”).	For	basic	NNs,	the	weights	and	biases	of	the	series	are	

initialized	at	specified	values	and	then	systematically	updated	with	the	goal	of	arriving	at	

values	that,	through	multiplication,	addition,	and	mutual	linkage	through	assumed	

nonlinear	activation	functions,	can	discretely	approximate	even	very	high	dimensional	

nonlinear	functions	(Fausett,	L.	V.,	1994).	



24 
 

	 Updating	the	parameters	of	the	NN	(which	is	a	model)	is	referred	to	as	training.	As	

the	model	is	trained,	it	gradually	“learns”	the	values	that	the	parameters	need	to	take	in	

order	to	best	approximate	the	desired	nonlinear	function.		

	 Supervised	learning	is	one	form	of	training	a	NN	can	undertake	(Chapelle,	2006).	

The	model	receives	a	series	of	inputs	one	by	one	with	the	goal	of	reproducing	a	matching	

set	of	target	outputs.	As	it	is	trained,	the	model	systematically	and	gradually	alters	its	

parameters	to	most	closely	match	the	target	output	when	a	given	a	particular	input.	How	

well	the	model	performs	is	sometimes	called	its	“fit”.	The	method	by	which	the	fit	is	

evaluated	is	through	a	function	known	as	the	cost	function,	a	hyperparameter	of	the	model;	

for	each	input	the	cost	function	measures	the	error	between	the	model’s	output	and	the	

target	output.	The	parameters	are	then	systematically	updated	through	a	process	known	as	

back-propagation.	This	network	update	is	intended	for	the	next	training	instance’s	model	

output	to	better	match	the	next	target	output	and	the	result	of	the	cost	function	to	be	

reduced.	In	effect,	supervised	learning	is	the	process	by	which	the	value	of	the	cost	function	

of	a	NN	is	minimized.		

	



25 
 

	

Figure	3.1:	A	basic	perceptron,	also	called	a	neuron	or	node,	one	of	the	building	blocks	of	

modern	neural	networks	(Kawaguchi,	2000).	The	perceptron	receives	input	x,	which	is	

multiplied	by	a	weight	w.	A	bias	b	is	added	to	the	value	to	produce	an	intermediary	

variable;	the	intermediary	variable	becomes	the	input	to	the	activation	function	f,	which	

produces	𝑦"	as	the	final	output	of	the	entire	perceptron.	Deep	neural	networks	are	formed	

from	multiple	interconnected	neurons	(Schalkoff,	1997).	The	equation	for	the	output	of	a	

single	perceptron	with	a	single	input	is:	𝑦" = f(𝑤𝑥 + 𝑏).	

	

	 The	simplest	individual	component	of	a	NN	is	the	perceptron,	also	called	a	neuron.	

In	a	NN	that	consists	of	only	a	single	neuron,	such	as	in	Figure	3.1,	the	process	follows	this	

procedure:		

	 (1)	The	perceptron	receives	an	input	value.	

	 (2)	That	value	is	multiplied	by	a	parameter	called	a	weight.	

	 (3)	Then	a	separate	parameter	value	is	added,	called	a	bias.	

	 (4)	The	resulting	value	is	modified	by	a	function,	called	the	activation	function.	



26 
 

	 (5)	The	output	value	of	the	activation	function	becomes	the	output	of	the	neuron.	

	 A	stack	of	neurons	is	called	a	layer,	and	a	layer	can	have	any	arbitrary	number	of	

neurons.	If	multiple	layers	are	stacked,	then	a	multi-layer	NN	is	created,	originally	called	

multilayer	perceptrons	(Kawaguchi,	2000),	seen	in	Figure	3.2.	Theoretically,	any	nonlinear	

function	can	be	approximated	by	just	a	single-layer	NN;	the	theory	is	known	as	the	

Universal	Approximation	Theorem	(Schmidhuber,	2015).	More	specifically,	the	theory	

states	that	a	compact	subset	of	any	continuous	function	can	be	approximated	below	a	

specified	error	bound	by	a	finite	number	of	neurons	in	a	single-layer	neural	network	if	the	

activation	function	of	the	neurons	is	continuous,	monotonically	increasing,	non-constant,	

and	bounded	(such	as	a	sigmoid	function).	While	single-layer	networks	have	infinite	

modeling	power,	they	may	require	a	near-infinite	number	of	neurons	per	layer.	In	practice,	

deeper	layered	networks	are	used	with	sigmoid	or	non-sigmoid	activation	functions,	as	

they	have	been	empirically	shown	in	many	circumstances	to	produce	better	results	than	

shallower	networks	(Wang	&	Raj,	2017).	

	 The	parameters	of	a	neural	network	that	get	trained	are	its	weights	and	biases.	The	

final	values	of	the	weights	and	biases,	along	with	network	architecture	and	

hyperparameters,	are	what	determines	the	skill	of	the	NN	in	approximating	a	function.	

When	a	training	sample	is	given	to	a	NN,	it	takes	the	input	and	produces	a	prediction	

output,	𝑦".	The	prediction	𝑦"	is	compared	to	the	target	output	y	through	the	cost	function	J	

and	a	loss	value	is	produced.	Then	each	weight	and	bias	gets	updated	through	a	process	

known	as	backpropagation,	which	implements	a	form	of	stochastic	gradient	descent	(SGD)		

(Nielsen,	2015).	In	SGD,	the	gradient	of	the	loss	function	with	respect	to	each	parameter	is	

calculated,	and	each	parameter	is	then	individually	modified	by	its	calculated	gradient.	



27 
 

Once	all	training	samples	have	been	used	in	this	manner,	a	single	“epoch”	has	been	

completed,	and	the	process	repeats.	This	process	repeats	until	either	the	loss	reaches	a	

specified	minimum	value	or	a	maximum	number	of	epochs	or	time	is	reached.		

	 The	previous	explanation	of	SGD	is	also	known	as	online	SGD,	because	the	weights	

and	biases	are	updated	after	every	training	example.	In	minibatch	SGD,	the	gradient	of	the	

loss	function	with	respect	to	all	the	weights	and	biases	is	calculated	for	each	training	

example	in	the	minibatch;	then,	after	all	training	samples	in	minibatch	have	been	used,	the	

weights	and	biases	are	updated	with	the	average	of	the	gradients,	multiplied	by	the	

learning	rate,	𝜂.	

	 As	previously	mentioned,	for	many	applications	deeper	networks	tend	to	be	more	

effective	than	shallow	networks,	and	more	neurons	will	improve	the	NN’s	accuracy	(Glorot	

&	Bengio,	2010).	However,	there	is	always	a	point	at	which	any	model	can	become	too	

complex—in	these	cases,	the	model	“overfits”	the	training	data	and	does	not	generalize	

well	when	given	new	information.	Since	the	goal	of	training	is	to	perform	well	on	future,	

unknown	data	(i.e.	potentially	noise-corrupted	or	out-of-sample),	achieving	the	correct	

overall	level	of	complexity	and	number	of	total	parameters	is	a	crucial	task.	If	the	network	

is	too	simple,	it	will	perform	poorly	on	both	training	and	test	data	(underfitting);	if	it	is	too	

complex,	it	may	perform	well	on	training	data	but	generalize	poorly	when	given	test	data	

(overfitting).	

	



28 
 

	

Figure	3.2:	The	basic	outline	of	a	neural	network.	This	NN	is	comprised	of	a	single	hidden	

layer	with	3	neurons.	A	distinct	set	of	weights	and	biases	exist	between	the	input	layer	and	

hidden	layer,	and	between	the	hidden	layer	and	the	output	layer.	The	value	of	neuron	j	in	

the	hidden	layer	is:	𝑦+ = f	-∑ 𝑤+/𝑥/ + 𝑏+0
/12 3,	where	n	is	the	number	of	inputs,	f		is	an	

activation	function,	𝑤+/ 	is	the	value	of	the	weight	between	the	ith	input	and	the	jth	neuron	in	

the	hidden	layer,	𝑥/	is	the	value	of	the	input	at	the	ith	index,	and	𝑏+ 	is	the	bias	value	for	the	jth	

neuron	in	the	hidden	layer.	During	training,	weights	and	biases	are	updated.	The	powerful	

capabilities	of	NNs	have	had	many	different	applications	in	a	variety	of	disciplines	

(Karpathy	et	al.,	2014;	Maddison	et	al.,	2014;	Zeiler	et	al.,	2013).		

	

	 Hypothesis:	Our	hypothesis	was	that	it	might	be	possible	to	train	an	NN	on	SPCAM	

data	via	supervised	learning	and	then	use	the	NN	within	a	CAM	simulation	as	a	cloud	

parameterization	step	instead	of	using	SP	or	traditional	CAM	parameterization;	ideally,	the	

NN	would	perform	so	well	that	its	effects	would	be	similar	to	SP,	but	be	much	faster.	The	



29 
 

training	phase	of	the	NN	would	require	a	computational	burden,	but	after	training,	the	

computational	cost	of	using	the	NN	would	be	the	same	during	the	simulation	no	matter	

how	complex	a	NN	was	used,	and	potentially	even	slightly	less	costly	than	CAM’s	original,	

non-SP	parameterization	step.	This	idea	that	the	physical	coupled	partial	differential	

equations	of	a	cloud	resolving	model	simulation,	representing	conservation	of	momentum,	

energy	and	turbulent	chaos	(i.e.	Navier-Stokes,	scaled	for	atmospheric	moist	convection),	

as	well	as	approximated	turbulent	diffusion	and	cloud	microphysics,	might	be	replaceable	

with	a	NN	is	controversial	but	its	promise	will	be	demonstrated	in	this	chapter.	

	 The	difference	between	using	the	NN	as	a	cloud	parameterization	step	within	an	

atmospheric	simulation	and	using	CAM’s	original	cloud	parameterization	is	that	the	latter	

represents	incomplete	attempts	made	by	scientists	through	theory	and	empirical	cloud	

process	effects	observed	in	the	atmosphere	through	a	limited	deterministic	model	that	

makes	considerable	assumptions	(about	unresolved	cloud	geometry,	assumed	equilibrium	

behaviors,	etc);	by	contrast,	the	NN	parameter	values	are	systematically	trained	through	

supervised	learning	to	best	approximate	SP	cloud	processes,	which	through	their	explicit	

character	are	capable	of	a	much	more	diverse	set	of	responses	than	conventional	

parameterizations	owing	to	their	realistic	complexity	and	lack	of	such	assumptions.	An	

important	distinction	to	make	is	that	strictly	speaking,	the	intention	during	the	training	of	

the	NN	is	not	to	realistically	parameterize	cloud	processes;	it	is	instead	to	best	approximate	

the	effects	of	SP,	which	we	already	recognize	to	realistically	represent	them.	Functionally	

speaking,	however,	the	goal	of	a	fully	trained	NN	is	for	it	to	act	successfully	as	a	cloud	

parameterization	step	in	a	climate	simulation,	which	could	then	in	turn	have	significant	

benefits	for	biosphere-atmosphere	interactions,	as	explained	in	Chapter	1.	



30 
 

	

CloudBrain	

	 The	question	of	whether	SP	can	be	represented	as	a	nonlinear	function	can	only	be	

known	by	experiment,	and	the	hyperparameters	of	a	representative	NN	would	require,	as	it	

does	in	many	cases,	a	system	of	educated	trial	and	error.	It	was	possible	that	its	processes	

could	either	not	be	captured	in	a	known	NN	form,	or	that,	if	it	could,	suitable	

hyperparameters	of	the	NN	could	not	be	found	in	a	reasonable	period	of	time.	

	 It	is	reasonable	to	begin	with	a	reduced	complexity	implementation	of	SP	as	a	

beginning	point	for	training	a	NN	as	this	is	more	likely	to	succeed	than	a	more	complicated	

version.	Our	NN	was	thus	trained	on	an	aquaplanet	configuration	of	CESM.	An	aquaplanet	is	

an	idealized	model	configuration,	with	no	land,	topography,	or	ice;	the	planet	is	simulated	

as	being	completely	covered	with	liquid	water	(Medeiros	et	al.,	2016).	Aquaplanet	

simulations	have	been	used	in	the	past	to	study	the	differences	between	resolved	and	

parameterized	models	and	other	comparisons	(Williamson,	2008;	Blackburn	et	al.,	2013;	

Williamson	et	al.,	2013;	Medeiros	et	al.,	2015;	Voigt	and	Shaw,	2015),	so	it	is	a	reasonably	

good	choice	for	both	training	and	evaluating	a	NN-based	CAM	model,	at	least	for	internal	

atmospheric	physics,	before	moving	to	the	next	step	(Chapter	4)	of	examining	consequent	

tradeoffs	for	biosphere-atmosphere	interaction.	

	 To	further	simplify	the	experiment,	sea	surface	temperatures	(SSTs)	are	

homogenized	in	longitude	such	that	each	latitude	has	the	same	SST	for	every	longitude,	and	

the	ocean	does	not	interact	dynamically	with	the	atmosphere.	Additionally,	seasonality	is	

removed.	By	seasonality,	what	is	meant	is	that	the	simulated	Earth’s	tilt	and	distance	to	the	

sun	is	fixed	(in	our	case,	at	vernal	equinox).	Normally,	changes	in	the	Earth’s	tilt	and	



31 
 

distance	to	the	sun	cause	parts	of	the	planet	to	receive	different	amounts	of	solar	radiation	

at	different	times	of	year,	which	influences	the	spatial	and	temporal	intensity	of	energy	

fluxes	and	affects	local	and	global	climate,	and	generally	complicates	analysis	of	the	

simulated	atmospheric	dynamics.		

	 For	the	training	simulation,	grid	resolution	of	the	global	model	is	approximately	two	

degrees	(8192	grid	cells)	in	the	exterior,	with	30	vertical	layers;	each	grid	cell	of	the	global	

model	has	an	embedded	CRM	with	the	same	vertical	grid	and	an	8-column	subgrid	

spanning	32-km	with	4-km	(convection-permitting)	horizontal	resolution.	The	data	used	

for	training	and	validating	the	NN	are	the	arterial	inputs	and	outputs	between	the	8192	

CRMs	and	their	host	global	model.	The	CRMs	and	global	model	exchange	information	at	

every	30	minute	global	model	timestep,	and	running	the	simulation	for	2	years	(after	an	

initial	3	month	spinup	period)	yields	approximately	286	million	samples	(750	GB	of	data),	

half	to	be	used	for	training	and	the	other	half	for	validation.	

	

CloudBrain	Software	Development	

	 When	I	was	brought	aboard,	a	prototype	code	base	for	this	project,	called	Cloud-

Brain	(CBRAIN),	was	written	in	three	programming	languages.	The	model	simulation	code	

(CAM,	SPCAM)	was	written	in	Fortran	by	teams	of	researchers	over	decades,	coordinated	

by	the	National	Center	for	Atmospheric	Research	in	Boulder,	CO.	The	data	preprocessing	

code	was	written	in	MATLAB,	and	the	code	for	training	the	NN	was	written	in	the	Python.	

The	machine	learning	Python	package	used	for	NN	development	and	training	was	the	

Tensorflow	package.	Unlike	CAM	and	SPCAM	these	were	written	by	individual	professors	

and	research	scientists	at	Columbia	University	and	UCI,	and	a	major	part	of	my	



32 
 

contribution	to	this	Chapter	is	re-inventing	them	for	improved	usability,	as	described	

below.	

	 Tensorflow	is	an	open	source	machine	learning	system	originally	developed	at	

Google	that	focuses	on	the	creation,	training,	and	evaluation	of	deep	NNs.	A	deep	NN	is	a	

NN	with	many	layers,	each	layer	typically	having	a	large	number	of	neurons.	Tensorflow’s	

unique	draw	is	its	relative	ease	of	use	in	efficiently	performing	NN	computations	regardless	

of	the	hardware	used,	but	is	especially	designed	to	maximally	employ	multicore	CPUs,	

GPUs,	and	Google–specific	hardware	(Abadi	et	al.,	2016).		

	 Tensorflow	offers	a	great	deal	of	customization	in	NN	development.	Many	of	the	

most	common	NN	layer,	neuron,	and	algorithm	configurations	are	available	out-of-the-box	

with	little	boiler-plate	code,	and	most	hyperparameter	values	are	customizable.	In	the	

same	vein,	the	amount	of	code	needed	for	this	level	of	customization	is	verbose,	the	

learning	curve	can	be	steep,	and	poorly-documented	user	code	on	collaborative	projects	

can	cause	a	great	deal	of	team	confusion	and	headache.	

	 The	speed	at	which	experiments	can	be	performed	is	extremely	important	in	

research.	Being	able	to	quickly	iterate	and	prototype	ideas	is	a	very	fundamental	scientific	

and	software	development	practice,	especially	at	the	beginning	of	a	new	or	creative	project.	

Well	documented	code	for	key	classes,	functions,	and	algorithms	is	standard	practice	even	

for	small	groups	of	programmers	in	scientific	environments	(Baxter	et	al.,	2006).	Modular,	

easy-to-maintain,	reusable	code	is	the	de-facto	standard	for	object-oriented	programming	

(Gamma	et	al.,	2002).	

	 As	is	common	with	many	projects	in	which	the	value	initial	development	speed	

prepends	future	usability,	the	Tensorflow	code	at	the	beginning	of	the	project	did	not	



33 
 

adhere	well	to	standard	design	practices.	The	code	base	had	no	documentation,	was	not	

modular,	and	made	it	difficult	to	iterate	very	different	prototypes	from	the	current	design.	

After	all,	it	was	written	by	senior	researchers	with	limited	free	time	to	devote	to	this	

project.	

	 Taking	the	advice	of	members	of	a	machine	learning-focused	research	group	at	UCI,	

I	therefore	rewrote	the	CBRAIN	program,	making	heavy	use	of	the	Keras	Python	package.	

Keras	is	a	Python	package	that	acts	as	a	higher	level	wrapper	around	Tensorflow	(Chollet,	

2015).	In	short,	this	meant	that	many	fewer	code	lines	were	required	for	the	same	

processes	as	pure	Tensorflow	code.	The	advantage	of	the	Keras	code	I	wrote	is	that	it	was	

easier	to	iterate	prototypes,	make	modifications,	and	stay	modular.	Perhaps	most	

importantly,	the	code	base	was	well	documented	and	extensible.	When	another	team	

member	joined	the	project,	they	were	able	to	be	brought	quickly	up	to	speed	and	extend	

the	code	base	further.	

	 After	rewriting	the	code	base,	the	number	of	lines	of	non-utility	code	was	reduced	

by	a	full	50%,	detailed	in	Table	3.1.	This	includes	documentation	added,	so	the	actual	

number	of	executed	lines	is	even	more	reduced	than	the	table	indicates,	as	the	original	

Tensorflow	code	had	no	documentation.	In	addition	to	this	large	reduction,	modularity	was	

increased:	the	Keras	code	featured	more	files	and	classes	despite	having	less	absolute	lines	

of	code.	

	

	



34 
 

Table	3.1:	A	snapshot	of	code	base	characteristics	at	the	stage	in	development	when	the	

Keras	code	base	was	first	fully	functional.	

	

	 The	big	disadvantage	of	Keras	over	Tensorflow	is	that	it	sacrifices	customization	for	

simplicity.	A	drop	in	performance	can	be	expected	compared	to	results	of	a	specific	NN	

configuration	achievable	in	Tensorflow	using	more	fine-tuned	parameters.	However,	in	our	

case	the	ability	to	more	quickly	iterate	on	ideas	and	prototype	new	methods	using	Keras	

was	more	important	than	the	ability	to	carefully	fine-tune	a	model.	Additionally,	even	

though	model	accuracy	initially	decreased	when	we	switched	to	Keras,	as	was	expected,	the	

final	accuracy	of	CBRAIN	written	using	Keras	surpassed	the	accuracy	of	pure	Tensorflow	

code.	

	

Neural	Network	Specifications	

	 During	an	SPCAM	simulation,	the	physical	subprocesses	that	SP	predicts	and	

modifies	CAM	after	each	step	are	the	convective	and	turbulent	temperature	tendency,	the	

convective	and	turbulent	humidity	tendency,	the	shortwave	heating	tendency,	and	the	

longwave	heating	tendency.	This	comprises	the	total	heating	and	moistening	profiles	of	the	

subgrids	underlying	the	CAM	simulation.	The	values	for	each	variable	are	calculated	for	all	

30	vertical	layers	in	the	simulation,	so	there	are	120	values	provided	to	CAM	at	each	

timestep	for	each	grid	cell.	Naturally,	those	120	values	are	the	output	of	CBRAIN	when	

given	input.	The	input	and	output	variables	for	CBRAIN	are	listed	in	Table	3.2.	All	variables	

were	converted	to	the	same	units	and	normalized	in	a	preprocessing	phase.	It	was	



35 
 

important	to	CBRAIN’s	skill	that	all	inputs	and	outputs	have	a	similar	range	of	values,	best	

between	0	and	1.	

	

	

Table	3.2:	CBRAIN	input	and	output	variables.	

	

	 A	large	variety	of	hyperparameter	configurations	for	CBRAIN	were	investigated.	The	

hyperparameter	value	space	included:	

	 (1)	network	depth	(number	of	layers)	and	width	(number	of	neurons	per	layer)	

	 (2)	amount	of	training	data	

	 (3)	activation	function	

	 (4)	optimizer	(SGD	algorithm	used	to	update	weights	and	biases)	settings	

	 (5)	dropout	value;	normalization	technique	



36 
 

	 CBRAIN’s	cost	function	was	mean	squared	error	(MSE).	Figure	3.3a	shows	the	

sensitivity	of	MSE	to	number	of	network	parameters	and	network	depth.	As	can	be	seen,	

deeper	networks	performed	better	than	shallower	networks	given	the	same	number	of	

parameters.	The	most	accurate	version	of	CBRAIN,	which	is	the	only	one	that	will	be	

discussed	hereafter	in	Chapter	3,	used	8	layers	each	with	512	neurons	(see	Figure	3.4).	

Dropout	with	a	value	of	0.5	was	applied	to	each	layer.	Dropout	is	a	technique	where	a	

fraction	of	the	neurons	and	their	connections	in	a	layer	are	ignored	during	a	training	

example,	and	has	been	shown	to	reduce	overfitting	(Srivastavaet	al.,	2014).	

	 In	Figure	3.3b,	the	sensitivity	of	MSE	to	amount	of	training	data	is	shown.	There	is	

never	such	a	thing	as	having	too	much	training	data,	but	in	this	experiment	added-value	

drops	off	significantly	after	3	months	of	data,	and	the	gain	in	accuracy	after	9	months	of	

data	is	small.	

	

	

Figure	3.3:	The	shallow,	medium,	and	deep	networks	in	(a)	had	hidden	layers	of	depth	1,	2,	

and	8,	respectively,	while	maintaining	the	same	number	of	parameters.	(b)	suggests	that	a	

year	of	very	high-resolution	training	data	could	be	sufficient	for	the	training	of	a	NN	

approximating	SP.	



37 
 

	

	 The	activation	function	used	throughout	CBRAIN,	except	in	the	final	layer,	is	the	

Leaky	Rectified	Linear	Unit	(LeakyReLU),	which	is	based	on	the	Rectified	Linear	Unit	

(ReLU)	activation	function.	ReLU	is		𝑚𝑎𝑥(0, 𝑥),	and	is	popular	for	use	in	training	NNs	as	it	

computes	faster	and	empirically	both	optimizes	more	easily	and	converges	more	quickly	

than	many	sigmoid	activation	functions	(Nair	&	Hinton,	2010;	Zeiler	et	al.,	2013).	

LeakyReLU,		𝑚𝑎𝑥(𝛼𝑥, 𝑥)	,	is	a	variant	of	ReLU	that	has	shown	in	cases	to	be	more	robust	

during	training	with	suitable	a		than	enforcing	a	hard-zero	gradient	with	ReLU	(Maas	at	al.,	

2013;	Xu	et	al.	2015).	

	 The	minibatch	SGD	algorithm	(optimizer)	used	during	backpropagation	for	CBRAIN	

was	Adam.	Adam	is	short	for	“adaptive	moment	estimation”,	and	it	computes	adaptive	

learning	rates	for	individual	parameters,	which	has	been	shown	to	converge	faster	in	many	

cases	than	regular	GD	(Sharma	et	al.,	2017).	

	 Adam	works	slightly	differently	from	regular	SGD	in	that	each	weight	and	bias	has	

its	own	learning	rate	parameter,	𝛽.	For	a	particular	parameter	k,	the	very	first	update	∆𝑘	is	

based	on	the	gradient	of	the	loss	with	respect	to	that	parameter:	

k= = 	 k= + η∆k=	

However,	at	the	next	update	step,	Adam	retains	the	“momentum”	from	the	previous	∆𝑘,	so	

the	update	becomes:	

k= = 	 k= + η∆k= + 	β∆k=@2	



38 
 

	



39 
 

Figure	3.4:	Visual	representation	of	CloudBrain.	For	each	training	instance,	there	are	124	

inputs	values,	8	hidden	layers	with	512	neurons	each,	and	120	output	values.	Between	the	

inputs	and	outputs	there	are	9	sets	of	weights	and	biases;	each	weight	and	bias	is	updated	

via	the	Adam	optimizer	at	the	end	of	each	minibatch.	

	

CBRAIN	Results	

	 CBRAIN	predictions	matched	SPCAM	behavior	surprisingly	well	overall,	particularly	

with	heating	rates	as	seen	in	Figure	3.5.	Convective	heating	and	moistening,	radiative	

heating,	shortwave	absorption,	and	longwave	cooling	maxima	are	predicted	at	roughly	the	

same	horizontal	and	vertical	locations	(for	more	figures,	see	Gentine	et	al.,	2018).		

	

	

Figure	3.5:	A	slice	in	time	of	the	shortwave	heating	rate	for	(a)	CBRAIN	prediction	and	(b)	

SP	target	for	one	sample	by	latitude	and	longitude	for	a	mid-level	vertical	layer.	

	

Figure	3.6	illustrates	the	R2	statistics	of	CBRAIN	by	vertical	layer	averaged	over	

latitude,	longitude,	and	time	dimensions.	Longwave	and	shortwave	heating	rates	have	very	

high	skill	at	most	vertical	layers,	and	convective	heating	and	moistening	rates	also	have	

similar	high	skill	between	250	and	500	hPa.	On	the	other	hand,	it	can	be	seen	that	

a) CBRAIN b) SP 



40 
 

convective	heating	and	convective	moistening	rates	below	the	stratosphere	perform	worst	

at	the	boundary	layer.		

	 The	reason	for	reduced	skill	at	the	boundary	layer	may	be	due	to	the	fact	that	SP	

events	at	the	boundary	layers,	including	convective	behavior,	are	much	more	stochastic	

than	other	layers,	and	CBRAIN	has	difficulty	predicting	stochastic	behavior—this	is	

common	for	neural	networks,	as	they	are,	after	all,	deterministic	approximations	of	

nonlinear	functions,	and	absent	complex	predictive	ability	produce	values	close	to	the	

mean	state	minimizes	overall	loss.	This	is	a	major	challenge	for	processes	in	which	

stochasticity	is	important	.	CBRAIN’s	lower	performance	at	the	planetary	boundary	layer	

may	have	consequences	for	our	over-arching	interest	of	using	this	technique	for	improved	

biosphere-atmosphere	interaction	in	climate	models,	which	we	will	return	to	in	Chapter	4.	

	

	

Figure	3.6:	CBRAIN	R2	values	for	heating	and	moistening	rates	along	the	vertical	column	

averaged	over	space	and	time.	The	y	axis	measures	pressure;	from	a	spatial	standpoint	0	is	

at	the	stratosphere	and	1000	is	at	the	land-atmosphere	boundary	layer.	R2	is	calculated	as:	



41 
 

1 − CDEFGHI	HGGJG
=GEH	KFGLFMNH

.	The	values	are	bound	between	0	and	1.	Scores	closer	to	1	signify	greater	

accuracy.	

	

Neural	Network	Community	Atmosphere	Model	

	 Once	trained,	CBRAIN	needed	to	be	incorporated	into	CAM	so	that	online	

simulations	could	be	tested	and	analyzed.	Beyond	simply	training	a	neural	network,	how	

skillfully	a	CAM	simulation	with	CBRAIN	representation	of	SP	could	reproduce	SPCAM	

behavior	is	a	crucial	test.	

	 Replacing	the	superparameterized	CRM	component	of	SPCAM	with	CBRAIN	resulted	

in	a	new	model	that	our	team	has	begun	to	call	NNCAM	(Neural	Network	Community	

Atmosphere	Model)	in	which	the	matrix	biases	and	weights	developed	during	our	training	

procedure	were	further	implemented	as	a	forward	prediction	parameterization	in	the	

Fortran-based	global	climate	model	code.	

CBRAIN	does	not	inherently	conserve	energy,	so	a	basic	post-CBRAIN	energy	

conservation	step	was	implemented	for	NNCAM.	Initial	simulations,	also	called	runs,	did	

not	make	it	past	a	few	timesteps.	A	variable	would	increase	exponentially	and	the	run	

would	crash.	Figure	3.7a	and	3.7b	illustrate	an	example	of	this.	A	number	of	methods	were	

employed	to	curb	the	runaway	behavior	of	NNCAM,	all	related	to	the	training	and	

development	of	CBRAIN.	We	initially	thought	that	certain	weights	in	the	network	might	

have	been	becoming	abnormally	large	and	significant	compared	to	other	weights,	and	was	

causing	the	problem—upon	examination	however,	there	was	no	obvious	culprit	and	we	

could	not	verify	if	any	weight	or	series	of	weights	were	the	source	of	the	crashes.	A	more	

successful	course	of	action	was	in	normalizing	the	inputs	by	first	calculating	the	mean	and	



42 
 

standard	deviation	of	each	variable;	then	subtracting	the	mean	and	dividing	by	the	

standard	deviation;	and	finally	dividing	by	the	maximum	value	of	its	new	range—previous	

normalization	techniques	sometimes	resulted	in	division	by	very	small	numbers,	which	

contributed	to	the	point	variables	“blowing	up”	and	crashing	the	run.	A	final	step	taken	was	

to	introduce	a	small	number	of	stochastic	samples	into	the	training	data	for	NNCAM	to	be	

more	robust	to	atypical	values.	It	did	have	the	side	effect	of	pushing	NNCAM	to	become	

slightly	less	variable	and	more	likely	to	predict	values	closer	to	the	mean,	but	less	likely	to	

produce	values	that	it	will	be	unable	to	handle	after	a	CAM	timestep.	

	

(a)	 			(b)	 	

Figure	3.7:	Example	of	a	single	grid	cell	increasing	exponentially	and	crashing	a	NNCAM	

run	view	over	(a)	horizontal	dimensions	and	(b)	one	horizontal	and	one	vertical	dimension.	

TAP	is	the	acronym	for	“temperature	after	physics”,	in	units	of	Kelvin.	Methods	to	prevent	

this	behavior	are	implemented	in	preprocessing	and	training,	not	during	a	simulation.	

Among	others,	this	illustrates	the	importance	of	iterative	and	conscious	design	principles	in	

overcoming	software	engineering	obstacles.	

	



43 
 

	 After	solving	engineering	challenges,	the	NNCAM	simulations	reproduced	SPCAM	

behavior	shockingly	well.	One	surprise	was	that	NNCAM	exhibited	energy	conservation	

behavior	before	the	explicitly	enforced	energy	conservation	step,	and	required	less	

modification	than	expected,	seen	in	Figure	3.8.	This	suggests	that	the	new	CBRAIN	

“learned”	to	enforce	energy	conservation	through	the	data	alone.	Comparing	NNCAM’s	

speed	with	both	CAM	and	SPCAM,	NNCAM’s	parameterization	step	was	8	times	faster	than	

CAM’s	and	20	times	faster	than	SPCAM’s.	Greater	detail	and	analysis	of	NNCAM	is	

presented	in	Rasp	et	al.,	2018.	

	

Figure	3.8:	Column	moist	static	energy	conservation.	Each	point	is	a	prediction	at	a	single	

column,	and	the	number	of	points	corresponds	to	ten	time	steps.	𝐶P	is	the	specific	heat	of	

air,	𝐿R	is	the	latent	heat	of	vaporization,	and	G	is	gravity.	The	x	axis	is	calculated	as	the	

vertically	integrated	column	heating	(𝐶P 𝐺⁄ ∫∆𝑇PWXYd𝑝)	minus	sensible	heat	flux	(SHF),	

minus	the	sum	of	boundary	radiative	fluxes	(∑𝐹]^_).	The	y	axis	is	calculated	as	latent	heat	

flux	(LHF)	minus	the	vertically	integrated	column	moistening	(𝐿R 𝐺⁄ ∫∆𝑄PWXYd𝑝).	The	grey	



44 
 

line	y(x)	=	x	represents	perfect	energy	conservation.	The	insets	are	the	distribution	of	

differences	between	model	predictions	and	perfect	energy	conservation.	

	

Discussion	

	 CBRAIN	performed	surprisingly	well	in	emulating	SP	behavior,	but	looking	to	the	

future,	there	are	a	number	of	design	features	that	could	be	made	to	develop	a	more	

sophisticated	NN.	CRMs	run	simulations	alongside	the	GCM,	and	at	every	GCM	timestep	

they	exchange	information.	In	CBRAIN’s	current	design,	all	training	examples	are	shuffled	

in	time,	so	the	time	series	dimension	of	the	data	is	not	taken	into	account	during	training.	

Skill	could	potentially	be	improved	by	implementing	a	recurrent	neural	network	(RNN),	

which	is	a	NN	with	cyclic	paths	that	are	designed	to	encapsulate	patterns	in	sequential	data	

(Lipton,	2015).	Along	the	same	lines,	there	is	some	information	in	the	CRM	that	is	not	

exposed	to	the	GCM	during	the	information	exchange,	such	as	mid-air	liquid	precipitation.	

Long	short-term	memory	(LSTM)	is	a	technique	utilized	in	RNNs	to	retain	information	

throughout	the	course	of	training	with	applicability	for	time-series	prediction	(Hochreiter	

&	Schmidhuber,	1997).	If	the	lack	in	stochasticity	of	the	output	of	CBRAIN	is	determined	to	

be	severely	detrimental	to	the	skill	of	NNCAM,	then	designing	CBRAIN	as	a	generative	

adversarial	network	(GAN)	could	introduce	a	level	of	stochasticity	(Goodfellow	et	al.,	

2014).	The	challenge	of	RNNs,	LSTM,	and	GANs	are	that	they	are	much	more	difficult	to	

train	than	the	simple	deep	neural	network	presented	in	this	paper.	

	 Despite	its	challenges,	CBRAIN	and	NNCAM	are	great	successes,	and	the	formative	

work	I	performed	during	development	helped	lead	to	the	Gentine	et	al.,	2018	publication	in	

Geophysical	Research	Letters,	and	pave	the	way	for	the	Rasp	et	al.,	2018	accepted	paper	in	



45 
 

Proceedings	of	the	National	Academy	of	Sciences.	Analysis	of	NNCAM	skill	within	the	context	

of	the	biosphere	is	a	critical	next	step,	and	is	the	focus	of	the	work	presented	in	Chapter	4.	

	

	 	



46 
 

CHAPTER	4	

	

Land	Response	Effects	to	CBRAIN	

	 Alongside	cloud	process	parameterization	issues,	a	major	source	of	uncertainty	in	

climate	predictions	is	ecosystem	feedbacks	between	the	simulated	biosphere	and	

atmosphere	that	have	impacts	on	global	CO2	concentrations	(Friedlingstein	et	al.,	2014).	SP	

has	been	shown	to	improve	the	representation	of	large-scale	weather	phenomenon	such	as	

the	variability	in	El	Niño-Southern	and	Pacific	Decadal	Oscillations	(Krishnamurthy	&	Stan,	

2015),	and	improves	rainfall	projections	over	the	Amazon	Basin	(Zhang	et	al.,	2017),	which	

in	a	land	model	simulating	carbon-nitrogen	biogeochemistry	has	a	profound	impact	on	

vegetation	composition	and	carbon	cycle	fluxes	(Chang	et	al.,	2018).	On	the	one	hand,	the	

idea	of	having	a	NN	representation	of	SP	is	attractive	for	further	improving	the	realism	of	

the	simulated	land-atmosphere	interface.	For	instance,	retraining	CBRAIN	with	a	richer	

training	dataset	that	is	built	on	an	SP	augmented	beyond	its	traditional	limitations	(i.e.	with	

very	high	resolution	CRMs	capable	of	ever	more	realistic	cloud-radiation	transfer	and	

precipitation	physics)	now	seems	like	a	viable	possibility.	Online	incorporation	of	such	a	

NN	into	a	coupled	land-atmosphere	model	could	be	a	game	changer	for	simulating	complex	

vegetation-atmosphere	interactions	that	depend	sensitively	on	the	turbulent	processes	

that	control	planetary	boundary	layer	height;	these	do	not	become	explicitly	resolved	in	SP	

until	CRM	grid	resolutions	approach	250-m	horizontally	and	20-m	vertically,	at	extreme	

computational	expense	(Parishani	et	al.	2017).	The	idea	is	enticing	since	such	a	framework	

could	significantly	improve	the	realism	of	these	land-atmosphere	feedbacks	in	a	next	

generation	of	ESMs.	



47 
 

	 On	the	other	hand,	there	is	reason	to	believe	that	success	demonstrated	for	

atmosphere-only	aquaplanet	simulations	in	Chapter	3	might	not	be	replicated	when	land	

surfaces	are	included	in	the	modeling	framework.	For	instance,	the	worst	performing	

vertical	layers	of	CBRAIN	in	terms	of	skill	at	reproducing	heating	and	moistening	profiles	

were	at	the	upper	atmosphere	and,	more	importantly	to	a	land	model,	immediately	atop	

the	surface	at	the	boundary	layer.	The	lower	skill	at	the	land-atmosphere	boundary	layer,	

however,	brings	up	an	immediate	question	that	can	be	tested.	Namely,	does	the	low	

prediction	skill	of	our	NN	emulator	of	SP	at	the	boundary	layer	translate	into	a	corrupted	

representation	of	the	land/forest	response	to	SP?	Or	alternatively,	are	defects	in	the	

CBRAIN’s	ability	to	capture	stochastic	details	of	the	planetary	boundary	layer	immaterial	to	

capturing	the	essential	effects	of	SP	on	the	simulated	biosphere?	

	 As	a	first	step	to	address	this	issue,	I	conduct	an	idealized	experiment	to	measure	

the	similarity	between	a	few	key	land-atmosphere	response	variables	significant	to	the	

carbon	cycle	using	CAM,	SPCAM,	and	NNCAM	atmospheric	conditions.	

	

NNCAM	Configuration	

	 The	configuration	for	the	parameterization	step	in	NNCAM	for	the	experiment	has	

some	differences	from	CBRAIN	described	in	Chapter	3,	but	the	aim	remains	to	emulate	SP	

behavior	by	using	the	atmospheric	variables	received	from	CAM	at	each	timestep	and	

vertical	level	to	produce	output	variables	that	then	dynamically	influence	CAM.	Regardless	

of	how	well	CBRAIN	performs	during	training	and	testing,	its	feedback	relationship	with	

CAM	during	an	actual	run	determines	if	its	atmospheric	simulation	will	emulate	SPCAM,	

CAM,	or	is	completely	different	from	both.	The	number	of	variables	present	in	the	overall	



48 
 

model	make	it	such	that	even	small	differences	in	cloud	parameterizations	could	lead	to	

very	different	outcomes,	which	is	the	case	for	different	parameterizations	among	ESMs	and	

is	the	largest	cause	of	spread	in	climate	predictions	(Flato	et	al.,	2013).	

	 The	inputs	and	outputs	for	the	parameterization	step	of	NNCAM	are	listed	in	Table	

4.1.	The	neural	network	used	has	9	hidden	layers	of	256	neurons	each,	using	the	

LeakyReLU	activation	function	between	each	layer	of	the	network	except	between	the	final	

hidden	layer	and	the	output	layer,	which	has	a	linear	activation	function.	Figure	4.1	shows	

the	flow	of	the	parameterization	step	in	NNCAM.	

	

	

Table	4.1:	Inputs	and	outputs	of	the	neural	network	used	for	the	parameterization	step	in	

NNCAM.	



49 
 

	



50 
 

Figure	4.1:	Flow	for	parameterization	step	of	NNCAM.	The	NN	is	trained	on	one	year	of	

SPCAM	aquaplanet	simulation	data	as	in	Chapter	3.	The	parameterization	step	takes	place	

between	CAM	timesteps	and	produces	values	for	the	heating	rates,	moistening	rates,	

precipitation,	shortwave	radiation	flux,	and	longwave	radiation	flux.	Each	hidden	layer	has	

256	neurons.	f		is	LeakyReLU,	f(x)	=	Max(0.3x,	x),	and	s		is	the	linear	function	f(x)	=	x.	

	

Community	Land	Model	and	the	Amazon	Basin	

	 To	test	the	difference	in	the	land	response	when	forced	by	NNCAM	vs.	SP-CAM,	I	

compare	112-member	ensembles	of	5-year	integrations	of	a	single	Community	Land	Model	

(CLM)	land	tile	using	one-way	atmospheric	forcing.	The	CLM	version	used	is	CLM	v4,	with	

active	carbon–nitrogen	biogeochemistry	(CN)	and	constant	CO2	and	aerosol	deposition	

levels	from	the	year	2000.	The	CN	component	of	the	model	defines	each	land	cell	to	have	

pre-determined,	static	fractions	of	land	types,	the	vegetative	component	of	which	has	pre-

determined,	static	fractions	of	plant	functional	types	(PFTs).	

	 Because	atmospheric	CO2	levels	are	static	and	the	atmospheric	variables	are	pre-

defined,	carbon-cycle	and	hydrologic-cycle	feedbacks	are	disabled.	Even	though	vegetative	

composition	is	unchanging,	the	model	allows	for	the	conversion	of	carbon	into	different	

forms	within	the	land	cell	and	release	into	the	atmosphere.	This	includes	processes	such	as	

leaf	conversion	to	litterfall,	either	naturally	(e.g.	deciduous	tree	leaf	fall)	or	through	plant	

mortality.	A	fixed	2%	of	each	PFT	undergoes	whole-plant	mortality	every	simulation	year,	

but	they	can	also	reach	mortality	through	fire	occurrence.	Each	PFT	has	a	designated	limit	

on	temperature	extremes	it	can	endure	and	required	amounts	of	nitrogen	and	soil	water	

uptake.	Root	depth	and	resistance	per	PFT	are	taken	into	account	for	water	uptake.	If	a	



51 
 

fraction	of	a	PFT	dies	on	a	land	cell,	that	fraction	is	not	able	to	be	reestablished	by	another	

plant	type,	and	it	is	able	to	regrow	there	again	providing	favorable	conditions	are	present.	

	 Soil	moisture	is	prognosed	on	a	10-layer	grid	with	unequally	spaced	depths;	vertical	

soil	moisture	movement	is	determined	by	infiltration,	diffusion,	gravity,	and	root	

extraction.	The	water	balance	of	the	land	tile	is	calculated	as	precipitation	minus	

evapotranspiration,	surface	runoff,	and	deep	soil	drainage.	Runoff	and	drainage	from	one	

tile	do	not	affect	adjacent	tiles.	

	 The	land	tile	grid	cell	defining	the	soil	moisture	and	vegetation	properties	of	our	

terrestrial	testbed	was	chosen	based	on	real	geography	conditions	at	latitude	-4.73	and	

longitude	295.0,	in	the	Amazon	Basin	(see	Figure	4.2).	

	

	

Figure	4.2:	Land	tile	location	in	the	Amazon	Basin,	a	1.9	x	2.5	degree	land	area	centered	on	

–4.73	latitude	and	295.0	longitude.	

	



52 
 

	 Locating	our	testbed	grid	cell	in	the	Amazon	Basin	was	a	strategic	choice	for	several	

reasons.	One	of	the	greatest	effects	SP	has	on	a	climate	simulation	over	traditional	

parameterization	is	that	it	more	faithfully	resolves	tropical	weather	patterns	and	climate	

dynamics	due	to	its	treatment	of	convection	and	mesoscale	processes,	which	become	

especially	important	near	the	equator	(Randall	et	al.,	2016).	This	includes	its	pattern	of	

precipitation,	which	captures	high	rainfall	events	in	the	tropics	(Kooperman	et	al.,	2016b).	

Thus,	aligning	our	atmospheric	forcing	input	(which	is	taken	from	112	separate	grid	points	

spanning	20S	to	20N	harvested	from	atmosphere-only	aquaplanet	runs	for	CAM,	SPCAM,	

and	NNCAM)	and	land	model	conditions	to	reside	in	the	tropics	is	thus	well	situated	to	

reveal	consequences	of	these	atmospheric	effects	on	the	simulated	ecosystem.	Further,	a	

moist	aquaplanet	atmospheric	forcing	is	more	naturally	suited	to	a	grid	cell	in	wet	climate	

conditions	than	a	grid	cell	in	the	middle	of	a	desert.	Finally,	the	tropics,	and	Amazon	Basin	

specifically,	are	a	prime	location	to	test	vegetative	response	variables	because	they	have	

the	most	forest-type	land	cover	in	the	world	by	both	biomass	and	land	area.	Tropical	

forests	sequester	more	carbon	than	any	other	land	cover	type,	and	the	Amazon	Basin	itself	

has	the	most	land	area	and	above-ground	biomass	out	of	all	tropical	forests	(Pan	et	al.,	

2011;	Ahlström	et	al.,	2017).		

	 Some	of	the	vegetative	conditions	of	the	land	tile	are	important	to	point	out.	The	

land	tile	is	1.9x2.5	(latitude	by	longitude)	degrees	in	size,	and	it	is	completely	vegetative,	

with	no	river,	lake,	pasture,	or	urban	fraction.	About	96%	is	broadleaf	deciduous	tropical	

tree,	about	4%	is	broadleaf	evergreen	tropical	tree,	and	less	than	0.1%	is	a	combination	of	

grass	and	bare	soil.	The	dominant	PFTs	have	characteristics	that	are	important	for	the	

simulation	in	terms	of	survival.	Both	dominant	tree	types	are	assumed	to	have	uniform	



53 
 

canopy	height	of	13m;	in	more	advanced	versions	of	CLM	the	canopy	is	multi-layered,	but	

CLM4.0	does	not	use	a	multi-layered	canopy.	The	root	depth	of	both	tree	types	infiltrate	

below	8m,	which	is	consistent	with	observations	(Vogt	et	al.,	1995).	Both	also	do	not	have	

an	upper	limit	on	temperature	for	survival—put	in	other	words,	these	two	PFTs	in	

particular	will	not	die	to	heat	stress	at	any	upper	temperature	extreme.	The	Amazon	is	one	

of	the	most	biodiverse	ecosystems	in	the	world	(Malhi	et	al.,	2008),	but	biodiversity	is	not	

captured	in	the	model	and	more	complex	competition	and	ecosystem	interactions	are	not	

taken	into	account.	

	

Methods	

	 One	year’s	worth	of	atmospheric	forcing	from	112	atmospheric	grid	cells	were	

selected	from	new	1-year	long	aquaplanet	simulations	for	CAM,	SPCAM,	and	NNCAM	under	

the	configuration	listed	earlier	in	Chapter	4.	The	atmospheric	input	grid	cells	were	selected	

at	16	separate	latitudes	evenly	spaced	about	the	equator	between	-21	and	21	degrees,	and	

7	different	longitudes	roughly	evenly	spaced	around	the	globe.	In	this	way	a	set	of	forcing	

samples	representative	of	a	large	near-equatorial	geographic	band	was	chosen	with	

atmospheric	inputs	spanning	a	range	of	precipitation,	temperature,	and	solar	radiation	

distributions	representing	the	tropical	mean	environment.	The	intent	is	to	observe	what	a	

roughly	global	mean	in	land	response	to	representative	variations	of	atmospheric	forcing	

would	look	like.		

	 The	atmospheric	forcing	variables	from	the	grid	cells	were	used	as	the	inputs	for	a	

112-member	ensemble	of	single	grid	cell	CLM	integrations.	A	CLM	atmospheric	forcing	

simulation	requires	that	downwelling	surface	solar	radiation	and	precipitation	be	



54 
 

prescribed	every	six	hours;	and	surface	pressure,	specific	humidity,	surface	temperature,	

and	wind	magnitude	be	prescribed	every	three	hours.		

	 The	CLM	simulations	were	5	years	in	length	in	order	to	expose	not	only	the	fast	

response	of	the	land	to	swapping	the	essential	nature	of	its	atmospheric	inputs,	but	also	the	

slow	drift	to	independent	attractors,	which	provides	a	further	test	of	emulation	skill.	The	1-

year	length	of	atmospheric	forcing	conditions	was	repeated	for	each	of	the	5	years;	in	other	

words,	atmospheric	conditions	were	identical	from	year	to	year	for	all	5	years.	The	land	tile	

in	every	simulation	had	identical	boundary	conditions.	112	CLM	simulations	were	run	for	

each	atmospheric	model	(CAM,	SPCAM,	and	NNCAM),	for	a	total	of	336	CLM	integrations.	

The	results	from	each	model	were	averaged	together	and	the	standard	error	across	the	

ensemble	calculated	for	each	model	to	discriminate	detectable	differences	between	models	

from	representative	geographic	variability	throughout	the	tropics.	Additionally,	a	single	

fully	coupled	5-year	CAM-CLM	simulation	was	performed	for	comparison	purposes,	and	as	

a	benchmark	calculation	that	avoids	our	idealizations	by	using	realistic	geography,	full	

seasonality,	and	interactive	atmosphere-land	feedbacks	globally.	The	ocean	and	ice	

conditions	of	the	global	model	were	prescribed	in	the	coupled	simulation.	

	 A	limitation	of	this	work	is	that	it	focuses	exclusively	on	testing	the	sensitivity	of	the	

land	model	to	varying	sets	of	atmospheric	forcing	patterns.	Testing	whether	the	NN-forced	

land	response	is	similar	to	the	SP-forced	response	is	a	logical	first	step	towards	answering	

the	broader	question	of	whether	NN	representations	of	atmospheric	physics	can	do	justice	

to	fully	interactive	land-atmosphere	feedback	dynamics.	The	answer	is	not	obvious	since	

the	NNCAM	land-atmosphere	boundary	layer	is	both	less	skillful	and	less	stochastic	than	

SPCAM,	such	that	it	is	worth	exploring	if	non-coupled	simulations	produce	similar	land	



55 
 

responses.	For	instance,	if	they	do	not,	then	the	focus	should	be	on	improving	the	skill	of	

NNCAM	at	the	boundary	layer	before	attempting	to	create	a	coupled	version.	Additionally,	

if	the	land	response	is	similar	in	a	one-way	atmospheric	forcing	case,	but	in	the	future	

coupled	cases	differ	significantly,	then	it	would	be	strong	evidence	supporting	that	

unpredictable	aspects	of	turbulence	are	critical	to	land-atmosphere	feedback	dynamics	

(NNCAM	has	an	inherently	smoother	boundary	layer	due	to	CBRAIN’s	training	process,	

where	in	areas	of	low	skill	moving	towards	a	mean	state	is	the	most	effective	path	to	

reducing	the	loss	of	the	cost	function).	

	 The	one	other	limitation	that	must	be	first	discussed	relates	to	the	experimental	

design	in	that	different	ensembles	of	atmospheric	forcings	are	tested,	but	only	a	single	land	

grid	cell	at	fixed	initial	conditions	is	used.	Would	land	grid	cells	with	different	properties	or	

different	initial	conditions	give	much	different	results?	While	this	is	reasonable	to	expect,	

the	author	argues	that	carefully	selecting	an	appropriate	land	tile	and	closely	examining	it	

under	an	ensemble	of	atmospheric	conditions	is	more	useful	for	the	purpose	of	comparing	

CLM	response	to	NNCAM	and	SPCAM	than	selecting	many	different	tiles.	Choosing	multiple	

tiles	would	obscure	details	of	CLM	response	sensitive	to	land	type	and	initial	conditions,	

and	limiting	the	attention	to	a	single	land	tile	is	a	logical	choice	to	avoid	averaging	out	the	

response	of	CLM	to	different	atmospheric	forcings	at	the	same	time	that	it	is	critical	to	

focus	on	those	responses.	To	compare	land	responses	to	atmospheric	forcings	from	

idealized	aquaplanet	simulations,	isolating	variables	by	maintaining	identical	initial	

conditions	and	land	properties	is	essential.	

	 These	limitations	acknowledged,	there	are	multiple	reasons	to	motivate	the	null	

hypothesis	that	for	land	responses	NNCAM	will	not	be	able	to	emulate	the	consequences	of	



56 
 

SP	for	the	simulated	biosphere,	as	a	number	of	potential	problems	can	be	anticipated.	

Specifically,	these	are	our	null	hypotheses:	

	 (Hypothesis	1)	CBRAIN	was	trained	on	SP	under	aquaplanet	conditions,	which	has	

no	land	and	is	not	be	suitable	to	use	as	atmospheric	forcing.	If	the	land	response	to	SP	turns	

out	to	be	similar	to	that	of	a	coupled	run,	this	issue	is	not	pertinent.	

	 (Hypothesis	2)	Without	the	full	feedback	effects	of	a	coupled	land-atmosphere	

model,	the	difference	among	forcings	will	be	not	be	significant	enough	by	themselves	to	

produce	significant	differences	in	biogeochemical	land	response	variables	in	a	5	year	

period.	That	is,	the	effects	of	SP	on	the	land	in	our	setup	may	be	too	subtle	to	detect	even	in	

benchmark	tests,	let	alone	the	fidelity	of	a	NN	emulation	of	SP.	

	 	(Hypothesis	3)	CLM	will	be	crash	when	using	NNCAM	atmospheric	forcing	values.	

Occasionally	some	variables	of	the	NNCAM	should	be	expected	to	take	on	unreasonable	

values	that	might	break	the	land	model	due	to	the	noise	inherent	in	NN	predictions.	For	

example,	there	will	be	slightly	negative	downwelling	solar	radiation,	or	surface	pressure	

will	be	0	(both	of	which	are	physically	impossible).	CLM	has	carbon,	water,	and	energy	

balance	check	steps	that,	if	they	fail,	force	the	simulation	to	stop.	It	is	not	a	given	that	the	

land	model	will	even	be	able	to	run	without	crashing	when	given	NNCAM	atmospheric	

forcing,	since	land	models	contain	many	more	degrees	of	freedom	and	complexity	than	

exist	in	the	simpler	aquaplanet	testbed	analyzed	in	Chapter	3;	in	the	forthcoming	tests,	

there	are	more	potential	pathways	to	a	failure	mode.	

	 Certain	differences	in	the	resulting	CLM	responses	can	be	expected	based	on	

speculation	about	the	differences	in	the	atmospheric	inputs	alone;	indeed	the	effects	of	SP	

on	terrestrial	dynamics	are	only	partially	explored	in	the	literature	(Qin	et	al.,	2018;	Sun	&	



57 
 

Pritchard,	2016).	Effects	of	SP	on	precipitation	have	been	noted	by	many	(Kooperman	et	al.,	

2016b;	Kooperman	et	al.,	2016a).	Taking	a	look	at	Figure	4.3a,	NNCAM	and	SPCAM	both	

capture	precipitation	extremes,	but	as	can	been	seen	in	both	Figure	4.3a	and	Figure	4.3b,	

the	mean	precipitation	is	lower	than	in	CAM.	Although	the	mean	precipitation	is	slightly	

lower	in	SPCAM	(and	NNCAM)	than	CAM,	this	effect	is	so	subtle	compared	to	the	effects	of	

SPCAM	on	incoming	shortwave	radiation,	that	we	suspect	the	latter	will	dominate	overall	

consequences	for	carbon	sequestration.	As	an	aside,	it	is	worth	noting	that	the	seasonally	

invariant	precipitation	rate	of	the	idealized	aquaplanet	simulations	lies	between	the	

seasonal	extremes	of	the	coupled	run—this	is	a	reassuring	indicator	that	the	atmospheric	

forcing	of	the	aquaplanet	simulations	do	not	have	completely	unrealistic	values	for	the	

selected	land	tile.	

	

(a)	 	



58 
 

(b)	 	

Figure	4.3:	(a)	is	the	frequency	of	precipitation	among	all	atmospheric	inputs	for	each	

model.	Combined,	NNCAM	and	SPCAM	have	a	greater	frequency	of	high-precipitation	

events	than	CAM,	but	the	mean	is	lower.	(b)	shows	the	monthly	mean	rainfall	of	the	

ensembles	for	each	model,	including	the	average	for	each	monthly	mean	of	the	5	year	

coupled	simulation.	The	coupled	simulation	exhibits	the	seasonal	behavior	of	the	Amazon,	

with	wet	and	dry	seasons.	The	precipitation	of	the	aquaplanet	simulations	are	seasonally	

invariant,	by	design.	The	thin	line	is	the	mean	precipitation	overall	for	the	coupled	

simulation.	

	

	 That	NNCAM’s	precipitation	pattern	so	closely	matches	SPCAM	comes	a	surprise	

given	CBRAIN’s	performance	metrics	in	Figure	3.6	and	characteristic	low	boundary	layer	

variability,	as	in	this	configuration	precipitation	is	directly	predicted	during	NNCAM’s	

parameterization	step.	However,	NNCAM’s	other	atmospheric	input	means	and	variances	

are	also	within	reasonable	range	of	SPCAM.	Time	series	of	the	monthly	means	for	CAM,	

SPCAM,	NNCAM,	and	the	coupled	simulation	are	shown	in	Figue	4.4,	and	suggest	that,	

depending	on	its	sensitivity,	CLM	land	response	might	be	expected	to	be	very	similar	



59 
 

between	NNCAM	and	SPCAM,	although	the	complex	CN	interactions	of	the	CLM	make	it	

impossible	to	know	without	empirical	tests.	

	

(a)	 	

	

(b)	 	



60 
 

(c)	 	

(d)	 	

Figure	4.4:	Monthly	means	of	(a)	downwelling	solar	flux,	(b)	near-surface	specific	

humidity,	(c)	near-surface	temperature,	and	(d)	wind	magnitude	for	each	model	ensemble,	

plus	the	average	of	the	monthly	means	of	the	5-year	coupled	CAM	simulation.	The	thin	line	

in	each	figure	is	the	overall	mean	of	the	benchmark	coupled	simulation.	The	surface	wind	

speeds	in	the	aquaplanet	simulations	are	fast	due	to	the	absence	of	surface	friction	from	

mountains	and	vegetation.	

	

	 Looking	at	Figure	4.4a	and	4.4b,	the	solar	flux	and	humidity	values	for	the	

aquaplanet	simulations	are	within	the	upper	and	lower	bounds	of	the	coupled	simulation,	



61 
 

and	in	Figure	4.4c	temperature	values	for	the	aquaplanet	simulations	are	representative	of	

the	cooler	wet	season	of	the	Amazon,	which	are	more	promising	signs	that	the	atmospheric	

forcing	simulations	do	not	have	unreasonable	values	for	the	selected	land	cell.	The	wind	

values	in	4.4d,	however,	are	markedly	different.	This	is	to	be	expected	due	to	differences	in	

land	surface	versus	ocean	surface.	Given	that	the	temperatures	of	the	models	are	not	in	any	

kind	of	extremes,	and	heat	stress	does	not	have	an	effect	on	the	PFTs	of	the	model,	we	

could	expect	the	higher	mean	temperatures	of	SPCAM	and	NNCAM	to	have	no	negative	

impact	on	the	vegetation.	In	a	coupled	simulation,	feedback	effects	could	be	expected	from	

higher	temperatures,	but	with	atmospheric	forcing	this	would	not	be	the	case.	The	wind	

speed	values	could	have	a	large	effect	on	soil	evaporation.	However,	evapotranspiration	as	

a	whole	will	likely	be	dominated	by	transpiration	(Chang	et	al.,	2018),	which	is	limited	by	

the	raw	photosynthetic	activity	of	the	PFTs,	in	turn	constrained	by	available	net	radiation	

and	subsurface	soil	moisture.		

Based	on	these	atmospheric	inputs,	it	is	logical	to	predict	that	the	gross	primary	

productivity	(GPP)	of	SPCAM	and	NNCAM	should	be	systematically	higher	than	CAM	purely	

due	to	its	much	higher	downwelling	solar	flux,	which	determines	the	amount	of	light	

available	for	photosynthesis.	Concurrently,	net	ecosystem	exchange	(NEE)	for	SPCAM	and	

NNCAM	would	be	a	stronger	carbon	sink	than	CAM.	While	precipitation	does	impact	

photosynthetic	activity,	the	lack	of	feedback	in	the	experiment	would	lead	one	to	expect	

that	the	differences	in	precipitation	among	the	models	appear	subtle	enough	that	they	

would	not	differentiate	the	GPP	or	NEE.	

	

Results	and	Discussion:	CAM	vs	SPCAM	vs	NNCAM	



62 
 

	 Figures	4.5a	and	4.5b	display	the	5	year	time	series	of	the	monthly	mean	GPP	and	

NEE	of	the	CLM	response	to	the	three	atmospheric	forcing	ensembles,	with	reference	to	the	

coupled	simulation.	The	ensemble	mean	and	standard	errors	are	indicated	with	lines	and	

shading.	The	first	and	most	important	result	to	note	is	that	beginning	at	about	a	year	and	a	

half	into	the	simulations,	the	SPCAM	and	NNCAM	tropical	mean	GPP	begins	to	diverge	

detectably	to	a	lower	equilibrium	than	simulated	by	CAM	forcing.	By	the	end	of	the	5	year	

simulation,	there	is	95%	confidence	that	GPP	and	NEE	for	SPCAM	and	NNCAM	are	lower	

than	CAM.	The	null	hypothesis	is	rejected	for	statistically	insignificant	difference	between	

SPCAM	and	CAM,	and	NNCAM	and	CAM.	This	supports	the	alternative	hypothesis	that	the	

land	response	to	NNCAM	forcing	is	statistically	similar	to	that	of	the	SPCAM	forcing.	

Moreover,	even	the	unsteady	details	(rate	of	change	and	intraseasonal	fluctuations)	of	the	

slow	drift	to	the	SP-forced	GPP	attractor	are	captured	by	the	NN	emulator	of	SP.	

Hypotheses	2	and	3	outlined	at	the	beginning	of	this	chapter	must	be	rejected,	as	the	land	

response,	and	in	particular	the	ecosystem	response,	to	SPCAM	and	NNCAM	maintain	the	

similarity	carried	over	from	the	atmospheric	simulations.	The	skill	of	NNCAM	is	maintained	

despite	the	relative	poor	fit	noted	for	details	of	the	boundary	layer	by	Gentine	et	al.	2018,	

and	the	land	model	ran	successfully	even	under	the	noise-prone	NNCAM	forcing,	i.e.	

passing	the	model’s	carbon,	water,	and	energy	flux	checks	despite	no	preprocessing	and	

the	occurrence	of	unrealistic	values	at	a	percentage	of	its	timesteps,	particularly	solar	

radiation.	For	example,	examining	the	NNCAM	atmospheric	forcing	ensemble	mean	at	each	

time	step	reveals	that	solar	radiation	is	slightly	negative	13%	of	the	time	(with	a	minimum	

of	-2.3	W/m2),	but	it	is	not	significant	enough	at	any	particular	instance	to	fail	the	model’s	

energy	checks.	



63 
 

	

	

	

Figure	4.5:	(a)	GPP	and	(b)	NEE	monthly	means	for	the	ensemble	of	5	year	simulations.	

The	thicker	lines	are	the	mean	values,	and	the	thinner	surrounding	lines	with	fill	are	the	

monthly	mean	standard	error	at	each	timestep—that	is,	the	standard	error	was	calculated	

for	every	timestep	and	averaged	together	monthly,	instead	of	calculating	the	standard	

error	of	the	monthly	means	themselves.	The	CAM	simulation	has	remarkably	similar	values	

to	the	coupled	simulation,	and	SPCAM	and	NNCAM	are	not	in	unreasonable	ranges,	so	

Hypothesis	1	from	earlier	in	Chapter	4	must	be	rejected.	



64 
 

	

	 It	is	visually	apparent	in	Figure	4.5,	but	measuring	the	differences	in	time	series	

through	standard	techniques	is	an	important	task	for	data	concerning	ecosystem	dynamics	

(Lhermitte	et	al.,	2011).	Appendix	A	details	numerical	tests	measuring	whether	the	time	

series	of	NNCAM	and	SPCAM	are	more	similar	to	each	other	than	they	are	to	CAM	on	both	a	

timestep	basis	and	pattern-matching	basis.	The	results	of	the	time	series	comparison	for	

NEE	and	GPP	among	the	models	are	shown	in	Table	4.1.	No	matter	which	technique	is	used,	

SPCAM	and	NNCAM	are	more	similar	to	each	other	than	to	CAM,	as	expected	based	on	

Figure	4.5.		

	

	

Table	4.2:	RMSE	and	dynamic	time	warping	among	models	for	GPP	and	NEE	before	and	

after	normalization.	Lower	scores	indicate	greater	similarity.	As	can	be	seen,	SPCAM	and	

NNCAM	are	more	similar	to	each	other	than	to	CAM	regardless	of	the	time	series	

measurement	used.	For	more	detail	on	the	calculation	of	these	values,	see	Appendix	A.	

	



65 
 

	 A	look	at	the	data	is	warranted	to	determine	why	NEE	increases	(GPP	decreases)	for	

SPCAM	and	NNCAM,	relative	to	CAM.	This	result	is	contrary	to	our	original	expectation	

based	on	the	working	hypothesis	that	the	effects	of	SP	on	solar	flux	would	be	the	greatest	

factor.	Given	that	the	cause	must	be	due	to	a	difference	in	atmospheric	forcing,	the	

atmospheric	variable	that	is	a	likely	candidate	must	be	one	that	effects	slow	changing	

variables	or	has	compound	effects	over	time,	such	as	temperature	and	precipitation	

(despite	precipitation’s	apparently	subtle	drop	relative	to	CAM	noted	earlier).	Figure	4.6	

shows	the	time	series	for	each	model	for	photosynthesis.	The	mean	for	SPCAM	and	NNCAM	

are	lower	after	half	a	year,	but	at	a	year	and	a	half	they	are	markedly	lower.	Photosynthesis	

is	a	primary	driver	of	GPP,	and	so	the	cause	in	GPP	difference	among	models	can	be	

attributed	to	the	difference	seen	in	the	time	series	of	photosynthesis.	

	

	

Figure	4.6:	Time	series	for	photosynthesis.	Thicker	lines	indicate	mean	values,	and	the	

thinner	surrounding	lines	with	fill	of	the	same	color	are	the	monthly	mean	standard	error	

at	each	timestep.	

	



66 
 

	 To	better	illustrate	some	of	the	complexities	of	model	interactions,	Figure	4.7	

simplifies	some	of	the	complex	biogeochemical	relationships	that	are	important	to	GPP	and	

NEE	within	CLM.	Provided	there	are	no	limiting	nutrients,	soil	moisture	along	with	solar	

radiation	(not	shown)	drives	photosynthesis	and	GPP.	The	more	photosynthesis	occurs,	the	

more	transpiration	exists,	which	cools	down	the	land	and	vegetation	as	latent	heat	is	

carried	into	the	atmosphere.	The	overall	lower	mean	precipitation	of	SPCAM	and	NNCAM	

may	be	the	cause	of	lower	amounts	of	GPP	over	time	(hereafter	I	will	only	refer	to	SPCAM,	

as	the	relationship	between	SPCAM	and	CAM	has	been	shown	in	this	chapter	to	be	

statistically	similar	to	that	of	NNCAM	and	CAM).	Tropical	trees	in	the	Amazon	have	deep	

roots	that	extend	over	8m	into	the	soil;	these	roots	are	used	to	access	deep	soil	moisture	

during	the	dry	season	(Nepstad	et	al.,	1994;	Huete	et	al.,	2006).	A	critical	breakpoint	in	

precipitation	has	been	observed	in	previous	Amazonian	model	simulations	that	is	required	

to	recharge	deep	soil	moisture	(da	Costa	et	al.,	2010;	Baker	et	al.,	2009;	Ahlström	et	al.,	

2017).	If	not	enough	rainfall	occurs	during	the	wet	season	the	trees	run	out	of	water	and	

can	have	high	rates	of	mortality	(Allen	et	al.,	2010).	It	should	be	noted,	however,	that	

changes	in	Amazon	rainfall	differ	among	models	(Li	et	al.,	2006;	Powell	et	al.,	2013),	and	

observationally	the	Amazon	is	more	robust	to	drought	than	models	predict	(Saleska	et	al.,	

2007).	

	



67 
 

	

Figure	4.7:	An	overview	of	part	of	the	complex	interactions	among	variables	in	CLM.	The	

plus	signs	indicate	a	positive	relationship	occurring	in	the	direction	of	the	arrows,	the	

minus	signs	indicate	an	inverse	relationship	in	the	direction	of	the	arrows,	and	arrows	

without	a	plus	or	minus	sign	indicate	that	there	can	be	varying	effects.	The	blue,	orange,	

and	green	variable	colors	group	them	roughly	into	moisture,	fire,	and	vegetation	

categories.	Soil	moisture,	and	thus	precipitation,	is	a	major	component	in	this	graph,	as	it	

has	direct	and	indirect	impacts	on	all	other	variables.	

	

	 If	the	deep	soil	moisture	of	SPCAM-forced	CLM	simulations	slowly	depletes	but	

CAM’s	does	not,	then	soil	moisture	limitations	may	have	acted	to	lower	photosynthesis,	and	

thus	GPP.	This	is	confirmed	by	analysis	of	the	volumetric	soil	water	concentrations	along	

increasing	soil	depths	in	Figure	4.8a	and	Figure4.8b.	Surface	soil	concentrations	vary	little	

from	year	to	year,	but	the	water	concentration	at	lower	depths	drift	very	slowly	to	

systematically	drier	conditions	under	our	idealized	SPCAM	forcing.	By	the	end	of	year	2,	



68 
 

deep	soil	moisture	declines	to	even	lower	levels	than	the	coupled	simulation’s	seasonal	

minimum,	which	supports	the	hypothesis	that	deep	soil	moisture	may	be	a	limitation	on	

photosynthesis.	However,	4.8c	reveals	that	overall	the	difference	in	soil	moisture	between	

SPCAM	and	CAM	remains	relatively	constant	from	year	to	year,	which	might	indicate	that	

simply	less	soil	moisture	overall,	and	not	necessarily	deep	soil	moisture,	is	the	cause	of	

lower	GPP.	The	variance	between	CAM	and	SPCAM	precipitation	throughout	the	simulation	

is	greater	than	that	of	the	combined	effects	of	evapotranspiration	(ET),	runoff,	and	

drainage,	shown	in	Figure	4.8d.	Nothing	in	the	data	indicates	that	the	combined	ET,	runoff,	

and	drainage	rate	is	relative	to	the	level	of	mean	precipitation	differently	between	SPCAM	

and	CAM,	and	so	provided	the	soil	moisture	is	the	limiting	factor	on	photosynthesis,	the	

lower	mean	precipitation	itself	is	the	driving	factor	for	the	difference	seen	in	GPP.		

	

(a)	 	



69 
 

(b)	 	

(c)	 	

(d)	 	



70 
 

Figure	4.8:	Volumetric	soil	water	is	displayed	at	(a)	the	soil	surface,	(b)	2.8m,	and	(c)	for	

the	soil	column	as	a	whole.	The	meaning	of	the	different	colors	and	lines	in	the	time	series	

is	the	same	as	for	Figure	4.5.	Surface	soil	water	for	all	aquaplanet	models	is	relatively	

constant	year	to	year,	but	the	water	at	increased	depths	decreases	more	rapidly	for	SPCAM	

than	CAM	in	the	first	year,	and	for	SPCAM	becomes	lower	than	even	the	seasonal	minimum	

of	the	coupled	run	throughout	the	5	year	simulation.	The	water	content	at	lower	model	

levels	than	2.8m	exist	in	negligible	concentrations	throughout	the	simulation.	(d)	shows	

that	the	difference	between	models	for	precipitation	rate	is	greater	than	that	of	the	

combined	evapotranspiration,	runoff,	and	drainage	rates.	

	

	 Normally	the	divergent	behavior	seen	in	NEE	in	this	experiment	might	be	easily	

attributed	to	differences	in	the	GPP	levels,	as	GPP	typically	drives	interannual	variability	in	

NEE	(Jung	et	al.,	2011).	However,	the	difference	in	GPP	cannot	fully	explain	the	large	

differences	in	NEE	shown	each	simulation	year,	which	also	appear	to	increase	in	severity	

over	time.	A	compounding	change	in	the	ecosystem	must	be	taking	place.	NEE	includes	land	

use	change,	crop	harvest,	and	fire	events.	Since	land	use	change	is	disabled	during	the	

course	of	the	simulation,	and	none	of	the	PFTs	are	crops,	fire	is	a	likely	suspect.	While	fires	

are	not	commonly	observed	in	the	Amazon,	they	play	an	important	role	in	ecosystem	

dynamics;	for	example,	the	cycle	of	infrequent	fires	during	particularly	dry	seasons	in	the	

Amazon	enables	greater	biodiversity	(Goldammer,	1992).	In	the	case	of	this	experiment,	

fires	may	or	may	not	be	even	more	likely	under	the	aquaplanet	atmospheric	forcing	

scenario	compared	to	coupled	simulations,	which	are	already	more	frequent	under	the	

simulated	fire	regime	of	CLM4	than	seen	in	observations	(Thonicke	et	al.,	2001).		



71 
 

	 The	fire	regime	in	CLM4	uses	temperature,	organic	litter	quantity,	and	litter	

moisture	as	factors	in	determining	if	a	fire	event	begins,	and	the	subsequent	effects	of	the	

fire	are	driven	primarily	by	the	length	of	fire	season	calculated	at	each	timestep.	Knowing	

this,	that	there	might	be	a	difference	in	fire	probability	between	CAM	and	SPCAM	makes	

sense	when	looking	at	the	atmospheric	forcing	differences	between	models:	the	lower	soil	

moisture	and	higher	temperature	may	be	different	enough	to	impact	the	number	of	fires	

occurring	between	SPCAM	and	CAM.	

	 The	formula	for	determining	the	probability	of	one	fire	per	day	in	a	land	cell	is	

𝑝(𝑚) = 	 𝑒@bc
d
de

f
g

	

where	m	is	the	daily	moisture	in	the	upper	soil	layer	and	me	is	the	“moisture	of	extinction”	

(Oleson	et	al.,	2010;	Thonicke	et	al.,	2001).		The	moisture	of	extinction	is	the	threshold	of	

fuel	moisture	above	which	fire	cannot	spread,	and	is	set	at	a	constant	30%	for	the	99.9%	

majority	of	PFTs	on	the	land	cell.	As	long	as	the	temperature	is	high	enough	and	enough	

fuel	is	present,	a	fire	will	occur	on	any	given	day	of	the	simulation	with	probability	p(m).	

The	fraction	of	area	of	land	cell	burnt	in	a	fire	event	is	related	to	the	yearly	sum	of	daily	

probabilities	of	fire	occurrence,	and	mortality	for	the	tropical	trees	(99.9%	of	the	land	cell)	

in	the	simulation	is	88%	of	the	fraction	burned.		

	 Figure	4.9a	reveals	that	fires	are	much	more	significant	in	the	SPCAM	simulations	

than	CAM	simulations.	Because	the	temperature	on	any	given	calendar	day	of	the	

simulation	is	the	same	every	year,	and	for	all	ensembles	a	fire	is	occurring,	we	can	conclude	

that,	at	least	for	a	fraction	of	the	cases	across	the	112	simulation	ensemble,	lower	

temperature	is	not	preventing	fires	in	the	CAM	simulations.	Additionally,	because	the	fuel	

load	(litter)	is	initially	the	same	for	every	simulation,	fuel	load	limitation	is	not	the	cause	of	



72 
 

difference	either.	In	cases	where	lower	temperature	is	not	preventing	fires	in	the	CAM	

simulations,	the	primary	cause	therefore	must	be	mainly	due	to	differences	in	soil	

moisture.	As	the	time	series	progresses,	the	soil	moisture	slowly	but	steadily	declines	for	

both	CAM	and	SPCAM,	and	the	litter	from	fires	increase.	Both	of	these	factors	must	

contribute	to	the	increasing	severity	of	the	fires	seen.	4.9b	reveals	that	absent	fire	NEE	is	

much	more	similar	between	the	simulations,	but	it	is	still	larger	for	SPCAM,	which	is	

possibly	due	to	lower	overall	photosynthetic	activity	per	PFT	from	reduced	soil	moisture.	

Finally,	4.9c	confirms	that	the	total	ecosystem	carbon	for	SPCAM	is	decreasing	compared	to	

CAM	and	the	coupled	simulation.	With	this	evidence,	the	large	difference	seen	in	GPP	from	

Figure	4.4	is	almost	certainly	determined	by	the	fact	that	there	is	simply	less	and	less	

vegetation	in	the	SPCAM	simulations	than	in	CAM	due	to	fire.	

	

(a)	 	



73 
 

(b)	 	

	

(c)	 	

Figure	4.9:	(a)	total	vegetative	carbon	loss	due	to	fire,	(b)	net	ecosystem	exchange	minus	

the	loss	of	carbon	due	to	fire,	and	(c)	total	ecosystem	carbon.	The	thick	lines	are	the	means	

of	the	simulations	and	the	thin	lines	are	the	standard	error	values	surrounding	the	mean.	

The	coupled	simulation	data	is	not	shown	for	(a)	and	(b),	but	(c)	reveals	that	CAM’s	total	

ecosystem	carbon	is	not	significantly	different	from	the	coupled	simulation	after	5	years	

starting	from	the	same	initial	conditions.	

	



74 
 

	 The	95%	confidence	that	GPP	and	NEE	for	SPCAM	and	NNCAM	are	lower	than	CAM,	

and	the	rejection	of	the	null	hypothesis	for	statistically	insignificant	differences	between	

SPCAM/NNCAM	and	CAM	is	remarkable	given	the	sensitivity	of	the	simulated	

biogeochemistry	of	CLM.	That	the	atmospheric	forcing	from	an	online	NNCAM	aquaplanet	

simulation	would	emulate	SPCAM	enough	to	produce	the	same	land	response	and	that	the	

three	null	hypothesis	stated	before	the	experimental	results	would	be	rejected	is	not	an	

obvious	conclusion	at	the	outset.	It	was	possible	that	none	of	the	atmospheric	forcing	

variables	could	have	been	significantly	similar	enough	between	NNCAM	and	SPCAM	to	

produce	similar	behavior,	which	would	have	been	reasonable	to	predict	given	the	variances	

seen	from	modern	ESM	cloud	parameterizations.	This	is	even	further	impressive	

considering	the	arguably	most	important	atmospheric	forcing	variable	in	the	simulations,	

precipitation,	was	directly	computed	at	each	time	step	by	the	neural	network	

parameterization.	As	a	last	note,	that	mean	precipitation	levels	played	such	an	important	

role	in	the	outcome	of	the	simulations	further	cements	the	significance	that	SP	has	in	

predicting	precipitation	over	traditional	cloud	parameterizations	in	regard	to	its	impact	on	

the	biosphere.	

	

	 		

	

	 	



75 
 

CHAPTER	5	

Summary	and	Conclusions	

	 Ecosystem	dynamics	are	limited	by	the	complexity	of	the	models	that	simulate	

them.	For	example,	despite	the	extreme	biodiversity	of	the	Amazon,	biodiversity	in	CLM4	is	

limited	to	16	plant	functional	types,	and	a	number	of	processes	are	heavily	simplified	and	

parameterized,	such	as	the	value	for	the	moisture	of	extinction	for	all	woody	plants	being	

identical.	However,	more	modern	implementations	of	CLM	are	increasing	their	complexity	

(Lawrence	et	al.,	2018).	By	contrast,	even	though	the	model	complexity	exists,	the	

atmospheric	component	of	ESMs	are	limited	by	the	computational	expense	required	to	

explicitly	calculate	physical	processes	at	high	enough	resolution	to	accurately	capture	the	

effects	of	those	processes,	such	as	deep	moisture	convection,	cloud	turbulence,	and	

microphysics.	Traditionally	the	solution	to	the	low	resolution	ESM	problem	has	been	

through	parameterization,	but	advances	in	technology	and	exploration	of	machine	learning	

techniques	are	promising	areas	of	progress	in	addressing	the	computational	limitations	of	

atmospheric	climate	simulations	(Krasnopolsky	&	Fox-Rabinovitz,	2005;	O’Gorman	&	

Dwyer,	2018;	Schneider	et	al.,	2017).	Solving	the	computational	limitation	challenge	of	

ESMs	is	critical	to	predictive	capability	of	land	models	which	are	so	dependent	on	the	

atmospheric	conditions	they	is	subject	to.		

	 CRMs	have	been	shown	to	improve	prognostic	atmospheric	simulations,	and	this	

paper	explored	methods	of	addressing	the	computational	complexity	of	utilizing	CRMs	as	

SP	within	an	ESM.	Chapter	2	illustrated	the	technical	challenges	of	implementing	legacy	

CRM	code	on	cutting-edge	hardware,	both	from	a	refactoring	standpoint	and	from	the	

perspective	of	the	ever-moving	goalpost	of	advanced	computing	hardware.	Chapters	3	and	



76 
 

4	presented	evidence	of	the	efficacy	of	training	neural	networks	on	CRM	simulations	and	

using	them	as	parameterizations	within	CAM	simulations,	as	well	as	looking	at	their	

efficacy	in	emulating	SPCAM	when	applied	to	CLM	in	an	idealized	experimental	setting.	

	 Utilizing	neural	networks	within	the	context	of	climate	modeling	has	shown	recent	

successes	(Brenowitz	&	Bretherton,	2018;	Gentine	et	al.,	2018;	Rasp	et	al.,	2018).	However,	

as	seen	in	this	paper	the	difficulty	in	enabling	a	successful	NNCAM	run	in	even	an	idealized	

aquaplanet	simulation	highlights	the	challenge	neural	networks	face	in	being	used	in	online	

climate	simulations	that	begin	to	approach	the	more	realistic	settings	required	for	

operational	climate	prediction.	It	is	apparent	that	thoughtful	design	is	essential	for	both	NN	

skill	and	integration	with	ESMs.	Training	NNs	on	SP	is	an	attractive	candidate	for	NN	

implementation,	as	SP	improves	the	accuracy	of	many	atmospheric	processes	and	land-

atmosphere	interactions	(Sun	&	Pritchard,	2016)	at	the	same	time	that	its	computational	

expense	is	a	major	roadblock.	CBRAIN	and	NNCAM	have	shown	that	NN	representation	of	

SP	is	possible,	and	the	major	challenges	ahead	are	likely	in	design,	engineering,	and	

implementation.		

	 A	current	and	future	issue	that	is	bound	to	plague	a	NNCAM	model	is	generalization.	

NNCAM	did	not	generalize	very	well	outside	of	its	training	bounds	(see	also	Rasp	et	al.	

2018).	This	is	unsurprising	as	it	is	common	for	a	NN	to	overfit	its	training	data	and	

generalize	poorly	to	real-world	data.	Given	the	complexity	of	the	Earth	System,	any	NN	will	

at	some	point	be	given	data	it	has	never	seen	before.	Additionally,	ESMs	are	used	for	

experiments	in	predicting	scenarios	under	a	large	variety	of	conditions	that	may	or	may	

not	exist.	It	would	be	difficult	to	train	a	NN	based	on	every	possible	scenario,	and	in	the	

case	it	were	done	it	is	likely	that	the	NN	would	tend	to	predict	the	mean	state.	Scientists	



77 
 

tend	to	underestimate	the	likelihood	of	occurrence	and	impact	of	extreme	events,	and	the	

utilization	of	a	poorly	generalized	NN	would	only	compound	the	matter.	

	 That	ESMs	are	intended	among	other	things	to	study	climate	change	makes	

apparent	the	issue	that	training	a	neural	network	on	current	predictions	and	observations	

may	not	lead	to	good	long-term	predictions.	A	neural	network	trained	to	be	able	to	

recognize	the	numbers	0-9	can	be	expected	to	work	as	well	in	the	future	as	it	does	

currently,	understanding	that	0-9	will	look	much	the	same	in	50	years	as	it	does	now;	but	a	

climate	model	using	a	neural	network	trained	on	current	atmospheric	simulations	and	

observations	cannot	be	automatically	trusted	to	make	a	trusted	50-year	climate	prediction.	

The	idea	of	training	the	neural	network	while	the	simulation	is	taking	place	is	a	tempting	

idea,	but	it	would	be	rather	prone	to	overfitting	since	it	would	simply	be	training	on	data	it	

produced	itself,	and	further,	it	would	lose	out	on	the	advantage	of	being	able	to	train	on	

highly	expensive	data	simulations	up	front.		

	 Despite	all	challenges,	climate	prediction	models	that	makes	use	of	machine	

learning	techniques	such	as	NNs	is	likely	to	occur	in	the	near	future.	The	advantages	of	

machine	learning	approaches,	explored	here	as	the	ability	to	perform	higher-resolution	

simulations	without	the	computational	burden,	outweigh	the	difficulty	in	research	and	

development.	NNCAM’s	SP-parameterization	is	20	times	faster	than	SP,	and	even	shows	

significant	improvement	in	speed	over	CAM’s	traditional	cloud	parameterization.	Added	to	

this	is	the	fact	that	no	matter	how	long	or	complicated	training	is,	the	online	

implementation	will	be	the	same	speed.	In	other	words,	a	cloud	process	representation	

scheme	far	more	complex,	realistic,	and	computationally	expensive	than	even	SP	could	be	

used	for	training	and	the	online	speed	of	cloud	parameterization	within	NNCAM	would	be	



78 
 

the	same.	This	underscores	the	real	potential	of	this	approach.	Training	a	NN	on	both	

observations	and	high	resolution	simulations	is	an	attractive	idea	posed	by	Schneider	et	al.,	

2017,	and	likely	the	best	next	step	to	be	taken	in	improving	NN	parameterizations	within	

an	ESM	alongside	advances	in	NN	design,	features,	preprocessing,	and	implementation,	

which	would	be	improved	collectively	by	each	research	team	implementing	NN’s	in	their	

models.	How	powerful	and	to	what	level	of	widespread	approval	is	required	for	NN-

enhanced	simulations	of	the	ecosystem	and	atmosphere	to	achieve	the	level	of	

international	acceptance	of,	for	example,	the	IPCC	remains	an	open	question.	

	 Having	high	resolution	cloud-resolving	simulations	is	critical	to	understanding	the	

complex	feedback	interactions	between	the	land	and	atmosphere,	particularly	with	regard	

to	the	biosphere	where	the	steady	states	of	vegetative	processes	depend	on	the	

representation	of	atmospheric	radiation,	thermodynamics,	and	the	hydrologic	and	carbon	

cycles.	Coupling	the	land	with	an	NN-integrated	atmospheric	model	such	as	NNCAM	would	

better	enable	higher-resolution	ecosystem	dynamics	experiments	and	more	fully	realize	

the	potential	of	using	machine	learning	in	Earth	System	modeling.		

	

	 	



79 
 

REFERENCES	

Abadi,	M.,	Barham,	P.,	Chen,	J.,	Chen,	Z.,	Davis,	A.,	Dean,	J.,	…	Brain,	G.	(2016).	TensorFlow:	A	

System	for	Large-Scale	Machine	Learning	TensorFlow:	A	system	for	large-scale	

machine	learning.	In	12th	USENIX	Symposium	on	Operating	Systems	Design	and	

Implementation	(OSDI	’16)	(pp.	265–284).	https://doi.org/10.1038/nn.3331	

Ahlström,	A.,	Canadell,	J.	G.,	Schurgers,	G.,	Wu,	M.,	Berry,	J.	A.,	Guan,	K.,	&	Jackson,	R.	B.	

(2017).	Hydrologic	resilience	and	Amazon	productivity.	Nature	Communications,	8(1),	

1–9.	https://doi.org/10.1038/s41467-017-00306-z	

Allen,	C.	D.,	Macalady,	A.	K.,	Chenchouni,	H.,	Bachelet,	D.,	McDowell,	N.,	Vennetier,	M.,	…	

Cobb,	N.	(2010).	A	global	overview	of	drought	and	heat-induced	tree	mortality	reveals	

emerging	climate	change	risks	for	forests.	Forest	Ecology	and	Management,	259(4),	

660–684.	https://doi.org/10.1016/j.foreco.2009.09.001	

Baker,	I.	T.,	Prihodko,	L.,	Denning,	A.	S.,	Goulden,	M.,	Miller,	S.,	&	Da	Rocha,	H.	R.	(2009).	

Seasonal	drought	stress	in	the	amazon:	Reconciling	models	and	observations.	Journal	

of	Geophysical	Research:	Biogeosciences,	114(1),	1–10.	

https://doi.org/10.1029/2007JG000644	

Baxter,	S.	M.,	Day,	S.	W.,	Fetrow,	J.	S.,	&	Reisinger,	S.	J.	(2006).	Scientific	software	

development	is	not	an	oxymoron.	PLoS	Computational	Biology,	2(9),	0975–0978.	

https://doi.org/10.1371/journal.pcbi.0020087	

Benedict,	J.	J.,	&	Randall,	D.	A.	(2009).	Structure	of	the	Madden–Julian	Oscillation	in	the	

Superparameterized	CAM.	Journal	of	the	Atmospheric	Sciences,	66(11),	3277–3296.	

https://doi.org/10.1175/2009JAS3030.1	

Bonan,	G.	B.	(2008).	Forests	and	Climate	Change :	Forcings,	Feebacks,	and	the	Climate	



80 
 

Benefits	of	Forests.	Science,	320(June),	1444–1450.	

https://doi.org/10.1126/science.1155121	

Bonan,	G.	(2015).	Ecological	climatology:	concepts	and	applications.	Cambridge	University	

	 Press.		

Brenowitz,	N.	D.,	&	Bretherton,	C.	S.	(2018).	Prognostic	Validation	of	a	Neural	Network	

Unified	Physics	Parameterization.	Geophysical	Research	Letters,	45(12),	6289–6298.	

https://doi.org/10.1029/2018GL078510	

Chambers,	J.	Q.,	Higuchi,	N.,	Schimel,	J.	P.,	Ferreira,	L.	V,	&	Melack,	J.	M.	(2000).	

Decomposition	and	carbon	cycling	of	dead	trees	in	tropical	forests	of	the	central	

Amazon.	Oecologia,	122(3),	380–388.	https://doi.org/10.1007/s004420050044	

Chang,	K.	Y.,	Paw	U,	K.	T.,	&	Chen,	S.	H.	(2018).	The	importance	of	carbon-nitrogen	

biogeochemistry	on	water	vapor	and	carbon	fluxes	as	elucidated	by	a	multiple	canopy	

layer	higher	order	closure	land	surface	model.	Agricultural	and	Forest	Meteorology,	

259(April),	60–74.	https://doi.org/10.1016/j.agrformet.2018.04.009	

Chapelle,	O.,	Schölkopf,	B.,	&	Zien,	A.	Semi-Supervised	Learning.	

Chen,	J.,	Chen,	B.,	Black,	T.	A.,	Innes,	J.	L.,	Wang,	G.,	Kiely,	G.,	…	Wohlfahrt,	G.	(2013).	

Comparison	of	terrestrial	evapotranspiration	estimates	using	the	mass	transfer	and	

Penman-Monteith	equations	in	land	surface	models.	Journal	of	Geophysical	Research:	

Biogeosciences,	118(4),	1715–1731.	https://doi.org/10.1002/2013JG002446	

Chollet,	F.	(2015).	Keras.	

Cox,	P.	M.,	Betts,	R.	A.,	Jones,	C.	D.,	Spall,	S.	A.,	&	Totterdell,	I.	J.	(2000).	Acceleration	of	global	

warming	due	to	carbon-cycle	feedbacks	in	a	coupled	climate	model	(vol	408,	pg	184,	

2000).	Nature,	408(6813),	750.	https://doi.org/10.1038/35041539	



81 
 

da	Costa,	C.	L.,	Galbraith,	D.,	Almeida,	S.,	Tanaka	Portela,	B.	T.,	da	Costa,	M.,	de	Athaydes	

Silva	Junior,	J.,	…	Meir,	P.	(2010).	Effect	of	seven	years	of	experimental	drought	on	the	

aboveground	biomass	storage	of	an	eastern	Amazonian	rainforest.	New	Phytologist,	

187,	579–591.	https://doi.org/10.1111/j.1469-8137.2010.03309.x	

Fausett,	L.	V.	(1994).	Fundamentals	of	neural	networks:	architectures,	algorithms,	and	

	 applications	(Vol.	3).	Englewood	Cliffs:	Prentice-Hall.	

Flato,	G.,	Marotzke,	J.,	Abiodun,	B.,	Braconnot,	P.,	Chou,	S.	C.,	Collins,	W.,	…	Rummukainen,	M.	

(2013).	Evaluation	of	Climate	Models.	Climate	Change	2013:	The	Physical	Science	Basis.	

Contribution	of	Working	Group	I	to	the	Fifth	Assessment	Report	of	the	Intergovernmental	

Panel	on	Climate	Change,	741–866.	https://doi.org/10.1017/CBO9781107415324	

Friedlingstein,	P.,	Meinshausen,	M.,	Arora,	V.	K.,	Jones,	C.	D.,	Anav,	A.,	Liddicoat,	S.	K.,	&	

Knutti,	R.	(2014).	Uncertainties	in	CMIP5	climate	projections	due	to	carbon	cycle	

feedbacks.	Journal	of	Climate,	27(2),	511–526.	https://doi.org/10.1175/JCLI-D-12-

00579.1	

Gamma,	E.,	Helm,	R.,	Johnson,	R.,	&	Vlissides,	J.	(2002).	Design	Patterns	–	Elements	of	

Reusable	Object-Oriented	Software.	A	New	Perspective	on	Object-Oriented	Design,	334.	

https://doi.org/10.1093/carcin/bgs084	

Gentine,	P.,	Pritchard,	M.,	Rasp,	S.,	Reinaudi,	G.,	&	Yacalis,	G.	(2018).	Could	machine	learning	

break	the	convection	parameterization	deadlock?	Geophysical	Research	Letters,	1–10.	

https://doi.org/10.1029/2018GL078202	

Glorot,	X.,	&	Bengio,	Y.	(2010).	Understanding	the	difficulty	of	training	deep	feedforward	

neural	networks.	PMLR,	9,	249–256.	https://doi.org/10.1.1.207.2059	

Goodfellow,	I.,	Pouget-Abadie,	J.,	…	M.	M.-A.	in	neural,	&	2014,	U.	(2014).	Generative	



82 
 

adversarial	nets.	Advances	in	Neural	Information	Processing	Systems,	2672–2680.	

https://doi.org/10.1017/CBO9781139058452	

Grossberg,	S.	(2013).	Recurrent	neural	networks.	Scholarpedia,	8(2),	1888.	

Hochreiter,	S.,	&	Schmidhuber,	J.	(1997).	Long	Short-Term	Memory.	Neural	Computation,	

9(8),	1735–1780.	https://doi.org/10.1162/neco.1997.9.8.1735	

Huete,	A.	R.,	Didan,	K.,	Shimabukuro,	Y.	E.,	Ratana,	P.,	Saleska,	S.	R.,	Hutyra,	L.	R.,	…	Myneni,	

R.	(2006).	Amazon	rainforests	green-up	with	sunlight	in	dry	season.	Geophysical	

Research	Letters,	33(6),	2–5.	https://doi.org/10.1029/2005GL025583	

Hunt,	A.	(1999).	The	pragmatic	programmer.	Pearson	Education	India	

Jeffers,	J.,	Reinders,	J.,	&	Sodani,	A.	(2016a).	Knights	Landing	architecture.	In	Intel	Xeon	Phi	

Processor	High	Performance	Programming	(2nd	ed.,	pp.	63–84).	Elsevier	Inc.	

https://doi.org/10.1016/B978-0-12-809194-4.00004-1	

Jeffers,	J.,	Reinders,	J.,	&	Sodani,	A.	(2016b).	Programming	MCDRAM	and	Cluster	modes.	In	

Intel	Xeon	Phi	Processor	High	Performance	Programming	(2nd	ed.,	pp.	25–61).	Elsevier	

Inc.	https://doi.org/10.1016/B978-0-12-809194-4.00003-X	

Jeffers,	J.,	Reinders,	J.,	&	Sodani,	A.	(2016c).	Weather	research	and	forecasting	(WRF).	In	

Intel	Xeon	Phi	Processor	High	Performance	Programming	(pp.	499–510).	

https://doi.org/10.1016/B978-0-12-809194-4.00022-3	

Jung,	M.,	Reichstein,	M.,	Margolis,	H.	A.,	Cescatti,	A.,	Richardson,	A.	D.,	Arain,	M.	A.,	…	

Williams,	C.	(2011).	Global	patterns	of	land-atmosphere	fluxes	of	carbon	dioxide,	

latent	heat,	and	sensible	heat	derived	from	eddy	covariance,	satellite,	and	

meteorological	observations.	Journal	of	Geophysical	Research:	Biogeosciences,	116(3),	

1–16.	https://doi.org/10.1029/2010JG001566	



83 
 

Jung,	M.,	et	al.	(2010),	Recent	decline	in	the	global	land	evapotranspiration	trend	due	to	

	 limited	moisture	supply,	Nature,	467(7318),	951–954.	

Karpathy,	A.,	Toderici,	G.,	Shetty,	S.,	Leung,	T.,	Sukthankar,	R.,	&	Li,	F.	F.	(2014).	Large-scale	

video	classification	with	convolutional	neural	networks.	Proc.	IEEE	CVPR,	1725–1732.		

Katul,	G.	G.,	R.	Oren,	S.	Manzoni,	C.	Higgins,	and	M.	B.	Parlange	(2012),	Evapotranspiration:	

	 A	process	driving	mass	transport	and	energy	exchange	in	the	soil-plant-

	 atmosphere-climate	system,	Reviews	of	Geophysics,	50,	RG3002,	

	 doi:10.1029/2011RG000366	

https://doi.org/10.1109/CVPR.2014.223	

Keogh,	E.,	&	Ratanamahatana,	C.	A.	(2005).	Exact	indexing	of	dynamic	time	warping.	

Knowledge	and	Information	Systems,	7(3),	358–386.	https://doi.org/10.1007/s10115-

004-0154-9	

Khairoutdinov,	M.	F.,	&	Randall,	D.	A.	(2003).	Cloud	Resolving	Modeling	of	the	ARM	

Summer	1997	IOP:	Model	Formulation,	Results,	Uncertainties,	and	Sensitivities.	

Journal	of	the	Atmospheric	Sciences,	60(4),	607–625.	https://doi.org/10.1175/1520-

0469(2003)060<0607:CRMOTA>2.0.CO;2	

Khairoutdinov,	M.	(2014).	System	for	Atmospheric	Modeling	Version	6.10.6	User’s	Guide.		

Kianimajd,	A.,	Ruano,	M.	G.,	Carvalho,	P.,	Henriques,	J.,	Rocha,	T.,	Paredes,	S.,	&	Ruano,	A.	E.	

(2017).	Comparison	of	different	methods	of	measuring	similarity	in	physiologic	time	

series.	IFAC-PapersOnLine,	50(1),	11005–11010.	

https://doi.org/10.1016/j.ifacol.2017.08.2479	

Kiehl,	J.	T.,	Trenberth,	K.	E.,	Kiehl,	J.	T.,	&	Trenberth,	K.	E.	(1997).	Earth’s	Annual	Global	

Mean	Energy	Budget.	Bulletin	of	the	American	Meteorological	Society,	78(2),	197–208.	



84 
 

https://doi.org/10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2	

Kiyoshi	Kawaguchi.	A	multithreaded	software	model	for	backpropagation	neural	network	

	 applications.	2000.	

Kooperman,	G.	J.,	Pritchard,	M.	S.,	Burt,	M.	A.,	Branson,	M.	D.,	&	Randall,	D.	A.	(2016a).	

Impacts	of	cloud	superparameterization	on	projected	daily	rainfall	intensity	climate	

changes	in	multiple	versions	of	the	Community	Earth	System	Model.	Journal	of	

Advances	in	Modeling	Earth	Systems,	8,	1727–1750.	

https://doi.org/10.1002/2016MS000660	

Kooperman,	G.	J.,	Pritchard,	M.	S.,	Burt,	M.	A.,	Branson,	M.	D.,	&	Randall,	D.	A.	(2016b).	

Robust	effects	of	cloud	superparameterization	on	simulated	daily	rainfall	intensity	

statistics	across	multiple	versions	of	the	Community	Earth	System	Model.	Journal	of	

Advances	in	Modeling	Earth	Systems,	8(1),	140–165.	

https://doi.org/10.1002/2015MS000574	

Krasnopolsky,	V.	M.,	&	Fox-Rabinovitz,	M.	S.	(2005).	Complex	hybrid	models	combining	

deterministic	and	machine	learning	components	as	a	new	synergetic	paradigm	in	

numerical	climate	modeling	and	weather	prediction.	Proceedings	of	the	International	

Joint	Conference	on	Neural	Networks,	3,	1615–1620.	

https://doi.org/10.1109/IJCNN.2005.1556120	

Krishnamurthy,	V.,	&	Stan,	C.	(2015).	Simulation	of	the	South	American	climate	by	a	

coupled	model	with	super-parameterized	convection.	Climate	Dynamics,	44(9–10),	

2369–2382.	https://doi.org/10.1007/s00382-015-2476-6	

Lawrence,	D.	M.,	Oleson,	K.	W.,	Flanner,	M.	G.,	Thornton,	P.	E.,	Swenson,	S.	C.,	Lawrence,	P.	J.,	

…	Slater,	A.	G.	(2011).	Parameterization	improvements	and	functional	and	structural	



85 
 

advances	in	Version	4	of	the	Community	Land	Model.	Journal	of	Advances	in	Modeling	

Earth	Systems,	3(1),	n/a-n/a.	https://doi.org/10.1029/2011MS00045	

Lawrence,	D.	M.,	Thornton,	P.	E.,	Oleson,	K.	W.,	&	Bonan,	G.	B.	(2007).	The	Partitioning	of	

Evapotranspiration	into	Transpiration,	Soil	Evaporation,	and	Canopy	Evaporation	in	a	

GCM:	Impacts	on	Land–Atmosphere	Interaction.	Journal	of	Hydrometeorology,	8(4),	

862–880.	https://doi.org/10.1175/JHM596.1	

Lawrence	et	al.,	(2018).	Technical	Description	of	version	5.0	of	the	Community	Land	Model	

(CLM),	(February).	

Lhermitte,	S.,	Verbesselt,	J.,	Verstraeten,	W.	W.,	&	Coppin,	P.	(2011).	A	comparison	of	time	

series	similarity	measures	for	classification	and	change	detection	of	ecosystem	

dynamics.	Remote	Sensing	of	Environment,	115(12),	3129–3152.	

https://doi.org/10.1016/j.rse.2011.06.020	

Li,	W.,	Fu,	R.,	&	Dickinson,	R.	E.	(2006).	Rainfall	and	its	seasonality	over	the	Amazon	in	the	

21st	century	as	assessed	by	the	coupled	models	for	the	IPCC	AR4.	Journal	of	

Geophysical	Research	Atmospheres,	111(2),	1–14.	

https://doi.org/10.1029/2005JD006355	

Lipton,	Z.	C.	(2015).	A	Critical	Review	of	Recurrent	Neural	Networks	for	Sequence	Learning.	

CoRR,	abs/1506.0,	1–38.	https://doi.org/10.1145/2647868.2654889	

Maas,	A.	L.,	Hannun,	A.	Y.,	&	Ng,	A.	Y.	(2013).	Rectifier	Nonlinearities	Improve	Neural	

Network	Acoustic	Models.	Proceedings	of	the	30	Th	International	Conference	on	

Machine	Learning,	28,	6.	Retrieved	from	

https://web.stanford.edu/~awni/papers/relu_hybrid_icml2013_final.pdf	

Maddison,	C.	J.,	Huang,	A.,	Sutskever,	I.,	&	Silver,	D.	(2014).	Move	Evaluation	in	Go	Using	



86 
 

Deep	Convolutional	Neural	Networks.	Http://Arxiv.Org/Abs/1412.6564,	1–8.	Retrieved	

from	http://arxiv.org/abs/1412.6564	

Malhi,	Y.,	Roberts,	J.	T.,	Betts,	R.	a,	Killeen,	T.	J.,	Li,	W.,	&	Nobre,	C.	a.	(2008).	Climate	Change,	

Deforestation,	and	the	Fate	of	the	Amazon.	Science,	319(iv),	169–172.	

https://doi.org/10.1126/science.1146961	

McMahon,	S.	M.,	Harrison,	S.	P.,	Armbruster,	W.	S.,	Bartlein,	P.	J.,	Beale,	C.	M.,	Edwards,	M.	E.,	

…	Prentice,	I.	C.	(2011).	Improving	assessment	and	modelling	of	climate	change	

impacts	on	global	terrestrial	biodiversity.	Trends	in	Ecology	and	Evolution,	26(5),	249–

259.	https://doi.org/10.1016/j.tree.2011.02.012	

Medeiros,	B.,	Williamson,	D.	L.,	&	Olson,	J.	G.	(2016).	Reference	aquaplanet	climate	in	the	

Community	Atmosphere	Model,	Version	5.	Journal	of	Advances	in	Modeling	Earth	

Systems,	8(1),	406–424.	https://doi.org/10.1002/2015MS000593	

Miralles,	D.	G.,	Gentine,	P.,	Seneviratne,	S.	I.,	&	Teuling,	A.	J.	(2018).	Land-atmospheric	

feedbacks	during	droughts	and	heatwaves:	state	of	the	science	and	current	challenges.	

Annals	of	the	New	York	Academy	of	Sciences,	1–17.	

https://doi.org/10.1111/nyas.13912	

Nair,	V.,	&	Hinton,	G.	E.	(2010).	Rectified	Linear	Units	Improve	Restricted	Boltzmann	

Machines.	Proceedings	of	the	27th	International	Conference	on	Machine	Learning,	(3),	

807–814.	https://doi.org/10.1.1.165.6419	

Nepstad,	D.	C.,	De	Carvalho,	C.	R.,	Davidson,	E.	A.,	Jipp,	P.	H.,	Lefebvre,	P.	A.,	Negreiros,	G.	H.,	

…	Vieira,	S.	(1994).	The	role	of	deep	roots	in	the	hydrological	and	carbon	cycles	of	

Amazonian	forests	and	pastures.	Nature.	https://doi.org/10.1038/372666a0	

Nielsen,	Michael	A.	(2015).	Neural	Networks	and	Deep	Learning.	Determination	Press.	



87 
 

O’Gorman,	P.	A.,	&	Dwyer,	J.	G.	(2018).	Using	machine	learning	to	parameterize	moist	

convection:	potential	for	modeling	of	climate,	climate	change	and	extreme	events,	1–

20.	Retrieved	from	http://arxiv.org/abs/1806.11037	

Oki,	T.,	and	S.	Kanae.	(2006),	Global	hydrological	cycles	and	world	water	re-	sources,	

	 Science,	313(5790),	1068–1072.	

Oleson,	K.	W.,	Lawrence,	D.	M.,	Gordon,	B.,	Flanner,	M.	G.,	Kluzek,	E.,	Peter,	J.,	…	Zeng,	X.	

(2010).	Technical	Description	of	version	4	.	0	of	the	Community	Land	Model	(	CLM	),	

(April).	

Pan,	Y.,	Birdsey,	R.	A.,	Fang,	J.,	Houghton,	R.,	Kauppi,	P.	E.,	Kurz,	W.	A.,	…	Hayes,	D.	(2011).	A	

large	and	persistent	carbon	sink	in	the	world’s	forests.	Science,	333(6045),	988–993.	

https://doi.org/10.1126/science.1201609	

Parishani,	H.,	Pritchard,	M.	S.,	Bretherton,	C.	S.,	Wyant,	M.	C.,	&	Khairoutdinov,	M.	(2017).	

Toward	low-cloud-permitting	cloud	superparameterization	with	explicit	boundary	

layer	turbulence.	Journal	of	Advances	in	Modeling	Earth	Systems,	9(3),	1542–1571.	

https://doi.org/10.1002/2017MS000968	

Powell,	T.	L.,	Galbraith,	D.	R.,	Christoffersen,	B.	O.,	Harper,	A.,	Imbuzeiro,	H.	M.	A.,	Rowland,	

L.,	…	Moorcroft,	P.	R.	(2013).	Confronting	model	predictions	of	carbon	fluxes	with	

measurements	of	Amazon	forests	subjected	to	experimental	drought.	New	Phytologist,	

200(2),	350–365.	https://doi.org/10.1111/nph.12390	

Qin,	H.,	Pritchard,	M.	S.,	Kooperman,	G.	J.,	&	Parishani,	H.	(2018).	Global	Effects	of	

Superparameterization	on	Hydrothermal	Land-Atmosphere	Coupling	on	Multiple	

Timescales.	Journal	of	Advances	in	Modeling	Earth	Systems,	10(2),	530–549.	

https://doi.org/10.1002/2017MS001185	



88 
 

Randall,	B.	Y.	D.,	Khairoutdinov,	M.,	Arakawa,	A.,	&	Grabowski,	W.	(2003).	Breaking	the	

Cloud	Deadlock.	Bulletin	of	the	American	Meteorological	Society,	(March).	

https://doi.org/10.1175/BAMS-84-11-1547	

Randall,	D.,	DeMott,	C.,	Stan,	C.,	Khairoutdinov,	M.,	Benedict,	J.,	McCrary,	R.,	…	Branson,	M.	

(2016).	Simulations	of	the	Tropical	General	Circulation	with	a	Multiscale	Global	Model.	

Meteorological	Monographs	-	Multiscale	Convection-Coupled	Systems	in	the	Tropics:	A	

Tribute	to	Dr.	Michio	Yanai,	1–15.	https://doi.org/10.1175/AMSMONOGRAPHS-D-15-

0016.1	

Rasp,	S.,	Pritchard,	M.	S.,	&	Gentine,	P.	(2018).	Deep	learning	to	represent	sub-grid	

processes	in	climate	models,	1–14.	Retrieved	from	http://arxiv.org/abs/1806.04731	

Saleska,	S.	R.,	Didan,	K.,	Huete,	A.	R.,	&	Da	Rocha,	H.	R.	(2007).	Amazon	forests	green-up	

during	2005	drought.	Science,	318(5850),	612.	

https://doi.org/10.1126/science.1146663	

Schalkoff,	R.	J.	(1997).	Artificial	neural	networks	(Vol.	1).	New	York:	McGraw-Hill.	

Schmidhuber,	J.	(2015).	Deep	Learning	in	neural	networks:	An	overview.	Neural	Networks.	

Elsevier	Ltd.	https://doi.org/10.1016/j.neunet.2014.09.003	

Schneider,	T.,	Lan,	S.,	Stuart,	A.,	&	Teixeira,	J.	(2017).	Earth	System	Modeling	2.0:	A	

Blueprint	for	Models	That	Learn	From	Observations	and	Targeted	High-Resolution	

Simulations.	Geophysical	Research	Letters,	44(24),	12,396-12,417.	

https://doi.org/10.1002/2017GL076101	

Sellers,	P.,	Shukla,	J.,	&	Nobre,	C.	(1990).	Amazon	Deforestation	and	Climate	Change.	

Science,	247(March),	1322–1325.	https://doi.org/10.1126/science.247.4948.1322	

Sharma,	M.,	Pachori,	R.	B.,	&	Rajendra	Acharya,	U.	(2017).	ADAM:	A	METHOD	FOR	



89 
 

STOCHASTIC	OPTIMIZATION.	Pattern	Recognition	Letters,	94,	172–179.	

https://doi.org/10.1016/j.patrec.2017.03.023	

Solomon,	S.	(1999).	Stratospheric	ozone	depletion:	A	review	of	concepts	and	history.	

Reviews	of	Geophysics,	37(3),	275–316.	https://doi.org/10.1029/1999RG900008	

Srivastava,	N.,	Hinton,	G.,	Krizhevsky,	A.,	Sutskever,	I.,	&	Salakhutdinov,	R.	(2014).	Dropout:	

A	Simple	Way	to	Prevent	Neural	Networks	from	Overfitting.	Journal	of	Machine	

Learning	Research,	15,	1929–1958.	https://doi.org/10.1214/12-AOS1000	

Stephens,	G.	L.,	Li,	J.,	Wild,	M.,	Clayson,	C.	A.,	Loeb,	N.,	Kato,	S.,	…	Andrews,	T.	(2012).	An	

update	on	Earth’s	energy	balance	in	light	of	the	latest	global	observations.	Nature	

Geoscience,	5(10),	691–696.	https://doi.org/10.1038/ngeo1580	

Sun,	J.,	&	Pritchard,	M.	S.	(2016).	Effects	of	explicit	convection	on	global	land-atmosphere	

coupling	in	the	superparameterized	CAM.	Journal	of	Advances	in	Modeling	Earth	

Systems,	8(12	AUG	2016),	1248–1269.	https://doi.org/10.1002/2016MS000660	

Texas	Advanced	Computing	Center.	Stampede2	User	Guide.	(2018,	June	13).	Retrieved	on	

	 2018,	August	12	from	https://portal.tacc.utexas.edu/user-guides/stampede2	

Thayer-Calder,	K.,	&	Randall,	D.	A.	(2009).	The	Role	of	Convective	Moistening	in	the	

Madden–Julian	Oscillation.	Journal	of	the	Atmospheric	Sciences,	66(11),	3297–3312.	

https://doi.org/10.1175/2009JAS3081.1	

Thompson,	I.,	Mackey,	B.,	McNulty,	S.,	&	Mosseler,	A.	(2009).	Forest	resilience,	biodiversity,	

and	climate	change	(Vol.	43).	Secretariat	of	the	Convention	on	Biological	Diversity	

Cover.	

Thonicke,	K.,	Venevsky,	S.,	Sitch,	S.,	&	Cramer,	W.	(2001).	The	role	of	fire	disturbance	for	

global	vegetation	dynamics:	coupling	fire	into	a	Dynamic	Global	Vegetation	Model.	



90 
 

Global	Ecology	&	Biogeography,	10(6),	661–677.	https://doi.org/10.1046/j.1466-

822X.2001.00175.x	

Trader,	T,	(2018,	July	25).	Requiem	for	a	Phi:	Knights	Landing	Discontinued.	Retrieved	on	

	 2018,	August	12	from	https://www.hpcwire.com/2018/07/25/end-of-the-road-

	 for-knights-landing-phi/	

Trenberth,	K.	~E.,	Fasullo,	J.	~T.,	&	Kiehl,	J.	(2009).	Earth’s	Global	Energy	Budget.	Bull.	Am.	

Meteorol.	Soc.,	90,	311–323.	https://doi.org/10.1175/2008BAMS2634.1	

Vogt,	K.	A.,	Vogt,	D.	J.,	Palmiotto,	P.	A.,	Boon,	P.,	O’Hara,	J.,	&	Asbjornsen,	H.	(1995).	Review	

of	root	dynamics	in	forest	ecosystems	grouped	by	climate,	climatic	forest	type	and	

species.	Plant	and	Soil:	An	International	Journal	on	Plant-Soil	Relationships,	187(2),	

159–219.	https://doi.org/10.1007/BF00017088	

Wang,	H.,	&	Raj,	B.	(2017).	On	the	Origin	of	Deep	Learning,	1–72.	

https://doi.org/10.1139/f56-020	

Wofsy,	S.	C.,	Zhang,	X.,	Qin,	D.,	Manning,	M.,	Chen,	Z.,	Marquis,	M.,	&	Averyt,	K.	B.	(2007).	

Couplings	Between	Changes	in	the	Climate	System	and	Biogeochemistry.	Climate	

Change	2007:	The	Physical	Science	Basis,	21(7),	499–587.	https://doi.org/Cited	By	

(since	1996)	525\rExport	Date	12	August	2012	

Xu,	B.,	Wang,	N.,	Chen,	T.,	&	Li,	M.	(2015).	Empirical	Evaluation	of	Rectified	Activations	in	

Convolutional	Network.	Retrieved	from	http://arxiv.org/abs/1505.00853	

Zeiler,	M.	D.,	Ranzato,	M.,	Monga,	R.,	Mao,	M.,	Yang,	K.,	Le,	Q.	V,	…	Hinton,	G.	E.	(2013).	On	

rectified	linear	units	for	speech	processing.	In	ICASSP,	IEEE	International	Conference	on	

Acoustics,	Speech	and	Signal	Processing	-	Proceedings	(pp.	3517–3521).	

https://doi.org/10.1109/ICASSP.2013.6638312	



91 
 

Zhang,	K.,	Rong	Fu,	Shaikh,	M.	J.,	Ghan,	S.,	Wang,	M.,	Leung,	L.	R.,	…	Marengo,	J.	(2017).	

Influence	of	Superparameterization	and	a	Higher-Order	Turbulence	Closure	on	

Rainfall	Bias	Over	Amazonia	in	Community	Atmosphere	Model	Version	5.	Journal	of	

Geophysical	Research :	Atmospheres,	122(18),	9879–9902.	

https://doi.org/10.1002/2017JD026576	

	

	

	

	 	



92 
 

APPENDIX	A	

Euclidean	Distance	and	Dynamic	Time	Warping	

Comparisons	between	the	Euclidean	distances	of	GPP	and	NEE	for	CAM,	SPCAM,	and	

NNCAM	before	and	after	normalization	among	the	means	of	the	time	series	are	here	

performed.	One	other	time	series	similarity	measure,	dynamic	time	warping	(DTW),	is	also	

used.	DTW	measures	the	similarity	of	time	series	differently	in	that	it	pares	out	similar	

patterns	wihtin	time	series	even	if	those	patterns	are	out	of	phase	(unaligned	in	time),	in	

different	value	ranges,	and	are	of	unequal	length	(Keogh	&	Ratanamahatana,	2005;	

Kianimajd	et	al.,	2017).	

The	formula	for	Eucliden	Distance	(RMSE)	for	time	series	Q	and	C	from	timestep	1	to	

n	is:	

D(Q, C) = kl(qL − cL)o
M

L12

	

By	contrast,	DTW	begins	by	constructing	a	matrix	of	distances	between	the	values	of	Q	and	

C	at	every	timestep,	in	this	experiment	-𝑞/ − 𝑐+3
o
.	A	warping	path	is	a	mapping	along	the	

matrix	from	the	lower	left	point	(1,	1)	to	the	upper	right	point	(m,	n)	of	the	matrix	(see	

Figure	A1).	DTW	uses	a	recurrent	algorithm	to	search	within	the	matrix	for	the	warping	

path	P,	where	pk	is	the	kth	element	of	P	and	has	an	associated	cost	(distance	between	qi	and	

cj),	that	minimizes	the	cost.	P	is	constrained	to	start	at	(1,	1)	and	monotonically	increase	

towards	(m,	n).	The	function	that	minimizes	the	cost	is	defined	by:	

DTW(Q, C) = min

⎩
⎨

⎧
klp{

|

{12

	



93 
 

	 Using	RMSE	on	non-normalized	time	series,	RMSE	on	normalized	time	series,	and	

DTW	all	in	conjunction	are	adequate	tests	to	evaluate	the	relative	similarity	of	the	GPP	and	

NEE	time	series	among	CAM,	SPCAM,	and	NNCAM,	as	they	calculate	absolute	similarity;	

absolute	similarity	agnostic	to	offset,	amplitude,	and	linear	trend;	and	similarity	agnostic	to	

range	and	phase.	A	visual	representation	of	RMSE	and	DTW	can	be	seen	in	Figure	A2.	

	

(a) 	(b) 	

Figure	A1:	For	the	two	time	series	Q	(orange)	and	C	(blue)	in	(a),	dynamic	time	warping	

(DTW)	involves	creating	the	matrix	in	(b)	and	finding	the	path	from	the	beginning	of	the	

time	series	(1,	1)	to	the	end	(m,	n)	that	has	the	lowest	cost,	where	each	point	in	the	matrix	

has	a	cost	computed	by	-𝑞/ − 𝑐+3
o
.	The	whitest	tiles	of	the	matrix	have	the	highest	cost,	and	

the	blackest	tiles	have	the	lowest	cost.	In	this	case,	a	path	was	found	that	has	a	total	cost	of	

0,	so	the	DTW	distance	value	produced	is	equal	to	0.	

	



94 
 

	

Figure	A2:	Visual	representation	of	the	difference	in	approaches	between	(a)	Euclidean	

distance	(RMSE)	and	(b)	Dynamic	Time	Warping	(DTW).	RMSE	focuses	in	on	similarity	

between	values	at	equivalent	timesteps,	whereas	DTW	measures	similarity	of	time	series	

patterns	irrespective	of	distance	and	phase.			

	

	



95 
 

	

	 Normalizing	the	three	time	series	takes	a	look	to	see	if	the	local	response	at	a	

particular	time	point	among	time	series	is	similar	even	if	the	mean,	amplitude,	and	linear	

trend	are	different.	Figure	A3	visually	illustrates	the	effects	of	normalization.	From	the	

original	values,	offset	is	performed	by	subtracting	the	mean;	dividing	by	the	standard	

deviation	of	the	original	values	then	normalizes	the	amplitudes	of	the	time	series;	finally,	

performing	a	linear	regression	on	the	resulting	time	series	data	(the	data	values	after	

accounting	for	offset	and	amplitude)	and	subtracting	it	the	gives	the	fully	normalized	

version	of	the	time	series.	

	

(a)	 	



96 
 

(b)	 	

Figure	A3:	Visualization	of	(a)	GPP	and	(b)	NEE	25-day	means	before	and	after	

normalization.	Normalization	includes	reducing	the	offset,	standardizing	the	amplitude,	

and	removing	the	linear	trend.	The	calculations	to	create	a	normalized	time	series	𝑥"	from	

time	series	x	is	𝑥" = 	d}^0(~)
Y�_(~)

− 𝐿𝑖𝑛𝑒𝑎𝑟𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝐹𝑖𝑡 cd}^0(~)
Y�_(~)

f.	Even	after	the	

transformations,	NNCAM	and	SPCAM	are	more	similar	to	each	other	than	to	CAM	at	a	local	

level.	




