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bstract

The behavior of the nematode Caenorhabditis elegans has proven increasingly useful for the genetic dissection of neurobiological signaling
athways and for investigating the neural and molecular basis of nervous system function. Locomotion is among the most complex aspects of C.
legans behavior, and involves a number of discrete motor activities such as omega bends (deep bends typically on the ventral side of the body which
eorient the direction of forward locomotion) and reversals (changes in the direction of the locomotion wave that cause a switch from forward to
ackward crawling). Reliable methods for detecting and quantifying these movements are critical for escape reflexes and navigation behaviors. Here
e describe a novel algorithm to automatically detect omega bends, which relies in part on a new method for obtaining a morphological skeleton
escribing the body posture of coiled worms. We also present an optimized algorithm to detect reversals, which showed improved performance
ver previously described methods. Together, these new algorithms have made it possible to reliably detect events that are time-consuming and

aborious to detect by real-time observation or human video analysis. They have also made it possible to identify mutants with subtle behavioral
bnormalities, such as those in which omega bends are dorsoventrally unbiased or uncorrelated with reversals. These methods should therefore
acilitate quantitative analysis of a wide range of locomotion-related behaviors in this important neurobiological model organism.

2006 Elsevier B.V. All rights reserved.
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. Introduction

The nematode Caenorhabditis elegans is widely used for
tudies of nervous system function and development. It has

simple nervous system which is well characterized at the
natomical level: an adult hermaphrodite contains only 302 neu-
ons, each with a precisely determined position, cell lineage
nd synaptic connectivity. Despite its anatomical simplicity, the
. elegans nervous system mediates diverse and intricate pat-

erns of behavior. It is well suited to analysis of the molecular
nd cellular basis of nervous system development and function.
owever, many genes with critical roles in the nervous system
ave effects on behavior that are difficult to describe precisely, or

ccur over time scales too long to be compatible with real-time
coring by a human observer. Automated systems (Baek et al.,
002; Cronin et al., 2005; Feng et al., 2004; Geng et al., 2004)

∗ Corresponding author. Tel.: +1 858 344 1816.
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onsisting of a tracking microscope and image processing soft-
are have been developed and used to follow and analyze the
ovements of individual animals at high magnification. Quan-

itative morphological and locomotion features can be obtained
ith this system and used to distinguish and classify the behav-

oral phenotypes of C. elegans mutants. For example, in Geng
t al. (2003) the method was used to investigate the similarities
etween different behavioral patterns based on their clustering
n multidimensional feature space.

In behavioral studies, it is often critical to parameterize a
omplex behavior by identifying the simpler behavioral events
hat underlie it. For example, among the most important behav-
ors to a nematode are those involving navigation of a sensory
radient to move toward an optimal condition; in chemotaxis
ehavior, this involves moving toward the highest concentration
f a chemoattractant. Nematodes accomplish this navigation pri-

arily using a movement called an omega bend, in which the

nimal makes a single deep body bend in a shape of the capital
reek letter omega, usually on the ventral side of the body (Croll

nd Smith, 1975; Croll and Smith, 1978; Pierce-Shimomura et

mailto:houston21@hotmail.com
dx.doi.org/10.1016/j.jneumeth.2006.06.007
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l., 1999). An omega bend serves to reorient the animal’s head
nd allow it to continue to crawl forward, but in a different direc-
ion. An animal crawling down a chemoattractant gradient will
end to make frequent omega bends, which will reorient it up
he gradient.

When avoiding noxious compounds, nematodes often exhibit
second form of behavior, known as an escape reflex. When a
orm is touched or presented with a toxic chemical stimulus,

t will switch the direction of the locomotion wave, causing the
nimal to instantaneously crawl backward instead of forward.
fter a short period of backward crawling, the animal will exe-

ute an omega bend and crawl forward in a different direction,
way from the noxious stimulus. A variety of genes, including
hose encoding the C. elegans AMPA- and NMDA-type glu-
amate receptors (Zheng et al., 1999), affect the frequency of
hese reversals in direction. Moreover, the switch between for-
ard runs and bouts of reversals has been shown to play an

mportant role in worm touch avoidance behavior and is one of
he key parameters affected by sensory cues (Wicks and Rankin,
995). However, abnormalities in reversal frequency and partic-
larly in reversal distance, are very difficult to detect by manual
bservation, and have only been verified by careful assays of
ndividual animals (Rankin et al., 1990).

Efforts to understand the neural basis for complex locomotor
ehavior have begun to focus on the regulation of these simpler
ehavioral building blocks (Gray et al., 2005). In previous
tudies, reversals have been detected automatically by following
he path of the animal’s centroid and identifying a large change
n the direction of bearing of the centroid trace (Hardaker et al.,
001). A more recent paper (Feng et al., 2004) described an algo-
ithm that used skeleton points and the positions of the head and
ail relative to the worm body to detect reversals. However, even
he latter method sometimes fails to detect reversals accurately.
tudies of omega bends have relied exclusively on the time-
onsuming analysis of video recordings by human observers.
etection of omega bends, whether by a human observer or
computer, requires a precise analysis of the animal’s body

osture during a turn. However, determining the correct posture
sing a standard morphological skeleton algorithm is challeng-
ng when the animal adopts a coiled posture or when the head
ouches the animal’s body; in these cases, the normal skeletoniz-
ng algorithm does not correctly identify the true skeleton nor the
orrect ends of the worm (i.e. head and tail). Since animals fre-
uently touch themselves during omega bends, detecting omega
ends requires the development of an improved algorithm to
efine the biological skeleton of a coiled or touching body
osture.

In this paper, we describe an algorithm which generates
keletons for coiled body positions. The algorithm uses a param-
terized body model and locates the division line between over-
apping portions of the worm body. Using this algorithm, we can
obustly define the body postures of wild-type animals as well as
f mutants that coil frequently. In addition, we have developed

n algorithm based on skeleton analysis to detect omega bends
nd characterize parameters relevant to this behavior. In particu-
ar, the spatial polarity and temporal correlation of omega bends
ollowing reversals is investigated for wild type and several of

2

t

ence Methods 158 (2006) 323–336

he more active coiler mutants. We also develop an improved
lgorithm for detection of reversals.

In Section 2, we describe the skeleton algorithm, including
mage acquisition, pre-processing and its use in feature extrac-
ion and classification. We also describe our new algorithms for
etecting omega bends and reversals. In Section 3, we present
esults assessing the robustness of our algorithms for defining
oiler skeletons, omega bends and reversals. Discussion and con-
lusions appear in Section 4.

. Materials and methods

.1. Strains and culture methods

Routine culturing of C. elegans was performed as described
Brenner, 1974). All worms analyzed in these experiments were
oung adults (Fig. 1a); fourth-stage larvae were picked the
vening before the experiment and tracked the following morn-
ng. Experimental animals were allowed to acclimate for 5 min
efore their behavior was analyzed. Plates for tracking experi-
ents were prepared fresh the day of the experiment; a single

rop of a saturated Luria broth (LB) culture of E. coli strain
P50 was spotted onto a fresh nematode growth medium (NGM)

gar plate and allowed to dry for 30 min before use. The alle-
es and predicted products of the genes used in these experi-

ents were as follows: syd-1(ju82); unc-1(e1598); unc-3(e151);
nc-10(e102); unc-17(e245); unc-26(m2); unc-32(e189); unc-
7(e262); unc-75(e950); unc-77(e625).

.2. Acquisition of image data

C. elegans locomotion was tracked with a Zeiss Stemi 2000-
microscope mounted with a Cohu High Performance CCD

ideo camera essentially as described (Geng et al., 2004). The
icroscope was outfitted for brightfield illumination from a 12 V

0 W halogen bulb reflected from a flat mirror positioned at an
ngle of approximately 45◦. A computer-controlled tracker was
sed to maintain the worms in the center of the optical field of
he microscope during observation. To record the locomotion
f an animal, an image frame of the animal was captured every
.125 s (8 Hz) for at least 5 min (8 × 60 × 5 = 2400 images per
ideo). Next, we binarized the image using an adaptive threshold
the average value minus three times the S.D.) and found the
onnected component with the largest area. The original image
as then trimmed to the smallest axis-aligned rectangle that

ontained this component, and saved as eight-bit grayscale data.
he dimensions of each image, and the coordinates of the upper

eft corner of the rectangle box containing the worm body in the
racker field were also recorded simultaneously. The microscope
as fixed to its largest magnification (50×) during observation.
he number of pixels per millimeter was fixed at 312.5 pixel/mm

or all worms.
.3. Image pre-processing

To facilitate analysis, the grayscale images were subjected
o preliminary image processing to generate a simplified repre-
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ig. 1. (a) Example of a worm taking on a typical uncomplicated body posture
oil or spiral. (e) Grayscale image. (f) Binary image. (g) Skeleton from an ima

entation of the body (Geng et al., 2004). Briefly, an adaptive
ocal thresholding algorithm followed by a morphological
losing operator (binary dilation followed by erosion) was used.

corresponding reference binary image was also generated
y filling holes inside a worm body based on image content
nformation (Fig. 1b). The difference between these two binary
mages provided a good indication of which image areas are
orm body and which are background. Following binarization,
morphological skeleton was obtained (Geng et al., 2004;
onzalez and Woods, 2002; Jain et al., 1995).

.4. Image feature extraction

Using the approach in Geng et al. (2004), the head and tail
re recognized for entire video sequences using the brightness
nd the distance moved between the current frame and the pre-
ious frame for the two end points. Feature extraction is applied
o obtain 64 basic features. These include body length, width,
atness, brightness and angle change rate. These 64 features are
alculated for each of the 2400 frames in each video by using
oftware coded in C. The maximum, minimum and mean val-

es for most of these features were then computed to form 188
eatures in total for each video frame. Throughout this paper,
e used the 90th and 10th percentile values as our maximum

nd minimum values for each feature in order to avoid extreme

F
f
a
e

uching or overlapping). (b) Hole-filling operator. (c) Typical omega bend. (d)
cessing point of view. (h) Desired skeleton from a biological point of view.

alues caused by noise or errors during image capture and pro-
essing. Certain features such as movement distance and speed
ould not be obtained from one single frame. In this case, we
ook 4, 8 and 40 frames (0.5, 1 and 5 s) in a sliding window
nd computed features within windows. The maximum, mini-
um and mean values were also calculated from these sets of

umbers. A block diagram of system set-up is shown in Fig. 2.

.5. Coiling skeletonizing

In most cases, the skeleton can be computed using a sim-
le skeletonizing algorithm (Geng et al., 2004; Gonzalez and
oods, 2002). However, sometimes the binary worm body shape

as an internal hole, which can be caused when the body bends
nto an omega shape (Fig. 1c) or a spiral (Fig. 1d). In such cases,
he morphological skeleton which is correct from an image pro-
essing point of view is not necessarily a useful summary of the
orm body shape from a biological point of view. For example,
ig. 1f shows the binarization of the worm body from Fig. 1e
nd g shows the morphological skeleton, correct from an image
rocessing point of view, generated from the binary shape of

ig. 1f. Fig. 1h, on the other hand, shows the desired skeleton
rom a biological perspective. In previous studies, frames such
s Fig. 1e could be recognized as failing the skeletonization (for
xample, because Fig. 1g skeleton is too short) and so the frame
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ig. 2. Block diagram of the data acquisition, image processing and feature
teps.

as discarded (Baek et al., 2002; Geng et al., 2003). In this
aper, we solved this problem in order to study coiler mutants,
hich take on these body postures frequently.
A worm body model is used in our algorithm (Fig. 3a). The

ength L and width W are the average length and width of the
orm body obtained from images without internal holes. See
ppendix A for details of the algorithm. Briefly, we use W in

he model to find the touching parts of the worm body, because
ouching parts will have width greater than W (Fig. 3b). Then
e cut the touching part from its exterior boundary to inte-

ior boundary to recover the original posture. The skeletonizing
lgorithm is then applied to obtain the morphological skeleton.
ecause C. elegans can contract and extend its body, small vari-

tions in body length can be accepted as correct skeletons, but
ith empirical observation, 20% of L was felt to be an upper

imit for this variation in body length. If the difference between
he obtained skeleton and L is greater than 20% of L, then this

ig. 3. (a) The worm body matching model. (b) We find the overlapping part
f the worm body using the model, by starting from a protruding end and
hen moving along the body length, looking for a place where the blob width
xceeds W.
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keleton is considered erroneous and is not used for further fea-
ure extraction and analysis.

.6. Classification

The Classification and Regression Trees (CART) algorithm
s used to analyze features and classify mutant types (Breiman
t al., 1984). It is a tree structured statistical analysis and data
ining tool. It uses a method known as binary recursive parti-

ioning. During the process, parent nodes are split into exactly
wo child nodes until the splitting is impossible (only one case
n the node) or the desired large tree size is reached. CART first
reates large trees and then prunes away branches of the max-
mal tree, creating a smaller, more efficient tree. Once a tree is
omplete, CART assigns classes to each terminal node. This is
enerally done using plurality (the largest percentage of cases
n the node).

.7. Omega bends and reversals

Omega bends occur when the worm takes on the shape of
capital omega; the worm curves its head around to touch the
iddle part of its body then sharply bends away from its body

Fig. 1c). This posture commonly occurs when the worm makes
large turn with a reorientation of its movement direction greater

han 135◦ (Croll and Smith, 1978). Turns of this sort have been
hown to be critical for navigation (or taxis) behaviors used to
eek food and other chemoattractants and to avoid toxins and
ther chemorepellents (Pierce-Shimomura et al., 1999). Differ-
nt kinds of omega bends also exist for certain worm mutants
uch as syd-1(ju82), unc-10(e102) and unc-37(e262). For syd-
(ju82) and unc-10(e102), instead of resembling the Greek letter
, the worm’s head sometimes touches the middle of the body,

hen crosses underneath it and goes in another direction. Iden-
ifying omega bends is more difficult for unc-37(e262) because
he movement of this mutant type is jerky or even interrupted by
ther movements. See Appendix B for the details of our algo-
ithm for detecting omega bends.

In this paper, we use a skeleton based algorithm to detect
eversals, as in Feng et al. (2004). Instead of using the distance
etween the head and the tail, we found it to be more robust
o use two points near the two ends as our reference points to
ecide if the worm was moving forward or backward. In Feng
t al. (2004), the angle changing of skewer fits was also used
o eliminate certain false positives, but is discarded in our algo-
ithm. A skewer fit is the line segment connecting the head and
he tail. See Appendix C for the details of our algorithm for
etecting reversals.

. Results

.1. Verification of the skeleton algorithm by human
bservers
The coiling skeletonizing algorithm was tested on fifty-five
-min videos (8 Hz) from 11 mutant types. Of the 132,000 image
rames in these videos, more than 26,000 of them involved body
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Table 1a
Verification results for the coiling skeletonizing algorithm

Strain name Correct skeletons Wrong skeletons Wrong skeletons due to
vertical body overlapping

Frames rejected by the comparison
to the threshold (5000 pixels)

syd-1(ju82) 649 (94.5) 16 (2.3) 22 (3.2) 0
unc-1(e1598) 5178 (99.2) 41 (0.8) 0 0
unc-3(e151) 1705 (93.0) 125 (6.8) 3 (0.2) 0
unc-10(e102) 1690 (90.8) 20 (1.1) 152 (8.2) 0
unc-17(e245) 3245 (82.7) 156 (4.0) 525 (13.3) 3895
unc-26(m2) 3358 (91.4) 79 (2.2) 235 (6.4) 3326
unc-32(e189) 5321 (97.4) 40 (0.7) 104 (1.9) 0
unc-37(e262) 2310 (91.6) 35 (1.4) 176 (7.0) 0
unc-75(e950) 946 (93.6) 37 (3.7) 28 (2.7) 160
unc-77(e625) 1647 (96.1) 20 (1.2) 47 (2.7) 0
Wild type (N2) 189 (99.5) 1 (0.5) 0 0

Total 26238 (93.4) 570 (2.0) 1292 (4.6) 7381

D The first column shows the mutant type. The second column shows the number of
c s not due to vertical body overlapping is listed in column 3. The number of wrong
s rrect rate is over 93%. Values in parenthesis are in percentage.
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Table 1b
Verification results for the omega bend detection algorithm

Strain name No. of detected
omega bends

No. of wrong
detections

No. of omega
bends missed

Wild type (N2) 57 (100) 0 7
syd-1(ju82) 43 (100) 0 0
unc-10(e102) 41 (97.6) 1 3
unc-37(e262) 83 (91.2) 8 0
unc-75(e950) 60 (92.3) 5 9

Total 284 (95.3) 14 19

Data were collected from one hundred 5-min videos (8 Hz) from five mutant
types. The first column shows the mutant type. The second column shows both
the number of correctly detected omega bends with our algorithm and the asso-
ciated positive predictive value (PPV). The PPV is the ratio of correct detections
to total detections. The number of wrong detections is listed in column 3. The
n
i
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ata were collected from fifty-five 5-min videos (8 Hz) from 11 mutant types.
orrect skeletons obtained with our algorithm. The number of wrong skeleton
keletons due to vertical body overlapping is listed in column 4. The average co

ouching or overlapping. For all of these, cut images and skele-
ons were generated by the algorithm for a human observer to
erify. The positions of the start and end points of body touch-
ng in every cut image were examined. The skeletons were also
ompared to the grayscale images to decide if the obtained body
osture was correct. Experimental results are shown in Table 1a.
he rate of obtaining a biologically correct skeleton is over 93%.

Our algorithm for the detection of omega bends was tested
n one hundred 5-min videos (8 Hz) in which 303 omega bends
ere detected by a human observer. The experimental results

howed that our algorithm correctly detected over 93% of these
03 omega bends. Also, over 95% of detected events are actually
mega bends, so the false positive rate is low even while the true
ositive rate is high (Table 1b).

Our reversal detection algorithm was tested on the same data
et of one hundred 5-min videos (8 Hz) in which 1621 reversal
vents were detected by a human observer. The experimental
esults showed that our algorithm can correctly detect rever-

als at a high rate (96.9%) that compared favorably with that
f the previously described (Feng et al., 2004) skeleton based
lgorithm (86.3%). This higher correct detection rate was fur-
hermore accompanied by a lower rate of false alarms (only 10

w
W
a
r

able 1c
erification results for the reversal detection algorithm

train name Our algorithm

No. of reversals
detected

No. of wrong
detections

No. of revers
missed

ild type (N2) 494 (100) 0 0
yd-1(ju82) 342 (99.4) 2 12
nc-10(e102) 262 (99.6) 1 3
nc-37(e262) 105 (96.3) 4 13
nc-75(e950) 368 (99.2) 3 22

otal 1571 (99.4) 10 50

ata were collected from one hundred 5-min videos (8 Hz) from five mutant types. Th
he second column shows both the number of correctly detected reversals with our

atio of correct detections to total detections. The number of wrong detections is liste
arenthesis are in percentage.
umber of missed omega bends is listed in column 4. Values in parenthesis are
n percentage.

rong detections compared to 14 for the previous algorithm).

e applied the reversal detection algorithm described in Feng et

l. (2004) to our data set of one hundred 5-min videos with 1621
eversal events so the results are directly comparable (Table 1c).

Algorithm from Feng et al. (2004)

als No. of reversals
detected

No. of wrong
detections

No. of reversals
missed

473 (100) 0 21
334 (99.4) 2 20
252 (97.7) 6 13
87 (94.6) 5 31
303 (99.7) 1 87

1399 (99.0) 14 172

e first column shows the mutant type. The first column shows the mutant type.
algorithm and the associated positive predictive value (PPV). The PPV is the
d in column 3. The number of missed reversals is listed in column 4. Values in
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Table 2
Description of uncoordinated mutants (WormBase website, http://www.wormbase.org; Hodgkin, 1983)

unc-1 Strong coilers
unc-3 Weak coiler tends to coil tail active
unc-10 Weak coiler tends to back loopy movement in reverse; fairly active slightly small and thin
unc-17 Severe coiler at all stages rather small and thin
unc-26 Severe kinker small scrawny flaccid little movement
unc-32 Severe coiler little movement in adult; moves well in L1 but coils in response to touch in L2 and later stages; rather small and thin
u
u ard w
u verse

3
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nc-37 Weak coiler fairly active
nc-75 Weak coiler especially in reverse; moves forw
nc-77 Irregular loopy movement both forward and re

.2. Assessment of skeleton algorithm by classification of
oiler mutants

To evaluate the effectiveness of our system in characteriz-
ng the postures of coiled animals, we tested the ability of the
utomated binary classifier CART to correctly identify different
utant strains that frequently adopt coiled postures. We com-

ared our data from 10 different uncoordinated mutants with
ild-type worms.
The test group included five mutants categorized by Hodgkin

1983) as “weak coilers” (unc-3, unc-10, unc-37, unc-75 and
nc-77) as well as two “strong coilers” (unc-17 and unc-32), one
forward uncoordinated” mutant (unc-1), one “strong kinker”

unc-26) and one mutant with superficially normal locomotion
syd-1). Table 2 contains detailed descriptions of behaviors of
hese mutants. The data set contained forty 5-min videos at 8 Hz

l
T
s

ig. 4. The classification tree reliably identifies the type of a given worm using only n
ell; sluggish; short
; active; thin

f each mutant type. Shown in Fig. 4, a classification tree with
1 terminal nodes (depicted as ellipses) was generated by CART
sing 10-fold cross-validation to determine the tree size. Only
ine different features, appearing in diamond-shaped boxes in
ig. 4, were chosen by CART and used as splitting nodes in

his classification tree. The names and descriptions of these
ine features were as follows: ANCHSMAX—maximum value
f angle change rate; AVEBRMIN—minimum value of worm
verage brightness; CNTMVAVG—average value of centroid
ovement distance; HAREAMIN—minimum value of head

rea; HDTLRMAX—minimum value of head thickness–length
atio; HTTHRMAX—minimum value of head–tail thick-
ess ratio; LNGTHMIN—minimum value of worm body

ength; TAREAMIN—minimum value of worm tail area;
LCTDAVG—average value of tail–centroid distance. This sub-
et of features selected from among the 188 features to be

ine features. The tree was constructed using the CART algorithm as described.

http://www.wormbase.org/
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sed as the basis for splitting, as well as the thresholds used
or splitting, were chosen automatically by the CART algo-
ithm based on the data, with the cross-validation used to guard
gainst overfitting. At each step, a splitting test separates a
arent node into exactly two child nodes based on a criterion
elated to a single feature. For example, suppose we have a
orm of unknown type with TLCTDAVG = 113.82, LNGTH-
VG = 193.43 and ANCHSMAX = 11.72. Starting at the top,

he first question is:

Is TLCTDAVG ≤ 116.09?

n this case, the answer is yes and the case goes to the left.
his classification tree will do the same for LNGTHAVG and

hen ANCHSMAX and the worm winds up in the ellipse on the
eft and is classified as unc-75. The classification result shows
he significance of previously generated skeletons. Several of
he features such as angle change rate, body length as well as
ead–tail recognition rely on measurements of the skeleton.

The cross-validated classification probabilities for the system
ith the new algorithm compared to the standard morphologi-

al skeleton algorithm are given in Table 3A and B, respectively.
he mutant names of all video data are in the first column and

he first row lists the groups to which each video was classi-
ed. The success rates are listed along the diagonal while the
ff-diagonal entries represent the misclassification rates. We see

hat the CART tree using the data from the new skeletonizing
lgorithm has significant improvement for several mutants. For
xample, the correct classification rate for syd-1 improves by
2.5%, unc-10 by 20%, unc-37 by 10% and unc-77 by 12.5%.

b
T

o

able 3
he cross-validated classification probability tables from two systems

syd-1 unc-1 unc-3 unc-10 unc-17 u

A) Results with new skeletonizing algorithm (%)
syd-1 80.0 0 0 2.5 0
unc-1 5.0 85.0 0 0 0
unc-3 5.0 7.5 67.5 0 0
unc-10 0 2.5 0 92.5 0
unc-17 0 0 0 0 77.5 1
unc-26 0 0 0 0 22.5 7
unc-32 0 12.5 0 0 7.5
unc-37 5.0 0 7.5 0 0
unc-75 0 2.5 0 0 7.5
unc-77 0 7.5 5.0 12.5 10.0
Wild type (N2) 25.0 5.0 0 0 0

B) Results with previous system (Geng et al., 2004) (%)
syd-1 67.5 0 0 5.0 0
unc-1 5.0 85.0 0 0 0
unc-3 5.0 7.5 72.5 0 0
unc-10 0 0 5.0 72.5 0
unc-17 2.5 0 0 0 75.0 1
unc-26 0 0 0 0 20.0 7
unc-32 0 10.0 0 12.5 5.0
unc-37 0 0 10.0 5.0 0
unc-75 0 2.5 0 0 7.5
unc-77 0 7.5 5.0 10.0 10.0
Wild type (N2) 22.5 5.0 0 2.5 0

n each table, the first column lists the actual mutant types for the video data. The first
long the main diagonal (bold values) while the off-diagonal entries represent the mi
nce Methods 158 (2006) 323–336 329

here are a few minor changes as well: unc-3 gets worse by
%, and unc-17 and unc-32 each improve by 2.5%. Overall,
he new skeletonizing algorithm does allow us to do better clas-
ification for the given video data. Given that the old system
lready showed better success at correctly classifying difficult-
o-distinguish mutant types than a human expert (Geng et al.,
004), we consider this to be a good result.

.3. Analysis of omega bends and reversals

In another experiment, we used our system to compare omega
end and reversal behavior of mutant and wild-type animals.
n particular, we investigated the temporal correlation between
hese body movements, since omega bends have recently been
bserved to frequently follow reversals (Gray et al., 2005). We
ocused on those mutants in our data set, syd-1, unc-10, unc-
7, unc-75 and unc-77, which are described as “fairly active”
n the literature. Our reversal and omega bend detection algo-
ithms were used on all video data of these five mutants and wild
ype. For each omega bend event in each video, we searched for
he closest reversal happening within 5 s before the omega bend
vent. If no reversal occurred within 5 s, the omega bend event
as considered to have not followed a reversal. We also calcu-

ated the average time interval between pairs of reversals and
mega bends in each mutant type, as well as whether the omega

end involved contraction of the dorsal or ventral body muscles.
he results are shown in Table 4.

We observed that in wild type as well as syd-1 mutant animals,
mega bends showed a distinct ventral bias. In fact, for omega

nc-26 unc-32 unc-37 unc-75 unc-77 Wild type (N2)

0 0 2.5 0 0 15.0
2.5 2.5 0 0 0 5.0
0 10.0 7.5 2.5 0 0
0 0 0 0 2.5 2.5
0.0 5.0 0 0 5.0 2.5
2.5 0 0 5.0 0 0
2.5 57.5 10.0 5.0 5.0 0
2.5 10.0 67.5 0 2.5 5.0
0 2.5 0 87.5 0 0
0 0 2.5 0 62.5 0
0 0 0 0 2.5 67.5

0 2.5 2.5 0 0 22.5
2.5 2.5 0 0 0 5.0
0 7.5 0 2.5 2.5 2.5
0 15.0 0 0 5.0 2.5
2.5 5.0 2.5 0 2.5 0
2.5 2.5 0 5.0 0 0
2.5 55.0 7.5 5.0 2.5 0
2.5 12.5 57.5 0 7.5 5.0
0 2.5 0 87.5 0 0
0 0 17.5 0 50.0 0
0 0 0 0 2.5 67.5

row lists the results of the classification procedure. The success rates are listed
sclassification rates.
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Table 4
Relationship between omega bends and reversals

Wild type (N2) syd-1(ju82) unc-10(e102) unc-37(e262) unc-75(e950) unc-77(e625)

No. of videos watched 56 81 40 68 40 40
No. of omega bends following reversal (total) 75 (0.43) 111 (1.01) 74 (1.26) 45 (1.83) 37 (2.88) 71 (0.75)
No. of omega bends following reversal (ventral) 75 (0.43) 98 (0.86) 58 (1.10) 22 (1.90) 16 (3.05) 47 (0.67)
No. of omega bends following reversal (dorsal) 0 13 (2.16) 16 (1.84) 23 (1.76) 21 (2.74) 24 (0.92)
No. of omega bends NOT following reversal (total) 3 9 20 147 58 48
No. of omega bends NOT following reversal (ventral) 2 5 11 103 16 28
No. of omega bends NOT following reversal (dorsal) 1 4 9 44 42 20
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verage time intervals (s) between pairs of reversals and omega bends are listed

ends that immediately followed a reversal, nearly all involved
bend on the ventral side of the body. unc-10 and unc-77
utants also have a statistically significant ventral bias (p-value

.0000057 and 0.0045 for unc-10 and unc-77, respectively, using
Chi-Square test) (Glantz, 1996). However, the ventral bias is

ess strong for these mutants than for wild type (p-value ≈ 0).
owever, for unc-37 and unc-75 mutants, dorsal bends were as

ommon as ventral bends, indicating that the ventral bias was
ost in these animals. Furthermore, these mutants also showed a
uch higher frequency of omega bends that were uncorrelated
ith reversals, and the average time interval between omega
ends and reversals was significantly increased. Thus, the unc-
7 and unc-75 mutants appeared to have abnormalities in both
he ventral bias of omega bends as well as their temporal corre-
ation with reversals. Since we looked at single alleles of these

utants, it is not possible to conclude definitively that the ven-
ral bias phenotype is due to the unc-37/unc-75 mutation rather
han another mutation in the genetic background. However, these
esults demonstrate that it is possible to detect such phenotypes
which would be extremely tedious and time-consuming for a
uman observer) using the automated system.

In summary, we confirmed the loss of temporal correlation
etween reversals and turns in some but not all uncoordinated
utants, and demonstrated the possibility of using our auto-
ated system to identify other correlations in the timing of

ehavioral events that would be difficult to discern through real-
ime observation.

. Discussion

We have shown that a biologically meaningful morphological
keleton can be obtained with our coiling skeletonizing algo-
ithm for a worm body shape having an internal hole. This
epresents an important advance in the automated analysis of
ematode behavior, particularly with respect to the study of
ertain classes of locomotion-abnormal mutants. Whereas wild-
ype nematodes, and animals with locomotion patterns close
o wild type, coil infrequently, for coiler mutants a significant
roportion of frames in a given video sequence will contain
nternal-hole images.
Moreover, we have demonstrated that locomotion features
xtracted from obtained skeletons can be used to classify coilers
ith highly similar phenotypes. Among the coilers we studied,
nc-3, unc-10, unc-37, unc-75 and unc-77 are all described as

b
p
w
c

renthesis.

eak coilers; unc-1, unc-17, unc-26 and unc-32 are described
s strong coilers or kinkers. Yet each of these types could be
istinguished from others in its described class by a classifier
sing the features extracted by our system. For example, from
ur classification tree (Fig. 4), we can see that unc-75 is the
hortest within weak coilers, and has smaller values of length-
elated features (body length and tail–centroid distance). unc-10
s the largest weak coiler and it has longer length and larger
ody area. For strong coilers, unc-32 is the longest and unc-
showed particularly low centroid movement. unc-26, which

as larger head width–length ratio, tends to have a fatter head
hen compared to unc-17 (where fatness is defined as the ratio
f worm area to length). syd-1 does not coil very often and
oves very smoothly, similar to wild type in previous human

bservation. We found that it also has length very similar to
ild type. The most significant difference between syd-1 and
ild type is that syd-1 has larger tail area than wild type. Note

hat worm head/tail identification is performed, as in Geng et
l. (2004), using the facts that the worm’s head moves more
requently than the tail, and is darker than the tail.

The relationships between omega bends and reversals for six
trains (wild type, syd-1, unc-10, unc-37, unc-75 and unc-77)
ere also examined and compared to each other in this paper.
sing our automated omega bends and reversal detection algo-

ithms, we found that the ventral bias of omega bends normally
bserved in wild type was largely absent in some mutants such as
nc-37 and unc-75. Likewise, the temporal correlation between
mega bends and reversals was defective for these two strains.
ild type, syd-1, unc-10 and unc-77 have very similar omega

end and reversal behaviors. The ventral bias is very strong
articularly in wild type and syd-1, and most detected omega
ends were tightly coupled temporally to reversals for these four
trains.

. Conclusion

In comparison with related studies (Geng et al., 2003, 2004;
eng et al., 2004), the six contributions of the current work can be
ummarized as follows: (1) We developed and tested a new algo-
ithm for obtaining correct morphological skeletons from worm

ody shapes that have internal holes. (2) In comparison with
revious skeletonization algorithms (which abandoned frames
ith internal holes) the new algorithm increases classification

orrectness for several coiler mutant types (which frequently
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ake on body postures with internal holes). (3) We provided
uantitative characterizations of several coiler mutants. (4) We
eveloped and tested an algorithm for automatic detection of
mega bends, which correctly detected 93% of the omega bend
vents. (5) We developed and tested an algorithm for automatic
etection of reversals, which correctly found 96.9% of reversal
vents, compared to the 86.3% identification rate of Feng et al.
2004), while having fewer false alarms. (6) We found that both
he ventral bias of omega bends normally observed in wild type,
s well as the temporal correlation between omega bends and
eversals, were largely absent in some coiler mutants such as
nc-37 and unc-75.

In previous studies, coiling frames were disregarded for all
he 127 skeleton-related features derived from morphological
keleton parameters. These new methods make it possible for the
rst time to obtain skeleton parameters from virtually all images.
omplex behavioral features such as reversals and omega bends
ave been shown to reveal important aspects of sensory per-
eption and motor control in the C. elegans nervous system;
owever, manual scoring of these features is tedious and labor-
ntensive. The development of automated methods for the study

f complex behavioral patterns and the identification of mutants
ith abnormalities in them promises significantly to enhance

he understanding of behavioral mechanisms in this important
eurobiological model.
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ig. A.1. An example of coiling skeletonizing for group A (case 1). (a) The original g
nd two sets X and Y. (d) Finding the starting point and generating the division line. (
ut image.
nce Methods 158 (2006) 323–336 331
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ppendix A. Coiling skeletonizing

Images with holes can be classified into three groups: (A)
mages with the worm body touching only in the horizontal
xy-plane) direction and having a protruding head/tail (Fig. 1d),
B) images with the worm body touching only in the horizontal
irection but not having any protruding head/tail (Fig. 1e) and
C) images with the worm body overlapping vertically that is,
n the z-direction, going out of the plane of the agar plate. For
mages in group C, because the worm covers part of its body
ith another part, its body area is smaller than its usual size.
or every binarized image, we compare the size of the worm
ody area to a threshold. The threshold is recommended to be

0% of the average worm body area. Among the mutants stud-
ed in this paper, unc-17, unc-26 and unc-32, which have smaller
ody areas (5500 pixels) than the other strains, were strong coil-
rs/kinkers. Only these strains have the possibility of coiling

rayscale image. (b) The exterior and interior boundaries. (c) Sampled boundary
e) The cut image. (f) The morphological skeleton (solid line) obtained from the
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o tightly that the skeletonization should be directly abandoned
images in group C). So we chose 5000 pixels as the threshold in
ur experiment, but this threshold could be chosen as 90% of the
verage worm body area if either a different magnification were
sed, or if strong coilers with different body sizes were studied. If
he body area is smaller than the threshold, we decide the image
s in group C and abandon it because the correct body posture
ill not be available when a worm has vertical overlapping.
For images in groups A and B, after the binarization of the

riginal grayscale image, we obtain the exterior boundary and
he interior boundary of the worm body by first eroding it with a
× 3 square structuring element and then performing the set dif-

erence between the binary image and its erosion. Figs. A.1a and
.2a show the grayscale original images of two cases that will
ltimately be classified as belonging to class A. Figs. A.1b and
.2b depict the corresponding exterior and interior boundaries.
ig. A.3a shows the grayscale original image of a case that will
e classified as class B. Fig. A.3b shows the exterior and interior
oundaries. In each case, these two boundaries are sampled at
n interval of 5 pixels (the sampling interval should be adjusted
ccording to the magnification used for data acquisition) to get

+ 1 sampled points pi (i = 0, 1, 2, 3, . . ., N, where N + 1 is the

otal number of sampled points). To decide if this image has
protruding head/tail, the inner angle θ between each pair of

t
s
n

ig. A.2. An example of coiling skeletonizing for group A (case 2). (a) The original g
nd two sets X and Y. (d) Finding the starting point and generating the division line. (
ut image.
ence Methods 158 (2006) 323–336

egments pi–pi−2 and pi–pi+2 in the exterior boundary will be
easured to find a point O which has the furthest distance from

he interior boundary among all points with θ < 90◦. If no such
oint exists, then this image is classified as group B. Otherwise,
his image belongs to group A. In Figs. A.1c and A.2c, the point

is found and the images are classified as class A. In Fig. A.3c,
here is no point where the interior angle is less than 90◦, so the
mage is class B (no protruding head/tail).

If this image is in group A, all sampled points are divided
nto two sets: set X contains N/2 points clockwise next to point

and set Y contains N/2 points counterclockwise next to point
. For each point xi in X, we search every point yj in Y to find

he one closest to xi. We calculate the distance Wij between xi

nd yj as well as the outer angle θi (the angle between each pair
f segments xi–xi−2 and xi–xi+2). First we check for all points if
i < 100◦, if the answer is yes, then xi is considered a possible
tarting point of the worm body touching. If the answer is no for
ll points, we compare Wij to the average width W of the worm
ody. If Wij > W, then xi will still be considered a possible starting
oint. The search continues until the first possible starting point
f the body touching is found. We repeat the same process for

he set Y. We have found that at most one set will have a possible
tarting point with θ smaller than 100◦ (Fig. A.1d). Sometimes
either set X nor Y has an outer angle θ smaller than 100◦. In this

rayscale image. (b) The exterior and interior boundaries. (c) Sampled boundary
e) The cut image. (f) The morphological skeleton (solid line) obtained from the
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ig. A.3. An example of coiling skeletonizing for group B. (a) The original gra
s no point where the angle is less than 90◦. (d) Finding overlapping part. (e) C
tarting point to the interior boundary. (g) The cut image with the division line.

ase, both sets X and Y will have a possible starting point where
ij > W. We find a point p in the interior boundary which is the

losest to the two possible starting points found, then we com-
are dx and dy which are the shortest distances from the point p to
ets X and Y. Whichever side has the shorter distance will be con-
idered the head/tail part (because the head and tail are less thick)
nd the possible starting point in that side will be considered the
eal starting point of the worm body touching (Fig. A.2d).

Assume xm is found to be the real starting point and yn is
ts closest sampled point in the other set, we can keep locating
ivision points which are Wmn (the distance between xm and
n) pixels away from the next points yk (k > n) until the interior
oundary is reached. These division points are connected to form
division line and then a skeletonizing algorithm is applied on

his cut image (Figs. A.1e and A.2e) to get the correct skeleton
Figs. A.1f and A.2f).

If the image is in group B, we calculate the distance d between
he interior boundary and every sampled point on the exterior
oundary. If d > W, we put this point into a set Z. The set Z

overs the overlapping part of the worm body (Fig. A.3d). The
wo end points of this set are the two possible starting points of
he overlapping. We measure the variance of pixel values in two
ectangular blocks (each block has 10-pixel width with one of the

i
w
s
f

image. (b) The exterior and interior boundaries. (c) sampled boundary. There
ring variance of pixel values in two areas. (f) Locate division points from the

he morphological skeleton (solid line) obtained from the cut image.

onger edges formed by one end point and the fifth point from the
nd point. The size of the rectangular blocks should be adjusted
ccording to the magnification used) around these two points
nd compare them (Fig. A.3e). The side with larger variance is
onsidered the starting point because the place where the head
r tail tapers to a point usually has very different pixel values
ompared to the body part it is touching. The histograms of two
ectangular blocks are shown in Fig. A.4. A number of points
re located gradually from the starting point with increasing
istance (0, 2, 4, 6, . . ., W) from points in the set Z until the
nterior boundary is reached (Fig. A.3f) and connected together
o generate a division line (Fig. A.3g). Then we apply a standard
keletonizing algorithm on this cut image to obtain the correct
keleton of the worm body (Fig. A.3h). The block diagram of the
hole coiling skeletonizing process is also shown in Fig. A.5.
Every skeleton obtained with this algorithm was also com-

ared to the average length of the worm body calculated from
mages without internal holes. If the difference between them
s greater than 20% of the average worm body length, which

s nearly the difference between the maximal and the minimal
orm body length in frames without body touching, then this

keleton is assumed to be incorrect and is not used for further
eature extraction.
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Fig. A.4. The histograms of block 1 and block 2 in Fig. A.3e.
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Fig. A.5. The block diagram

ppendix B. Omega bend detection

A typical omega bend starts with the worm making a big turn
y approaching its body with its head, then its head will pass its
ail and go to a new direction. As defined in Gray et al. (2005),
he reorientation has to be greater than 135◦ or the worm has
o touch its body in order for the movement to be considered

n omega bend. For coiler mutant types, sometimes an omega
end is interrupted by other movements before it is finished. Our
oal is to construct an algorithm which can automatically detect
omplete omega bend events that meet the definition as given in
ling skeletonizing algorithm.

ray et al. (2005). In our algorithm, we divide an omega bend
nto three parts:

1) Start of an omega bend:
For each frame, we compare the distance dhm (the dis-

tance between the worm head and the middle skeleton
point which is defined as the 15th skeleton point) and the

distance dtm (the distance between the worm tail and the
middle skeleton point) and calculate the angle θ between
these two segments. We use L to denote the worm’s body
length. If dhm < dtm − 0.05L and θ < 45◦, then this frame
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ig. B.1. (a) Start frame of an omega bend. Segment dtm must be greater than d
end. θ must be less than 45◦. (c) End frame of an omega bend. Segment dhm m

will be considered a starting frame of an omega bend
(Fig. B.1a).

2) Middle of an omega bend:
Because the reorientation of an omega bend has to be

greater than 135◦, the angle θ (same definition as in start
of an omega bend) has to be smaller than 45◦ in all frames
of an omega bend (Fig. B.1b). Sometimes a worm touches
itself during an omega bend. In all frames with touching,
the bending angle θ is obviously smaller than 45◦ (close to
0), so these frames also satisfy the criterion of the middle
of an omega bend.

3) End of an omega bend:
When a worm comes out of an omega bend, its head

moves away from its body to a new direction.
At this moment, its tail should be closer to its middle

skeleton point then its head. So dtm < dhm − 0.05L in the
end of the omega bend (Fig. B.1c).

If the first frame, the last frame and all frames in the middle
f a sequence satisfy these criteria of start, end and middle of an
mega bend, we declare an omega bend.
ppendix C. Reversal detection

After a morphological skeleton is obtained, 30 evenly spaced
keleton points are extracted. The two end points on the skeleton

w
i
o
l

s 5% of body length and θ must be less than 45◦. (b) A frame during an omega
greater than dtm plus 5% of body length.

epresent the head and tail positions. Two reference points (Rh,
t) are defined as the sixth skeleton point from the head and tail
nd points (Fig. C.1a). These mark where the tail segment and
ead segment begin.

Any frame without body looping (that is, without an internal
ole) will be considered a reversal frame if the following criteria
re satisfied:

1) The distance between the head position four frames earlier
(t = n − 4) and the current reference point Rh (t = n) has to be
greater than the distance between the current head position
(t = n) and the current reference point Rh (t = n). When this
criterion is satisfied, it means that the worm’s head is moving
toward its previous body position.

2) The distance between the current tail position (t = n) and the
previous reference point Rt (t = n − 4) has to be greater than
the distance between the previous tail position (t = n−4) and
the previous reference point Rt (t = n − 4) by at least 2.0%
of the body length (Fig. C.1b).

When the second criterion is satisfied, it means that the
orm’s tail is moving away from its previous body position. It

ill exclude those frames in which the worm only waves its tail

nstead of reversing. The “2.0% of the body length” in the sec-
nd criterion makes the reversal length showing on the computer
ong enough (≥1 mm) to be verified by human observation. The
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Wicks SR, Rankin CH. Integration of mechanosensory stimuli in Caenorhabditis
ig. C.1. (a) Skeleton with 30 sampled skeleton points. Two reference points
osition). (b) Reversals detection method. The frame at t = n is compared to the

eason we chose to compare the frames at n and n − 4 (instead
f n − 1) is to make our result less sensitive to other movements
esides reversals such as tiny tail waving or head foraging move-
ents.
After the reversal frames are found, we combine them to

ocate every reversal sequence happening during the video.
he reversal distance and length are obtained by calculat-

ng the moving distance of the centroid and the time inter-
al between the start frame and the end frame of a reversal
equence.
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