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Abstract

Connectionist models have traditionally ignored conscious rule application in learming and performance.
Conceptual problems arise in treating rule application in a connectionist framework because the level of analysis of
connectionist models is lower than that which is natural for describing conscious rules. An analysis is offered of the
relation between these two levels of description, and of the kind of reduction involved in connectionist modeling.
From this vantagepoint an approach is formulated to the treatment of conscious rule application within a
connectionist framework. The approach crucially involves connectionist language processing, and leads to a
distinction between two types of knowledge that can be stored in connectionist systems.

Introduction

Connectionist models have traditionally ignored the role played by conscious application of rules in human
cognition. Many tasks are learned through rules, and initially performed by consciously applying those rules;
connectionist models have by and large been unable to address leaming and performance in which such rule
application occurs. One of the most striking phenomena in cognitive science is the shift during the acquisition of
expertise from conscious processing to processing that I will simply refer to as inruitive. While the connectionist
approach has provided successful models of purely intuitive processes, since the approach cannot now address rule
application, it cannot shed light on this aspect of the transition to expertise.

Incorporating conscious rule application into a connectionist paradigm poses serious conceptual problems that
must be resolved, at least provisionally, before the associated technical problems can even be recognized, let alone
solved. Many of these conceptual problems stem from the fact that the level of analysis adopted by connectionist
modeling is lower than the level at which rule interpretation is most naturally described. Conscious rules involve
consciously accessible concepts, and are therefore naturally described at the level of these concepts: what I will call
the conceptual level. In the kind of connectionist system I consider here, concepts are represented by patterns of
activity over large numbers of processing units; the semantic interpretation of the individual units is considerably
finer-grained than that of the consciously accessible concepts. Such a connectionist system uses distributed
representations (eg., Anderson & Hinton, 1981; Hinton, McClelland & Rumelhart, 1986; Smolensky, 1986b). The
semantics of the individual connectionist processors resides at a level lower than the conceptual level: what I will
call the subconceptual level.

The cognitive modeling paradigm employing connectionist models with distributed representations, i.e.,
employing connectionist networks with subconceptual semantics, will be called the subsymbolic paradigm; this
contrasts with the traditional symbolic paradigm that employs symbol manipulating models in which the symbols
have conceptual semantics. The incorporation of conscious rule interpretation into the subsymbolic paradigm
involves a reduction of the symbolic account of rule interpretation to the subconceptual level. Thus the first
question to address is: How do the symbolic and subsymbolic paradigms relate at the conceptual and subconceptual
levels of analysis, and what kind of reduction is involved?

Reduction of cognition to the subconceptual level

Imagine three physical systems: a brain that is executing some cognitive process, a massively parallel
connectionist computer running a subsymbolic model of that process, and a von Neumann computer running a
symbolic model of the same process. The cognitive process may involve conscious rule application, intuition, or a
combination of the two. In Smolensky (1987b) I have characterized the subsymbolic paradigm as positing the
following relationships between descriptions of these three physical systems at the neural, subconceptual, and
conceptual levels:
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(1) Describing the brain at the neural level gives a neural model.

Describing the brain approximately, at a higher level—the subconceptual level—yields, to a good

approximation, the model running on the connectionist computer, when it too is described at the

subconceptual level. (At this point, this is a goal for future research. It could turn out that the
degree of approximation here is only rough; this would still be consistent with the subsymbolic
paradigm.)

c. We can try to describe the connectionist computer at a higher level—the conceptual level—by
using the patterns of activity that have conceptual semantics. If the cognitive process being
executed is conscious rule application, we will be able to carry out this conceptual level analysis
with reasonable precision, and will end up with a description that closely matches the symbolic
computer program running on the von Neumann machine.

d. If the process being executed is an intuitive process, we will be unable to carry out the
conceptual-level description of the connectionist machine precisely. Nonetheless, we will be able
to produce various approximate conceptual-level descriptions that correspond in various ways to
the symbolic computer program running on the von Neumann machine.

L

For a cognitive process involving both intuition and conscious rule application, (1c) and (1d) will each apply to
certain aspects of the process.

The relationships (1a) and (1b), which are discussed at some length in Smolensky (1987b), are not relevant for
the present considerations; they are mentioned here only to link the physical instantiations of the subsymbolic and
symbolic models to the physical system they are in some sense models of. A number of the relations (1d) between
subsymbolic and symbolic accounts of intuitive processing have been addressed elsewhere (Rumelhart, Smolensky,
McClelland & Hinton, 1986; Smolensky, 1986a, 1986b; see Smolensky, 1987a, 1987b for summaries). The
relationship (1c) between a subsymbolic implementation of conscious rule interpretation and a symbolic
implementation is the subject of the next section,

The relationships in (1) can be more clearly understood by introducing the concept of "virtual machine." If we
take one of the three physical systems and describe ils processing at a certain level of analysis, we get a virtual
machine that I will denote "systemy,;". Then (1) can be written:

(2) a. brain.... = neural model
b.  braiNasconcepuat = CONNECLIONIStaubconcepnual
C.  CONNECUONISloncepaat = VON NEUMANN oncepmat (CONSCious rule application)
d. connectioniStioncepnat ~ vON Neumann oncepmar (intuition)

Here, the symbol "=" means “equals to a good approximation” and "~" means "equals to a crude approximation."
The two nearly equal virtual machines in (2c) both describe what I will call the conscious rule interpreter. The two
roughly similar virtual machines in (2d) provide the two paradigms’ descriptions of the intuitive processor at the
conceptual level.

Table 1 indicates these relationships and also the degree of exactness to which each system can be described at
each level—the degree of precision to which each virtual machine is defined. The levels included in Table 1 are
those relevant to predicting high-level behavior. Of course each system can also be described at lower levels, all the
way down to elementary particles. However, levels below an exactly describable level are ignorable from the point
of view of predicting high-level behavior, since it is possible (in principle) to do the prediction at the highest level
that can be exactly described (and it is presumably much harder to do the same at lower levels). This is why in the
symbolic paradigm any descriptions below the symbolic level are not viewed as significant. For modeling high-level
behavior, how the symbol manipulation happens to be implemented can be ignored—it is not a relevant part of the
cognitive model. In a subsymbolic model, exact behavioral prediction must be performed at the subconceptual
level—but how the units happen to be implemented is not relevant.
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Table 1: Three cognitive systems and three levels of description

cognitive system
level (process)
brain subsymbolic symbolic
(intuition) 7 rough approximation ~ exact
conceptual (con:c:ofts r‘uI ¢ 7 good approximation =  exact
application)
subconceptual good approximation = exact
neural exact

The relation between the conceptual level and lower levels is fundamentally different in the subsymbolic and
symbolic paradigms. This leads to important differences in the kind of explanations the paradigms offer of
conceptual-level behavior, and the kind of reduction used in these explanations. A symbolic model is a system of
interacting processes, all with the same conceptual-level semantics as the task behavior being explained. Adopting
the terminology of Haugeland (1978), this systematic explanation relies on a systematic reduction of the behavior
that involves no shift of semantic domain or dimension. Thus a game-playing program is composed of subprograms
that generate possible moves, evaluate them, and so on. In the symbolic paradigm, these systematic reductions play
the major role in explanation. The lowest-level processes in the systematic reduction, still with the original
semantics of the task domain, are then themselves reduced by intentional instantiation: they are implemented
exactly by other processes with different semantics but the same form. Thus a move-generation subprogram with
game semantics is instantiated in a system of programs with list-manipulating semantics. This intentional
instantiation typically plays a minor role in the overall explanation, if indeed it is regarded as a cognitively relevant
part of the model at all.

Thus cognitive explanations in the symbolic paradigm rely primarily on reductions involving no dimension shift.
This feature is not shared by the subsymbolic paradigm, where accurate explanations of intuitive behavior require
descending to the subconceptual level. The elements in this explanation, the units, do not have the semantics of the
original behavior. Thus unlike symbolic explanations, subsymbolic explanations rely crucially on a semantic
("dimension") shift that accompanies the shift from the conceptual to the subconceptual levels.

The overall dispositions of cognitive systems are explained in the subsymbolic paradigm as approximate higher
level regularities that emerge from quantitative laws operating at a more fundamental level with different semantics.
This is the kind of reduction familiar in natural science, exemplified by the explanation of the laws of
thermodynamics through a reduction to mechanics that involves shifting dimension from thermal semantics to
molecular semantics. (Section discusses some explicit subsymbolic reductions of symbolic explanatory constructs.)

Indeed the subsymbolic paradigm repeals the other features that Haugeland identified as newly introduced into
scientific explanation by the symbolic paradigm. The inputs and outputs of the system are not "quasilinguistic
representations” but good old-fashioned numerical vectors. These inputs and outputs have semantic interpretations,
but these are not constructed recursively from interpretations of imbedded constituents. And the fundamental laws
are good old-fashioned numerical equations.

Haugeland went to considerable effort to legitimize the form of explanation and reduction used in the symbolic
paradigm. The explanations and reductions of the subsymbolic paradigm, by contrast, are of a type well-established
in natural science.

In summary, let me emphasize that in the subsymbolic paradigm the conceptual and subconceptual levels are not
related as the levels of a von Neumann computer (high-level-language program, compiled low-level program, etc.).
The relationship between subsymbolic and symbolic models is more like that between quantum and classical
mechanics. Subsymbolic models accurately describe the microstructure of cognition, while symbolic models
provide an approximate description of the macrostructure. An important job of subsymbolic theory is to delineate
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the situations and respects in which the symbolic approximation is valid, and to explain why.

Conscious rule application in the subsymbolic paradigm

In the symbolic paradigm, both conscious rule application and intuition are described at the conceptual level: as
conscious and unconscious rule interpretation, respectively. In the subsymbolic paradigm, conscious rule
application can be formalized at the conceptual level but intuition must be formalized at the subconceptual level,
This suggests that a subsymbolic model of a cognitive process involving both intuition and conscious rule
interpretation would consist of two components employing quite different formalisms. While this hybrid formalism
might have considerable practical value, there are some theoretical problems with it. How would the two
formalisms communicate? How would the hybrid system evolve with experience, reflecting the development of
intuition and the subsequent remission of conscious rule application? How would the hybrid system elucidate the
fallibility of actual human rule application (eg. logic)? How would the hybrid system get us closer to understanding
how conscious rule application is achieved neurally?

All these problems can be addressed by adopting a unified subconceptual-level analysis of both intuition and
conscious rule interpretation, The virtual machine that is the conscious rule interpreter is to be implemented in a
lower-level virtual machine: the same connectionist system that models the intuitive processor. How this can, in
principle, be achieved is the subject of this section. The relative advantages and disadvantages of implementing the
rule interpreter in a connectionist system rather than a von Neumann machine will also be considered.

The observation is this.

The competence to represent and process linguistic structures in a native language is a competence of
the human intuitive processor, so the subsymbolic paradigm assumes that this competence can be
modeled in a subconceptual connectionist system. By combining such linguistic competence with
existing memory capabilities of connectionist systems, sequential rule interpretation can be
implemented.

Assuming that sentences of natural language can be represented in a subconceptual connectionist system means
that such sentences correspond to certain patterns of activity. Assuming that sentences can be processed means in
particular that a pattern of activily representing a verbal instruction can be used to carry out that instruction. Once
sentences are represented as patterns of activity, the well-known procedures of associative memories can be used to
store them. These are content-addressable memories in which reinstantiation of a part of the stored item causes
reinstantiation of the complete item. A collection of such memories can then be used to drive sequential behavior,
as follows.

First, a set of linguistically expressed rules is presented to the connectionist system and thereby stored. For
concreteness we can imagine the rules to be productions: "if condition holds, then do action." In a particular
situation when the condition of a rule holds, the pattern of activity representing the condition will be instantiated in
the network. This will cause the entire pattern of activity representing that rule to be reinstantiated by the memory
retrieval mechanism. Now it is as if the rule had been linguistically presented to the system from an extemal
instructor. The language processing mechanism can interpret the sentence, generating the appropriate action and
leading to a new pattern of activity in the network representing the new situation. This new pattern leads to the
reinstantiation of another stored rule, and the cycle repeats.

Using the stored rules the network can perform the task. The standard learning procedures of connectionist
models turn this experience performing the task into a set of weights for going from inputs to outputs. Eventually,
after enough experience, the task can be performed directly by these weights. The input activity generates the
output activity so quickly that before the relatively slow interpretation process has a chance to reinstantiate the first
rule and carry it out, the task is done. With intermediate amounts of experience, some of the weights are well
enough in place to prevent some of the rules from having the chance to instantiate, while others are not, enabling
other rules to be retrieved and interpreted.
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Rule interpretation, consciousness, and seriality

What about the conscious aspect of rule interpretation? Since consciousness seems to be a quite high-level
description of mental activity, it is reasonable to suspect that it reflects the very coarse structure of the cognitive
system. Considering coarseness on the time dimension, we are lead to hypothesize:

Patterns of activity that are stable for relatively long periods of time (on the order of 100 msec)
determine the contents of consciousness.

(See Rumelhart, Smolensky, McClelland & Hinton 1986.) The rule interpretation process requires the maintenance
of the retrieved linguistically coded rule while it is being carried out. Thus the pattern of activity representing the
rule is stable for a relatively long time. By contrast, after connections have been developed to perform the task
directly, there is no correspondingly stable pattern formed during the performance of the task. Thus the loss of
conscious phenomenology with expertise can be understood naturally.

On this account, the sequentiality of the rule interpretation process is not built into the architecture; rather it is a
consequence of the fact that we can follow only one instruction at a time. Connectionist memories have the
capability to retrieve a single stored item, and here this is necessary to avoid asking the linguistic interpreter to
simultaneously interpret more than one instruction.

It is interesting to note that the preceding analysis does not require that the “rules” be linguistic; any notational
system that can be appropriately interpreted would do. Another type of "rule” is a series of musical pitches; a
memorized collection of such rules allows a musician to play a tune by "conscious rule interpretation.” With
practice the need for conscious control goes away. Since pianists learn to interpret several notes simultaneously, the
present account suggests that pianists might be able to apply more than one musical rule at a time (provided their
memory for the rules can simultancously recall more than one rule). A symbolic account of such conscious rule
interpretation would involve something like a production system capable of firing multiple productions
simultaneously,

Finally it should be noted that even if the memorized rules are assumed to be linguistically coded, the preceding
analysis is uncommitted about the form the rules take in memory: phonological, orthographic, semantic, or
whatever.

Symbolic vs. subsymbolic implementation of rule interpretation

The (approximate) implementation of the conscious rule interpreter in a subsymbolic system—a reduction of the
traditional kind, as I have argued above—has both advantages and disadvantages relative 10 an (exact)
implementation in a von Neumann machine—a reduction by intentional instantiation.

The main disadvantage is that subconceptual representation and interpretation of linguistic instructions is very
difficult and we can't now actually do it. Most existing subsymbolic systems simply don’t use rule interpretation.’
They can't take advantage of rules to check the results produced by the intuitive processor. They can’t bootstrap
their :vay into a new domain using rules to generate their own experience: they must have a teacher generate it for
them.

There are several advantages of a subconceptually implemented rule interpreter. The intuitive processor and
rule interpreter are highly integrated, with broad-band communication between them. Understanding how this
communication works should allow design of efficient hybrid symbolic/subsymbolic systems with effective

1. A notable exception is Touretzky & Hinton 1985.

2. And when a network makes a mistake, it can be told the correct answer but it can’t be told which rule it violated.
Thus it must assign blame for its error in a very undirected way. It is quite plausible that the large amount of train-
ing currently required by subsymbolic systems could be significantly reduced if blame could be focussed by citing
violated rules.
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communication between the processors. A principled basis is provided for studying how rule-based knowledge
leads to intuitive knowledge. Perhaps most interesting, in a subsymbolic rule interpreter, the process of rule
selection is intuitive! Which rule is reinstantiated in memory at a given time is the result of the associative retrieval
process, which has many nice properties. The "best match" to the productions’ conditions is quickly computed, and
even if no match is very good, a rule can be retrieved. The selection process can be quite context-sensitive.,

An integrated subsymbolic rule interpreter/intuitive processor in principle offers the advantages of both kinds of
processing. Imagine such a system creating a mathematical proof. The intuitive processor would suggest goals and
steps, and the rule interpreter would verify the validity of proposals. The serial search through the space of possible
steps that is necessary in a purely symbolic approach is replaced by intuitive generation of possibilities. Yet the
precise adherence to strict inference rules that is demanded by the task can be enforced by the rule interpreter; the
creativity of intuition can be exploited while its unreliability can be controlled.

Two kinds of knowledge,; one medium

Most existing subsymbolic systems perform tasks without serial rule interpretation: patterns of activity
representing inputs are directly transformed (possibly through multiple layers of units) to patterns of activity
representing outputs. The connections that mediate this transformation represent a form of task knowledge that can
be applied with massive parallelism: 1 will call it P-knowledge. For example, the P-knowledge in a native speaker
encodes lexical, morphological, syntactic, semantic, and pragmatic constraints in such form that all these constraints
can be satisfied in parallel during comprehension and generation.

The connectionist implementation of sequential rule interpretation described above displays a second form that
knowledge can take in a subsymbolic system. The stored activity patterns that represent rules also constitute task
knowledge: call it §-knowledge. Like P-knowledge, S-knowledge is imbedded in connections: the connections that
enable part of a rule to reinstantiate the entire rule. Unlike P-knowledge, S-knowledge cannot be used massively in
parallel. For example, a novice speaker of some language cannot satisfy the constraints contained in two
memorized rules simultaneously; they must be serially reinstantiated as patterns of activity and separately
interpreted. Of course the connections responsible for reinstantiating these memories operate in parallel, and indeed
these connections contain within them the potential to reinstantiate either of the two memorized rules. But these
connections are so arranged that only one rule at a time can be reinstantiated. The retrieval of a single rule is a
parallel process, but the satisfaction of the constraints contained in the two rules is a serial process. After
considerable experience, P-knowledge is created: connections that can simultaneously satisfy the constraints
represented by the two rules.

P-knowledge is considerably more difficult to create than S-knowledge. To encode a constraint in connections
so that it can be satisfied in parallel with thousands of others is no easy task. Such an encoding can only be learned
through considerable experience in which that constraint has appeared in many different contexts, so that the
connections enforcing the constraint can be tuned to operate in parallel with those enforcing a wide variety of other
constraints. S-knowledge can be much more rapidly acquired (once the linguistic skills on which it depends have
been encoded into P-knowledge, of course). Simply reciting a verbal rule over and over will usually suffice to store
it in memory (at least temporarily).

That P-knowledge is so highly context-dependent while the rules of S-knowledge are essentially context-free is
an important computational fact underlying many of the psychological explanations offered by subsymbolic models.
Consider, for example, Rumelhart and McClelland's (1986) model of the U-shaped curve for past-tense production
in children. The phenomenon is striking: a child is observed using goed and wented when at a much younger age
went was reliably used. This is surprising because we are prone to think that such linguistic abilities rest on
knowledge that is encoded in some context-free form such as "the past tense of go is went." Why should a child lose
such a rule once acquired? A traditional answer invokes the acquisition of a different context-free rule, like "the
past tense of x is x+ed" which, for one reason or another, takes precedence. The point here, however, is that there is
nothing at all surprising about the phenomenon when the underlying knowledge is assumed to be context-dependent
and not context-free. The young child has a small vocabulary of largely irregular verbs. The connections that
implement this P-knowledge are capable of reliably producing the large pattern of activity representing went, as well
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as those representing a small number of other past-tense forms. Informally we can say that the connections
producing went do so in the context of the other vocabulary items that are also stored in the same connections.
There is no guarantee that these connections will produce went in the context of a different vocabulary. As the child
acquires additional vocabulary items, most of which are regular, the context radically changes. Connections that
were, so to speak, perfectly adequate for creating went in the old context now have to work in a context where very
strong connections are trying to create forms ending in —ed; these “old connections” are not up to the new task.
Only through extensive experience trying to produce went in the new context of many regular verbs can the "old"
connections be modified to work in the new context. (In particular, strong new connections must be added that,
when the input pattern is that for go, cancel the —ed; these were not needed before.)

These observations about context-dependence can also be framed in terms of inference. If we choose to regard
the child as using knowledge to in some sense "infer" the correct answer went, then we can say that after the child
has added more knowledge (about new verbs), the ability to make the (correct) inference is lost. In this sense the
child’s inference process is non-monotonic—perhaps this is why we find the phenomenon surprising. Non-
monotonicity is a fundamental property of subsymbolic inference (see Smolensky, 1987b).

To summarize:

e Knowledge in subsymbolic systems can take two forms, both resident in the connections.

e The knowledge used by the conscious rule interpreter lies in connections that reinstantiate patterns
encoding rules; task constraints are coded in context-free rules and satisfied serially.

e The knowledge used in intuitive processing lies in connections that constitute highly context-sensitive
encodings of task constraints that can be satisfied with massive parallelism.

e Learning such encodings requires much experience.

Conclusion

The approach described above sets out a rather clear program for developing subsymbolic models of conscious
rule application. The crucial technical problems to be solved involve subsymbolic models of natural language
processing: the representation of linguistic structures—including procedural descriptions such as productions—and
their interpretation—effecting the designated procedures as a result of activating their representation. These are
hard problems, but they are problems that need to be solved anyway by a connectionist approach to language
processing. With even very limited solutions to these problems, we can begin to seriously explore the interaction of
rule application and intuitive processing, in both leaming and performance, within a subsymbolic connectionist
framework.
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