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Thanks to the pervasiveness of smartphones and their applications there is an abundance of

data generated from mobile devices. These data are either actively contributed by the users

(e.g., Foursquare check-ins), or can be passively inferred from the mobile phone activity

(e.g., user’s location during a phone call). Since, smartphones are constantly with their

users, mobile data reflect the underlying human activity and they provide rich information

about spatio-temporal and social patterns. This can be used to enable a variety of new

services.

This dissertation is focused on how to mine mobile phone data to improve a variety of

Smart City applications. In particular, we focus on Call Description Records (CDRs) that

are generated every time a user makes a phone call. Also, users’ phone calls reveal social

information (e.g., whom they call). The spatio-temporal information in mobile data reflects

how users move in the city (i.e., users’ trajectories) and in which areas they spend their time

during the day. In this dissertation we use their rich and unique combination of insights

into human dynamics in order to: (1) understand and improve transportation in a city via

ridesharing, (2) characterize various areas of the city, as well as how these areas interact

with each other (Urban Ecology), and (3) predict communication between different areas of

the city in order to improve provisioning in cellular infrastructure.
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First, we use CDRs to assess the potential of ridesharing. Our offline analysis based on

large CDRs and other data sets from four different cities indicates that ridesharing has a

great potential considering spatio-temporal and social constraints the users might have when

sharing a ride. Moreover, we design and implement an online ridesharing system (ORS), with

emphasis on scalability.

Second, we use CDRs to infer features of urban ecology (i.e., social and economic activities,

and social interaction). We present a novel approach that consists of time series decompo-

sition of aggregate cell phone activity per unit area using spectral methods, and clustering

of areal units with similar activity patterns. We validate our methodology using external

ground truth data that we collected from municipal and online sources.

Finally, we use CDRs to predict cell-to-cell mobile traffic. Traffic prediction is crucial for

provisioning and virtualization of cellular architectures. We build a traffic predictor using

state-of-the art machine learning techniques. Our predictor is based on key insights that we

got after examining the data and it achieves accuracy of 85% (while the baseline achieves

80%). Also, by giving higher weight to false positives, which is important for network

operators, we can achieve a recall of 94%.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Human Patterns Reflected in Cell Phone Data

Thanks to the pervasiveness of smartphones and their applications there is an abundance

of data contributed from mobile devices. These data are either actively generated by the

users (e.g., Foursquare or Facebook check-ins), or can be passively inferred from the mobile

phone activity (e.g., user’s location during a phone call). Since, smartphones are constantly

with their users, mobile data reflect the underlying human activity and they provide rich

information about spatio-temporal and social patterns. This can be used to enable a variety

of new services.

Call Description Records (CDRs) 1 are the most common mobile data available. They are

generated every time a mobile subscriber makes a phone call and they come at no extra cost

to the operator since they are maintained for billing purposes. Moreover, they are available

1Also known as Call Data Records, or Call Detail Records.
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for a large portion of the population, and they can be used to study human mobility, social

networks, and urban ecology.

1.1.2 Overview of CDRs

Cell phone networks are built using a set of Base Transceiver Stations (BTS) that are in

charge of communicating with cell phone devices. The area covered by a BTS tower is called

a cell. The size of a cell varies from a few hundred square meters in an urban environment

to up to 3 square kilometers in rural areas. At any given moment, one or more BTSs can

give coverage to a cell phone. Whenever an individual makes a phone call, the call is routed

through a BTS in the area of coverage. The BTS is assigned depending on the network

traffic and on the geographic position of the individual.

Call Description Records (CDRs) are generated when a mobile phone initiates or receives a

phone call or uses a service (e.g., SMS, MMS, etc.). Information regarding the time/date

and the location of the nearest cell tower are then recorded. More specifically, CDR entries

consist of the following main fields: (1) the originating number (2) the destination number

(3) the time and date of the call (4) the duration of the call (5) the latitude and longitude of

the cell tower used by one, or both, phones numbers ( note that cell phone companies save

CDR records only for their customers). The following example shows part of the information

contained in CDR records:

#caller,#callee,start time,tower coordinates,

___________________________________________________

u1, v1,2009-12-01 00:44:13,(40.421377,-3.698631)

u2, v2,2009-09-15 23:33:19,(40.441566,-3.697189)

u3, v3,2009-12-10 14:33:29,(40.414634,-3.709735)

u4, v4,2009-12-10 19:53:09,(40.419974,-3.630850)
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These records are logged for pricing purposes, so they come at no extra cost to the cellular

operator. Note that no information about the exact position of a user is known, since cell

phone data provide coarse location accuracy — a few hundred meters from the cell tower for

city center, and up to 3 km in rural areas. For privacy reasons, no contract or demographic

data are made available to researchers with the CDRs, and the originating and destination

phone numbers were anonymized.

One can analyze CDRs at different levels of granularity. In this thesis, we refer as (1)

“Individual CDRs” to CDR records that provide per-user information; and (2) “Aggregate

CDRs” to indicate the fact that the CDRs have been aggregated over a number of users in

a spatial and/or time unit.

Figure 1.1: Example of spatio-temporal information extracted from individual CDRs. The
figure shows the locations of a particular user reported in CDR records. One can infer
two important locations (possibly home and work) and the trajectory of this user (indeed
coinciding with a highway in the city).

Individual CDRs: Individual CDRs provide the spatio-temporal information and the phone

calls of individual users. Therefore, they constitute samples of individuals’ trajectories, as

well as samples of their social network. Such, rich samples of can shed light into how people

move around the city (i.e., their daily home-to-work trajectories) and how they interact

with other mobile users (see Fig. 1.1). Although the user (caller and callee) ids are typically

anonymized, the risk for privacy breach is significant for the telecommunication companies
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(a) Aggregated Activity Heat-map (b) Intra-city Communication

Figure 1.2: These two figures demonstrate the volume of mobile activity that Aggregate
CDRs contain. Fig. 1.2(a) shows a heat-map of the cell phone activity, i.e., the total volume
per areal unit in a 10min interval. Fig. 1.2(b) shows an example of communication volume
between pairs of cells (areas) in the city.

to make them publicly or share with with collaborators.

Aggregate CDRs: CDRs can be aggregated spatially and/or temporally; they are typically

aggregated by dividing the geographical area where they have been generate, e.g., a city, into

a grid; for example a 100x100 grid will divide a city into ten thousand grid-squares where

each one of them corresponds to a few city blocks (up to a few kilometers depending the size

of the city and the number of grid-squares). Aggregate CDRs pose low risk to individuals’

privacy and they are often made publicly available [10]. In addition, aggregate CDRs are of

interest on their own right as they reveal interesting patterns at different granularities, such

as city blocks, time periods etc (See Fig. 1.2).

1.2 Contributions

This thesis investigates how to mine mobile phone data to improve a variety of Smart City

applications. The spatio-temporal information in the data reflects how users move in the
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city (i.e., users’ trajectories) and in which areas of the city they spend their time during the

day, while their phone calls shows whom do they call (from a specific location at a specific

time). The data sets used in this thesis are described in their corresponding chapters. Next,

we outline the contributions of this thesis.

1.2.1 Mining Aggregated CDRs

Because of their rich and unique combination of insights into human activities in a city, mobile

phone data can be used to: (1) characterize various areas of the city, as well as how these

areas interact with each other (i.e., Urban Ecology), and (2) predict communication between

different areas of the city (e.g., in order to improve provisioning in cellular infrastructure).

Urban Ecology

The goal of this part of the thesis is to infer features of urban ecology (i.e., social and

economic activities, and social interaction) from spatio-temporal cell phone activity data. We

present a novel approach that consists of (i) time series decomposition of the aggregate cell

phone activity per unit area using spectral methods, (ii) clustering of areal units with similar

activity patterns, and (ii) external validation using a ground truth data set we collected

from municipal and online sources. A key to our approach is the spectral decomposition of

the original cell phone activity series into seasonal communication series (SCS) and residual

communication series (RCS). The former captures regular patterns of socio-economic activity

within an area and can be used to segment a city into distinct clusters. RCS across areas

enables the detection of regions that are subject to mutual social influence and of regions that

are in direct communication contact. The RCS and SCS thus provide distinct probes into

the structure and dynamics of the urban environment, both of which can be obtained from

the same underlying data. We illustrate the effectiveness of our methodology by applying it
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to aggregate Call Description Records (CDRs) from the city of Milan. This is described in

Section 2.3 of the thesis.

Activity Prediction

In this part of the thesis, we analyze data from a large mobile phone provider in Europe,

pertaining to time series of aggregate communication volume Ai,j(t) > 0 between cells i and

j, for all pairs of cells in a city over a month. We develop a methodology for predicting

the future (in particular whether two cells will talk to each other Ai,j(t) > 0) based on past

activity. The data set is sparse, with 80% of the values being zero, which makes prediction

challenging. We formulate the problem as binary classification and, using decision trees

and random forests, we are able to achieve 85% accuracy. By giving higher weight to false

positives, which cost more to network operators, than false negatives, we improved recall

from 40% to 94%. We briefly outline potential applications of this prediction capability to

improve network planning, green small cells, and understanding urban ecology, all of which

can inform policies and urban planning. This work is described in Section 2.4 of the thesis.

1.2.2 Mining individual CDRs

We use individual CDRs to understand and improve transportation in a city via ridesharing.

Assessing the Potential of Ridesharing using Mobile Data

This part of the thesis assesses the potential of ride-sharing for reducing traffic in a city, based

on mobility data extracted (1) from CDRs, for the cities of Madrid and Barcelona (BCN),

and (2) from OSNs, such as Twitter and Foursquare (FSQ), collected for the cities of New

York (NY) and Los Angeles (LA). First, we analyze these data sets to understand mobility
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patterns, home and work locations, and social ties between users. Then, we develop an

efficient algorithm for matching users with similar mobility patterns, considering a range of

constraints, including social distance. The solution provides an upper bound to the potential

decrease in the number of cars in a city that can be achieved by ride-sharing. Our results

indicate that this decrease can be as high as 31%, when users are willing to ride with friends

of friends. And up to 51% if they are willing to share a ride with anyone within their

spatio-temporal constraints. This contribution is described in Section 3.2 of the thesis.

Designing a Scalable Online Ridesharing System

Ridesharing systems have the potential to match travelers with similar itineraries and time

schedules, and to bring significant benefits to individual users and to the city as a whole. In

this part of the thesis, we build on our previous off line analysis and we design and evaluate

ORS - an Online Ridesharing System, where drivers and passengers send their requests for

a ride in advance, possibly on a short notice. The system consists of two components: the

constraint satisfier and the matching module. The constraint satisfier takes as input the

itineraries and spatio-temporal constraints of drivers and passengers and provides feasible

(driver, passenger) pairs. We achieve scalability by designing a constraint satisfier using a

road networks data structure, specifically optimized for our spatio-temporal queries. We

show that our specialized module is more scalable than generic databases: query time in-

creases 4.65x slower with the number of users. We use the feasible pairs found by the satisfier

to define a bipartite graph between possible drivers and passengers, with edge weights rep-

resenting the length of the shared trip of a pair. The matching module takes as input the

weighted bipartite graph and returns the maximum weighted matching (MWM), which cap-

tures the objective of real-world ridesharing systems (such as Lyft Carpool). We propose

an efficient algorithm to solve the MWM problem, which is 51% better than greedy heuristics

used by many real systems. Furthermore, the system is designed to handle requests that
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arrive on-line, via efficient queries of feasible pairs and incremental updates of the matching

solution. We evaluate the entire ORS system using real mobile datasets to extract driver

trajectories and passenger locations in urban environments. We show that ORS can provide

a ridesharing recommendation to individual users with a sub-second query response time,

even at high workloads. We also evaluate the sensitivity of ORS performance to various

parameters, which provides insights for the design of practical ridesharing systems. This

contribution is described in Section 3.3 of the thesis.
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Chapter 2

Mining Aggregate CDRs for Urban

Ecology and Activity Prediction

2.1 Introduction

The modern urban environment is a complex ecosystem, characterized by distinct geograph-

ical regions sharing common patterns of socio-economic activity, infrastructure, social co-

hesion, etc., [20, 79]. Further, some of these regions are strongly interacting (via mobility,

communication, etc.,), while others are relatively isolated from one another [45, 51]. We refer

to this intra-urban structure as “urban ecology.” Historically, the detection of urban ecology

has been difficult as it usually requires extensive local knowledge of the area in question and

investigation using time-consuming and expensive techniques (e.g., informant interviews,

ethnographic observation, etc.,). This poses challenges for urban governance — e.g., urban

planning, infrastructure management, administration, and law enforcement—particularly in

an era of increasingly rapid urban growth and change (e.g., due to shifting patterns of immi-

gration and economic activity). Likewise for the private sector, effective siting of businesses
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requires extensive knowledge of the urban landscape; in a global economy, obtaining such

knowledge via years of experience “on the ground” in a given location may be expensive or

impractical.

It is estimated that within the next forty years, two-thirds of the world’s population will be

living in expanding urban centers, and the level of urbanization is expected to increase in all

major areas of the developing world [7]. Given this, there is clearly a need for methods that

will cheaply yield up-to-date information on urban environments, without extensive on-the-

ground investigation. The research area of Smart City and Urban Computing provides such

promising methods. Smart City refers to the use information and communication technology

in order to understand and coordinate the environment, systems, people and things in the

city; Smart City infrastructures and systems as well as intelligent urban computing will help

the city administrators better understand and react to the metropolitan needs, challenges,

as well as the operation of urban infrastructural systems.

A promising tool for Smart Cities is the use of aggregate geo-located data on communication

activity, a resource that is increasingly available given the near-universal penetration of

mobile devices within urban populations. Because communication behavior is a fundamental

aspect of virtually all social and economic interaction, even aggregated communication data

can provide rich information on the types and volumes of activities occurring within a given

geographical area, and on the degree of interaction (or lack thereof) between occupants of

different areas. Such data is inexpensive, can be collected and distributed in a privacy-

preserving manner (e.g., in the case of aggregate activity), and can be monitored to track

developments within the urban landscape.

In this chapter we describe two Smart City tools that are based on Aggregated CDRs. First,

we show how aggregate mobile communication data can be used to provide information on

urban ecology; we provide an approach to this problem that draws on the notion of seasonal

decomposition from the field of classical time series analysis. Second, we develop a machine
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Name Period Source
Milan Activity Nov.4-Dec.1 2013 Telecom Italia [10]

Milan Cell-to-Cell Nov.4-Dec.1 2013 Telecom Italia [10]
Universities, Businesses,
Parks, Population per area,
Sport Centers, Bus stops

Jan.1-Dec.31 2013 City of Milan [3]

Table 2.1: Data Sets

learning techniques for cell-to-cell mobile traffic prediction based on past cellular records; this

prediction will help understand city-wide human activity patterns as manifested in cellular

activity, and it can enable network provisioning and control.

2.2 Data

The first two data sets were made publicly available by Telecom Italia Mobile as a part of the

Big Data Challenge [10] competition. They consist of telecommunications activity records

in the city of Milan. In this chapter, we focused on a 4-week period of November 2013. The

decisions about spatial and temporal granularity in the dataset, were already made by the

dataset provider (Telecom Italia) when they made the data sets available for the Big Data

Challenge, and were out of our control.

In particular, the city of Milan, an area of 550 km2, was divided into a 100×100 square grid.

Each grid-square has the same dimensions: a side length of 0.235 km and an area of 0.055

km2. This is the areal unit we use throughout the chapter, and we refer to it as a “cell”.

The temporal unit is the 10-minute interval.

In the Milan Activity dataset, the activity is aggregated within each cell for each 10-minute

interval. Each activity record consists of the following entries: cell ID, time-stamp of 10-

minute time slot, country code, incoming SMS activity, outgoing SMS activity, incoming

call activity, and outgoing call activity. According to the data set release information [10],
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each activity value corresponds to the level of interaction of all the users in the cell with

the mobile phone network, e.g., the higher the number of outgoing calls made by the users,

the higher the outgoing Calls activity. Values of incoming/outgoing Call and SMS activity

are normalized and have the same scale. Therefore, we sum up the latter four values,1 over

all country codes in order to come up with a single value which describes the total activity

volume in a cell during each 10-minute time slot. Fig. 2.1 shows an example of the original

time series for two cells over a one week-period.

The Milan Cell-to-Cell dataset contains information regarding the “directional interaction

strength” (as per terminology in [10]) between two cells, based on the calls exchanged between

users in them. Each activity record consists of the following fields: ID of cell i where call was

initiated from, ID of unit j where the call was made to, time slot, and value of directional

strength from i to j. We can obtain the total directional strength from cell i to cell j, by

summing up over all time slots in the 4-week period.

The third data set is used a ground truth for the methodology that we develop in the first

section of this chapter. We obtained it by crawling the Municipality of Milan’s Open Data

website [3].

2.3 Urban Ecology

2.3.1 Introduction

In this section, we show how to use aggregate CDRs to infer elements of urban ecology.

Our intuition is that human activity results in mobile activity, and therefore mobile activity

could be used as a “signature” to infer human activity. Our approach draws on the notion of

1This aggregation helps avoid data sparsity.
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Figure 2.1: Cell phone activity series (normalized) for two grid cells of Milan, for the week
of 11/4/2013–11/10/2013. Cell 5640 is located close to the San Siro stadium, while cell
4961 is located in a university region. Differences in seasonal patterns (weekday/weekend)
reflect stable differences between the university and stadium environments. The spike on
day 6 corresponds to 11/9/2013, when Internazionale, one of the two major football teams
of Milan, played against Livorno in San Siro; this event is captured as a local perturbation
in the stadium area time series. Here, we exploit both types of information.

seasonal decomposition from the field of classical time series analysis. By decomposing com-

munication data across time, frequency, and space, we create distinct time series that provide

information on routine activities and on deviations from those routines. Subsequent analysis

of the resulting multivariate time series allows for the identification of socio-economically

distinct regions within the urban environment, identification of socially interacting regions,

and other goals of interest to the analyst. As we show, these analyses can be performed effi-

ciently and in an unsupervised or semi-supervised manner, facilitating their use in settings

for which the analyst has only limited resources for additional data collection.

Key idea: It is well known that time series can be decomposed into three components

(the classical decomposition [22]): a trend, representing systematic, non-periodic change

over the time scale of observation; a seasonal component, representing systematic periodic

variation in the phenomenon of interest (possibly with multiple characteristic frequencies);

and a residual component, representing variation due to idiosyncratic factors and exogenous

shocks. Many social processes either generate gradual, systematic change (e.g., population
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growth) or are strongly periodic (e.g., on hourly, daily, weekly, or annual time scales); the

trend and seasonal components of the time series “selects out” such processes, allowing them

to be either measured or removed from analysis, if desired. Many other social processes are

characterized by short-term responses to exogenous perturbations, and (when integrated

over all perturbations) have little or no systematic component. Information about these

processes is contained in the residual series, which can thus be used to study them without

contamination from their systematic counterparts.

Data: The data that we use in this study consists of time series of aggregate cell phone

traffic sent or received by persons within small areal units in the city of Milan (see Fig. 2.1),

for approximately one-month period. In particular, we use aggregate call-description-records

(CDRs) and aggregate SMS activity per area unit, made available for the Big Data Challenge

[10] competition. In addition, we collected ground truth data from the municipality of Milan

and online sources, containing elements such as universities, residential areas, sport centers,

parks, etc.

Methodology and Results Overview: We apply our approach to the cell phone activity series,

using the decomposed series to characterize distinct aspects of urban ecology. We proceed

as follows:

First, we begin by decomposing the original cell phone activity series for each areal unit

into seasonal and residual components. The decomposition is done using FFT, with the

seasonal component corresponding to high-amplitude frequencies and the residual component

corresponding to the deseasonalized series in the time domain. The seasonal communication

series (SCS) are due to typical patterns of socio-economic activity within an area; e.g., a

university generates higher traffic during weekdays and lower traffic during weekends and

holidays than a residential neighborhood. The residual communication series (RCS), on the

other hand, can represent irregular traffic (e.g., an area may have higher traffic than usual

due to a protest or sporting event, or lower traffic than usual due to a strike) and/or due to
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the influence of one area on another (e.g., due to mobility and/or social interaction).

Second, we perform hierarchical clustering of different areas based on the different time

series and we validate the results using the ground truth data. We show that our SCS

clustering scheme successfully segments areas dominated by distinct types of socio-economic

activity, and allows for discovery of regions whose activity patterns differ markedly from

the rest of the city. The results compare favorably with state-of-the-art approaches such as

[82], since SCS can incorporate regular patterns occurring on any time scale; by contrast,

state-of-the-art methods estimate regular patterns using average weekday and weekend days

(evaluated using binned averages), and cannot therefore exploit activity patterns that occur

across multiple days. In addition to using the SCS to identify regular patterns, we show that

its counterpart, the RCS, enables the detection of regions that are subject to mutual social

influence or in direct communication contact; this was not previously possible using mere

activity data. More specifically, we show that the structure of lagged spatial correlations

in RCS across areas allows for the detection of regions that are subject to mutual social

influence (i.e., disruptions in one area propagate to the other), and of regions that are in

direct communicative contact. We validate the latter by showing that RCS correlations

between areas are significantly related to the volume of inter-area cell phone traffic, and that

this relationship is substantially stronger than for SCS.

In summary, the RCS and SCS provide distinct probes into the structure and dynamics of the

urban environment, both of which can be obtained from the same underlying communication

data.

2.3.2 Related Work

This section summarizes the most relevant related work in the intersection between urban

dynamics and human activity data. Data generated by human activity can be divided into
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two broad categories: (1) self-reported data and (2) behavioral traces. In self-reported data,

users decide to report their semantically annotated location via check-ins e.g. in Foursquare a

user selects a venue from a list of venues that are detected nearby his location. In behavioral

traces, users are passively monitored and do not actively select the information that is being

revealed. Cell phone activity patterns are an example of behavioral traces, in which some

aspects of the users’ behavior are fully revealed, but without any semantic information i.e.

the user location is not annotated to indicate venue or category type. This work uses cell

phone activity patterns.

Behavioral traces. Cell phone activity patterns, also commonly known as Call Description

Records (CDR), capture important aspects of human activity in a city [76], and they have

been used to study human mobility, social networks, and urban ecology. Since the focus of

this chapter is on the latter, we mainly review related work in that area, and we only briefly

mention other work in the broad area of cell phone activity analysis.

Toole et al. [86] used aggregated CDRs in order to infer land usage in Boston. They

used a supervised learning technique: they built various features from activity series and

used them to classify areas of the city into five different categories (residential, commercial,

industrial, parks, and other). Their ground truth was a data set of zoning regulations from

the municipality of Boston. However, the classifier’s accuracy was worse than classifying

every area to belong in the dominant category, due to the high percentage of residential

areas. In contrast, we use clustering, a form of unsupervised learning, our ground truth data

set contains the facilities in each area, and we study the city of Milan.

Soto et al. [82] also followed an unsupervised learning approach to characterize areas in the

city of Madrid. They clustered areas of the city based on their activity signature, i.e. the

activity pattern for a typical weekday and a typical weekend, where “typical” is defined as

average activity in a period of 3 months. They produce five different clusters: industrial and

offices, business and commercial, nightlife, leisure and touristic, and residential. We follow
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a different clustering approach that facilitates selecting solutions for specific purposes (e.g.,

segmentation versus anomaly detection), and employ a more general time series decompo-

sition that can be used in settings with regular patterns that do not fit into the typical

weekday/typical weekend day typology. In Section 2.3.6 we compare our spectral approach

to that of [82] and show that our approach allows us to detect additional information that is

lost under averaging. Additionally, our work differs from [82] in that we make use of residual

fluctuations in the time series, which can be used to detect interactions between areas. We

note that our clustering and residual analysis techniques could be applied to the averaging

scheme used by [82], and many aspects of our approach are hence complementary to this

work.

Similar decompositions of activity series have been applied in other settings as well. Cal-

abrese et al. [25] applied eigendecomposition to extract features from Wi-Fi time-series, and

then used those features, produced from the top 4 eigenvectors, to cluster access points with

similar traffic. We apply time series decomposition on a different type of series and we also

take advantage of the residual communication to highlight important aspects of the data.

Finally, CDRs have been used for human mobility analysis, [48], [44], [24] as well as for

studying social interactions [42]. These studies have answered various questions, including:

what is the potential of ride-sharing for reducing traffic in a city [34]; which are the poorest

areas of a city [80], etc.

Self-reported data. Work on urban dynamics and self-reported locations is primarily

focused on Foursquare check-ins [38, 67, 68]. The authors of [68] use the categories of

Foursquare check-ins in order to cluster similar areas of the city, i.e. two areas are similar

if their normalized check-ins are also similar (e.g. both have 70% restaurant and 30% work

check-ins). More specifically, each area is represented by a vector of category check-ins

aggregated over a time period. Spectral clustering with a cosine similarity measure is used

to create clusters of similar areas. However, the paper provides no external validation of
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the clustering results. In contrast, our evaluation results make use of a separately obtained

ground truth data from the official city records and our method does not require semantically

annotated location information.

The authors of [38] use the same clustering approach as [68], with some modifications in

the distance function, and they validate they results through interviews with city residents.

However, the distance function in [38] requires per-user and per-venue check-in information

whereas our method is suitable with spatially aggregated data over all users in the same

area.

[90] considers that the function of an area is a combination of two aspects: places of interest

(POI) categories and human mobility data (e.g. number of people arriving or leaving)

in a region. They cluster similar areas using a topic model-based method that combines

both aspects. They evaluate their method by using well-known locations, and interviews

with residents of the city. However [90] aggregates the human mobility data in typical

weekday/weekend fashion, an approach that we show looses information. Additionally, their

method requires as input POI categories which, unlike ours, assumes existing knowledge

about the city.

2.3.3 Ground Truth Data

We collect additional data sets at the Municipality of Milan’s Open Data website [3], in

order to use them as ground truth, for external validation of clustering, in Section 2.3.6.

For each cell defined in the main data sets, we gathered the following category information:

population, %green area, #sport centers, #of universities, #businesses, and #bus stops.

The blue shaded area in Fig. 2.2 marks the neighborhoods (or “local identity units”) in the

city of Milan, for which category information is available.
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Figure 2.2: Local identity units of Milan. The blue shaded area shows the part of the city for
which we have ground truth information. Ground truth information consist of information
regarding facilities in each area, as well as census data.

Gathering the category data and putting them in a ready-to-use format was non-trivial.

First, we performed basic data cleaning and post-processing of the collected data. This

involved removing duplicate entries in each category, transformation of coordinates from the

Italian Gauss-Boaga projection to standard latitude-longitude, and mapping of addresses to

latitude-longitude using Google Maps API. Second, we assigned every ground truth element

in each category to the corresponding cell. Information that appeared as a single latitude-

longitude coordinate was easy to assign to a single cell; those included businesses, universities,

bus stops and sport centers. However, assigning categories such as green areas (which appear

as geometric shapes with multiple points) and demographic information (which is reported

on top of the local identity units) to the grid cells was more challenging. In the case of

the green areas, we calculate the overlapping area between a specific cell and a given green

area as a percentage of the cell.2 Fig. 2.3 shows the overlap between cells and local identity

2For example, if the park was large and the whole cell was inside it then the cell was considered to be 100%
green space. For demographic data, we calculate the overlapping area between a cell and a local identity
unit, we subtract the green-space area, and we assign part of the population of the local identity unit to the
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Figure 2.3: Cells inside the local identity unit of Pagano. Some cells have full overlap, while
others have only partial overlap. The Population of Pagano will be spread uniformly to the
overlapping cells proportionally to the overlapping area (between a cell and Pagano). Also,
the population of a cell may be reduced even further if the cell contains green areas. A cell
can receive population from multiple local identity units.

areas.

2.3.4 Activity in Time and Frequency Domains

Let S = [1, n] be the set of all grid cells, where n = 104. Also, let T = {t1, t2, ..., tm} be the

set of all time units (10-minute time slots as defined by the data provider) in our 4-week

period, where m = 4032. Finally, for each cell i ∈ S, we denote the original activity series

as Oi(T ) = {oi(t1), oi(t2), ...., oi(tm)}.

The original time series is expected to have strong periodicity, since it depends on human

activity. Therefore, we first map our time series into the frequency domain to identify the

cell, proportionally to the size of the remaining overlapping area as a percentage of the local identity unit.
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Figure 2.4: Power spectrum of activity aggregated over all grid cells (blue line indicates
mean, shaded area ±1 std dev); marks indicate high-amplitude frequencies, e.g. daily (1
cycles/day) and weekly (0.14 cycles/day.

dominant seasonal components. We apply the fast Fourier transform (FFT) to convert Oi(T ),

for all i ∈ S, from the time domain to the frequency domain. FFT is suitable for our purpose

because it is a non-parametric method that extracts periodicity, it is useful for series with no

obvious trend and provides a spectrogram that is easily interpretable [29]. Fig. 2.4 shows the

power spectrum of all series in the frequency domain. We observe several frequencies with

high power (e.g., weekly, daily, and 12-hour cycles). These high-power frequencies dominate

the seasonal component of the communication series, and indicate endemic social processes

taking place within the city.

For each grid cell i ∈ S, we decompose the original time-series Oi(T ), into seasonal and

residual components through the following steps.

1. We select its k highest-power frequencies.

2. We regenerate the seasonal communication series SCSi(T ) using only the top k fre-

quencies of the cell, where SCSi(T ) = {scsi(t1), ...., scsi(tm)}.

3. We obtain the residual communication series RCSi(T ) by subtracting the basic series

from the original series:

RCSi(T ) = {oi(t1)− scsi(t1), ...., oi(tm)− scsi(tm)}.
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(a) Original series and derived SCS; SCS contains only systematic information,
and is hence smoother.

(b) RCS autocorrelation. Low autocorrelation values verify that systematic
components have been removed. Note that the y-axis is zoomed in the
interval (-0.1, 0.1).

Figure 2.5: Decomposition of original activity series for grid cell 5071.

The data analysis in the remainder of the chapter uses k = 30; this was selected by finding

the smallest k such that the RCS autocorrelation function does not differ significantly from

that of a white noise sequence, as shown in Fig 2.5(b). Please note that SCS captures regular
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activity (which we use in Section 6.1 for clustering of areas in the city), while RCS carries

information about similarity of residual activity between two cells (which we use in Sec. 2.3.6

to study cross-cell interactions.)

Insights from decomposition and neighborhoods: Here we discuss observations on the corre-

lation of a cell and its neighbors w.r.t. the different time series, namely, original, SCS and

RCS. These are important to guide the clustering based on these time series, discussed in

the next section.

Fig 2.7(a) evaluates the correlation between neighboring and non-neighboring cells for the

original, SCS, and RCS series. In RCS, the correlation between neighbors is much stronger

than the correlation between non-neighbors; this is a clear indication that when something

occurs in a cell, it often spreads to its neighbors. On the other hand, the correlation between

non-neighbors is close to zero, which indicates that perturbations of activity are spatially

restricted; this is even more clear when we look at Fig. 2.7(b) that shows how the correlation

among neighbors decreases as the size of the neighborhood increases. Also, in Fig. 2.7(c),

we see that what happens in a cell at time slot t0 will affect its neighbors at a later time

slot, with the effect dampening over time. This is compatible with an underlying diffusion

process.

Fig 2.7(a) also shows that in SCS the correlation between both neighbors and non-neighbors

increased when compared to the original series. Moreover, the difference of the correla-

tion between neighbors and non-neighbors decreased. This shows that SCS is dominated

by the day-to-day activity patterns, and is stripped from perturbations that are spatially

constrained.
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(a) Dendrogram

(b) Number of clusters per cut-off distance.

Figure 2.6: Cut-off distances and clusters. (a) shows the dendrogram for clustering the SCS.
At distance 0.74 all cells have been merged into one cluster. By looking at the dendrogram
we see that most cells in Milan have quite similar traffic, i.e. highly correlated activity series,
with a few special cells that are different from the rest. Also, we summarize clustering with
SCS, original, and RCS in (b), which shows the number of clusters per cut-off distance.
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(a) Correlation between neighbors vs. non-
neighbors for original, SCS, and RCS.

(b) Correlation for n-hop neighbors for RCS.

(c) Correlation and lag.

Figure 2.7: Correlation and neighborhood. In (a) we observe that in all three cases, the
correlation between neighbors is stronger than non-neighbors. However, the difference in the
correlation between neighbors and non-neighbors varies. In (b) we observe that as the size
of the neighborhood increases the mean correlation decreases – the filled area of the graph
represent the region between 25th-percentile and the 75th-percentile. And, in (c) we observe
that even when we look at lagged correlation for the RCS, we observe higher correlation,
on average, between neighboring cells and a decline in the mean correlation as distance
increases. Correlation also decreases when time lag increases.

2.3.5 Clustering

Our goal is to use the result of the decomposition to segment the city into distinct areas,

where the members of same area would have similar activity patterns. We hypothesize that if

two cells have similar communication patterns then they have similar local ecologies, whereas
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if their communications patterns differ then they have different local socio-economic activ-

ities; e.g. one would expect a university and a stadium to have different activity patterns,

since people visit them during different hours.

To achieve our goal, we cluster cells via agglomerative hierarchical clustering. We employ

hierarchical clustering because of its generality (requiring no particular assumptions regard-

ing the underlying distance measure) and because it yields a family of solutions (generally

expressed as a dendrogram) that contains more information than a single clustering solu-

tion. As we show, this information can be exploited to perform both segmentation and

anomaly/outlier detection from a single dendrogram. The distance function used in the rest

of the chapter is based on the Pearson correlation between activity series. More specifically,

for two cells i, j ∈ S, their distance in a given activity series A is:

dist(Ai, Aj) = 1− correlation(Ai, Aj)

This distance function takes values in the range [0,2]; when two cells are fully correlated they

will have a distance of 0, when they are completely uncorrelated a distance of 1, and when

they are inversely correlated a distance of 2. Also, we used the average linkage criterion

to build the dendrogram since it had the highest cophenetic coefficient in comparison with

other linkage types – the cophenetic coefficient is a measure of how faithfully a dendrogram

preserves the pairwise distances.

Fig. 2.6 shows the high-level clustering results. Fig. 2.6(a) shows the dendrogram for the

clustering via SCS; by looking at it we see that for small cut-offs, e.g. values between 0.02

and 0.08, we get a segmentation of the city into multiple areas, while for large cut-offs, e.g.

values higher than 0.28, we get a very large cluster and a few small ones – hence, high cut-offs

can be used for segmentation and low cut-offs can be used to detect areas with anomalous

activity, without requiring additional computation.
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Fig. 2.6(b) evaluates the number of clusters generated in the original, SCS, and RCS series

for the full range of cut-off distances from 0-1. We observe that the results of clustering with

RCS differ significantly from that with SCS and original. More specifically, clustering with

RCS yields a large number of clusters (1000s) until cut-off distance ∼ 0.90. On the other

hand, clustering with SCS yields a low number of clusters for cut-off distance as small as

0.10. We speculate that the reason for this result is due to the degree of correlation between

neighbors and non-neighbors (also see figures 2.7(a) and 2.7(b)). Intuitively, SCS provides

information on routine activities in the city. Thus, where the analyst’s goal is to cluster

urban areas based on regular patterns of activity, the SCS should be employed.

2.3.6 Results

Figure 2.8: Skewness plot for SCS clustering. We use Pearson’s second skewness coefficient:
(mean-median)/(standard deviation). The minimum skewness is at cut-off = 0.07.

The results presented in this section are limited to the grid cells that overlap with the

ground truth; this corresponds to the approximately 3K cells represented in the colored area
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of Fig. 2.2.

Clustering based on the SCS

SCS hierarchical clustering requires a choice of where to cut the dendrogram. Examination

of the number of clusters by distance, Fig. 2.6(b), shows that this alone does not produce a

natural cutting point for the SCS; thus, we also factor in skewness of cluster sizes, defined

as (mean-median)/(standard deviation). Fig. 2.8 shows the calculated skewness for the full

range of cut-off values in the SCS clustering. The rationale for employing skewness to guide

distance selection is as follows. One expects that a segmentation of the urban environment

into distinct functional areas, e.g., university areas, residential areas, etc., will produce

clusters of relatively comparable size, with correspondingly low skewness. On the other

hand, if the distribution is very skewed, then there is a small number of large clusters which

contain the vast majority of cells, and various small clusters with unique activity patterns

that are quite different from the rest of the city, e.g. stadiums. By choosing low versus high-

skewness cut-points, one can then choose to break the city into a few large areas of similar

activities, or (respectively) detect small, anomalous areas in the city against an “average”

background pattern. Both options provide distinct information, and it is not necessary to

employ only one; here, we show both cases.

Low-skewness segmentation: In this case we seek to divide the city into comparably sized

clusters, and hence choose a cut-point that yields a size distribution with low skewness. Per

Fig. 2.8, we obtain this via a distance threshold of 0.07, which is the minimum skewness value

in the SCS clustering. As Fig. 2.10 shows, the clusters of Fig. 2.9(a) successfully segment

the city by features of the urban environment. For instance, clusters c1 and c5 have a high

density of universities, while cluster c3 has a high density of green space; density is the

ratio of the number of ground truth elements over cluster size. Thus, we conclude that the

clusters indeed reflect regions with distinct socio-economic and environmental characteristics
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Category Entropy for hierarchical SCS Entropy for [82]

Universities 0.96 0.97
Businesses 0.82 1.33
Green (%) 0.94 1.27
Population 0.97 1.34

Table 2.2: Segmentation performance via Entropy (lower value is better). Hierarchical SCS
clustering produces more functionally distinct clusters for all categories.

as reflected by their differences in SCS.

High-skewness anomaly detection: In this case we seek to identify one large cluster reflecting

the range of “typical” activity patterns and several small areas of anomalous activity; we

thus select a cutoff leading to a skewed distribution e.g. Fig. 2.9(b) with cut-off 0.30 which

contains five clusters. In Fig. 2.11 we see the normal activity in the city in cluster c0, while

the other clusters represent strongly anomalous traffic. For instance, cluster c1 corresponds

to the San Siro stadium, while cluster c3 contains the Otomercato, a wholesale market for

fruit and vegetable.

SCS vs. original series: In Fig. 2.12 we show a comparison between the clustering with

SCS, and the clustering with the original in regard to coverage for the full range of cut-off

distances 0 − 1. We confirm that clustering with SCS yields better results. This verifies

our expectation that removing idiosyncratic variation from the signal clarifies the regular

activity within a cell.

SCS vs. Typical Weekday/Weekend : Prior work [82] handles clustering of time series by

aggregating cell phone activity in a typical weekday/weekend over all users in an area. Our

method fits data better and requires less assumptions compared to that approach. We

compare the performance of our method with that of a typical weekday/weekend using

the Entropy of the density distribution for a given category, which is a common external

clustering evaluation measure [92]. Table 2.2 shows the obtained values of Entropy for our

method and the clustering via K-means and typical weekday/weekend from [82]. We observe
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(a) Segmenting Milan (cut-off 0.07)

(b) Detecting anomalous areas (cut-off 0.30)

Figure 2.9: Clusters generated by low skewness (left) and high skewness (right) segmentation.
When the number of clusters exceeds 10, we show only the top 10 largest clusters.

that our method performs better for all ground truth categories. The intuition behind that is

that our way of summarizing the cell phone activity is superior in the sense that the seasonal

component of FFT (our SCS) holds more information than the typical weekday/weekend

approach, as shown in Fig. 2.13. To quantitatively illustrate that point, we calculate the
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Figure 2.10: Densities per category for top 10 clusters of Fig. 2.9(a); red dashed line indicates
the Milan average. SCS clustering separates regions with distinct urban environments (e.g.,
commercial vs. green space).

(a) Normal area (c0) (b) San Siro (c1)

(c) Otomercato (c4)

Figure 2.11: Average activity series for the clusters of Fig. 2.16(b); different clusters have
very distinct seasonal patterns.

normalized sum of squared errors for each cell i, for both methods as follows:

ei =

∑t=T
t=1 (Oi(t)−Bi(t))

2

T
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(a) Universities (b) Businesses

(c) Population

Figure 2.12: Coverage for SCS clusters vs. original series clustering. Coverage is defined
as the percentage of the ground-truth elements “covered” by the clusters with higher than
mean concentration of the element type. SCS clustering shows stronger segmentation (higher
coverage) for all cut-off values.

In our method Bi(t) = SCSi(t), whereas in the method of [82] Bi(t) is obtained by using

the typical weekday five times and the typical weekend twice to create a typical week, and

repeating the typical week four times to create a time series of length T , which corresponds

to a month. Fig. 2.14 shows the cumulative distribution of the errors over all cells. SCS has

smaller errors which indicates that it holds more information.

Our method requires less assumptions regarding the nature of the data. It works well in a

different culture, e.g. some countries, such as Egypt, designate Friday as a weekend day, while
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Figure 2.13: The left figure shows how the typical weekday/weekend approach summarizes
the cell phone activity series for the San Siro area. Notice that the high peaks are lost when
traffic is aggregated. The right figure shows the SCS traffic in the San Siro area for one
month (our method).

Figure 2.14: The figure shows how much information is lost from the original series, when
we use SCS and when we use typical days. Despite the fact that SCS is created using the
top-30 frequencies, while the typical days series is created using a vector of 288 values –
144 values for weekdays, and 144 for weekends – the SCS can reconstruct the original series
much better.

others have Thursday-Friday weekends. To apply the typical weekday and weekend division

requires knowledge of the culture, while our approach does not require that. Additionally,
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the typical weekday approach does not capture mid-week variations that might appear in

certain areas.

What we learn from RCS

RCS reflects the response to perturbations rather than regular behavior. Therefore, we

treat them differently: we use cross-correlation between the RCS time series of cells, and we

investigate how the RCS of one cell affects its neighbors and how it correlates with cell-to-cell

communications.

(a) Heat-map showing the k-shell score of each grid cell. We
observe that cells in the center of the city have lower k-shell
scores in comparison with the periphery. This shows that,
for this particular directed graph, cells in the periphery are
more socially well-connected than cells in the center.

(b) Largest Strongest Connected Components

Figure 2.15: k-shell heat-map, and 10 largest strongly connected components for the directed
graph of RCS cross-correlations with lag = 1.
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Using RCS to study cross-cell interactions

A more powerful use of the RCS is to examine interactions between cells. Specifically,

examination of lagged cross–correlations in the RCS for two cells shows how cells affect

each other: i.e., for two cross-correlated cells, a perturbation in one cell at time t will be

associated with a change in the other cell at a later point in time. We denote the cross-

correlation “distance” for cells Bi, Bj at a given lag by:

dist′(Bi,Bj, lag) = 1− correlation(Bi,Bj, lag)

Note that, unlike a true distance, dist′ is not symmetric, i.e.

dist′(Bi,Bj, lag) 6= dist′(Bj,Bi, lag). We thus build a directed graph where the nodes are

the cells and cell i is adjacent to cell j at a given lag iff

dist′(Bi,Bj, lag) < thresh

where thresh is an analyst-selected threshold that filters out weak time-lagged correlations.

We set lag = 1 which corresponds to a 10-minute difference between two cells; it is the most

fine-grained unit we can get from our data. We found experimentally that a threshold 5

standard deviations away from the mean yields good results. Given the cross-correlation

digraph, we may examine the strongly connected components of the graph to find areas that

are subject to mutual social influence (e.g., there are paths by which events in any cell can

affect communication activity in any other cell at a later time).

What we learn from the strong connected components of the graph: In Fig. 2.15(b) we show

the top 10 strongest connected components of the graph, as described in the previous para-

graph. We observe a different, but interesting, segmentation of the city from that obtained

by SCS, with a clear structure becoming apparent. The center of the city is a connected
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component (green color), completely separate from the rest. This means that perturba-

tions occurring inside a cell on the center, will most likely propagate to other cells in the

center. Another example is the dark blue connected component on the center-right side

which corresponds to the Milan Linate airport. More generally, the large clusters identified

in Fig. 2.15(b) reflect socially connected regions of the city, with events in any given cell

tending to reverberate within its regional cluster (but not to propagate beyond).

What we learn from the k-shell decomposition: k-shell decomposition is a well-known tech-

nique in graph theory for identifying regions of high local cohesion [74] and has been used as

a visualization tool for studying networks such as the Internet [26]. It involves identifying

maximal sets of nodes with at least k neighbors who are also in the set (k-cores) and then

identifying the highest-number to which each core belongs. In this article, we apply the

k-shell decomposition on the RCS-based digraph, identifying the cells that are more/less

cohesively connected to their neighbors; spatial regions with high values of k are strongly

interactive (in the sense that perturbations in one location can propagate to other locations

in the region through multiple, redundant correlation paths). In Fig. 2.15 we observe that

cells in the center of the city have lower k-shell scores in comparison with the periphery.

This shows that, within Milan, there are several spatially peripheral regions with high local

connectivity, while cells near the city and along major arterials tend to be either isolated

(with respect to propagation of shocks) or connected via locally tree-like structures.

Correlation of SCS and RCS with Milan Cell-to-Cell Communication

QAP test results SCS RCS

Correlation 0.05 0.27
Min random -0.018 -0.005
Mean random 0 0
Max random 0.011 0.004

Table 2.3: Correlation of SCS and RCS inter-cell correlations with Milan Cell-to-Cell data
set, with QAP test replications (n = 100). Correlations are significant at p <0.01.
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Finally, we compared the Milan Cell-to-Cell call volume data set with the SCS and RCS cell-

to-cell cross-correlations, assessing the resulting relationship using the Quadratic Assignment

Procedure (QAP)[57, 23]. QAP is a technique for testing an observed bimatrix statistic

(here, matrix correlation) against a null hypothesis of no association, while controlling for

the underlying structure of the matrices being compared; the technique is a form of matrix

permutation test, in which the distribution of bimatrix statistics obtained under row-column

permutation of the input matrices is used to form a null distribution.

We transformed the Milan Cell-to-Cell data set into a NxN matrix, where N is the num-

ber of cells, and we denote it as MM . An entry MMi,j corresponds to the symmetrized

communication strength between cells i, j in the Cell-to-Cell data set. Similarly, we cre-

ated two additional NxN matrices: 1) matrix RM , with RMi,j = RCS Correlation(i, j),

corresponding to the residual correlation for cells i, j, and 2) matrix BM , with BMi,j =

SCS Correlation(i, j), corresponding to the SCS correlation for cells i, j.

As we can see from Table 2.3, there is a significant correlation between the Cell-to-Cell data

set both for SCS and RCS (p <0.01 in both cases), but for the residual series it is almost six

times stronger. Thus, we see that the cross-correlations between cells are associated with

direct contact between persons in the respective areas, and this is a substantially stronger

effect than the baseline similarity in calling pattern within each cell. This further validates

our above intuition that the RCS cross-correlations provide information on social interaction

across areas within the city.

2.3.7 Summary

In this work, we studied the decomposition of cell phone activity series, via FFT, into two

series: 1) the seasonal communication series (SCS) produced from high-amplitude frequen-

cies, and 2) the residual communication series (RCS) produced after subtracting SCS from
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the original series. As shown, the SCS can be used to characterize typical patterns of socio-

economic activity within an area, while the RCS can be used to capture both irregularities

due to novel events and the influence of one area on another. For the first part, we perform an

external evaluation of the produced clusters using a ground truth data set that we gathered

from the municipality of Milan. Our SCS clustering, produces clusters of areas with similar

characteristics as shown in ground truth data. RCS allows to identify regions such that

disruptions in one area propagate to the other, and regions that are in direct communicative

contact. The RCS and SCS thus provide distinct probes into the structure and dynamics of

the urban environment, both of which can be obtained from the same underlying data.

Our techniques are applicable to other geo-social activity data sets,e.g. Twitter and Foursquare,

and can be used to reveal patterns of how areas related to each other; in future work we plan

to apply our techniques to cell phone activity data from other cities, as well as other type of

geo-social activity data. These findings will provide the network operator with information

that can improve planning, operations and anomaly detection.

2.4 Cell-to-Cell Prediction

2.4.1 Introduction

Cellular penetration has increased dramatically over the past decades and the number of

unique mobile subscribers is estimated around 3.4 billion users [83]. At the same time

there is an even greater growth in demand for wireless access bandwidth worldwide, due

to the fast adoption of smartphones. The traffic volume generated by mobile phones will

increase approximately by 8 times in 2020 (30.6 exabytes/month) compared to 2015 (3.7

exabytes/month), according to traffic trends forecasts [36].
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To address this demand, mobile phone providers and the 3GPP are currently working on

improvements to the current 4G standards as well as on future 5G networks [75]. More

specifically, a mixture of macro-cells and small cells (i.e. heterogeneous nets) is currently be-

ing considered for increasing 4G capacity. Small cells are feasible by utilizing femtocells [19],

i.e. low power base stations with limited range, typically designed for use in a home or busi-

ness, covering the spectrum holes of the larger cells. This shift (towards smaller cells and

denser networks) is closely connected with a shift towards virtualization of computational re-

sources, that follows software defined networking (SDN) and self-organizing networks (SON)

principles3.

However, a dense infrastructure is complicated and costly to maintain. The energy consump-

tion of base stations is one of the largest costs for mobile phone providers [41]. Hence, they

try to make their infrastructure more energy efficient, e.g. by switching femtocells on or off

or by lowering the transmission power. The aforementioned technologies will incorporate

the necessary logic for smart decisions and network configuration based on network events,

to automate resource allocation. For instance, [58] describes the architecture of SDN - SON

where traffic prediction algorithms will be utilized in the control plane for the assignment

of virtualized radio resources. Thus, being able to predict cellular traffic patterns city-wide,

can inform and enable network provisioning and control.

Accurate prediction of mobile phone traffic in a city is necessary for enabling urban planning

and a number of smart city applications. In this thesis, we develop a building block in that

direction: machine learning techniques for cell-to-cell mobile traffic prediction based on past

cellular records,.

We analyzed a data set provided by Telecom Italia as part of the Big Data Challenge [10]

competition, and more specifically the Milan Cell-to-Cell data from Tab. 2.1, which describes

3SON is an example of this trend [62, 17, 60]. SON is a software module responsible for planning,
configuring, and managing the cellular infrastructure. For example, SON could use cognitive radio techniques
to exploit under-utilized spectrum in the unlicensed bands, during high load hours [75].
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the intra-city activity in Milan: time series Ai,j(t) describe the communication volume be-

tween two areas of the city, i and j, for t = 1..N . We formulate the traffic prediction problem

as a classification problem. Based on past activity our goal is to predict whether two cells

will talk to each other during at time t, i.e., Ai,j(t) > 0. First, we visualize important aspects

of our data using SVD to better understand the data. We use the insights gained from the

data analysis for feature selection; for example, we found that neighbors tend to talk more

to each other and are more correlated. Second, we used decision tree classifiers and random

forest in order to do prediction. We were able to achieve accuracy 85%, which outperforms

the naive max-class predictor (80%) that predicts the most frequent class. A key insight and

challenge was the sparsity of the dataset: most cell pairs have zero communication activity

with each other. This leads to high skewness of our classes and low recall rate (lower than

40%). Since, Fp (false positive) and Fn (false negative) errors don’t have the same cost for

providers, we show how to improve recall up to 94%, by giving higher weight on Fp.

2.4.2 Related Work

Related work can be roughly classified in three categories: (a) traffic volume prediction

from a mobile telephony cell tower, (b) link prediction in telecommunication or or social

networks and (c) analysis and assessment of network operators’ data sets which reveals the

spatio-temporal characteristics and the dynamics of the cellular network infrastructure.

In traffic volume prediction, the goal is to forecast the volume (voice or data) generated by

a specific base station (i.e. cell tower) for a future time window, given historic traffic traces.

Methodologies include, but not limited to, moving average [41], Holt-Winters’s exponential

smoothing [41], [85], [65], hybrid prediction models [41], temporal compressive sensing [58]

and Kalman filtering [41]. For instance, work in [58] utilizes entropy for assessing the

predictability of the traffic and quantify what time window (temporal dimension) and how
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many adjacent cells (spatial dimension) would actually help. Furthermore, [41] proposes a

framework for optimizing power consumption by switching off a portion of the base stations

in low network traffic condition. Interestingly, [41] distinguishes the base stations between

the typical traffic profiles and the opportunistic profiles (e.g. stadiums where the traffic is

present only in weekends), which was a key observation made also by our prior work [32].

However, the traffic volume prediction problem differs significantly in 4G and 5G due to the

small cells deployment [27]. A femtocell covers a much smaller area with less users, therefore,

bursty traffic is more likely rather than a periodic volume activity which is usually generated

by a macro-cell. More interestingly, burstiness and sparsity of the traffic were observed in

our data set analysis. Thus, [27] proposes a solution which combines Gaussian processes

(GPs) and kernel based methods for the periodic component and tolerance intervals for the

bursty component. The data used are a combination of synthetic and real data sets. In

contrast, our work studies a real world data set and we predict if a cell i communicate with

a cell j, i.e. a binary classification problem considering directed communication, which has

not been studied by any of the previous works.

Link prediction in networks (social networks, IP subnetworks, mobile phones etc) is also re-

lated to our problem. The goal is to predict if two nodes of the network (e.g. two persons in

an social network or two mobiles) will form a link and communicate at time t. For instance,

work in [81] tries to predict a network attack, given historic data and by considering prop-

erties that network attackers and regular users share. The authors use the recommendation

systems framework and utilize SVD for principal component analysis, an idea explored in

this thesis as well. Work in [59] considers the problem of link prediction in time t for a

data set containing phone calls between users. It investigates several factors such as the

class imbalance problem, the sparsity of the links, time and statistical features , the strong

neighborhoods and other topological features of the phone calls graph. Then, it assesses

several supervised learning approaches and proposes a novel flow-based predictor.

41



Analysis of network operators’ data sets, such as Call Detail Records (CDRs), have also

been studied [73], [72]. The casual influence from a base station to neighboring base stations

load is studied in [73] to assess Granger Causality for traffic prediction. In [73], the time

granularity for traffic aggregation is studied showing higher cross correlation between pairs

of base stations for time interval of one hour vs 10min intervals. Our prior work in [32]

also looked at the data set from the city of Milan and used the aggregate activity per cell

as a signature of human activity in that cell, in order to cluster similar areas of the city

together for urban ecology. In contrast, this thesis (i) studies not a single cell time series but

cell-to-cell communication series and (ii) its goal is to predict future based on past activity.

In summary, this thesis focuses on traffic prediction between two different areas of the

city/cellular network and not a call prediction between two independent users, and has the

following main differences compared to prior work. First, we consider aggregated CDRs in

the spatial dimension (i.e., total volume of calls between all users in the two cells), while [59]

considers phone calls between individual users and do not not consider the problem from

the perspective of cellular providers: false negatives can be really costly. Last but not least,

with all the concerns regarding privacy [91], aggregated CDRs are more likely to be available

from the providers.

2.4.3 Formulation

Let S be the set of cells, and let T be the time axis as a set of timestamps T = {t1, t2, ..., tm}.

We denote as Ai,j(t) the volume of mobile activity from cell i to cell j, where t ∈ T , and

i, j ∈ S.

We formulate the traffic prediction problem as a binary classification problem. Given activity

series Ai,j(t), which shows the activity from i to j at time t, we build a set of features using

the past (< t) records, and our goal is to predict if Ai,j(t) > 0. In other words, our goal is

42



to predict if cells i and j communicate at time t (class 1), or not (class 0).

Finally, we partition time T into two subsets: (i) a training set called Ttrain and (ii) a testing

set called Ttest. This is done via a random 70/30 split of the data, where 70% of the data is

used for training and the remaining 30% for testing.

Figure 2.16: The figure shows the communication strength between cells. The communi-
cation strength have been calculated by aggregating the interaction during the 1st of Nov.
2013. We can observe that there is strong communications between neighboring cells. For
clarity we show only the top 10% of the edges.

2.4.4 Data and Key Observations

In this section, we focused on the Milan Cell-to-Cell data from Tab. 2.1. The data set contains

information regarding the directional interaction strength (as per terminology in [32]) between

two cells, based on the calls exchanged between them. Each activity record consists of the

following fields: ID of cell i where call was initiated from, ID of cell j where the call was

made to, time slot, and value of directional strength from i to j. Fig. 2.16 visualizes the 10%
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Figure 2.17: Average activity Ai,j(t). We see that when mobile phone activity, when averaged
across all cell-to-cell traffic, is predictable and follows expected daily and weekly patterns.
Also, these patterns are similar across various weeks.

strongest connections.4

Aggregation of Traffic per Hour

The initial data consist of 10-minute traffic reports. However, we aggregated traffic per

1 hour because (1) traffic in such short intervals is very dynamic and fluctuates heavily,

(2) allocation of resources in the cellular infrastructure (e.g. by SON) is not an easy task

and planning of resource allocation in 10-min. intervals may lead to unstable networks or

excessive overhead, (3) 95% of the activity is zero in such short time intervals, making traffic

very sparse and (4) work in [73] faced the same dilemma regarding the time granularity for

traffic aggregation (10-min. vs 1 hour) and concluded in 1-hour aggregation since it had

higher cross correlation between pairs of base stations.

4We focus on the prediction of voice traffic since dropped or bad quality voice calls are noticed immediately
as a“poor service” by the customers. However, the methodology should apply to any data set of cell-to-cell
communication activity.

44



−0.2 0.0 0.2 0.4 0.6 0.8 1.0

Pearson Correlation: ρ(Ai,j(t),Aj,i(t))

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Case 1: Ai,j(t) : aggregated traffic per 10 min.

∀(i,j)
(i,j) 2-hops

(a) 10-minute time interval

−0.2 0.0 0.2 0.4 0.6 0.8 1.0

Pearson Correlation: ρ(Ai,j(t),Aj,i(t))

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Case 2: Ai,j(t) : aggregated traffic per 1h

∀(i,j)
(i,j) 2-hops

(b) 1-hour time interval

Figure 2.18: The above figures show the distribution of activity correlations for all pairs of
cells (∀(i, j)), as well as pairs that are within a maximum distance of 2-hops; the correlation
for a pair of cells, i and j, is calculate by this formula: ρ (Ai,j(t), Aj,i(t)), where ρ denotes
the Pearson correlation. We observe that there is much higher correlation when i and j are
neighbors. Moreover, this picture shows that by aggregating cell phone activity into hourly
time reports then traffic becomes more structured (Ai,j(t) and Aj,i(t) are more correlated).

Traffic aggregation leads to more predictable series. As you can you see from Fig. 2.18(a),

in the case of 10-minute time intervals, traffic between pairs of cells seems to be random and

uncorrelated; 60% of the random pairs have zero correlation and more than 95% of them

have a correlation lower than 0.2. However, when we aggregate traffic into one-hour time

intervals, the time series become more similar and correlated (See Fig. 2.18(b)).
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Challenges and Key Insights
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Figure 2.19: SVD of A(i,j)(t) for 1week for aggregated data. Top-6 Principal Components.
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Figure 2.20: Distribution of communication values. These figures describe a zero-inflated
and skewed distribution.

In this section we present some of the intuitions that we obtained from our exploratory

analysis, and we highlight the challenges for the traffic prediction.

(1) Zero–Inflated Distribution: One of the main challenges with cell-to-cell communication

data is their sparsity. The distribution of the cell phone activity is a zero–inflated distribution

– almost 80% the activity is zero (See Fig. 2.20) – while the remaining non-zero activity

follows a skewed distribution. This makes prediction very hard since we cannot fit traditional
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time series models. Also, on aggregate mobile activity exhibits well-understood seasonal

patterns and is easy to predict (See Fig. 2.17), but cell-to-cell traffic is dynamic, it fluctuates

and prediction is hard.

(2) Strong communication between Neighboring Cells: Traffic between neighboring cells is

much stronger (see Fig. 2.16), in comparison to the rest of the city. Also, traffic between

neighboring cells is more structured, e.g. Ai,j(t) and Aj,i(t) are more likely to be correlated

when cells i and j are within a 2-hop distance (See Fig. 2.18(b)).

(3) We observe seasonal patterns in data: In order to get a better understanding of the

data, we decompose the activity series into their first six principal components, which we

achieve via singular value decomposition (SVD). Fig. 2.19 demonstrates the components of

the traffic from three different weeks. We observe that the first two principal components are

structured and tend to be similar across weeks, but the remaining principal components look

more spiky and dissimilar across weeks. For example, the second principal component shows

the areas that exchange traffic only on weekdays and that do not communicate on weekend

(observe the negative direction in weekends). This happens for example in universities or

in business areas. In addition, there are spikes in the traffic around noon (5-th principal

component) which models another “direction” of cellular traffic. This is also demonstrated

by Fig. 2.21, where we use the principal components for a week (training week) as a model

for another (testing week). The parameter k (number of principal components used) denotes

the complexity of the model. We observe that as the complexity increases the model is a

better fit for the training week – the mean squared error (MSE) decreases. However, MSE

for the testing week MSE decreases until k = 2, and the it start increasing. This shows that

we cannot expect much gain in prediction from the seasonal patterns of our data.

(4) Unexpected events affect communication: Finally, traffic can be affected by unpredictable

event. For example, in Fig 2.19, for the second principal component we observed a significant

difference at the traffic level for the Friday (t = 96 · · · 120) of the 1st and the 2nd week. This
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principal component encapsulates the traffic during the week days as we discussed. The traffic

in the 2nd week is significant lower only for Friday. This day was the 15-th of November of

2013. We were intrigued from this difference and we searched for potential causes. After a

short search in Google, we found that the 15-th of November was the first day of the big

social protests and strikes in Italy in 2013 [9]. Apart from the fact that mobile traffic can be

affected by unexpected events, this also shows that cell phone activity series can enable many

other types of Smart City application, i.e. they can be used to reveal abnormal activities in

a city.
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Figure 2.21: Error for Aij(t) reconstruction by k principal components of the data utilizing
SVD (aggregation per hour). For this case, the utilization of the first principal components
can improve the error on the testing data.

2.4.5 Methodology

Since we are dealing with a zero-inflated distribution – and our data are skewed towards

zero – it is difficult to apply classical time series prediction methodologies, such as ARIMA

models. Instead we will treat the prediction task as a classification problem; we will generate

a set of features for each prediction we want to make, and we will apply standard but powerful

classifiers. More specifically we will use a Random Forest Classifier. Next, we describe the
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features we used for the prediction. This decision was inspired from key insights (1) and (4)

from the previous section.

Feature Selection

For each communication series from cell i to cell j we use the following features:

Static features: We denote as static features, those features that are constant across weeks.

These are:

• Geographic distance between cell i and cell j. This was inspired by our earlier analysis

that show that neighboring cells tend to talk more.

• Hour of the day. Human activity and communication is heavily influenced by the hour

of the day.

• Day of the week. Human activity and communication may change depending on the

day of the week (e.g. Monday vs. Saturday).

The geographic distance feature was inspired from key insights (2) of the previous section,

while the other two static features were inspired by key insight (3).

Dynamic features: These are features that change from one week – or even day – to the

other.

• Past traffic (3 previous hours) of Ai,j. For example, for target value Ai,j(t), the features

are Ai,j(t− 1), Ai,j(t− 2), Ai,j(t− 3).

• Past traffic (3 previous hours) of reverse series, i.e. from cell j to cell i. E.g. for target

value Ai,j(t), the features are Aj,i(t− 1), Aj,i(t− 2), Aj,i(t− 3).
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• Average traffic of neighbors (3 previous hours). For target value Ai,j(t):

• E[Ai,k(t− 1)], E[Ai,k(t− 2)], E[Ai,k(t− 3)], where k is a neighbor of j.

• E[Ak,j(t− 1)], E[Ak,j(t− 2)], E[Ak,j(t− 3)], where k is a neighbor of i.

• Standard deviation of neighboring traffic (3 previous hours). For target value Ai,j(t):

•
√
V ar[Ai,k(t− 1)],

√
V ar[Ai,k(t− 2)],√

V ar[Ai,k(t− 3)], where k ∈ neighborhood(j).

•
√
V ar[Ak,j(t− 1)],

√
V ar[Ak,j(t− 2)],√

V ar[Ak,j(t− 3)], where k ∈ neighborhood(i).

The latest set of features (average traffic of neighbors, and standard deviation of neighboring

traffic) were inspired by our analysis that showed that there is higher correlation among 2-hop

neighbors (key insight (2) from the previous section).

2.4.6 Results
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Figure 2.22: Error on training vs. testing data for a decision tree.

We elected to use a tree classifier, since tree classifiers are powerful tools that can learn

complex functions. We tuned the classifier’s parameters and made sure that we don’t overfit

50



Scores Max-class
predictor Decision Tree Random Forest

Accuracy 80% 84% 85%
Precision - 72% 68%
Recall - 37% 40 %
F1-score - 48% 51%

Table 2.4: Scores for max-class predictor, decision tree classifier and random forest.
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Figure 2.23: Normalized Confusion Matrix. Each square of the matrix has been normalized
based on the true class, e.g. the square at (0,0) and (0,1) have been divided with the size
of class 0, and the square at (1,0) and (1,1) have been divided by the size of class 1.In
Fig. 2.23(a) when both classes have the same importance, class 0 is accurately predicted
96% of the times, but class 1 is predicted correctly only 41% of the times. In Fig. 2.23(b),
where class 1 is considered more important than class 0, then the accuracy for class 0 dropped
down to 74%, but accuracy for class 1 increased to 79% of the times.

by applying standard complexity control techniques (see Fig. 2.22).

After tuning the classifier we apply it on our testing data and we analyze the initial results

(see Tab. 2.4). Since we are dealing with a highly skewed distribution (class 0 dominates

our data set) we will compare against the majority predictor – a naive predictor that always

predicts the most frequent class. Based on the accuracy, we see that our model outperforms

the majority class predictor. However, when we dive into more details, namely we look at
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precision5, recall6, and F1-score – the harmonic mean of precision and recall – we see that

due to the highly skewed distribution the recall is very low (37%). This is also confirmed by

the confusion matrix in Fig. 2.23(a).

We applied a Random Forest of 200 ensembles (larger numbers did not show improvement).

Because the ensemble averaging will avoid overfitting, we also increased the maximum depth

of each tree to 30. The random forests classifier improved the results, e.g. recall increased

to 40%, and the F1-sore reached 51%.

Improving Recall

Up to now we have made the assumption that Fp and Fn have the same cost. However,

this may not be the case. Providers would prefer having a high recall than high accuracy or

precision (Fn will have a higher cost ).

The same as when detecting patients with cancer, Fn has a much higher cost. In this case

a naive classifier that predicts always zero – a patient doesn’t have cancer – will be very

accurate, due to the skewness of the two classes, but that’s not necessary the best classifier.

Therefore, in this last section we will investigate how to improve recall, even if that means

sacrificing accuracy. This is achieved by increasing the weight of positive samples. A higher

weight on positive samples forces the decision tree to pay more attention to class 1 than

class 0. Tab. 2.5 show the improvement of recall given different weights, e.g. for weight of 3

– positive samples are 3 times more important than negative ones – recall rises to 79% (from

37%), and for a weight of 10 – positive samples are 10 times more important than negative

ones – recall is 94%. This change is also reflected in the confusion matrix (see Fig. 2.23(b)).

5 Tp

Tp+Fp
, where Tp is the true positive rate, and Fp the false positive rate.

6 Tp

Tp+Fn
, where Tp is the true positive rate, and Fn the false negative rate.
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Scores weight = 3 weight = 4 weight = 10

Accuracy 79% 75% 61%
Precision 47% 42% 33%
Recall 71% 79% 94%
F1-score 57% 55% 49%

Table 2.5: Results for decision tree with weighted samples. We can improve the recall by
giving higher weight to positive samples, in expense of precision.

2.4.7 Summary

In this work, we applied machine learning techniques to predict cell-to-cell activity, based

solely on past cellular activity records. We were able to achieve 85% accuracy and 94%

recall, for the voice call data set provided by Telecom Italia for the city of Milan.

In future work, we will further improve the prediction by exploiting information outside

the cellular activity data set, such as similarities between cells based on the socio-economic

activity occurring in the surrounding areas. We could also extend the problem formulation

(for example, instead of binary traffic prediction, we could predict multiple classes of traffic,

such as no traffic, low traffic and high traffic between cells) or apply the methodology to

other data sets (e.g., other cities or data instead of voice activity). Finally, we will investigate

the use of this prediction methodology as a building block for network planning and control,

urban ecology and smart city applications.
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Chapter 3

Mining Individual CDRs for

Ridesharing Recommendations

3.1 Introduction

The car has been for some time one of most heavily used ground transportation vehicles,

and in the US, it is the dominant one. According to American Community Survey Reports

currently there are more than 130 million commuters, and almost 80 of them drive alone

when commuting [64]. This has many negative consequences: pollution, traffic, high car

expenses, and loss of productivity. The dependency on cars is so high that 8.1% of the US

workers – who did not work at home – had commutes of 60 minutes or longer [63].

Ridesharing is a promising approach for reducing the number of vehicles on the streets in

order to address both individual and city-wide issues. Ridesharing refers to a mode of trans-

portation in which individuals share a vehicle for a trip and split travel costs. It combines the

flexibility and speed of private cars with the reduced cost of shared public transportation.

Ride-sharing systems started in the US during WW-II. Early informal systems required pre-
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defined rendezvous and prior familiarity among commuters, making them cumbersome and

limiting the number of neighbors a person could ride-share with. More recently, web-based

solutions, such as Zimride.com have allowed drivers and passengers to advertise route in-

terests, thereby increasing the chances of finding a match. Most such web-based solutions

target ridesharing among employees of large corporations. This is an ideal ridesharing use

case since: (i) bootstrapping the system is easier by targeting a well defined set of users,

i.e., all employees of the same company, (ii) the user paths and time schedules are relatively

aligned, since many users work in the same location and need to arrive there at the same

time, and (iii) “stranger-danger” issues [18] are less pronounced among people working in

the same company.

Thanks to smartphone devices (with their high penetration, positioning capabilities and

ubiquitous cellular connectivity) flexible and dynamic scheduling of trips is now a reality.

On demand taxi-like companies, such as Uber and Lyft, are enjoying great success and are a

flagship example of sharing economy. Similar technology that is used to support on-demand

taxi services can be used to support opportunistic ridesharing. This can benefit the entire

population of a city/area in terms of reducing the cost for individual users and the congestion

and pollution in the city.

Smartphone-based ridesharing technology gains momentum but still needs to deal with sev-

eral issues including safety (traveling with strangers), liability (e.g., accidents), as well as the

bootstrapping problem (the more users a ride-sharing service has, the more the ride-sharing

opportunities). However, even if the above problems were completely solved, the opportuni-

ties for ride-sharing would still depend on the underlying human mobility patterns and the

layout of a city, which ultimately determine the route overlap.

In the first section of this chapter, we assess the potential of ridesharing (i.e., how many

cars can be removed from the streets of the city) and we find that ridesharing has indeed a

great potential. Then, we develop an online ride sharing (ORS ) system for matching users
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that could share a ride, and we evaluate its performance.

3.2 Analysis of Potential

3.2.1 Introduction

In this section, we seek to understand what is the potential decrease in the number of cars

in a city if people with similar mobility patterns are willing to use ride-sharing in their daily

home/work commute. This is clearly an upper bound to the actual benefit of any practical

system but it can be used to guide the deployment and policies regarding ride-sharing in a

city. We assess this potential in four major cities using mobile and social data; we obtained

two CDR data sets from a major cell provider (Madrid and BCN, in Spain, Europe), and we

also collected data from Twitter (geo-tagged tweets) and FSQ (NY and LA, in US). A similar

question has been asked before in [88], where the authors assumed a uniform distribution of

home/work locations and concluded that ride-sharing has negligible potential. In contrast,

we find that ride-sharing can provide significant benefits, depending on the spatial, temporal

and social constraints for matching users. In particular, we take the following steps.

First, we infer home/work location of individual users, by adapting state-of-the-art tech-

niques [54] to our CDRs and geo-tagged tweets. Also, we infer social ties among the users;

we use phone calls in the CDR data and explicitly stated friendship in the Twitter data.

These ties are later used for social filtering, to address concerns about riding with strangers.

Second, given a set of users with known home/work locations, we develop a framework

for matching users that could share a ride. Our goal is to minimize the total numbers

of cars and provide rides to as many users as possible. We consider several constraints

including: spatial (ride-sharing with neighbors, i.e., someone within a certain distance from
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their home/work location), temporal (ride-sharing within a time window from the desired

departure/arrival time) and social (ride-sharing with friends or friend-or-friends) constraints.

We also consider two versions of the problem: End-Points RS, ride-sharing between home

and work locations, and En-Route RS, allowing the possibility to pick up passengers along

this route. Our formulation is rooted at the Capacitated Facility Location Problem with

Unsplittable Demand. Since this is an NP-hard problem [56], and we want match more than

272K drivers and passengers, we develop efficient heuristic algorithms, namely End-Points

Matching and En-Route Matching to solve the two aforementioned problems.

Third, we use our framework to assess the inherent potential of ride-sharing to exploit the

overlap in people’s commute in a city. We find that there is significant potential for reducing

traffic via ride–sharing, the exact magnitude of which depends on the constraints assumed

for matching, as well as on the characteristics of the cities and the type of data set (CDR

vs Twitter). For example, our study shows that traffic in Madrid can be reduced by 59%

if users are willing to share a ride with people who live and work within 1 km; if they can

only accept a pick-up and drop-off delay up to 10 minutes, this potential benefit drops to

24%; if drivers also pick up passengers along the way, this number increases to 53%. If users

are willing to ride only with people they know (“friends” in the CDR and OSN data sets),

the potential of ride-sharing becomes negligible; if they are willing to ride with friends of

friends, the potential reduction is up to 31%. Albeit upper bounds to the actual benefit,

these positive results encourage the deployment and policies in favor of ride-sharing.

3.2.2 Related Work

Traditionally, carpooling studies focused in characterizing the behavior of carpoolers, identi-

fying the individuals who are most likely to carpool and explaining what are the main factors

that affect their decision [84]. Instead, in this thesis we focus on assessing its potential for
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traffic reduction in a city. A similar study has been done before in [88], which assumed a

uniform distribution of home/work locations in a city, and concluded that ride-sharing has

little potential for traffic reduction. In contrast, we infer home/work locations from CDR

and Twitter data and we find that they are far from uniform.

Some ride–sharing systems have been built over GPS [52, 87] data. He et al. [52] presents a

route–mining algorithm that extracts frequent routes and provides ride-sharing recommen-

dations based on these routes; they use the GPS traces of 178 individuals. Trasarti et al.[87]

use GPS data to build mobility profiles for 2107 individuals, and match users with similar

profiles; they also apply their algorithms to a GSM-like data set, which they synthesize by

reducing the size of their GPS data. Bicocchi et al. [21] extract common routes from mobile

traces and use them for ride-sharing recommendations. To the best of our knowledge, our

work is the first attempt to study the potential of ride–sharing using CDR and OSN data.

Although, our data have coarser granularity in terms of user trajectories (since we observe

a user’s location only when she makes a call or posts a geo-tagged tweet), they have infor-

mation about orders of magnitude more users than previous carpooling studies and thus are

better positioned to answer the question about the city-wide benefits of ride-sharing.

Compared to commercial ride-sharing systems, such as Avego, Lyft, Uber: our work is

partly based on publicly available (e.g. geo-tagged tweets) as opposed to proprietary data;

it has a larger number of users for the cities studied; it takes into account social ties for

matching drivers and passengers; and it assesses offline the city-wide benefit of ride sharing,

as opposed to online matching of passengers with a small set of dedicated drivers.

Our methodology on inferring home/work locations for individuals builds upon a recent

work by Isaacman et al. [54, 55], on inferring important places from CDR. Social aspects of

CDRs, i.e. the call graph, has been studied in [30], [42]. In this chapter, we combine both

aspects, namely inferred locations and social ties, to restrict ride sharing accordingly. We

do the same with the Twitter data too.
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Other related studies focus on characterizing crowd mobility and urban environments using

information from Twitter or FSQ. Wakamiya et al. [89] and Fujisaka et al. [49] have used geo-

tagged Twitter data to study crowd mobility, and Frias-Martinez et al. [47] to characterize

land use. FSQ has been used by Noulas et al. [69], [67] for modeling crowd activity. To the

best of our knowledge, Twitter and FSQ data have not been used for carpooling.

The most closely related work is our preliminary study [33]. Compared to [33], in this

chapter we make the following additional contributions: (1) we collect data from Twitter

(geo-tagged tweets for NY and LA) in addition to CDRs, (2) we use CDRs from BCN,

(3) we compare among the four cities, (4) we restrict ride sharing opportunities based on

social ties, and (5) we estimate users’ departure times from the data, instead of assuming a

distribution.

3.2.3 Inferring Home/Work Locations from Data

The first step in assessing the benefits of ride-sharing is to infer where people live and

work. To achieve this, we build on a state-of-the-art methodology that has been proven

to infer important locations in people’s lives with adequate accuracy [54]. We apply their

methodology with some modifications in order to make it applicable to our scenario.

Data Sets

Tab. 3.1 summarizes our data sets, and the following subsections describe the data collection

process.

Cell Phone Data:

We obtained CDRs from a major Telecommunication provider in Europe for two cities,
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Data Set Name Period Number of
Records

Total
Users

Home/Work
Users

CDR–Madrid Sep 2013 - Dec 2013 820M 4.70M 272,479
CDR–BCN Sep 2013 - Dec 2013 465M 2.98M 133,740

Twitter–NY Nov 2012 - Feb 2013 5.70M 225K 71,977
Twitter–LA Nov 2012 - Feb 2013 3.23M 155K 43,575

FSQ–NY Nov 2012 - Feb 2013 362K 31.3K –
FSQ–LA Nov 2012 - Feb 2013 134K 13.6K –

FSQ–US Dec 2009 - Aug 2011 1.47M 40.1K –

Table 3.1: Description of our data sets. The right column shows the number of users with
inferred Home/Work locations, which is a subset of all the users. The Foursquare data sets
were used to tune and validate the home/work inference methodology, for the Twitter data
sets.

Madrid and Barcelona (BCN). The CDRs are from the period of September 2009 – December

2009, excluding the last two weeks of December, which are holidays. See Tab. 3.1 for more

details.

Twitter and Foursquare (FSQ):

Many users access Twitter from mobile apps and some of them choose to reveal their current

location (typically as GPS coordinates) in their tweets, thus making Twitter an important

source of human mobility information. We used the Twitter’s Streaming API [6] in order to

obtain individuals’ mobility traces in large geographic areas. We collected geo-tagged tweets

from the metropolitan areas New York and Los Angeles for a period of four months – from

November 2012 until February 2013. This was possible thanks to Twitter’s Public Stream

Service where you can specify the geographic area that you are interested in. See Tab. 3.1

for more details.

Geo-tagged tweets contain location information, but they lack location semantics, which are

crucial for inferring individuals’ home/work locations and commuting routes. We collected

this information from FSQ – a large location-based OSN with more than 30M users. FSQ

does not provide an API for data collection but its users can post their check-ins in Twitter

and other OSNs. We obtained FSQ check-ins from our Twitter data set. In addition, we
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(a) Headquarters of Telefonica in Madrid (b) Home Area. Coordinates: 40.503736, -
3.635469

Figure 3.1: Example of residential and working areas

exploited another FSQ data set that we obtained with the help of the authors of [77]. The

latest data set was obtained by crawling publicly available tweets of check-ins in the US, and

spans the period: December 2009 - August 2011. See Tab. 3.1 for more details.

Home/Work inference methodology:

We apply the methodology of Isaacman et al. [54] for inferring important places for cell

phone subscribers from (1) CDR data and (2) ground truth for a subset of subscribers. First

the recorded cell towers of a user are clustered to produce the list of places that the user

visits. Then, regression analysis is applied to the ground truth users (clusters and their

true important locations) to determine the features of the clusters that represent important

places. The used features are: (1) the number of days that the user appeared on the cluster;

(2) the duration of user appearances on the cluster; and (3) the rank of the cluster based on

number of days appeared. Once important locations have been inferred, and the algorithm

chooses which of these are home and which are work locations. According to their results, the

best features that characterize home and work are: (4) the number of phone calls between

7PM - 7AM, i.e. Home Hour Events, and (5) number of phone calls between 1PM - 5PM,

i.e. Work Hour Events.
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For our CDRs, first, we filter out users for whom we have too little data: i.e. users with

less than 1 call per day on average, or less than 2 clusters with 3 days of appearance and

2 weeks of duration – the specific filtering parameters are consistent with [54]. Then, we

tune the methodology of [54] to our needs. More specifically, we build two classifiers, one

for home and one for work, and we train them using the 5 features described above and the

ground truth, which is described in the following section. Once the training on the ground

truth is done, we apply the classifiers to the rest of the users. Finally, after classification,

we keep only the users who have only one inferred home location, and a different inferred

work location, since we are interested only in commuters. Applying the home/work inference

methodology to our CDR data, we are able to infer the home/work locations of more than

272K individual users in Madrid, and more than 133K users in BCN (See Tab. 3.1). Finally,

we apply the same methodology in our Twitter data – FSQ data serves as ground truth –

and we infer home/work locations for 71K users NY, and 43K users in LA.

Obtaining Ground Truth:

In [54], a set of 37 volunteers reported their most important locations, including home and

work. This was used to tune their methodology, i.e. in the regression analysis, before

applying it to the rest of their users – around 170K.

Ground Truth for CDR Data: For the CDR data, we obtained our ground truth for a select

subset of users based on a previous study [82], which characterizes areas in Madrid. In

particular, we exploited strictly residential and strictly industrial areas (see Fig. 3.1 for

example), which offer a clear distinction between home and work. To this end, we selected

160 users that appeared for many days in only one such residential area during 7PM - 7AM

(“home hours”), and only one such industrial area during 1PM - 5PM (“work hours”). Then,

the location inside the residential area is pointed as the user’s Home, while the location inside

the industrial area is pointed as the user’s work. For each one of the 160 users, we visually

inspected their recorded locations through Google Earth. Fig. 3.2 shows a selected ground

62



(a) A “ground truth” user

(b) Zooming in at home (c) Zooming in at work

Figure 3.2: A ground truth example. The red paddles show the cell towers, while the blue
pushpins the clusters. The numbers next to each mark indicate the number of weekdays and
weekends she appeared in that location. Also, the size of each mark is proportional to the
days of appearance.

truth user.

Ground Truth for Twitter Data: We used the Foursquare data to build the ground truth

for the geo-tagged Twitter data sets by selecting users who appear more than a week in a

location tagged as Home(Private), and the same duration in a location containing one of

the tags: Professional, Office, or Work. For each one of these users we define their home

to be the location tagged as home with highest number of days of appearance, and as work

the location tagged as work with most days of appearance. We also manually inspect their

Twitter account and, when possible, their LinkedIn accounts. In the FSQ-US data set, we

found 481 such users, and in the FSQ-NY and FSQ-LA data sets we found 98.

Validation:
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Percentile 25th 50th 75th 95th

Our Home Error 0.0 0.01 0.49 13.62
Home Error in [54] 0.85 1.45 2.06 6.21

Our Work Error 0.1 0.03 1.52 16.09
Work Error [54] 1.0 1.34 3.7 34.17

Table 3.2: Comparing the home/work identification error to [54].

0 10 20 30 40 50 60
error(km)

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

Distribution of error

Home Error
Work Error

Figure 3.3: CDF of error for the home/work inference methodology. Inferred home/work
locations from Twitter are compared against the declared locations in Foursquare.

Fig. 3.3 shows the accuracy of the home/work inference methodology for our Twitter data

set. We use the FSQ-US data set to train the classifiers. Then, for the ground truth users

that appear both in the Twitter data set and the FSQ data set, we infer their home/work

locations using the geo-tagged tweets, and then we compare the inferred home/work locations

to the ones in FSQ. In Tab. 3.2 we compare the accuracy of the home/work identification

methodology with the reported accuracy in [54]. We see that in the case of the 75th percentile

the home error has decreased by 76% , and the work error has decreased by 59%. For a few

cases, our error is higher. We attribute our overall higher accuracy to the more precise

location information in the Twitter-Foursquare data sets. Finally, Fig. 3.4 shows a visual

comparison between our results and the characterization of the Madrid’s areas from [82],

and indicates a strong agreement between our results and the related work.
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Figure 3.4: Characterizing Madrid based on the inferred home/work locations, and compar-
ison to the characterization of [82]. We break the city into a grid, and color each square
with a combination of green and red. Green squares have relatively more home than work
locations; while red squares have relatively more work than home locations. We observe that
the squares that we colored red contain contain more circles, indicating industrial and com-
mercial zones, than residential zones. Also, squares colored green contain more residential
than industrial zones.

Differences from the Uniform Distribution:

We find that home/work distribution is far from uniform, which was assumed in [88], in the

following aspects:

Segregation of home and work areas: According to Fig. 3.5, Madrid contains segregated home

and work (e.g. industrial) areas. In work areas, there is a relatively large number of working

places, while in home areas there is a relatively large number of home locations Fig. 3.5(a).

To illustrate the difference, we show how the city would look if the home/work distribution

were uniform, Fig. 3.5(b).

Non-uniform density: The density of home and work locations in various areas is quite

different from uniform, as shown in Fig. 3.6; 30% of most popular home areas – areas with

most home locations – contain 75% of the homes; if home/work distribution was uniform

then the top 30% of home areas would contain only 30% of the homes.
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(a) Inferred (b) Uniform

Figure 3.5: Inferred vs. uniformly distributed home/work locations. Fig 3.5(a) shows a city
with segregated home and work areas, while Fig. 3.5(b) shows a city where all areas are the
same.
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Figure 3.6: Number of home locations for the 10%, 20%, and 30% most popular areas. In
the inferred distribution, areas vary in popularity (highly populated and sparsely populated
ones), while in the uniform they are equally popular.
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(a) Most popular home area
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(b) CDF of home-work distance

Figure 3.7: Distance between home and work locations. 3.7(a) shows the square grid with
most homes (yellow paddle), and where are the corresponding work locations; stronger the
colors indicate higher concentration of work locations. Users tend to work close to home.
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Figure 3.8: Distances between users who have social ties – inferred from the calls – vs.
distance between random strangers. The distance between two users u and v is the maxi-
mum of their home and work distance. This figure indicates correlation between social and
geographic proximity.

Relatively short home-work distances: As seen in Fig. 3.7, users tend to work close to where

they live. For the grid square with the highest number of users who have their home there, as

shown in Fig. 3.7(a), the corresponding work locations tend to be close by. Also, according

to Fig. 7(b), the home-work distances are shorter compared to what they would be if home
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and work were randomly distributed.

Geographic distances and social ties: In a later section, we will consider social ties among

users, inferred from calls (CDRs), or declared relations (Twitter). In Fig. 3.8, we compare

the average distance of each user u to her friends, vs. her geographic distance to randomly

selected strangers (i.e., users who are not neighbors of u in the social graph). According to

Fig. 3.8, the geographic distance between users who have social ties are shorter, on average,

in comparison to strangers.

Departure Times:
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Figure 3.9: Distribution of home-departure Times. A normal distribution with mean at 9
am, and standard deviation 30 minutes, is a close approximation to the inferred departure
times from our data. The continuous line is what we get via Kernel Density Estimation from
our data.

We estimate departure times of individual users from consecutive home/work calls. More

specifically, we use pairs of calls where one is a home call, the other a work call, and the
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time difference between the calls is less than 2·trip time, where trip time is the time distance

between home and work, as obtained from a popular Online Map service.

For each user, we find her departure time from home by taking the median of the calls, that:

(1) were made between 8 am and 10 am from home, and (2) were followed by a work call

no more than 2·trip time later. Similarly, we find her work departure time, by taking the

median of the calls, that : (1) were made from work between 4pm and 6pm, and (2) were

followed by a home call no more than 2·trip time later.

The distribution of home departure times for all individuals who had such calls is shown in

Fig. 3.9 – each individual is required to have at least three such calls; there were 484 such

users in our data set. The departure time from work follows a similar distribution, which is

omitted due to lack of space.

3.2.4 End-Points Ridesharing

In this section, we formulate the problem of End-Points RS, i.e. ride-sharing among people

that live and work close to each other. We develop a practical algorithm, we apply it to the

users with inferred home/work locations, and we compute the number of cars that can be

reduced under different scenarios.

Formulation

Let V denote a set of potential drivers and c(v) the capacity, in terms of available seats,

of the car of driver v ∈ V and p(v) a penalty paid if driver v is selected for driving her

car and picking up passengers. Let h(v, u) denote the geographic distance between the

home locations of drivers v and u and w(v, u) the corresponding distance between their work

locations. Let δ denote the maximum acceptable distance between a driver’s home/work and
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the home/work of passengers that she can pick up in her car, i.e., v can have u as passenger

only if: max(h(u, v), w(u, v)) ≤ δ

Let d(v, u) denote a virtual distance between v and u, defined as follows:

d(v, u) =


h(v, u) + w(v, u),

if max(h(v, u), w(v, u)) ≤ δ

∞, otherwise

Our objective is to select a subset of drivers S ⊆ V , and find an assignment a : V → S, that

minimizes P (S) +D(S), the sum of penalty and distance costs, while satisfying the capacity

constraints of cars. The two costs are defined as follows:

P (S) =
∑
v∈S

p(v) and D(S) =
∑
v∈V

d(a(v), v)

where a(v) ∈ S is the driver in S that is assigned to pick up passenger v (can be himself

if v is selected as a driver). By setting p(v) > 2δ · c(v) we make sure that an optimal

solution will not increase the number of cars in order to decrease the (pickup) distance

cost between a driver and its passengers 1. The above problem is an NP-hard Capacitated

Facility Location Problem with Unsplittable Demand in metric distance: the set of potential

drivers corresponds to the set of locations; the set of chosen drivers corresponds to opened

facilities; car capacity corresponds to facility capacity; distance d(v, u) corresponds to the

cost of assigning a location v to the facility u. Efficient approximation algorithms are known

for this type of facility location problem [56].

1For all (u, v) pairs withing constraints, d(v, u) ≤ 2δ, therefore in worst case a full car v can increase the
total cost by 2δ · c(v). We set the penalty for every car, to be higher that the worst case scenario.
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The above formulation includes spatial constraints only. Next, we refine our formulation

to include time. In the previous section (see Fig. 3.9), we showed that departures from

home and work can be approximated by a normal distribution, centered at 9 am and 5 pm

respectively, with standard deviation σ. We introduce the delay tolerance τ that captures

the maximum amount of time that an individual can deviate from her normal schedule in

order to share a ride. More specifically, if LH(u) denotes the time a person u leaves home

to go to work, and LW (u) expresses the time she leaves work in order to return to home.

Then, two people u and v, can share a ride only if:

max(|LH(u)− LH(v)|, |LW (u)− LW (v)|) ≤ τ

The introduction of the temporal constrains will change the virtual distance between v and

u to the following :

d(v, u) =



h(v, u) + w(v, u),

if max(h(v, u), w(v, u)) ≤ δ

AND |LH(u)− LH(v)| ≤ τ

AND |LW (u)− LW (v)| ≤ τ

∞, otherwise

A Practical Algorithm

In this section, we modify the existing approximation algorithm [56] for the facility location

problem described above and design a heuristic that can cope with the size of our matching

needs, the biggest of which has 272K users.

The algorithm in [56] starts with a random solution and improves it iteratively via local

search. At each iteration, there are O(n2) candidate solutions, where n corresponds to the
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number of potential drivers. For each one of them, it finds the assignment (passengers to

drivers) that minimizes the cost; this is done in polynomial time by solving an appropriately

defined instance of the transportation problem. The algorithm terminates when local search

cannot find a better solution.

We modify the algorithm in three ways. First, since the quality of the solution depends

mostly on the number of drivers, we try to keep that number as low as possible. Therefore,

we use the b-matching [28] algorithm to generate the initial solution, instead of generating it

randomly. The input to the b-matching algorithm consists of the set of potential drivers V ,

a function o(v) that defines the set options for a potential driver v i.e. o(v) = {u|d(u, v) <

inf}, and a global ordering of the potential drivers, O. The global ordering will be based

on the number of options; the fewer the options, the higher the position in O. By using

b-matching with a global order we are guaranteed to find a solution in O(n) time [28]. For

each match generated by b-matching, we assign the potential driver with the most occupied

seats to drive; we make sure that every user in V appears in only one car. This solution has

much lower cost than the random one by paying O(nlog(n)) for sorting the users to generate

the global preference list and O(n) for the matching.

Second, solving a transportation problem with 272K users is computationally expensive.

Therefore, we need to modify the local search steps of the approximation algorithm. Given

an initial solution we leave the users commuting in cars of four as they are and search for

better assignments only for the rest. This reduces the size of the transportation problem

and speeds up the process of generating the assignment.

Third, reducing the size of the transportation problem is not enough; we also need to reduce

the neighborhood of candidate solutions. Given an initial set of drivers, S, we create a fixed

size neighborhood, where each solution S ′ is created by doing random changes in S. The

reason why we do that is because considering all potential solutions that differ from S only

by one, means that we have to examine O(n2) candidate solutions; that makes each iteration
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Figure 3.10: Benefits of End-Points RS.

very expensive. Therefore, the fixed size solution helps us speed up the time we spend in

each improvement step.

Without the above modifications it would be impossible to solve the problem in real time.

Solving an instance of the transportation problem for 270K users required a couple of hours

for δ = 0.6 km, and even more when δ = 0.8 or δ = 1.0 km. Therefore, solving O(n2) such

problems for a single iteration becomes too expensive. Moreover, in our experiments, we

observed that the improvement steps would add little value to the solution offered by the

b-matching.

Results

We now calculate the effectiveness of End-Points RS based on our data sets. For ease of

exposition, we will focus on the Madrid metropolitan area (we cover the remaining cities

in a later section). We reduce the size of our data set by randomly selecting only 60% of

the users. We do that to capture the fact that only 60% of the population has a car in the

area of Madrid [2]. We also show results for the case that half of the car owners use their
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Figure 3.11: How δ affects the ride-sharing options

car at their daily commute (the results are quantitatively similar). For the remaining of the

section, we will refer to users who can share rides with a specific user v, as options of v. We

compute the reduction of cars, as % of the initial number:

success =
#(init. cars)−#(ride-sharing cars)

#(init. cars)
· 100

using the following algorithms:

Loose upper bound: Given our definition of success, we cannot do better than 75%, when all

cars carry 4 people.

Tighter upper bound: Assuming that all users with at least one ride-sharing option commute

in cars of 4.

Time-indifferent matching (τ =∞): This is the practical algorithm described in the previous

section.

Time-aware matching: This is the version of the algorithm that considers timing constraints

under the assumption of normally distributed departure times.

74



Uniform home/work: Ride-sharing assuming that home/work locations are distributed uni-

formly.

Fig. 3.10 presents what happens when the users are willing to tolerate a detour of δ km and

deviate τ minutes from their departure times, in order to share the same car with another

individual. The results show that with a modest delay tolerance of 10 minutes and a detour

distance of 1.0 km (a couple of city blocks) more than 20% of the cars can be saved. The

success ration improves when δ or τ increase. The diminishing improvement with increasing

δ can be explained by the number users’ options, given the distance δ. In Fig. 3.11, the red

color represents the users with no options, the blue color the users with 1 or 2 options, and

the green color the users with 3 or more options. We see that the success of ride-sharing is

proportional to the number of users with 3 or more options.

Fig. 3.10 also shows that the potential of End-Points RS is quite small in the case of uni-

formly distributed home/work locations; note that no time constraints were applied in this

case. If we apply time constrains too, then the success of End-Points RS is even smaller,

e.g. for δ = 1 km, τ = 10 min, and σ = 30 min, its potential becomes 0.2%

3.2.5 En-Route Ridesharing

The effectiveness of ride-sharing can be greatly improved by picking up additional passengers

en-route; a driver that lives in a sparsely populated area might not have any neighbors to fill

her seats, but once she enters the city she can pick several passengers that are on her way.

In order to quantify the benefits of en-route ride-sharing we obtain routes from a popular

Online Map service for the 272K users with inferred home/work locations, and we extend

the algorithm of the previous section. Again, we will focus on Madrid.
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En-Route Algorithm

We use an iterative algorithm with the following steps:

1. Run the basic End-Points RS algorithm.

2. Exclude from the solution cars that get fully packed (a car of 4). Then order cars in

decreasing order of passengers and start “routing” them across the urban environment

(e.g. Madrid) using data from the Online Map service.

3. When the currently routed car v meets a yet un-routed car v′, then v is allowed to steal

passengers from v′ as long as it has more passengers than v′ (a rich-get-richer strategy).

Whenever a routed car gets fully packed it is removed from further consideration.

Whenever a car with a single passenger is encountered the number of cars is reduced

by one.

4. The algorithm finishes when no change occurs.

These steps are repeated until there is no possible improvement. The rich-get-richer rule

leads to convergence, since it forces cars to either become full or to stay home (the driver

becomes a passenger in another car). The algorithm converged in every single execution.

Results

Fig. 3.12 shows the performance of En-Route RS. To make the comparison with End-Points

RS easier we summarize our results in Tab. 3.3. One can see the significant improvement

obtained through En-Route RS, which in several cases comes within 10% of the optimal

performance.
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Figure 3.12: Benefits of En-Route RS.
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Figure 3.13: Extrapolation to commuters’ size. “Sample” refers to the 272K users with
inferred home/work locations in Madrid. The solid lines correspond to values generated from
our data set, while the dashed lines correspond to values generated through extrapolation.

Projection to the entire commute population: All previous results have been produced based

on the 272K users with inferred home/work location in Madrid. This, however, represents

only roughly 8% of the total population of the city. To get a feeling of the ride-sharing

potential based on the entire population, for which we do not have location information,
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Sample δ τ σ End-Points RS En-Route RS

(%) (km) (min) (min) (%) (%)

30 1.0 – – 54 65
30 1.0 10 30 17 47

60 1.0 – – 59 70
60 1.0 10 30 24 53

100 1.0 – – 62 71
100 1.0 10 30 30 56

360 1.0 – – 70 75
360 1.0 10 30 44 65

Table 3.3: Effect of population size on the performance of End-Points RS and En-Route RS

in Madrid. “Sample” refers to the 272K users with inferred home/work locations in Madrid.
100% means using all of them. 30% and 60% means using a random subsets, while 360%
means projecting the potential to the entire commuters’ population of Madrid.

Graph Nodes Edges Mean
degree

Median
degree

# #
call graph Madrid 4M 21M 6.0 1
twitter graph NY 132K 725K 10.95 5

Table 3.4: Graph sizes

we extrapolate to a larger number of users. We repeat the calculation of ride-sharing with

different subsets of our total 272K users, and fit numerically these data points to a logarithmic

function (in order to capture the diminishing effect). Then we extrapolate the potential of

ride-sharing for larger population sizes. The results are summarized in Tab. 3.3 and shown

in Fig. 3.13, where we see that the population size has a progressively diminishing results

on the ride-sharing potential. In the remainder of the section we will report results for both

our 8% sample, and extrapolation to the commuters’ population.

3.2.6 Social Filtering - Riding with Friends of Friends

In this section, we present how social filtering affects the potential of ride-sharing. Instead

of assuming that anybody is willing to share a ride with anybody else, we introduce social

constraints in selecting ride-sharing partners. The social constraints are represented by
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city filter End-Points RS En-Route RS En-Route RS
extrapolation

(%) (%) (%)

Madrid no filter 30 56 65
Madrid 1-hop 0.26 1.1 –
Madrid 2-hop 3.7 19 31

NY no filter 20 44 68
NY 1-hop 0.18 1.2 –
NY 2-hop 2.1 8.2 26

Table 3.5: Social Filtering. The potential or End-Points RS and En-Route RS for δ = 1.0
km (distance constr.), τ=10, σ = 30 (time constr.). The third and the forth column show
the potential for sample size, while the last column shows the potential of ride-sharing
extrapolated to the commuters’ population.
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Figure 3.14: How social filtering works. Green nodes represent users with inferred home/work
locations. Red nodes represent their neighbors (without inferred home/work locations). We
only consider ride-sharing among the green nodes. In one-hop filtering, a can share a ride
only with e. In two-hop filtering, a can share a ride with e,c,b, and d.

graphs, e.g. as shown in Fig. 15: the nodes correspond to users, and the edges correspond

to social ties. A user considers sharing a ride with a one-hop neighbor, or with a two-hop

neighbor (a friend of a friend).

Given that we have two different types of data sets – CDR and geo-tagged tweets – we need to

use two different definitions of edges. In the case of CDR data [40] [70], choosing a threshold

condition for an edge between two users involves a trade-off between the strength of the tie

and the number of edges. When choosing a threshold one needs to take into account the

needs of the application [31]. In this study, we create an edge in the social graph between
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Figure 3.15: Number of friends for the users with home and work address.

two users when there is at least one call between them. We experimented with various

definitions, and we found that – due to the small number of users with inferred home/work

locations – higher thresholds would result in extremely sparse, thus useless,2 graphs.

In the case of Twitter, we crawl the friends and the followers of the users for with inferred

home/work locations, and we create an edge in the social graphs if there is a bidirectional

edge on Twitter. See Tab. 3.4 for graph details. Moreover, to be sure that the friend nodes

in our Twitter graph represent real people we considered only users who had at least one

geo-tagged tweet. Finally, in both CDR and Twitter cases, we filtered out nodes with more

than 1000 friends, in order to exclude popular phone services, or celebrities, respectively.

Now, we examine how social filtering affects the potential of ride-sharing. Fig. 3.14 illustrates

the social filtering process. Lets start with Madrid. As we can see from Tab. 3.5 the potential

of ride-sharing is quite low when users are willing to share a ride only with their one-hop

friends. This is expected, since the graph shows only a small portion of a user’s friends,

and the users for whom we have home/work addresses are only a small subset of all users.

2Using a reciprocal call, as a threshold, would result in a graph with 2.4M nodes, and 3.7M edges. In
that case, 92% of the users had zero one-hop neighbors with whom they could share a ride. As a result,
the ride-sharing potential was 2% (5.1% with extrapolation) for En-Route RS with 2-hop social filter, and
δ = 1.0 km (dist. constr.), τ=10, σ = 30 (time constr.)
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Figure 3.16: The CDF of the ratio between average number of friends-of-friends over number
of friends. Friendship paradox holds when this ratio is greater than one (over 90% of the
users both in figures).

From Fig. 3.15(a), we can see that 80% of the nodes in the call graph have no more than

10 one-hop friends, whose home/work addresses have been identified. However, if users are

willing to share rides with friends of friends, then from Tab. 3.5 we can see that, even with a

sparse social graph, there can be considerable gain from En-Route RS. This can be explained

from Fig. 3.15(a), in which we can see the much higher number of two-hop than one-hop

friends. In all data sets, there is a considerable improvement; e.g., in Madrid, ride-sharing

has a potential of 19% (or 31% if extrapolated to the entire population of Madrid).

In general, the number of nodes and edges in the social graph is crucial for any ride sharing

application that wants to exploit social filtering. Moreover, the difference between the large

increase in the ride-sharing potential when using friend-of-friends can be attributed to the

friendship paradox ( “on average your friends have more friends that you do”, [53, 43] that

also holds in our data sets as illustrated in Fig. 3.16.

81



scenarios End-Points RS ratio. En-Route RS ratio.
(%) (%)

τ=10, σ = 30 3.3 1.8
Social constr. 68 14

Table 3.6: Madrid vs. BCN. This table shows the difference in ride-sharing potential between
BCN and Madrid, for both End-Points RS and En-Route RS, in two different scenarios: (1)
δ = 1.0 km, τ=10, and σ= 30, and (2) δ = 1.0 km, τ=10, σ= 30, and two-hop friends. The
ratio is computed as : ((BCN −Madrid)/Madrid) ∗ 100

scenarios End-Points RS ratio. En-Route RS ratio.
(%) (%)

τ=10, σ = 30 -33 -9
Social constr. -50 -46

Table 3.7: NY vs. LA. This table shows the difference in ride-sharing potential between New
York and Los Angeles, for both End-Points RS and En-Route RS, in two different scenarios:
(1) δ = 1.0 km, τ=10, and σ=30, and (2) δ = 1.0 km, τ=10, σ= 30, and two-hop friends.
The ratio is computed as: ((LA−NY )/NY ) ∗ 100

3.2.7 A Tale of Four Cities

In this section, we compare the potential of ride-sharing in the four cities (Madrid, BCN,

NY, and LA).

We start by comparing Madrid and BCN. The first row of Tab. 3.6 shows that, for spatio-

temporal constraints only, the potential or ride-sharing in the two cities is very similar, with

the potential of En-Route RS being slightly higher in BCN. In the second row, we show

that when also considering social constraints, the relative difference in ride-sharing benefit

between the two cities becomes becomes much higher: the potential of End-Points RS in

BCN is 68% higher, and the potential of En-Route RS in BCN is 14% higher. This difference

cannot be explained by the social graph, since, as we can see from Fig. 3.17(a), the users

in both cities have almost the same number of friends. We attribute the better potential

in BCN to its higher population density: Madrid has a density of 5,390 people/km2, while

BCN has a density of 15,926 people/km2.

The same observation holds in the comparison between the two US cities. The potential or
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Figure 3.17: Comparing the CDF of 2-hop friends for Madrid vs. Barcelona, and NY vs.
LA.

ride-sharing in NY is higher that the potential of ride-sharing in LA – see Tab. 3.7. The

difference gets even higher when time or social constraints are included – see Tab. 3.7. Again,

the difference in the potential of ride-sharing can be explained by the densities of the two

cities: LA has a density of 3,124 people/km2, and NY has a density of 10,429 people/km2.

We obtained the mobility data for Madrid and BCN from CDRs, and we obtained the mobil-

ity data for NY and LA from geo-tagged tweets, therefore a comparison between European

and US cities may lead to incorrect conclusions. However, both comparisons (Madrid vs.

BCN and NY vs. LA) show that ride-sharing is more beneficial in denser cities, especially

when time and social constraints are considered.

3.2.8 Summary

We used mobile and social data to demonstrate that there is significant overlap in people’s

commute in a city, which indicates a high potential benefit from ride-sharing systems. This is

clearly an upper bound to any practical ride-sharing system, but the positive result motivates

the deployment of such systems and policies. Our results indicate that en-route ride-sharing
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with up to two-hop social contacts offers a good trade-off between technological feasibility,

people’s security concerns, and a substantial impact on traffic reduction. A more detailed

summary of our findings is as follows.

We started by considering End-Points RS in which rides can be shared only with neighbors

with nearby home and work. Even with a modest detour of 1 km we observed a great

potential reduction of cars. In the case of Madrid, this reduction is 59%, based on our

location data set that captures close to 8% percent of the total population. Our estimation

of the ride-sharing potential extrapolated to the total commuting population of the city is

significantly higher.

The distribution of home/work locations, which is far from uniform is crucial to the success

of ride-sharing: if Madrid had a uniform home and work distribution then the reduction

would be 13% assuming only spatial constraints, and 0.2% assuming time constraints too.

This is in agreement with [88] and shows that ride-sharing has negligible benefit in a city

with uniform home/work distribution.

Adding time constraints, the effectiveness of ride-sharing becomes proportional to the driver/passenger

waiting time for a pick-up, and inversely proportional to the standard deviation of the dis-

tribution of departure times. With a standard deviation of 30 min, a wait time up to 10 min

and a δ of 1km there is a 24% reduction of cars in Madrid.

En-Route RS, i.e., allowing passenger to be picked up along the way, yields a great boost

in ride-sharing potential with or without time constraints. In the case of Madrid, En-Route

RS increases the savings from 24% to 53%.

Then, since people are often hesitant to ride with strangers, we decided do add social con-

strains too. Social ties can be inferred from calls (CDRs), or declared friendship (Twitter).

First, we consider ride-sharing only with one-hop friends. Then En-Route RS in the city

of Madrid using CDR and Twitter friendship provides only a tiny traffic reduction of 1.1%
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and 1.2% respectively. This dramatic decrease is attributed to the low density of the social

graphs and to the fact that only a small portion of the graphs’ nodes have known home/work

addresses – each user has the opportunity to share a ride only with a small portion of her

neighbors. However, if we relax the social constraints and permit ride-sharing with friends-

of-friends, the ride-sharing potential increases significantly, especially in En-Route RS. The

corresponding numbers are 19% and 8.2% for friendship based on CDRs and Twitter data,

respectively. Furthermore, if we project the potential of ride-sharing to the total commut-

ing population of the city (much larger than the number of users with inferred home/work

locations), the benefit increases up to 31% for call based filtering and 26% for OSN based

filtering.

Finally, we compared the four cities and observed that the population density of a city has a

profound effect on its ride-sharing potential, especially when strict social filtering is applied.

For example, BCN is denser and has a 14% higher ride-sharing potential than Madrid; LA,

on the other hand, has 46% lower ride-sharing potential than NY.

3.3 A Scalable System for Online Ridesharing

3.3.1 Introduction

An anticipated breakthrough in ridesharing is the ability to satisfy on-demand requests that

do not require participants to schedule their trips well in advance [50]. When asked how

far ahead of time participants would like to organize a shared ride, 43% preferred to plan

their ride 15-60 minutes before departure [78]. In this section, we are interested in such an

online ride-sharing (ORS) system: requests arrive dynamically, possibly with a short notice.

We develop an online ride sharing (ORS ) system for matching users that could share a ride.

We evaluate the performance of the system using spatio-temporal data from the city of New
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York. The data set was extracted from geo-tagged tweets from the city of New York and

contains more than 61K users. In the previous section, we used these datasets to extract

commuting patterns: for each user, we have their home/work location, departure times and

commuting route. These datasets showcase an important case of ORS : ride sharing among

commuters between home and work; however, our framework can handle arbitrary driver

trajectories and passenger locations.

We break ORS into two main components: the constraint satisfier and the matching module.

The constraint satisfier, a.k.a satisfier , takes as input the itineraries and spatio-temporal

constraints of drivers and passengers and provides feasible (driver, passenger) pairs. The

core challenge in this module lies in its scalability. We achieve scalability by designing

a constraint satisfier using a road networks data structure, specifically optimized for our

spatio-temporal queries.

Our satisfier component is more scalable than what can be built using state-of-art off the

shelf components: query time increases 4.65x slower with the number of users when compared

to MongoDB. The key to higher performance is the use of the road network data structure;

our specialized satisfier exploits the underlying road network of our spatio-temporal data,

while MongoDB treats them as generic geo-coordinates.

We use the feasible pairs found by the satisfier to define a bipartite graph between possible

drivers and passengers, with edge weights representing the length of the shared trip of a pair.

The matching module takes as input the weighted bipartite graph and returns the maximum

weighted matching (MWM), which captures the objective of real-world ridesharing systems

(such as Lyft Carpool). We propose an efficient algorithm to solve the MWM problem,

which is 51% better than greedy heuristics used by many real systems. Furthermore, the

system is designed to handle efficiently requests that arrive on-line, via efficient queries of

feasible pairs and incremental updates of the matching solution. The key to higher efficiency

lies in its incremental updates: Online MWM uses augmenting methods methods to update
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the existing matching and do global optimizations. We evaluate the entire ORS system

using real mobile datasets to extract driver trajectories and passenger locations in urban

environments. We show that ORS can provide a ridesharing recommendation to individual

users with a sub-second query response time, even at high workloads. We also evaluate the

sensitivity of ORS performance to various parameters, which provides insights for the design

of practical ridesharing systems. Finally, by decoupling the system into two components that

interact only through the (dynamically updated) bipartite graph of feasible pairs, we build

a system that is modular.

3.3.2 Related Work

This section summarizes the most relevant work in the area of ride-sharing.

Commercial Ridesharing. Ridesharing is an important part of the sharing economy and pro-

vides economical, societal and environmental benefits by utilizing “empty” car seats. Rele-

vant ride-sharing startups include Zimride.com and Scoop [13], whose focus is to facilitate

ridesharing between employees of large corporations. This makes the problem less challenging

than in the general case (and is thus a popular strategy for bootstrapping ridesharing [18]),

since users have the same destination (the company they all work for) and the system consid-

ers only the home locations of drivers and passengers, thus reducing the number of potential

pairs. Recently, Uber and Lyft, which are primarily on-demand taxi companies, announced

ridesharing services for commuters: Uber announced uberHOP and uberCOMMUTE [15]

and Lyft announced Lyft Carpool [14]. All the above services facilitate ridesharing among

commuters, and the problems they address are the main focus of this section, but since these

systems and their algorithms are proprietary, and therefore not publicly available, it is not

possible to compare against them. However, they serve as a guideline for our ORS , and we

formulate our ridesharing problem to be in line with the aforementioned systems.
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On-demand Taxi-sharing: On-demand taxi services (e.g. main services of Uber and Lyft) use

smartphone devices to schedule trips between drivers and passengers. They employ dedicated

drivers who, unlike commuters, have no spatial or temporal constraints. Both of these

companies offer cheaper versions of their on-demand taxi services that include ridesharing:

Uber offers uberPOOL and Lyft offers LyftLine. These two services facilitates ridesharing

for taxi passengers who ride along a similar route, and they do not takes into account spatial

and temporal constraints for the driver. However, there is an one-to-one mapping from the

on-demand taxi-sharing to the online ridesharing (between a drive and a passenger) problem.

In uberPOOL and LyftLine the first passenger (primary passenger) decides the trajectory

that the taxi will follow, while the extra passenger (the one that will be picked-up later)

will be picked-up only if it is convenient for the first one. Therefore, the first passenger is

equivalent to the driver, while the extra passenger is equivalent to the passenger of the online

ridesharing problem. This means that our ORS can be used for this type of taxi-sharing

services also. In general our ORS can be used to match trajectories (driver) with a pair of

source and destination points (passenger), online and in real-time.

Academic Research provides valuable insights into ride-sharing, primarily through surveys

on ride-sharing optimization [16] and small-scale ridesharing demos [78]. The work in [78]

reports how far in advance ridesharing participants want to schedule their trips. Other

studies characterized the behavior of carpoolers [84], identified the individuals who are most

likely to carpool and explained what are the main factors that affect their decision [39].

Prior work quantified the potential of ridesharing [18, 34] using offline analysis of datasets.

Taxi-sharing [61, 37] resembles online ridesharing, but since it does not consider spatial and

temporal constraints for the passenger, requires different algorithms. Excellent surveys on

the formulation and optimization of ridesharing and on the key computational challenges

include [16] and [50]. The focus of this section is online ridesharing (as opposed to offline

analysis of its potential of Sec. 3.2) and system design (design and evaluation of ORS that

needs to run in real time).
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Figure 3.18: ORS System Overview. Drivers and passengers enter their requests. The ”con-
straint satisfier module” finds candidate pairs and builds a bipartite graph. The matching
module takes the bipartite graph as an input, produces a matching. Finally, drivers and
passengers are notified.

Notation Definition

(lat
(h)
p , lng

(h)
p ) Source location for p.

(lat
(w)
p , lng

(w)
p ) Destination location for p.

t
(h)
p Earliest departure time for p.

t
(w)
p Latest arrival time for p.

t′(h)
p Latest departure time for p.

∆t2 = t′(h)
p − t

(h)
p Delay Tolerance of p.

t
(r)
p When p sends his request.

∆t1 = t
(h)
p − t(r)

p ahead-of-time notification
δ Distance Tolerance.
Td Trajectory for driver d.

(lat
(0)
d , lng

(0)
d , t

(0)
d ) Starting point of d’s trajectory.

(lat
(nd)
d , lng

(nd)
d , t

(nd)
d ) Ending point of d’s trajectory.

Table 3.8: Notations for passenger p and driver d.

3.3.3 System Overview

System Requirements

We define ridesharing as a one-time trip shared between a driver and a passenger, according

to spatio-temporal constraints that both parties specify. The driver has a trajectory and

the passenger has a source and a destination (a.k.a home/work). The drive can pick-up the

passenger en-route (e.g. half-ways). In the case of a commuters’ ridesharing system, such as

Scoop, the driver is the commuter who will use his car, while the passenger is the commuter
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Figure 3.19: Request by passenger p: The vertical axis represents space (source and destination

locations), the horizontal axis represents time and the dashed lines are example trajectories. At

t
(r)
p the passenger sends his request in the system. The passenger is ready to leave from the

source location at t
(h)
p and wants to arrive at the destination by t

(w)
p ; t′(h)

p is the latest time the

passenger can leave and not to late. We refer to ∆t1 = t
(h)
p − t(r)

p as ahead-of-time notification and

∆t2 = t′(h)
p − t

(h)
p as delay tolerance (how much can p wait to be picked up).

who will leave his car at home. While in the case of UberPool or LyftLine the driver is the

first passenger (primary passenger) that defines the route of the car, while the passenger

is the extra person who will be pick-up as long as the deviation is convenient for the first

one. Thus, our definition of ride-sharing is broad enough to contain both applications for

commuters or taxi-sharing applications; in both cases we want to match a trajectory with a

(source, destination) pair such that certain spatiotemporal constraints are satisfied. Finally,

the longer the shared part of the trip the better 3.

Drivers and passengers submit their requests before their desired departure time; this ahead-

of-time notification can be, for example, a few minutes before departure or the evening

before the trip, and in general a parameter that affects performance. When ride requests

are submitted, a search for potential matches takes place in real time. If a suitable match

is found, the participants are notified immediately. An overview of the system is shown on

Fig.3.18.

90



Figure 3.20: Example of spatio-temporal constraints when matching a passenger p with a driver

d. The passenger p leaves from her source location (home H) and is going to a destination (work

W ). The driver has a fixed trajectory (indicated in solid line) and departure time. However, the

driver considers deviating at different points on his trajectory and do a detour (indicated in dashed

line) to pickup and droppoff the passenger, as long as these detour distances do not exceed his

distance tolerance: i.e., distH(p, d, i) ≤ δ and distW (p, d, j) ≤ δ. In exchange, the passenger may

wait until his latest departure time.

Notation

Let S denote the set of all users, D denote the set of drivers and P denote the set of

passengers. Clearly D ⊆ S, P ⊆ S and D ∪ P = S. A location is described with its

coordinates (lat, lng). For every passenger p ∈ P , the request entered in the system consists

of the following information, also depicted on Fig.3.19. For every driver d ∈ D, the request

entered in the system consists of the following information, also depicted on Fig. 3.20.

Drivers’ inputs, passengers’ inputs, and ridesharing parameters are explained in Tab. 3.8.

Driver and Passenger Constraints

Ride-sharing needs to be convenient for both the driver and the passenger: they shouldn’t

deviate too much from their routine and they shouldn’t experience excessive delay or incon-

venience.

3The passenger will pay the driver and the system (that enables ridesharing) will keep a percentage of
the payment. Therefore, a ridesharing system would want long joint traveled distances.
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Let us consider a given driver-passenger pair, d and p, depicted on Fig. 3.20. We assume

that the driver does not change trajectory or departure time; however, he is willing to do

a small detour to pickup drop off the passenger, as long as that detour does not exceed his

distance tolerance δ. Let i be the pick up (i.e. closest point of d’s trajectory to the home of

p), and j be the drop off (i.e. closest point of d’s trajectory to the work of p) location, and

i < j. The passenger conveniently gets a ride, picked up at his source (e.g. home H) and

dropped off at his destination (e.g. work W ) location. In exchange, he may have to wait

and delay his departure up to his latest departure time t′(h)
p in order to arrive by the latest

arrival time t
(w)
p . Let delayH(p, d, i) and delayW (p, d, j) be the pick-up and drop-off delays

respectively.4 A pair (d, p) ∈ E is feasible if both the passenger and driver constraints are

satisfied, i.e.:

w(d, p) =



dist(i, j), if t
(h)
p > t

(i)
d + delayH(p, d, j)

and t
(w)
p < t

(j)
d + delayW (p, d, j)

and max(distH(p, d, i), distW (p, d, j)) < δ

0, otherwise

A core challenge in ride sharing is to find feasible passenger-driver pairs and points for pick-

up drop-off on the driver’s trajectory, that meet all constraints. The response to such search

queries must be fast, for the ride-sharing system to be real-time and scale with the number

of users. We discuss the constraint satisfier in a following section.

4We note that the spatial and temporal constraints are related: the pick-up and drop-off distances result
in pick-up and drop-off delays, but we choose to account for both of them separately, because the distance
constraints capture additional inconvenience beyond delay.
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Matching Drivers and Passengers

Multiple driver-passenger pairs can satisfy the spatial-temporal constraints discussed above.

Consider the bipartite graph depicted in the middle of Fig. 3.18. The nodes on the left rep-

resent the drivers, the nodes on the right represent the passengers. There is an edge between

a driver and a passenger iff having them share a ride is feasible (within the spatiotemporal

constraints). The optimization problem that lies at the heart of ride-sharing is how to find

a matching between drivers and passengers. There can be many optimization objectives; for

an excellent survey on this aspect of the problem please see [16]. In this section, we aim

at maximizing the sum of all joint traveled distances. This is the best case scenario for the

ridesharing enabler (the system that offers rideshare matching).

In Section 3.3.5, we formulate the problem as maximum weighted matching and we describe

an efficient algorithm to solve it. There are two requirements for the matching algorithm.

First, it must be efficient and scale well with the number of users, in order to support a

real-time, large-scale system. Second, the algorithm must be able to perform incremental

updates due to the online nature of the problem, i.e. to support the arrival and expiration

of users’ requests and to handle updates as the users move and update the time they are at

particular locations. Incremental graph processing is a challenging problem, in general.

System Architecture

Fig. 3.18 shows an overview of the architecture of the system, which consists of two main

components. The first component is the constraint satisfier, whose input are passengers’

and drivers’ requests and produces feasible passenger-driver pairs, which can be summarized

in the bipartite graph, shown in the middle of Fig. 3.18. The second component is the

matching module: this takes as input the bipartite graph of feasible pairs and finds a

maximum weighted matching.
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Figure 3.21: Online Ridesharing. The server sees requests from users arriving and expiring. For

a driver d, a request arrives at t
(r)
d and expires when the driver arrives at the destination. For a

passenger p, a request arrives at t
(r)
p and expires at the latest departure time t′p(h).

An important aspect of our system is that it is online: requests from drivers and passengers

can arrive dynamically (at times t
(r)
d , t

(r)
r , respectively) and also can expire (when a driver

arrives at the destination t
(nd)
d , or after the latest departure time of a passenger t′p(h)). When

arrival/expiration events happen, the two modules need to do incremental updates. More

specifically, the first module needs to update the records in the database (driver’s trajectory

points and passengers’ source, destination and constraints) and the bipartite graph of feasible

pairs. The second module needs to update the matching solution, based on the changes in

the bipartite graph. Another type of event that causes updates is errors in predicting the

time estimates for different points of a trajectory: the actual times are updated as a driver

moves.

The decomposition of the problem into two parts, is key for enabling a modular, fast, online,

optimal system. More details are provided in the following sections.

3.3.4 Constraint Satisfier

This component receives the queries from the drivers and the passengers, and will generate

the feasible matching combinations, i.e. for every passenger, it will generate the set of

drivers who meet her spatio-temporal constraints. The constraint satisfier needs to support
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(a) Storing Home/Work (b) Storing trajectories

Figure 3.22: Storing trajectories and Home/Work information in the MongoDB based con-
straint satisfier.

fast insertion queries (e.g. when new requests arrive), and fast searches queries (when looking

to match similar passengers and drivers) in real time. Also, it needs to handle the spatial-

temporal information of the trajectories and it needs to scale to tens of thousands of users

per hour 5.

satisfierDB : Constraint Satisfier with off the shelf Components

We initially build the constraint satisfier using of-the-shelf components that we call satis-

fierDB . We choose MongoDB because speed and scalability are our primary concerns, and

we do not require complex join queries that relational databases offer. Moreover, MongoDB

[4] is very popular in the industry (e.g. used by Foursquare [5]). MongoDB is a document-

oriented database that stores data in collections made out of individual documents; each

document is big JSON file with no particular format or schema. Finally, MongoDB supports

spatio-temporal proximity, which is known to be fast and accurate.

• Spatial Indexing: MongoDB offers supports for queries that calculate geometries on an

earth-like sphere, through the 2dsphere index – a grid based geohashing scheme [1].

5When asked how far ahead of time participants would like to organize a shared ride, 43% responded
15-60 minutes before the targeted departure [78]. For a population of 500K commuters, a ride-sharing system
would have to match up to 215K such users. Also, assuming a 25% market penetration – Uber’s market
penetration in San Francisco [11] – a ride-sharing system has to match more than 54K users within an hour.
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• Fast data Insertion: MongoDB is designed for fast insertion speed; it employs the cache of

the operating system, which significantly reduces write costs. Fast insertion of data is very

important for a real-time system, since while data are being inserted in the database, the

process that is doing the insertion will lock the data – via a write lock – and during that time

no other process can read or write anything. This means that one cannot take advantage of

parallelization of insertion queries (which can be easily done for read queries, because they

use a read-lock that allows other processes to read from the dataset).

Implementation Details:

In order to take advantage of the 2dsphere and the proximity queries that come with it, we

build and store our data as ¡latitude, longitude¿ points – both for coordinates that represent

source/destination points and coordinates that represent points in a route.

Home/Work Collections: We store the data of the passengers in two collections: 1) Home

collection for the source points, and 2) Work collection for the destination points (see

Fig. 3.22(a)).

Trajectory Collection: We store the trajectory points of the driver in a different Trajectory

collection. Each trajectory point is an individual entry in the collection, indexed by the id

of the user and its position in the trajectory (e.g. first, second, third, ..., or last point) (see

Fig. 3.22(b)).

Spatio-temporal queries: When we query one of the collections (either a driver seeking for

passengers using the Home and Work collections, or a passenger seeking for drivers using the

Trajectory collection), we combine the spatial and the temporal range queries via the $near

operator), using the $and operator.
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Figure 3.23: Storing spatio-temporal data in the satisfier . The intersections of the road
network are stored in a tree data structure for fast accessing. That is the 1st order data
structure that stores intersections using as keys their (lat, lng) coordinates. Each key is
paired with a value, and the values (of the 1st order data structure) are symbol tables that
contain < key, value > pairs, refereed to as the 2nd order data structure. In the 2nd order
data structure the keys are the times when user appear at the specific intersection and as a
value the id of the user.

satisfier : Our Specialized Constraint Satisfier

Next, we build a specialized constrain satisfier, which we call satisfier , that is tailored to

the needs of our problem and it takes into account the unique characteristics of our data.

More specifically, our specialized system takes into account the underlying road network of

the trajectories (see Fig. 3.23). Our satisfier is inspired by state of the art spatio-temporal

data structures [46, 66].

• Road Network: The satisfier uses a road network to store the (lat, lng) coordinates of the

users. The road network contains intersections, in the form of (lat, lng) coordinates. The

(lat, lng) coordinates are stored in a tree structure (1st order structure in Fig. 3.23) with

the coordinates being the keys. The values that the keys (coordinates) are paired with are

symbol tables that contain < key, value > pairs (2nd order structure in Fig. 3.23). In the

2nd order data structure the keys are the times when user appear at the specific intersection

and as a value the id of the user. When a new driver request arrives, the (lat, lng) points of
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her trajectory are mapped to their closest intersections; from there (the closest intersections)

they are mapped to the 2nd order structure (a < key, value > symbol tables) where they

are stored based on their times (of arrival at the intersections). When a passenger wants to

find the driver that can pick her up, the satisfier (1) will look at the intersections that are

within δ of her home, and for each one of this intersections (2) it will get the drivers that are

within time constraints; then, the satisfier (3) will do the same for the work locations, and

(4) the drivers that can both pick-up and drop-off the passenger will be returned. A similar

procedure will be followed for when a driver is trying to find passengers; for each one of the

points of her trajectory the satisfier will find the passengers that are withing spatio-temporal

constraints and can be both picked-up and dropped-off.

• Implementation Details: In our implementation we used KDTree for the 1st order structure

and MultiMaps6 for the 2nd order structure. A KDTree is a space-partitioning data structure

for organizing points in a k-dimensional space; for our (lat, lng) coordinates k is 2. We use

road intersections, instead of road segments due to practical reasons: our road network

(which will be described in the Evaluation Section) is dense and the distances between them

are short [12] 7. Moreover, our (1st order structure is a static road network and we don’t

have to update or delete nodes; all nodes are added when a priori. We use MultiMaps for the

2nd order data structure structure we want it to be dynamic and support fast add/remove

operations.

• Additional data structures: We want to be able to remove users once their request has

expired. We achieve fast removal of users through hash tables with the user id as the key

and their stored location as the value (intersection where the drivers have been stores and

their times).

6A Hash Table where the same key can map to multiple user ids. To be more specific a key maps to a
set of users.

7For a sparser road network large distances between intersections, using road segments and an R-Tree
would be better.
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3.3.5 Matching Drivers-Passengers

In this section, we focus on the matching module that takes as input the bipartite graph

of feasible driver-passenger pairs and provides a matching. We formulate the problem as

maximum weighted matching (MWM), and we provide and algorithm (referred to as On-

line MWM ) that is efficient, and online (i.e. it continuously updates the matching in the

presence of arrival/expiration of requests). As a baseline for comparison, we compare it to

0-1 Algorithm, described in [35] and the offline solution of MWM.

Maximum Weighted Matching

Consider the bipartite graph of feasible pairs: G = (D ∪ P,E,W ) where E = {(d, p) : d ∈

D, p ∈ P} s.t. that the constraints of d, p, as defined in a previous section, are satisfied. Each

edge (d, p) ∈ E is associated with a weight W (d, p) indicating the length of the shared trip

between the driver and the passenger. Finding the Maximum Weighted Matching (MWM)

on this bipartite graph is a classic problem that can be solved efficiently (in O(|V |2 ·|E|) time)

and optimally using the Hungarian algorithm [71]. However, there are not online optimal

algorithms for solving the MWM for the bipartite graph in real-time. Finally, as it will be

described in the next section, when the bipartite graph is very dense finding the optimal

solution takes a lot of time. In our case, the bipartite graph that we try to solve is in the

order of tens of thousands of nodes and millions of edges 8.

Insights from the Data

When comparing the offline solution of the bipartite graph (which took days to produce)

with all the graph weights (see Fig. 3.24) we observe that the large weights appear more

8We used the popular https://networkx.github.io/ Python package and we were able to find the optimal
solution in more than two days.
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Figure 3.24: Comparison of weights for all pairs, and the weights in the offline solution which
contains the optimal pairs. The figure shows that the weights with higher weights have more
chances of being in the final solution.

often in the optimal solution than the small weights. Therefore, from the millions of weights

of the graph, the vast majority of them does not appear in the optimal solution and their

presence makes the solution of the problem harder and slower.

Online MWM

Our Online MWM algorithm, used for online matching is based on Max Cardinality Match-

ing (MCM). MCM can be solved efficiently and very fast; our bipartite graph that has tens

of thousands of nodes and a few million edges can be solved in seconds. Finding the Maxi-

mum Cardinality Matching (MCM) on this bipartite graph is a classic problem that can be

solved efficiently (in O(min(|D|, |P |) · |E|) time) and optimally using augmenting paths [71]

9. This classic (Ford-Fulkerson) algorithm lends itself naturally to an online version that

can handle arrivals and departures of requests. Indeed, arrival of driver/passenger requests

9The algorithm solves a max flow problem between a super source and super receiver node and the
bipartite graph in the middle with unit capacities. A residual graph is used to store and search for augmenting
paths; when BFS on the residual graph cannot find augmenting paths, a max-flow is found on the original
graph. The max-flow solution then corresponds to a matching (using only the edges with flow 1).
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Figure 3.25: This figures shows how well our MCM-based algorithm approximate the MWM
offline. Online MWM breaks the graph into multiple sub-graphs based on the weight of their
edges, e.g. sub-graph-1 contains the top 1% of the edges, while sub-graph-2 contains the top
2% of the edges, e.t.c and then it applies an augmenting path algorithm to find the MCM
in each sub-graph. The combined solution of all sub-graphs is the approximation solution
to the MWM problem.

lead to edges appearing/disappearing from the bipartite graph, which can be be handled

by efficient incremental updates. Indeed, every time a request arrives, this results in one or

more edges appearing in the bipartite graph. All we need to do is to find an augmenting

path in the new auxiliary graph and update the existing matching (in O(|E|)), as opposed

to solving the problem from scratch.

We break the bipartite graph in multiple graphs, where each graph contains all the edges

from certain level and above. We assume that we know the separation levels 10. Then, we

find the MCM of each graph, starting from the one with the largest weights on the edges.

Alg. 1 is an augmenting path algorithm designed to find the online MCM for each sub-graph.

Finally, Fig. 3.25 shows how our Online MWM compares to the offline MWM solution.

10This is a realistic assumptions since the levels can be learned from the data, e.g. from yesterday’s
requests to the ridesharing system.
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Algorithm 1 updateGraph

1: // Global structures maintained
2: biGraph: bipartite graph up to now
3: auxGraph: auxiliary graph with augmented paths
4: pairs: pairs of (d, p) matched so far
5: when new request arrives from a user // (d or p)
6: if passenger p then
7: // Find the drivers within-constraints
8: feasibleDrivers:= getDrivers(p)
9: biGraph:= updateGraph(p, feasibleDrivers)

10: end if
11: if driver d then
12: // Find the passengers within-constraints
13: feasiblePassengers:= getPasngr(d)
14: biGraph:= updateGraph(d, feasiblePassengers)
15: end if
16: auxGraph:= updateAuxiliary(auxGraph, biGraph)
17: pairs:= maxBipartiteMatching(pairs, biGraph, auxGraph)
18: end when

Greedy Algorithm

Many on-demand taxi services have emerged recently, which act as a broker between a

taxi and a passenger, the primary example being Uber. These companies use proprietary

matching algorithms, which are however widely believed to be simpler: e.g. typically match

a passenger “greedily” with the closest driver. As a baseline for comparison, we define a

Greedy Algorithm as follows: eash request it will be matched it its best available choice,

at the time of its arrival, e.g. a passenger is matched to the best unmatched driver at the

time her request arrives in the system. We are interested in understanding how our global

optimization (Online MWM ) compares to these simpler, greedy heuristics, in terms of the

global objective (i.e. total joint distance traveled).
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City NY
Users 61K

Inter-point distance 100m
Average distance 16.1 km
Median distance 8.0 km

Average gps points
per trajectory

78.8

Table 3.9: Data set summary

3.3.6 Evaluation

In this section, we use the previously described datasets to evaluate our ridesharing system.

We first evaluate the system as a whole, and then we evaluate each component separately.

More specifically, we evaluate the Online MWM in terms of the global objective (matching

rations and sum of total shared trips). Then, we compare satisfier , which is our specialized

constraint satisfier, with satisfierDB which is the constraint satisfier build with off-the-shelf

components.

Experimental Setup

In order to assess the performance of our on-line ridesharing algorithm using real data we

use the NY data, extracted in Sec. 3.2.3, that contains the home and work locations, as well

as trajectories, of a large number of users (see Tab. 3.9).

Given the home/work locations of the users, their departure times and the drivers’ routes, we

compute the performance of the algorithm for different values of ahead-of-time notification.

We do a discrete time simulation where all the events appear in a simulated time-line based

on the order of their arrival. In our simulation, there are two types of events :(1) request

arrival – a new users send a request to the system, (2) request expiration – the simulated

time reach the latest time when the users has to go. We process the events in the order they

appear on the timeline. When a request arrives, it creates a new node with attached edges
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to the feasible users. A request-expiration event will cause a node and its attached edges to

be deleted. We show the speed of our system, as well as the matching ratio and the sum of

all shared trips (total shared trips). Our simulations are using the following spatio-temporal

constraints: (i) we apply a spatial constraint of 1 km δ = 1 km and (ii) a delay tolerance of

10 minutes ∆t1 = 10. Finally, we run our experiments using a Linux machine with an Intel

Core i5-5300U processor and 20GB of memory.

Road Network:

Our satisfier uses the NY road network from [12]; the road networked is represented by

a directed graph. We denote Grd = (V,E,W ), where V is the set of intersections11 and

E = {(u, v) : u ∈ V, v ∈ V } the set of edges; an edge (u, v) indicates that there is a road

segment connecting nodes u and v. Each edge (u, v) ∈ E is associated with a weight W (u, v)

indicating the required time to go from u to v. Grd has 264K nodes and 734K edges.

Arrival Times:

As denoted earlier, a driver’s trajectory, lets call her d, is described by a sequence of spatio-

temporal points: Td = {(lat(0)
d , lng

(0)
d , t

(0)
d ), ..., (lat

(nd)
d , lng

(nd)
d , t

(nd)
d )} (see Tab. 3.8). The

(latd, lngd) coordinates of d’s trajectory derives from her commuting route, described in the

previous sections. The temporal part of d’s trajectory, which represent when d arrives at

the specific (latd, lngd) point, was computed using the road network; d’s coordinates were

mapped to their closest intersection in Grd, and the weights between Grd’s edges were used

to generate the arrival times. Similarly, Grd was also used to generate passengers’ arrival

times.

104



Figure 3.26: The expected work-load from the system, and the end-to-end experiment of
the system. We assume that the requests will arrive randomly before the departure. The
probabilistic distribution to generate how long before departure users will notify the system
is a uniform distribution in range [15 minutes, 60 minutes]. According to the figure, the
highest stretch for our system occurs when the number of users (or nodes in the bipartite
graph) is at its pick. At that time each update – that contains multiple new request – can
required up to 12 seconds.

Shared Trip Sum Comparison to
Offline MWM (%)

Offline MWM 4320 –
Online MWM 3957 −8.4
0-1 Algorithm 3460 −20

Greedy Algorithm 2623 −39

Table 3.10: Offline Result Comparison for a graph with size 61K nodes (out of which only
48054 had a neighbor), and 1.5M edges. Online MWM is 14.4% better than 0-1 Algorithm
and 51% better than Greedy Algorithm.

End-to-End Experiment

In Fig. 3.26 you can see the end-to-end experiment. According to the figure, the highest

stretch for our system occurs when the number of users (or nodes in the bipartite graph) is

11Latitude and longitude coordinates of the real-world road intersections in NY.
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at its pick. At that time each update – that contains multiple new request – can required

up to 12 seconds. When compared to the offline optimal, which takes more than two days

to compute, Online MWM is 8.4% worse, but it’s 14.4% better than 0-1 Algorithm (see

Tab. 3.10).

Breaking up Components

Figure 3.27: Comparing the scalability of satisfier and satisfierDB . Both satisfier and sat-
isfierDB scale linearly, but the slope of the satisfierDB in (fig:query-speed) is 4.65 times
greater than the slope of satisfier . Therefore, we say that the specialized satisfier is 4.65
times more scalable when compared to the satisfierDB . When there are a few users sat-
isfierDB tends to be faster; this happens because satisfier is using a road network, with
hundred of thousands of intersection, and when the number of users is low all this intersec-
tions are a burden. However, as the number of users grows the query time of satisfier grows
at a much slower rate than satisfierDB ; the higher complexity of better design of satisfier
pays of as the number of users keeps growing.

We now do separate measurements for the two main components of the ridesharing system:

(1) satisfier , and (2) matching module.

• satisfier : Fig. 3.27 show the query speed of three different implementations of the constraint

satisfier: (1) satisfierDB with one process, (2) satisfierDB with four parallel process, and (3)
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the specialized satisfier . We see that parallelization can improve the speed of satisfierDB ,

but the satisfier is still faster and much more scalable. Both satisfier and satisfierDB scale

linearly, but the slope of the satisfierDB in (fig:query-speed) is 4.65 times greater than the

slope of satisfier . Therefore, we can say that the specialized satisfier is 4.65 times more

scalable when compared to the satisfierDB that is build using off the shelf components.
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Figure 3.28: The speed for the graph updates. As expected the speed of graph updates
is affected primarily by the number of edges. We see that the number of edges increases
quadratically to the number of users. The graph update speed increases quadratically too.

• Graph Update Speed: Fig. 3.28 show the speed of graph updates. As expected the speed

of graph updates is affected primarily by the number of edges. We see that the number

of edges increases quadratically to the number of users. The graph update speed increases

quadratically too. This is because the augmented path algorithms, that we used to do the

incremental updates has a time of (in O(|E|)).

The Importance of Early Notifications

In Fig. 3.29 we show how important the ahead-of-time notification is for ridesharing system.

With an ahead-of-time notification of 2 minutes the Online MWM is at around 54% of the

offline optimal solution, while with an ahead-of-time notification of 10 minutes is at close to
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(a) Matching Ratios

Figure 3.29: This figures shows how the ahead of time notification affects the number of
matched pairs, and the total shared trip. The x-axis shows the ahead-of-time notification,
while the y-axis shows the comparison with the offline mwm.

80% of the optimal solution. This shows that ahead-of-time notification is very important

for approaching the offline optimal result.

We hope that this result will give insight to companies, such as Uber and Lyft, on how to

improve the performance of their ridsharing applications. Ridesharing companies need to

incentivize their users to send their request way before their departure e.g. 10 or 20 minutes

before. Apart from incentivizing users, they can design their products in such as way as to

increase the ahead-of-time notification. For example UberPool requires that passengers to

walk to a rendezvous point in order to get picked-up. By making the passengers walk more

12 they can increase the ahead-of-time notification artificially and thus have more time to

12They can assign the rendezvous point so that the passenger has to walk 5 or 10 minutes.
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improve their matching; if the passengers have to walk they will perceive less delay [8].

3.3.7 Summary

Ridesharing has a great potential for reducing the number of cars in the streets of a city

according to recent studies [34]. An anticipated breakthrough in ride-sharing is the ability to

satisfy on-demand requests that do not require participants to schedule their trips in advance

[50]. Such an online ride sharing system will provide a participant the reassurance that they

would still be serviced if their travel-needs change unexpectedly; when asked how far ahead

of time participants would like to organize a shared ride, 43% desired organizing their ride

15-60 minutes before departure [78]. In the last couple of years a plethora or smartphone-

based ridesharing systems has emerged, such as Scoop, uberHOP, uberCOMMUTE and Lyft

Carpool. These systems enable ridesharing for commuters and, in contrast to taxi-sharing,

they consider spatio-temporal constraints both for the passenger and the driver. Inspired by

the aforementioned academic studies and the real-world ride sharing system, we design and

evaluate an online ride-sharing (ORS) system that handles dynamic ridesharing requests,

possibly with a short notice. The evaluation is done using spatio-temporal data from New

York.

We break ORS into two main components: the constraint satisfier and the matching module.

The constraint satisfier, a.k.a satisfier , takes as input the itineraries and spatio-temporal

constraints of drivers and passengers and provides feasible (driver, passenger) pairs. We

achieve scalability by designing a constraint satisfier using a road networks data structure,

specifically optimized for our spatio-temporal queries. Our satisfier system is more scalable

than what can be built using state-of-art off the shelf components: query time increases

4.65x slower with the number of users when compared to MongoDB.

We use the feasible pairs found by satisfier to define a bipartite graph between possible
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drivers and passengers, with edge weights representing the length of the shared trip of a pair.

The matching module takes as input the weighted bipartite graph and returns the maximum

weighted matching (MWM), which captures the objective of real-world ridesharing systems

(such as Lyft Carpool). We propose an efficient algorithm to solve the MWM problem,

which is 51% better than greedy heuristics used by many real systems. Furthermore, the

system is designed to handle efficiently requests that arrive on-line, via efficient queries of

feasible pairs and incremental updates of the matching solution. We evaluate the entire

ORS system using real mobile datasets to extract driver trajectories and passenger locations

in urban environments. We show that ORS can provide a ridesharing recommendation to

individual users with a sub-second query response time, even at high workloads. We also

evaluate the sensitivity of ORS performance to various parameters, which provides insights

for the design of practical ridesharing systems.
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Chapter 4

Conclusion

Thanks to the pervasiveness of smartphones and their applications there is an abundance

of data generated from mobile devices, that reflect underlying human activitys and provide

rich information about spatio-temporal and social patterns. This can be used to enable a

variety of new services. We focus on how to mine mobile phone data to improve a variety

of Smart City applications. In particular, we focus on Call Description Records (CDRs)

that are generated every time a user makes a phone call. In this dissertation we use their

rich and unique combination of insights into human dynamics in order to: (1) understand

and improve transportation in a city via ridesharing, (2) characterize various areas of the

city, as well as how these areas interact with each other (Urban Ecology), and (3) predict

communication between different areas of the city.

In Chapter 2, we focus on Aggregate CDRs. First, we studied the decomposition of cell

phone activity series, via FFT, into two series: (1) the seasonal communication series (SCS)

produced from high-amplitude frequencies, and (2) the residual communication series (RCS)

produced after subtracting SCS from the original series. As shown, the SCS can be used to

characterize typical patterns of socio-economic activity within an area, while the RCS can
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be used to capture both irregularities due to novel events and the influence of one area on

another. The RCS and SCS thus provide distinct probes into the structure and dynamics

of the urban environment, both of which can be obtained from the same underlying data.

Then, we applied machine learning techniques to predict cell-to-cell activity, based solely on

past cellular activity records. We were able to achieve 85% accuracy and 94% recall, for the

voice call data set provided by Telecom Italia for the city of Milan.

In Chapter 3, we use the spatio-temporal and social information, per individual user, in

CDRs in order to understand and improve transportation in a city via ridesharing. First,

we used mobile and social data to demonstrate that there is significant overlap in people’s

commute in a city, which indicates a high potential benefit from ridesharing systems. This is

clearly an upper bound to any practical ridesharing system, but the positive result motivates

the deployment of such systems and policies. Our results indicate that en-route ridesharing

with up to two-hop social contacts offers a good trade-off between technological feasibility,

people’s security concerns, and a substantial impact on traffic reduction. Then, we design

and evaluate an online ridesharing (ORS) system that handles online ridesharing requests,

possibly with a short notice. We break ORS into two main components: the constraint

satisfier and the matching module. The constraint satisfier, a.k.a satisfier , takes as input

the itineraries and spatio-temporal constraints of drivers and passengers and provides feasible

(driver, passenger) pairs. The matching module takes as input the feasible (driver, passenger)

pairs and returns the maximum weighted matching (MWM), which captures the objective of

real-world ridesharing systems (such as Lyft Carpool). We propose an efficient algorithm

to solve the MWM problem, which is 51% better than greedy heuristics used by many real

systems.
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