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Abstract
Cognitive or executive control is a critical mental ability, an important marker of mental illness, and among the most herit-
able of neurocognitive traits. Two candidate genes, catechol-O-methyltransferase (COMT) and DRD4, which both have a 
roles in the regulation of cortical dopamine, have been consistently associated with cognitive control. Here, we predicted that 
individuals with the COMT Met/Met allele would show improved response execution and inhibition as indexed by event-
related potentials in a Go/NoGo task, while individuals with the DRD4 7-repeat allele would show impaired brain activity. 
We used independent component analysis (ICA) to separate brain source processes contributing to high-density EEG scalp 
signals recorded during the task. As expected, individuals with the DRD4 7-repeat polymorphism had reduced parietal P3 
source and scalp responses to response (Go) compared to those without the 7-repeat. Contrary to our expectation, the COMT 
homozygous Met allele was associated with a smaller frontal P3 source and scalp response to response-inhibition (NoGo) 
stimuli, suggesting that while more dopamine in frontal cortical areas has advantages in some tasks, it may also compromise 
response inhibition function. An interaction effect emerged for P3 source responses to Go stimuli. These were reduced in 
those with both the 7-repeat DRD4 allele and either the COMT Val/Val or the Met/Met homozygous polymorphisms but 
not in those with the heterozygous Val/Met polymorphism. This epistatic interaction between DRD4 and COMT replicates 
findings that too little or too much dopamine impairs cognitive control. The anatomic and functional separated maximally 
independent cortical EEG sources proved more informative than scalp channel measures for genetic studies of brain function 
and thus better elucidate the complex mechanisms in psychiatric illness.

Keywords  EEG · Genetics · DRD4 · COMT · ICA · Measure projection

Introduction

The global health burden of psychiatric illness (Whiteford 
et al. 2013) and its serious consequences for the individual 

and society (Organization 2014) have encouraged recent 
efforts to improve understanding of the etiology and patho-
physiology of mental disorders. More precise phenotyping 
of disorders could in turn result in better diagnostics and 
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therapeutics (Insel 2014). Despite the high heritability esti-
mates for most major psychiatric disorders, including atten-
tion deficit hyperactivity disorder (ADHD), autism spectrum 
disorders (ASD), bipolar disorder and schizophrenia (Com-
mittee 2009), there are still few genetic markers that reli-
ably associate with these disorders and limited significant 
genome-wide associations have been documented to date 
(Sullivan 2011). One possible reason for this is that psy-
chiatric disorders are often heterogeneous at the symptom 
level and thus uncertainties about phenotype definition may 
have impeded the discovery of associated genetic risk fac-
tors (McLoughlin et al. 2013). A current goal for research 
in psychiatry is to close the gap in understanding between 
the symptoms and causes of psychopathology, and move 
beyond subjective and variable clinical diagnoses to classify 
disorders based on identifiable neural circuits, and further to 
link activity in these circuits to the cellular and genetic levels 
(Insel and Cuthbert 2009).

Within psychiatry, the concept of an endophenotype 
refers to a heritable quantitative trait, either cognitive or 
neurophysiological, that is more directly related to dysfunc-
tion in neural systems than diagnosis, and which therefore 
facilitates the identification of genetic variants associated 
with psychopathology (Gottesman and Gould 2003). Ide-
ally an endophenotype should be heritable, associated with 
disorder diagnosis and be present in unaffected family mem-
bers (Hawi et al. 2015). Brain dynamic measures known 
to relate to the pathophysiology of psychiatric illness can 
direct search for disorder endophenotypes. One strategy for 
identifying such measures is to examine cognitive and neural 
dysfunction closely related to core behavioural symptoms.

Cognitive or executive control, the capacity to flexibly 
direct and allocate resources to a goal by selecting and inte-
grating relevant contextual information, is critical for higher 
mental abilities (Blasi et al. 2005). Cognitive control is 
among the most heritable of neurocognitive traits (Anokhin 
et al. 2004; Friedman et al. 2008; Macare et al. 2014) and 
deficits in cognitive control are consistently associated with 
multiple psychiatric illnesses (Laucht et al. 1997a; Mil-
lan et al. 2012; Nieoullon 2002; Royall et al. 2002). Thus 
there has been a focus on genetic approaches to uncover 
the biological underpinnings of these measures. Converging 
evidence from pharmacological, neuroimaging and animal 
studies indicates that dopamine is critical for the efficiency 
of cognitive control (for a review, see Cools 2008). Specifi-
cally, numerous studies suggest that too little or too much 
dopamine in the cortex, in particular in the prefrontal cortex 
(PFC), can be disruptive, impacting both brain dynamics and 
performance on tasks requiring cognitive control (Brugge-
mann et al. 2013; Laurens et al. 2010; Luu et al. 2004).

Recent evidence indicates that catechol-O-methyltrans-
ferase (COMT), which has a crucial role in the regulation 
of dopamine in the PFC, accounts for some individual 

variability on tests of executive or cognitive control (Dick-
inson and Elvevåg 2009; Goldberg and Weinberger 2004). 
The common polymorphism (Val158Met) predicts activity 
of COMT; homozygosity for the COMT Met allele is associ-
ated with a 35–50% decrease in enzymatic activity and dopa-
mine catabolism relative to Val homozygosity, ultimately 
resulting in increased availability of dopamine in PFC (Bie-
derman et al. 2008; DeYoung et al. 2010; Dickinson and 
Elvevåg 2009; Lachman et al. 1996; O’Sullivan et al. 2009). 
Individuals with the homozygous Met allele (and concomi-
tant PFC dopamine enhancement) show improved cogni-
tive control, working memory, and general intelligence as 
indexed by both performance, and correlated event-related 
potential (ERP) and functional magnetic resonance imaging 
(fMRI) measures (Bertolino et al. 2004; Blasi et al. 2005; 
Cahoy et al. 2008; Diamond et al. 2014; Eroglu and Barres 
2010; Freeman and Rowitch 2013; Joober et al. 2002; Wong 
and Van Tol 2003). However, other studies using cognitive 
performance, ERP and transcranial direct-current stimula-
tion (tDCS) measures (Plewnia et al. 2013; Stefanis et al. 
2004; Taerk et al. 2004; Tsai et al. 2003) have reported no 
association between COMT and cognitive control, or even 
that homozygous Met carriers exhibit abnormal cognitive 
control activity (Gallinat et al. 2003; Kramer et al. 2007).

Another polymorphism important for understanding 
genetic effects on executive control is the 7-repeat polymor-
phism of the DRD4 gene, which decreases dopamine trans-
mission at the D4 receptor (Bellgrove et al. 2005; Johnson 
et al. 2008; Kiphardt 1974). D4 receptor function may play 
a role in the etiology of both personality traits and psychi-
atric illness (Ptacek et al. 2011) with a particular relation 
to ADHD—an association with the 7-repeat allele is the 
strongest and most consistently replicated molecular genetic 
finding in the disorder (Banaschewski et al. 2010; Faraone 
et al. 2001; Li et al. 2006). Participants carrying the 7-repeat 
allele also have been reported to show poorer performance 
on tasks of attentional and executive functions and to have 
smaller attention-related ERP peaks in such tasks (Albre-
cht et al. 2014; Vogel et al. 2006). However, findings have 
again been inconsistent. Some studies have reported that 
the 7-repeat allele is associated with better performance on 
executive function tasks (Johnson et al. 2008; Swanson et al. 
2000), while other studies have found no such differences 
(Barkley et al. 2006; Konrad et al. 2010).

Disparities between the results of studies investigating 
the role of COMT and DRD4 in cognitive control may relate 
to the use of psychiatric populations (Bertolino et al. 2004; 
Ehlis et al. 2007; Eroglu and Barres 2010; Stefanis et al. 
2004; Taerk et al. 2004) or to the effects of other interacting 
genes (Wishart et al. 2011). Given that the level of dopa-
mine in the cortex has specific effects on cognitive per-
formance (either too much or too little can lead to impair-
ments) (Bruggemann et al. 2013; Laurens et al. 2010; Luu 



394	 Brain Topography (2018) 31:392–406

1 3

et al. 2004) it is likely that the epistatic interaction between 
COMT and DRD4 has an impact on dopaminergic influ-
ences on cognitive control. Indeed, one recent study showed 
no impact of the single genes on an ERP-derived measure 
of response control (the “NoGo anteriorisation” or NGA) 
(Fallgatter et al. 1997), whereas there was a strong interac-
tion between COMT and DRD4 on NGA amplitude and also 
on reaction time variability (Takahashi et al. 2011). This 
interaction effect may not extend to reward-related process-
ing as measured by ERP markers to feedback on gains and 
losses (Cavanagh et al. 2012).

Another possible reason for not replicating COMT and 
DRD4 effects in cognitive control tasks is the relative inf-
fectiveness of the measures used to characterise the underly-
ing neurophysiology of the complex cognitive sub-processes 
(Cools 2008). Cognitive control has a multifactorial nature. 
Cognitive electrophysiology as well as functional imaging 
studies using fMRI have demonstrated that it is associated 
with activity in a network of brain regions, in particular the 
basal ganglia, prefrontal, and parietal attentional systems 
including medial frontal and dorsolateral prefrontal cortex, 
anterior cingulate cortex (ACC), and precuneus (Ogg et al. 
2008; Yoon et al. 2008). Indeed there is evidence that the 
effects of COMT and DRD4 may contribute to anterior-
posterior functional connectivity (Jaspar et al. 2014; Liu 
et al. 2010; Tian et al. 2013) and thus extend beyond the 
PFC to areas including the dorsal anterior cingulate (Blasi 
et al. 2005).

However, it should be noted that the associations pre-
viously found between COMT, DRD4, and cognitive ERP 
measures are not exclusive, and certainly do not suggest a 
one-to-one relation between dopamine-related gene func-
tions and ERP component measures of cognitive control 
subprocesses at the scalp or source level.

One of the most studied tasks in relation to cognitive con-
trol in psychiatry is the continuous performance task (CPT; 
Dickinson et al. 2008). The cued version of the task (CPT-
AX; Doehnert et al. 2010, 2008; McLoughlin et al. 2010, 
2011; Valko et al. 2009) has the advantage of measuring 
two important components of cognitive control: attentional 
control (how to allocate attentional resources), via responses 
to ‘Go’ stimuli, and also response inhibition (monitoring 
performance in face of conflicts),via responses to “NoGo” 
stimuli. Deficits in both performance and ERP measures 
for the CPT-AX task, in particular in the amplitudes of the 
“Go N2/P3” complex and the corresponding “NoGo N2/
P3” peaks aligned with response-initiating and response-
inhibiting letter presentations, respectively, are consistently 
and strongly associated with psychiatric illness, including 
schizophrenia (Holmes et al. 2005; Lee and Park 2006; 
Salgado-Pineda et al. 2004), ASD (Lundervold et al. 2012; 
Tye et al. 2014; Wang et al. 2013) and ADHD (Albrecht 

et al. 2012; Banaschewski et al. 2004; Brandeis et al. 2006; 
Huang-Pollock et al. 2012; McLoughlin et al. 2010, 2011).

In the current study, we examined the relationship of 
two key components of cognitive control, namely the rela-
tionship of response execution and inhibition during the 
(CPT-AX) cued continuous performance task to the COMT 
val158met and DRD4 exon III VNTR polymorphisms. 
Previous publications based on this data set have already 
addressed the genetic modulation of motor postprocessing 
(Bender et al. 2012a), motor response variability (Bender 
et al. 2015), and visual postprocessing (Bender et al. 2012b) 
using statistical analysis at the sensor level of scalp ERPs. 
To more accurately characterise the complex cognitive sub-
processes of cognitive control, we here increased the preci-
sion of these EEG measures by estimating brain activity at 
the source via decomposition of the data into maximally 
independent source processes using independent compo-
nent analysis (ICA). ICA identifies component processes in 
the EEG data that are not only temporally near independent 
but typically also functionally independent in the sense that 
they exhibit more distinct response patterns to experimental 
events of interest than do the same measures applied to the 
raw channel data, consistent with the fact that scalp channel 
signals each sum potentials volume conducted to the scalp 
from a a wide variety of relevant and irrelevant brain and 
non-brain sources (McLoughlin et al. 2013) (Makeig et al. 
1996, 1997).

ICA decomposition has been shown to yield event-related 
measures that share more genetic variance with behaviour 
than channel-based EEG measures (McLoughlin et al. 2014), 
to better characterize individual differences in schizophre-
nia and ADHD symptomology than scalp channel measures 
(Lenartowicz et al. 2014; McLoughlin et al. 2014; Rissling 
et al. 2014). Thus, in general ICA decomposition may enable 
a more precise characterization of spatiotemporally complex 
cortical network dynamics associated with cognitive control 
than equivalent measures applied directly to the recorded 
data channels.

Based on previous findings, we predicted that carriers of 
the COMT Met/Met allele will demonstrate improved neural 
function in the cortical source activities related to response 
execution and inhibition compared to other COMT alleles, 
and conversely that individuals with the DRD4 7-repeat will 
show impaired response execution and inhibition. We also 
consider the impact of the interaction effect between the two 
polymorphisms on the neural measures of cognitive control.
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Materials and Methods

Participants

The current data analysis was conducted on the sample of 
the Mannheim Study of Children at Risk, a prospective lon-
gitudinal study of the outcome of early risk factors from 
infancy into adulthood (Laucht et al. 2000, 1997b). Children 
born between 1986 and 1988 were recruited from two obstet-
ric and six pediatric hospitals of the Rhine-Neckar Region 
of Germany. Infants were included consecutively into the 
study according to a 2-factorial design intended to enrich 
and to control the risk status of the sample (full details of the 
sampling procedure have been reported previously Laucht 
et al. 1997a). As a result, approximately two-thirds of the 
study sample had experienced obstetric complications such 
as preterm birth, and about two-thirds of the families had 
psychosocial adversities such as marital discord or chronic 
difficulties. The current investigation included 174 healthy 
adolescents participating in the 15-year assessment for 
whom both genetic and 64-channel EEG data were avail-
able. Of the initial sample of 384 participants, 18 (4.7%) 
were excluded because of severe handicaps (neurological 
impairment or IQ/MQ < 70), 28 (7.3%) were drop-outs at 
age 15, 35 (9.1%) refused to take part in blood sampling 
or had incomplete genetic data, and from 43 (11.2%) no 
(or no reliable) EEG data were available. Intelligence had 
been assessed at the age of 11 years using the Culture Fair 
Test 20 (Cattell 1960; RH 1987); the motor quotient was 
determined at age 11 years by a short version of the Body 
Coordination Test for children KTK (Kiphardt 1974). 65 
subjects (16.7%) were excluded from the current analysis 
due to a current psychiatric DSM-IV diagnosis. 21 subjects 
of the remaining 195 (10.8%) had to be excluded because 
they were not right-handed as indicated by a handedness 
index above + 60 in the Edinburgh Handedness Inventory 
(RC 1971). All subjects were free of psychoactive medica-
tion at the time of the recording and had a corrected visual 
acuity of 0.8 or higher. The study was approved by the ethics 
committee of the Medical Faculty of the University of Hei-
delberg/Mannheim. Written informed consent was obtained 
from all participants and their parents.

Task

Participants performed a computerized A-X version of the 
continuous performance test (CPT) constructed by doubling 
the number of trials of a common previous multicenter ver-
sion (Banaschewski et al. 2003; Bender et al. 2007; van 
Leeuwen et al. 1998). A total of 800 black-colored capital 
letters were presented on a white background in the center 

of the computer screen for 150  ms each. The stimulus 
onset asynchrony (SOA) between letter presentations was 
1600 ms. Whenever an ‘A’ was followed by an ‘X’ (i.e., 
whenever the letter sequence ‘AX’ was presented) subjects 
were asked to respond with a rapid right-hand button press 
of their index finger on the response pad. During testing, 
the ‘A’ was followed by an ‘X’ 80 times and by some other 
letter (distractor) 80 times; an ‘X’ without a preceding ‘A’ 
also occurred 80 times. Non-AX distractors were nine other 
letters of the alphabet (‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘J’, 
‘L’). Of these, a frequent distractor (‘H’) was presented 160 
times and distractors ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘J’, and ‘L’ 
each 40 times. Here we present results of analysis of ERP 
responses to Go cue stimuli (‘X’ following an ‘A’) and NoGo 
cue stimuli (any other letter following an ‘A’).

EEG Recording and Preprocessing

Continuous 64-channel DC EEG data were recorded using 
Neuroscan Sympamps amplifiers (Neuroscan Inc., TX, 
USA). Sintered silver/silver chloride electrodes were posi-
tioned in an equidistant electrode cap montage (Easycap, 
FMS, Germany). Electrode impedances were kept below 
10 k Ohm. The vertical electrooculogram (VEOG) was 
recorded with bipolar reference by electrodes 1 cm below 
and above the left eye. The horizontal electrooculogram 
(HEOG) was calculated by bipolar leads F99 and F109 next 
to the outer canthii. The recording reference was placed 
near the left mastoid. The sampling rate was 500 Hz per 
channel. An anti-aliasing low-pass filter with a cut-off fre-
quency of 100 Hz was employed. The visual stimulation 
was presented by Gentask of the Neuroscan Stim software 
package. Reaction times were collected from response 
triggers from the response pad. EEG data processing was 
performed offline using the EEGLAB toolbox (v11.0.3.1b) 
(Delorme and Makeig 2004) for MATLAB (R2012a; The 
Mathworks, Inc., Natick, Massachusetts). Before analysis, 
the channel signals were re-referenced to average reference. 
We then applied a 1-Hz high-pass filter. Time points with 
any channel value larger than 200 μV in absolute value were 
rejected from the data and excluded from further analysis. 
In total, based on our EEG data preprocessing, we rejected 
the 0.03% of trial for the Go condition and 0.04% for the 
NoGo.

Genotyping

EDTA anticoagulated venous blood samples were col-
lected. Leukocyte genomic deoxyribonucleic acid (DNA) 
was isolated with the Qiamp DNA extraction kit. Genotyp-
ing of the COMT single nucleotide polymorphism (SNP) 
was completed using TaqMan (SNP) Genotyping Assays. 
Genotyping of the DRD4 exon III VNTR polymorphism 
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was performed using polymerase chain reaction according to 
Lichter et al. (1993; 14). All genotypes were scored indepen-
dently by two raters who were blind to the presented data. A 
further 16 subjects were excluded from the genotype analy-
sis due to noisy EEG data. In detail, the following genotype 
groups were formed: (1) DRD4 genotypes were classified 
into two groups according to the presence or absence of the 
7r allele:7r (75) versus non-7r (132); (2) COMT: Val/Val 
(N = 41) versus Val/Met (N = 120) versus Met/Met (N = 46); 
and (3) COMT X DRD4: Val/Val 7r (N = 14) versus Val/Val 
non-7r (N = 27), Val/Met 7r (N = 45) versus Val/Met non-7r 
(N = 75), and Met/Met 7r (N = 16) versus Met/Met non-7r 
(N = 30).

EEG Data Analysis

We used adaptive mixture ICA (AMICA) (90, 91) to sepa-
rate the multichannel data for each into maximally instan-
taneous independent component (IC) processes. Decompo-
sitions used the 64 available channels, removing channels 
determined to have bad contact (those with extended periods 
of low correlation with neighboring channels). The sampling 
rate was 500 Hz. Epochs were 2 s, extending from 800 ms 
pre-stimulus to 1200 ms post-stimulus. We computed an 
equivalent dipole model for each IC scalp topography using 
a template four-layer adult boundary element method head 
model implemented in the DIPFIT toolbox for MATLAB 
(92). To optimally combine IC information from different 
participants, we applied a probabilistic multi-subject infer-
ence approach, measure projection analysis (MPA) (93), to 
event-related potential (ERP) waveforms time-locked to Go 
and NoGo stimuli, respectively.

Measure projection involves projecting the selected 
measure into a 3-D grid of voxels filling the template brain 
volume. For each brain-based IC, the measure is then ‘pro-
jected’ to voxels within a spherical region centered on the IC 
equivalent dipole location. MPA then searches the 3-D voxel 
grid for voxels for which the projected measures at nearby 
ICs are (1) sufficiently numerous, and (2) exhibit statisti-
cally significant consistency. Here, Measure Projection was 
applied to Go and NoGo stimulus-locked IC ERP waveforms 
using EEGLAB default parameter values (significance level, 
p = .01; maximum domain exemplar correlation, r = 0.7). For 
each voxel, the projected measures of all ICs whose equiva-
lent dipole location is within the smoothing radius are then 
summed with weights inversely proportional to the distance 
of the IC equivalent dipole location from the central voxel. 
At each voxel, the projected measures for all the brain ICs 
across the subjects are then normalized.

To simplify the analysis of projected source measure 
values in the remaining set of voxels (the measure consist-
ency subspace), MPA then separates them into several dis-
tinguishable spatial domains using threshold-based affinity 

propagation clustering as described in detail in (93). Affin-
ity propagation is based on a similarity matrix of pairwise 
correlations between the projected measures at each voxel 
position. The method automatically determines an appro-
priate number of voxel clusters (below referred to as spa-
tial domains) based on the maximum allowed correlation 
between cluster exemplars, automatically increasing the 
number of clusters until any other potential cluster exem-
plar becomes too similar to one of the existing exemplars 
(93). This approach identified seven spatial domains for the 
source-resolved ERP data (Fig. 1). Two domains of interest 
(DOIs) centered in frontal cortex and the parietal/temporal 
cortex (Domains 1 and 2; Fig. 2) produced prominent P3 and 
N2 peaks in group grand mean ERPs to Go cue stimuli and 
were selected for further analysis. ERPs from other identi-
fied domains included smaller or ambiguous P3 and N2 peak 
features and were not considered further.

Statistical Analyses

For statistical analysis of group differences, genotype groups 
were compared in terms of peak amplitudes and/or peak area 
under the curve in trial-average ERPs time-locked to Go and 
NoGo stimuli where the ‘Go’ stimuli were letter ‘X’ stimuli 
following letter ‘A’ cue presentations (cueing a button press 
response), and the NoGo stimuli were any distractor 
(response-inhibiting) letter following an ‘A’ (i.e., a false 
alarm condition in which the subject had to inhibit their 
partially anticipated response). Groups were compared based 

Fig. 1   Measure projection domains. We selected the central/parietal 
Domain 1 (shown in red) and the superior-frontal Domain 2 (shown 
in yellow) for further analysis as these domains are associated with 
attention and executive function (Castellanos and Proal 2012; Cortese 
et al. 2012) and yielded clear N2-P3 type ERPs (the ERPs associated 
with the other domains did not appear to contribute to the N2 and P3 
ERPs)
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on their Go and NoGo 200–400 ms post-stimulus ‘P3’ peak 
amplitudes (Domain 1; Fig. 2). For statistical analysis we 
used maximal peak amplitude for the Go cue response P3 
and the area under the curve for the NoGo cue response P3 
as there was no clear peak for the latter. The N2 measure was 
the maximal negative peak value in the Domain 2 ERP 
waveforms between 300 and 400 ms post-stimulus (Go and 
NoGo; Domain 2; Fig. 2). Performance measures were num-
ber of commission errors, omission errors, mean reaction 
time to target stimulus presentations (RTM, i.e., mean latency 
of responding (in ms) following target onsets) and within-
subject variability in target reactions times (RTSD). We ran 
multivariate analyses of variance for each ERP measure (Go 

and NoGo conditions) using Bonferroni correction for post-
hoc tests. Effect sizes were calculated by converting eta-
squared (�2) to Cohen’s d using the formula: d =

�

�2

1−�2

√

2k, 

where k is the number of groups (Cohen 1988).

Results

Performance Data

Performance data is presented in Table 1. No main effect 
of COMT genotype emerged for any of the performance 

Fig. 2   The two selected 
Measure Projection domains: 
parietal/temporal cortical 
source Domain 1 (left, posterior 
view) and frontal cortex source 
Domain 2 (right, anterior view) 
and their associated group 
grand mean ERP responses 
to Go and NoGo cue stimuli. 
‘P3’ peaks (350–400 ms) were 
largest in the centro-parietal 
domain responses, while ‘N2’ 
peaks (near 350 ms) are largest 
in the frontal source domain 
responses. Y-axis unit: peak 
projected RMS uV across all 
scalp channels
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Table 1   Means and SDs of ERP source variables and cognitive performance variables by each genotype

COMT Val/Val COMT Val/Met COMT Met/Met DRD4 7-repeat DRD4 non 7-repeat

Go P3 amplitude 0.34 (0.15) 0.37 (0.18) 0.34 (0.17) 0.34 (0.16) 0.37 (0.17)
NoGo P3 amplitude 0.10 (0.13) 0.10 (0.12) 0.05 (0.09) 0.08 (0.12) 0.09 (0.12)
Go N2 amplitude − 0.19 (0.13) − 0.18 (0.17) − 0.21 (0.14) − 0.21 (0.19) − 0.18 (0.13)
NoGo N2 amplitude − 0.39 (0.19) − 0.46 (0.38) − 0.45 (0.24) − 0.43 (0.34) − 45 (0.33)
RTM 356 (62) 353 (59) 344 (46) 348 (61) 354 (55)
RTSD 92 (35) 92 (30) 86 (28) 89 (30) 91 (31)
Commission errors 0.0009 (0.003) 0.001 (0.004) 0.0008 (0.003) 0.001 (0.004) 0.009 (0.003)
Omission errors 0.02 (0.02) 0.019 (0.03) 0.02 (0.03) 0.02 (0.03) 0.02 (0.03)
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variables [RTM: F(1,207) = 0.52, p = .60, d = 0.19; RTSD: 
F(1,207) = 0.60, p = .55, d = 0.17, commission errors: 
F(1,207) = 0.16, p = .85, d = 0.13; omission errors: 
F(1,207) = 0.32, p = .73, d = 0.16]. Nor was there any effect 
of DRD4 genotype on any of the performance variables 
[RTM: F(1,207) = 0.57, p = .45, d = 0; RTSD: F(1,207) = 0.15, 
p = .70, d = 0; commission errors: F(1,207) = 0.83, p = .36, 
d = 0.08; omission errors: F(1,207) = 0.41, p = .52, d = 0]. 
Similarly, no interaction effect emerged for any performance 
variables [NoGo P3; Go N2; NoGo N2; RTM, RTSD, com-
mission errors; omission errors: all p > .37, all d < 0.25].

ERP ICA Source Findings

ERP data is presented in Table 2.

COMT

A main effect for COMT genotype on P3 amplitude was 
obtained for the NoGo ERP [F(2, 207) = 3.52, p = .03, 
d = 0.46] but not for the Go ERP [F(2, 207) = 1.86, p = .16, 
d = 0.33] (MP domain 1). Posthoc t-tests indicated no dif-
ference between the Val/Val and Val/Met groups (p = .10, 
d = 0) in NoGo P3 amplitude; however the Met/Met geno-
type group had a significantly smaller NoGo P3 mean ampli-
tude compared to either the Val/Val (p = .04, d = 0.45) or 
the Val/Met (p = .01, d = 0.44) genotype groups. See Figs. 3 
and 4. No main effect emerged for COMT genotype on the 
N2 amplitude for either condition [Go: (F(2, 207) = 0.66, 
p = .52, d = 0.19; NoGo: F(2, 207) = 0.71, p = .49, d = 0.46].

DRD4

We found a significant effect of DRD4 genotype on Go P3 
amplitude [F(2,207) = 5.83, p = .017, d = 0.42], which was 
smaller in subjects with the DRD4 7-repeat than in those 
without it. No evidence emerged for an effect of DRD4 gen-
otype on NoGo P3 mean amplitude [NoGo: F(2, 207) = 1.45, 
p = .23, d = 0.21]. Similarly, no effect emerged for N2 
amplitude in either condition [Go: F(2, 207) = 1.48, p = .23, 
d = 0.17, NoGo: F(2, 207) = 0.150, p = .70, d = 0.11].

Table 2   Mean and SDs of ERP 
source variables and cognitive 
performance variables in the 
interaction between COMT and 
DRD4 genotypes

COMT Val/Val COMT Val/Met COMT Met/Met

DRD4 7-repeat
 Go P3 amplitude 0.27 (0.10) 0.39 (0.18) 0.27 (0.10)
 NoGo P3 amplitude 0.07 (0.17) 0.10 (0.11) 0.03 (0.06)
 Go N2 amplitude − 0.20 (0.15) − 0.20 (0.21) − 0.26 (0.18)
 NoGo N2 amplitude − 0.35 (0.27) − 0.46 (0.39) − 0.43 (0.25)
 RTM 366 (80) 344 (63) 341 (30)
 RTSD 94 (40) 89 (30) 86 (22)
 Commission errors 0.0009 (0.003) 0.002 (0.005) 0.0008 (0.003)
 Omission errors 0.01 (0.18) 0.02 (0.04) 0.02 (0.03)

DRD4 non 7-repeat
 Go P3 amp 0.38 (0.15) 0.36 (0.18) 0.38 (0.18)
 NoGo P3 amp 0.12 (0.10) 0.10 (0.12) 0.06 (0.11)
 Go N2 amp − 0.19 (0.12) − 0.17 (0.13) − 0.20 (0.12)
 NoGo N2 amp − 0.41 (0.30) − 0.46 (0.37) − 0.46 (0.23)
 RTM 351 (52) 358 (57) 346 (53)
 RTSD 90 (34) 93 (30) 86 (31)
 Commission errors 0.0009 (0.003) 0.001 (0.003) 0.0008 (0.003)
 Omission errors 0.02 (0.02) 0.02 (0.03) 0.02 (0.03)
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Fig. 3   Group grand mean ERP responses to NoGo stimuli for pari-
etal/temporal source Domain 1 (Figs.  1, 2). The P3 peak is the 
positive-going peak near 400 ms. Y-axis unit: as in Fig.  2. Legend: 
V/V = Val/Val; V/M = Val/Met; M/M = Met/Met polymorphism 
groups
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COMT × DRD4

An interaction was detected between the COMT and 
DRD4 polymorphisms for Go response P3 amplitude [F(2, 
207) = 3.99, p = .02, d = 0.49]. Post hoc analyses indicated 
that having the DRD4 genotype reduced Go response 
P3 amplitude in Val/Val (p = .02, d = 0.80) and Met/Met 
(p = .03, d = 0.66), but not in Val/Met carriers (p = .43, 
d=-.14) (Figs. 5, 6).

ERP Channel Findings

The same statistical analysis was run on the raw EEG chan-
nel data at the scalp channels where the ERP amplitude was 
maximal. Eye blink components were identified by ICA 
and removed; the remaining source data were subsequently 
backprojected to these channels. The amplitudes of the scalp 
P3 peaks were measured at scalp channel Pz; the N2 peak 
amplitudes were measured at scalp channel Cz. Similar to 

the findings at the source level, a main effect for COMT 
genotype was obtained for Nogo P3 mean amplitude at chan-
nel Pz [F(2, 207) = 3.29, p = .04, d = 0.45], but not for Go 
P3 peak amplitude [F(2, 207) = 2.06, p = .13, d = 0.35]. A 
significant main effect of DRD4 on P3 peak amplitude at Pz 
was found for the NoGo condition (F(2, 207) = 6.74, p = .01, 
d = 0.45) but not for the Go condition (F(2, 207) = 2.74, 
p = .10, d = 0.28), contrary to the source-resolved findings. 
No effect of DRD4 on N2 peak amplitude emerged at Cz 
in either condition [Go: F(2, 207) = 0.41, p = .52, d = 0.11; 
NoGo: F(2, 207) = 0.82, p = .37, d = 0.16]. No interaction 
emerged for any of the other channel or performance vari-
ables [N2 amplitude at channel Cz in either condition; Go 
P3; NoGo P3; RTM; RTSD; commission errors; omission 
errors: all p > .36, all d < 0.15]. No interaction effects were 
detected between COMT and DRD4 for any of the channel 
measures [Go P3 amplitude: NoGo P3; Go N2; NoGo N2; 
all p > .37, all d < 0.25].
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Fig. 4   P3 peak amplitudes in ERPs to NoGo stimuli for parietal/tem-
poral source domain (Domain 1) show a main effect of COMT allele. 
Y-axis unit: as in Fig. 2

Fig. 5   Grand mean group ERP responses to Go cue stimuli for the 
parietal-temporal source Domain 1 (see Fig. 2) reveal an interaction 
between COMT and DRD4genotypes on amplitude of the P3 peak. 

Y-axis unit: as in Fig. 2. M/M Met/Met polymorphism; V/M Val/Met; 
V/V Val/Val; non-7r non 7-repeat; 7r 7-repeat polymorphism groups
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Fig. 6   Interaction between COMT and DRD4 alleles on P3 peak 
amplitude in ERP responses to Go cues. M/M Met/Met polymor-
phism; V/M Val/Met; V/V Val/Val; non-7r non 7-repeat; 7r 7-repeat
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Discussion

In this targeted candidate gene analysis, we identified sev-
eral associations between polymorphisms of dopamine sys-
tem genes and ERP indices of cognitive control during the 
cued continuous performance task CPT-AX. Specifically, 
we found that the homozygous Met allele of the COMT 
genotype was associated with smaller mean P3 amplitude 
in the IC ERP time-locked to Nogo stimuli and further that 
individuals with the 7-repeat polymorphism of DRD4 had a 
smaller peak IC-P3 to Go stimuli. Furthermore, an interac-
tion effect between COMT and DRD4 emerged, indicating 
a smaller IC-derived Go-P3 in those with the 7-repeat if 
they also had the homozygous Val/Val polymorphism or 
the homozygous Met/Met polymorphism, but not in those 
with the heterozygous Val/Met polymorphism. In contrast 
to these findings, there was no association between any of 
the selected polymorphisms and performance measures or 
the IC-N2 measures.

The overall pattern of task–related ERP activity in our 
study was consistent with the fronto-parieto midline promi-
nent N2-P3 peak complex observed in tasks that require 
attentional and cognitive control (Castellanos and Proal 
2012; Jaspar et al. 2014). Due to proposed site of action 
of the COMT enzyme, most of the research on COMT has 
focused on prefrontally-mediated cognition. Our study 
instead found that Met allele homozygotes exhibited a 
smaller ERP measure of response inhibition for a parietal/
temporal source domain, but did not identify a significant 
relationship between COMT and activity in prefrontal cor-
tex. While, COMT alters enzyme activity in prefrontal cor-
tex, and has been strongly associated with activation in fron-
tal brain regions during task performance, the expression of 
this enzyme is widespread and relatively uniform within the 
human brain (Hong et al. 2014). Recent findings indicate 
that the effect of the COMT val108/158met polymorphism 
extends beyond the PFC and has different effects on brain 
activity and structure in other regions (Hong et al. 2015), 
and may specifically include parietal activity during inhibi-
tory control (Van Rooij et al. 2015). These findings indicate 
that COMT-related inhibitory brain activity is not confined 
to prefrontal regions.

That the COMT Met/Met allele was associated with an 
impairment in a neural index of response inhibition may 
be viewed as surprising, given that the Met allele has been 
associated with improved performance in executive function 
and cognitive tests (Cahoy et al. 2008; Freeman and Row-
itch 2013; Kiang et al. 2009; Wynn et al. 2010). However, 
the role of dopamine in the brain and its relationship with 
the neural network underlying cognitive control is complex 
(Durstewitz and Seamans 2008; Goldman-Rakic et al. 2000). 
The dual state or U shaped theories of dopamine regulation 

(Durstewitz and Seamans 2008; Meyer-Lindenberg and 
Weinberger 2006) predict that homozygous Met carriers 
have high tonic dopamine levels in the prefrontal cortex 
(PFC) and thus optimal levels of dopamine for tasks that 
require cognitive stability or maintenance, including work-
ing memory and competing programs (Nolan et al. 2004), 
while Val carriers have high phasic dopamine levels in the 
PFC, and are thus more efficient when cognitive flexibility 
is required, such as during rapid updating or task switch-
ing (Colzato et al. 2010; Drabant et al. 2006; Nolan et al. 
2004). Our finding is largely consistent with studies exam-
ining the role of COMT that have found that those with the 
Met/Met polymorphism have impaired response inhibition 
performance in comparison to Val carriers (Weiss et al. 
2014). Our findings are in further agreement with studies 
that show that the homozygous Met allele is associated with 
behavioural measures of impulsivity (Soeiro-De-Souza et al. 
2013; Stipursky et al. 2011), particularly with a failure to 
plan ahead (Soeiro-De-Souza et al. 2013) and poorer delayed 
discounting (Stipursky et al. 2011).

We confirmed our prediction that the DRD4 7-repeat 
allele was associated with abnormalities in neural indices 
of attentional control. Previous studies have implicated this 
polymorphism in attention-related problems in both typi-
cally developing children (Auerbach et al. 2001; Schmidt 
et al. 2002) and in clinical samples of children with ADHD 
(Faraone et al. 2005). The attention-related EEG activity 
differences for the parietal/temporal domain in this study 
are in line with multiple functional imaging studies that 
showed that attentional control is associated with the activity 
of a network of brain regions, including the parietal cortex 
(Buschman and Miller 2007), which has specific involve-
ment in sustained (Coull et al. 1996) and orienting attention 
(Yantis et al. 2002).

Moreover, we found that the relationship between DRD4 
and attentional control (IC-go-P3) varied depending on 
COMT genotype. This pattern of an epistatic interaction 
between DRD4 and COMT for attentional control is some-
what consistent with the proposed inverted U-shaped curve 
for the optimal range of dopamine availability for task per-
formance, according to which too little or too much dopa-
mine is disruptive and impairs functioning of the system 
(Bruggemann et al. 2013; Congdon et al. 2009; Durstewitz 
and Seamans 2008; Takahashi et al. 2011). Carriers of the 
DRD4 7-repeat allele with either of the homozygous COMT 
polymorphisms presumably had too high levels of dopamine 
availability for optimal attentional control and exhibited an 
attenuated pattern of activation to Go stimuli in the CPT-
AX. Whereas individuals without the 7-repeat and either 
of the homozygous COMT polymorphisms may have had 
optimal levels of dopamine availability. In contrast, there 
was no influence of the DRD4 7-repeat allele on individuals 
with the heterozygous Val/Met allele. Dopamine is proposed 
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to modulate the response of neural networks by suppressing 
spontaneous background firing and thus increasing signal-
to-noise ratio and enhancing the task-specific response 
(Winterer et al. 2006). Our study suggests that both high 
and low dopaminergic states (Met/Met and Val/Val, respec-
tively) may be compensated by increased D4 function and 
thus enhancing neural tuning in attentional networks.

A limitation of our study is the candidate gene approach. 
The selected polymorphisms will not cover all genetic vari-
ation within the examined neural circuits. We chose alleles 
with known functional effects and/or previously reported 
effects on relevant phenotypes instead of examining a larger 
set of SNPs tagging the major haplotypes within dopamin-
ergic genes. Therefore, we covered only a small portion of 
the total dopamine signaling pathway. Already there are 
many other genes known to be involved in this signaling 
pathway (Beaulieu and Gainetdinov 2011) and a candidate 
gene approach will miss most of these signals. Replication 
is required and the relationship between source localisation 
measures in EEG and advanced genetic measures, including 
polygenic scores should be explored.

Despite evidence that psychiatric disorders have genetic 
etiology (Kendler), there has been a lack of identification of 
genetic risk factors that reliably associate with psychopa-
thology ({Casey et al. 2013). Psychiatric disorders are likely 
to involve multiple brain systems and patients may differ in 
the extent to which processing in these systems is affected so 
that the biological roots within a clinical diagnosis may vary 
substantially (Miller 2010). Targeted analysis using func-
tional neuroimaging measures within genetic designs could 
aid the identification of neural circuits affected in DSM diag-
noses to more precisely diagnose and treat psychopathology 
(Insel and Cuthbert 2015).

No relationship between cognitive performance meas-
ures and the genetic markers was found. It may be that the 
infrequency of required response and inhibition in the CPT-
AX (respectively, 10% of stimuli) does not provide enough 
data points to accurately describe these processes for use in 
genetic investigations as genetic effects may have relatively 
small effect sizes compared to, for example, group differences. 
Genetic effects may be more apparent in information-rich time 
series data at the neural level than detection via infrequent 
button presses at the behavioural level. This is reflected in 
the small effect sizes for all of the cognitive performance 
measures. Research focusing on overt behavioral correlates 
of genetic effects on attention and inhibition thus typically 
uses tasks that require more frequent responding, which may 
provide greater behavioral resolution of the cognitive process.

Although polymorphisms of COMT and DRD4 had been 
linked to EEG phenotypes (Loo et al. 2010; Solís-Ortiz et al. 
2015), these potential links had not yet been investigated within 
tasks examining the neurophysiological indices of frontostriatal 
and parietal attentional networks. Our study aimed to investigate 

the relationship between COMT and DRD4 polymorphisms 
and ICA source-resolved brain activity during a cognitive con-
trol task, and our findings suggest higher genetic penetrance for 
IC-derived EEG measures of cognitive control than traditional 
channel based measures. The associations between these dopa-
mine system gene function and ERP measures to be stronger 
at the source than at the scalp level, particularly for the COMT 
x DRD4 interaction; however our results remain correlational. 
They do not exclude mediating mechanisms, and should not be 
construed to suggest one-to-one relation between these gene 
functions and ERP source component measures.

The improved functional and anatomic separation of the 
cortical signal sources of EEG data produced by ICA decom-
position may give measures that may be more informative 
for genetic studies of brain function. This may be because 
scalp data channels are each source signal admixtures, so 
that the effective signal-to-noise ratio of the ICA-separated 
cortical source activities is under favorable circumstances 
much higher than for the scalp channel signals (45). This 
result is consistent with the understanding that for biophys-
ical reasons each scalp channel recording sums activities 
generated in many places in cortex, whereas many inde-
pendent component processes separated from the data by 
ICA decomposition are compatible with an origin in just 
one cortical area or patch. Thus, neuroimaging methods, 
including source-based EEG measures, may be more pow-
erful for unravelling gene-brain behavioural relationships 
than scalp channel-based EEG measures (McLoughlin et al. 
2013; Weinberger et al. 2001).
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See Figs. 7, 8, 9, 10.

Table 3   Mean and SDs for ERP scalp variables by genotype

COMT Val/Val COMT Val/Met COMT Met/Met DRD4 7-repeat DRD4 Non 7-repeat

Go P3 amplitude (Pz) 6.13 (2.84) 7.01 (2.65) 7.39 (2.51) 6.70 (2.85) 7.04 (2.58)
NoGo P3 amplitude (AUC) 2.29 (2.24) 3.39 (2.56) 3.81 (2.42) 3.11 (2.93) 3.35 (2.25)
Go N2 amplitude (Cz) − 2.39 (2.81) − 1.30 (2.40) − 1.52 (2.98) − 1.38 (2.86) − 1.67 (2.52)
NoGo N2 amplitude (Cz) 3.34 (3.02) 8.47 (2.51) − 3.61 (3.21) 7.36 (2.79) 2.36 (2.83)

Table 4   Mean and SDs of the ERP scalp variables and cognitive 
performance variables in the interaction between COMT and DRD4 
genotypes

COMT Val/Val COMT Val/Met COMT Met/Met

DRD4 7-repeat
 Go P3 ampli-

tude
5.73 (2.48) 7.06 (3.06) 6.55 (2.45)

 NoGo P3 
amplitude

1.93 (1.71) 3.35 (3.28) 3.45 (2.58)

 Go N2 ampli-
tude

− 2.15 (2.57) − 1.23 (2.66) − 1.12 (3.64)

 NoGo N2 
amplitude

1.01 (2.53) 1.29 (2.62) − 1.05 (2.89)

DRD4 non 7-repeat
 Go P3 ampli-

tude
6.34 (3.04) 6.98 (2.39) 7.83 (2.47)

 NoGo P3 
amplitude

2.47 (2.48) 3.41 (2.05) 3.99 (2.35)

 Go N2 ampli-
tude

− 2.52 (2.96) − 1.34 (2.26) − 1.74 (2.61)

 NoGo N2 
amplitude

− 4.71 (3.18) 5.83 (2.42) 5.80 (3.36)

Fig. 7   COMT genotype P3 ERP responses to NoGo stimuli at chan-
nel Pz. V/V Val/Val; V/M Val/Met; M/M Met/Met polymorphism

Fig. 8   COMT genotype P3 ERP responses to Go stimuli at channel 
Pz. V/V Val/Val; V/M Val/Met; M/M Met/Met polymorphism

Fig. 9   DRD4 genotype P3 ERP responses to NoGo stimuli at channel 
Pz
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