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Abstract

Models of Information Acquisition under Ambiguity
by
Jian Li
Doctor of Philosophy in Economics
University of California, Berkeley

Professor Chris Shannon, Chair

This dissertation studies models of dynamic choices under uncertainty with endogenous
information acquisition. In particular we are interested in exploring the interactions between
ambiguity attitudes and the incentive to collect new information.

The first chapter explores the link between intrinsic preferences for information and am-
biguity attitudes in settings with subjective uncertainty. We enrich the standard dynamic
choice model in two dimensions. First, we introduce a novel choice domain that allows
preferences to be indexed by the intermediate information, modeled as partitions of the
underlying state space. Second, conditional on a given information partition, we allow pref-
erences over state-contingent outcomes to depart from expected utility axioms. In particular
we accommodate ambiguity sensitive preferences. We show that aversion to partial infor-
mation is equivalent to a property of static preferences called Event Complementarity. We
show that Event Complementarity and aversion to partial information are closely related to
ambiguity attitudes. In familiar classes of ambiguity preferences, we identify conditions that
characterize aversion to partial information.

The second chapter extends the basic model to allow for choices from non-singleton menus
after partial information is revealed, and studies the value of information under ambiguity.
We show that the value of information is not monotonic under ambiguity. Intrinsic aversion
to partial information in the basic model is equivalent to a preference for perfect information
in the extended model. Moreover, the value of information is not monotone in the degree of
ambiguity aversion.

The third chapter studies the impact of ambiguity in a classic information acquisition
model-the K-armed bandit problem. We consider a particular family of ambiguity averse
preferences, the multiple-priors model [Marinacci, 2002]. A previous paper [Li, 2012] shows
that major classic characterizations of optimal strategies in the K-armed bandit problems
extend to incorporate ambiguity in the multiple-priors model. Here we explore new impli-
cations of ambiguity on the optimal incentive to experiment. First, increasing ambiguity
in the unknown arm reduces the incentive to experiment, while increasing risk in the un-
known arm typically increases the incentive to experiment. This suggests that ambiguity



can offer an explanation for the widely observed under-experimentation in novel technol-
ogy and consumer products. Second, optimal experimentation in the multiple-priors bandit
problem generally cannot be reduced to that in a classic bandit problem with an equivalent
single prior. In particular, the lower envelope of the classic single-prior Gittins-Jones index
for every prior lying in the multiple-priors set can be strictly higher than the generalized
multiple-prior Gittins-Jones index. In one-dimensional parametric family, we identify mono-
tonicity conditions under which this discrepancy disappears so an equivalent single prior
exists.
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Chapter 1

Preferences for Information and
Ambiguity

1.1 Introduction

This paper studies intrinsic preferences for information and the link between intrinsic infor-
mation attitudes and ambiguity attitudes in settings with subjective uncertainty. To illus-
trate the problem that motivates these results, consider the situation an economics Ph.D.
student on the job market faces in December. He has submitted many job applications, and
is concerned about the possible job offers he might receive the following March. This future
outcome depends on the candidate’s quality and performance, as well as on the quality and
performance of candidates from other schools and on funding and tastes of different employ-
ers. Suppose that in December, the candidate’s optimal strategy is to maximize his own
quality and performance in interviews and fly-outs, independent of the quality of other can-
didates or the demand at different employers. Starting in late December and early January,
online forums like Economics Job Market Rumors post information on interview and fly-out
schedules for different schools, which provides partial information about this uncertainty.
This information has no instrumental value, as the candidate cannot condition his act on it.
Yet candidates exhibit diverse preferences regarding this partial information. Some check
very frequently for updates, while others avoid ever looking at this partial information.
Standard dynamic subjective expected utility (SEU) theory predicts that all students
should be indifferent, as this information does not affect his optimal actions. We enrich the
standard dynamic choice model in two dimensions. First, we introduce a novel choice domain
that allows for preferences to be indexed by the intermediate information, modeled as par-
titions of the underlying state space. Second, conditional on a given information partition,
we allow preferences over state-contingent outcomes to depart from expected utility axioms.
In particular we accommodate ambiguity sensitive preferences. We show that aversion to
partial information is equivalent to a property of static preferences called Event Comple-
mentarity. We then show that Event Complementarity and aversion to partial information
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are closely related to ambiguity attitudes. In familiar classes of ambiguity preferences, we
identify conditions that characterize aversion to partial information.

To illustrate the connection between ambiguity attitudes and information preferences
more explicitly, consider the classical Ellsberg Urn. The urn has 90 balls. 30 balls are red,
and 60 balls are either green or yellow, with the exact proportion unknown. Bets are on the
color of a ball drawn from the urn. In the static setting, a typical Ellsbergian decision maker
(DM) strictly prefers betting on red to betting on green, but strictly prefer betting on the
event that the ball is either green or yellow ({G,Y}), to betting on the event that the ball
is either red or yellow ({R,Y}).

1 R 0 R 1 R 0 R
0 Gl |1 G and 0 G|l =<yl @&
0Y 0Y 1Y 1Y

In the classical Ellsberg paradox, the relative attractiveness of betting on red to green
is reversed when yellow is also included as a winning state. One intuition for this reversal
is the complementarity between G and Y: while the probabilities of single events {G} and
{Y'} are imprecise (ranging from 0 to 2), the joint event {G,Y} has a precise probability 2.
This complementarity is considered indicative of ambiguity (see for example, Epstein and
Zhang [2001]).

Information can erase this complementarity and thus create ambiguity. To see this, sup-
pose now there are two periods, and at the end of period 1, the DM will learn whether
the drawn ball is yellow or not. This partial information can be described by the partition
m={{R,G},{Y}}. The top event tree in Figure 1.1 illustrates the corresponding dynamic
information structure. Suppose when expecting information m, the DM evaluates the dy-
namic bets by backward recursion: she first contemplates how she will rank acts at the end
of stage 1, conditional on the realization of either event {R, G} or event {Y}, and then
aggregates these conditional preferences to form the ex-ante preferences expecting 7. In this
way, acts are evaluated separately for payoffs on events { R, G} and payoffs on event {Y'}, so
the complementarity between G and Y is not taken into account. By partitioning the event
{G,Y} into the subevents {G} and {Y}, information 7 breaks the complementarity between
G and Y and creates ambiguity. On the other hand, if the DM is not told anything at the
end of stage 1, an information structure illustrated by the bottom event tree my in Figure
1, this complementarity is fully taken into account. So if a DM is ambiguity averse and
values this complementarity, then she will prefer event tree my to event tree m and exhibit
an aversion to partial information in the interim stage.

The connection we establish between ambiguity attitudes and intrinsic preferences for
partial information is important for a number of reasons. From a theoretical perspective,
when ambiguity aversion implies intrinsic preferences for information, then endogenous learn-
ing and information acquisition decisions can be different from those in a standard dynamic
SEU model. In particular, one criticism regarding the importance of incorporating ambiguity
in the long run steady state is that in a stationary environment, ambiguity could eventually
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Figure 1.1. Dynamic Ellsberg Paradox.
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Notes: In the top event tree, the partition is 7 = {{ R, G}, {YE} In the bottom event
tree mp, the partition is the trivial no information partition 7o = {{R, G,Y }}.

be learnt away. If learning is endogenous and ambiguity aversion undermines the incentive to
collect new information, however, then ambiguity can persist in the long-run steady state. Of
more direct policy relevance, recent work illustrates the importance of ambiguity in finance
and macroeconomics for providing more accurate and robust dynamic measures of risk in
financial positions.! Our results suggest that the nature and timing of information could be
an important additional component to include in the design of risk measures that account
for ambiguity.

To formalize, we study a two-period model where state-dependent consequences are re-
alized in the second period, and some partial information 7, a partition of the state space S,
is revealed in the first period. In particular, we relax reduction, that the DM is indifferent to
the temporal resolution of uncertainty, so the DM has intrinsic preferences for the temporal
resolution of uncertainty. Formally, we do so by considering preferences on the extended do-
main II x F, the product space of information partitions and Anscombe-Aumann acts. The
primitives are the ex-ante preferences = on Il x F, the underlying unconditional preferences

IFor applications of ambiguity in finance and macroeconomics, see Epstein and Wang [1994], Hansen and
Sargent [2001], Cao et al. [2005], and Ju and Miao [2010]. In addition, Epstein and Schneider [2010] survey
applications of ambiguity preferences in finance, and Backus et al. [2005] survey applications of ambiguity
preferences in macroeconomics. For work on dynamic risk measures under ambiguity, see Riedel [2004] and
Acciaio et al. [2011] and references therein.
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=0 that coincide with = on {m} x F where mp = {S} is the trivial no-information partition,
as well as the family of conditional preferences {=g}pex on F.

In Section 1.3, we give axioms under which = and {>=g}ges have a cross-partition recur-
sive representation. For a fixed partition 7, ex-ante preferences = on {m} x F are connected
with conditional preferences {=g}ge, through dynamic consistency (called m-Recursivity
in text). Across partitions, we characterize an updating rule that ensures all conditional
preferences {=g} pex are derived from the same underlying unconditional preferences (. In
this way, ex-ante preferences across partitions are generated by the same =y and thus reflect
consistent beliefs about events in S.

Under this recursive representation, we establish the equivalence between aversion to
partial information in the ex-ante preferences = and a property on the unconditional pref-
erences = called Event Complementarity. We show that Event Complementarity captures
the intuition of complementarity in the Ellsberg example and thus the concept of ambiguity
aversion. In Section 1.4, we further explore the intersection between Event Complementarity
(and thus preferences for partial information) and popular models of ambiguity preferences.
We find that for maxmin expected utility (MEU) [Gilboa and Schmeidler, 1989] and Cho-
quet expected utility (CEU) [Schmeidler, 1989], there is a tight connection between ambigu-
ity aversion (loving) and aversion (attraction) to partial information. For the more general
class of variational preferences [Maccheroni et al., 2006a], this connection is more delicate.
For variational preferences, we identify a condition on the cost function that characterizes
aversion to partial information. We also identify joint conditions on the cost function and
acts that characterize local aversion to partial information at a particular act. Finally, we
show that for multiplier preferences [Hansen and Sargent, 2001, Strzalecki, 2011], ex-ante
preferences exhibit partial information neutrality.

This paper makes several novel contributions. First, we identify a connection between
ambiguity attitudes and preferences for partial information, which is of both theoretical and
applied interest. Second, this paper introduces a model of dynamic ambiguity preferences
across different information structures, and reconciles the well-known tension between dy-
namic consistency and ambiguity preferences through relaxing reduction.? Third, this paper
makes an independent contribution to the study of updating rules for ambiguity sensitive
preferences. In particular, we provide a behavioral characterization for a simple updating
rule for variational preferences.

One limitation of this work is that the behavioral characterization for updating is only
well-defined for the class of translation invariant preferences. This rules out the second
order belief models [Klibanoff et al., 2005, Nau, 2006, Seo, 2009], another important family
of ambiguity preferences. In Section 1.5, we discuss information preferences for second order
belief models.

The rest of the paper is organized as follows. The rest of Section 1.1 discusses related
literature. Section 1.2 introduces the set-up. Section 1.3 axiomatizes the cross-partition
recursive representation, and shows that aversion to partial information is equivalent to

2This point is discussed in more detail in the related literature section.
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Event Complementarity. Section 1.4 further examines the link between ambiguity aversion
and aversion to partial information, by studying four popular representations of ambiguity
preferences. Section 1.5 discusses the second order belief models.

1.1.1 Related Literature

This paper belongs to the literature on dynamic decision making under ambiguity. Epstein
and Schneider [2003] axiomatize recursive preferences over adapted consumption processes
where all conditional preferences are maxmin expected utility (MEU), and find that dynamic
consistency (our m-Recursivity) implies that the prior belief set has to satisfy a “rectangu-
larity” restriction. Later work axiomatizes recursive preferences for other static ambiguity
preferences and finds similar restrictions [Maccheroni et al., 2006b, Klibanoff et al., 2008].

In fact, Siniscalchi [2011] shows that within a given filtration, dynamic consistency implies
Savage’s Sure-Thing Principle and Bayesian updating. Together with reduction, dynamic
consistency rules out modal Ellsberg preferences and thus ambiguity.? To allow for ambiguity,
Siniscalchi studies preferences over a richer domain of decision trees, and relaxes dynamic
consistency by introducing a weaker axiom called Sophistication. Together with auxiliary
axioms, he proposes a general approach where preferences can be dynamically inconsistent,
and the DM addresses these inconsistencies through Strotz-type Consistent Planning.

In this paper, we start from the observation that the noted tension between dynamic
consistency and ambiguity relies on reduction, that is, on the assumption that the DM
is indifferent to the temporal resolution of uncertainties. However, experimental evidence
suggests that reduction is often violated in environments with objective risk.* For example,
Halevy [2007] finds evidence for non-reduction of compound lotteries and ambiguity aversion,
as well as a positive association between the two. In a dynamic portfolio choice experiment,
Bellemare et al. [2005] find that when a DM is committed to some ex-ante portfolio, higher
frequency of information feedback leads to lower willingness to invest in risky assets. In this
paper, we explore how dynamic consistency and unrestricted ambiguity preferences can be
reconciled by relaxing reduction.

Thus this paper is also related to a rich literature that relaxes reduction and studies
intrinsic preferences for early or late resolution of uncertainty. This was initially formalized
by Kreps and Porteus [1978] by introducing a novel domain of objective temporal lotteries
and subsequently extended by Epstein and Zin [1989, 1991] to study asset pricing. Grant
et al. [1998, 2000] link time preferences to intrinsic preferences for information. In a purely
subjective domain, Strzalecki [2010] shows that even with standard discounting most models
of ambiguity aversion display some preference with regard to the timing of resolution, with
the notable exception of the MEU model. Motivated by experimental evidence,® recent

3See also earlier work by Epstein and LeBreton [1993].

4To my best knowledge, we don’t have direct evidence on violation of reduction in environments with
subjective uncertainty. One potential experimental design to test reduction is the Ellsberg example illustrated
in the introduction.

For example, Gneezy et al. [2003], Haigh and List [2005], and Bellemare et al. [2005].
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work studies preferences for one-shot versus gradual resolution of (objective) uncertainty.
In the domain of objective two-stage compound lotteries,® Dillenberger [2010] identifies a
link between preferences for one-shot resolution of uncertainty and Allais-type behaviors.
In their reference-dependent utility model, Koszegi and Rabin [2009] also find preferences
for getting information “clumped together rather than apart.” In contrast, here we identify
a link between ambiguity attitudes and intrinsic preferences for partial information over
subjective uncertainty.

Finally, our work is also related to the literature on consequentialist updating rules for
preferences that violate Savage’s Sure-Thing Principle.” Pires [2002] introduces a coherence
property that characterizes the prior-by-prior Bayesian updating rule for MEU preferences.
Eichberger et al. [2007] then apply this coherency property to characterize full Bayesian up-
dating for Choquet expected utility (CEU) preferences. Here we apply this property to gen-
eral translation invariant preferences to connect unconditional and conditional preferences.
We then show that this characterizes a simple updating rule for variational preferences, which
nests previous results for Bayesian updating in the MEU and multiplier preferences cases.

1.2 Set-up

1.2.1 Preliminaries

Subjective uncertainty is modeled by a finite set S of states of the world, with elements
s € S, describing all contingencies that could possibly happen. Let ¥ be the power set
of S. A(S) is the set of all probabilities on S. For any £ C S, A(E) denotes the set of
probabilities on (S, 3) such that p(F) = 1.

Z is the set of deterministic consequences. We assume that Z is a separable metric space.
Let X = A(Z), the set of all objective lotteries over Z, endowed with the weak topology.
An act f: 5 — X is a mapping that associates to every state a lottery in X.

Let F be the set of all such acts, endowed with the product topology. An act f is
constant if there is some z € X such that f(s) = =z,Vs; in this case f is identified with
x. For all f,g € F,E € ¥, fEg denotes the act such that (fEg)(s) = f(s) if s € E, and
(fEg)(s) =g(s)if s ¢ E. For any f,g € F,a € (0,1), af + (1 — a)g denotes the pointwise
mixture of f and g: (af + (1 —a)g)(s) = af(s) + (1 —a)g(s).

Let B(S) be the space of all real-valued functions on S, endowed with the sup-norm. For
any interval K C R, B(S, K) denotes the subspace of functions that take values in K.

Partial information is a partition of S. A generic partition is denoted m = {E1, ..., E,},
where the sets E; are nonempty and pairwise disjoint, F; € ¥ for each i, and U], E; =
S. Let IT be the set of all such partitions. In particular, 7y = {S} denotes the coarsest

6Segal [1990] was the first to study two-stage compound lotteries without reduction.

7 Alternatively, Hanany and Klibanoff [2007, 2009] relax consequentialism, and characterize dynamically
consistent updating rules for ambiguity preferences. They use a weaker notion of dynamic consistency than
ours.



CHAPTER 1. PREFERENCES FOR INFORMATION AND AMBIGUITY 7

Figure 1.2. Information Partitions of S = {s1, s2, s3}.

S1
S1 S1 51

{817 S2

7o 59 7T 52 T S2

{s3} 3

S3 S3 S3

partition, capturing the case when no information is learned in the intermediate stage, and
7 = {{s1},...,{5)5)}} denotes the finest partition, capturing the case when all relevant
uncertainties are resolved in the intermediate stage.

Finally, for all 7, let F, be the subset of m-measurable acts in F.

1.3 Intrinsic Preferences for Information

In this section, we show that ambiguity aversion is closely related to intrinsic information
aversion. We first focus on the value of decision problems when menus are singletons, so the
domain of preferences is I x . We develop a dynamic model of ambiguity averse preferences
which retains recursivity but relaxes reduction, so information could potentially affect the
evaluation of a single act. The extension to multi-action menus will be studied in the next
section.

Formally, suppose the DM has ex-ante preferences 3= over IT x F.% Then (7, f) = (7, 9)
means that the DM prefers act f (or equivalently, the singleton menu { f}) when anticipating
information 7, to act ¢ when anticipating information 7’. For given information 7, upon
learning that the state s lies in event E in the intermediate stage, the DM updates her prior
preferences = to E-conditional preferences »=g. We assume that the conditional preferences
=g depend only on the event E but not on 7, so for each F, conditional preferences =g are
defined on F.? We also denote by =, the restriction of 3= to {m} x F, interpreted as the
DM'’s ex-ante preferences over F when expecting information 7. Thus = and {=g} are the
primitive preferences of our model.

8We endow II with the discrete topology, and put the product topology on II x F.
9n a two period model, there is no further information to expect after some event in 7 is realized, so it
is reasonable to have conditional preferences defined only on F.
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We look for a dynamic model of preferences over II x F that satisfies two criteria. First,
within a given partition # = {E}, Es,- -+, B, }, =x and {=g, }; satisfy a recursive relation,
in the following sense. For any act f, construct another act f’ by replacing f on each E; by
a constant act z;, where x; ~g, f. So f'(s) = z; if s € E;, for all i. Recursivity requires
that f ~, f’. Second, across two different information partitions 7 and 7', =, and =
are related by a unifying unconditional preference relation over F. That is, there exists an
unconditional preference relation %=y over F such that all conditional preferences {>=g}ges
are updated from >=,. Thus if we observe any difference between =, and =, it is due to
differences in m and 7’ rather than ex-ante beliefs.

1.3.1 Recursive Model

In this section we impose axioms on {>=,} e and {=g}gex that characterize the folding
back evaluation procedure.

First we impose common basic technical axioms on »=, and =g, for each 7 € II and
E € Y. For convenience we group them together as Axiom 1.

Axiom 1. 1. (Continuity) For all m, E, f, {g € F : g =, f}, {9 € F : f == g},
{geF:g=p f},and {g € F: f =g g} are closed.

2. (Monotonicity) For all 7, E € X, if f(s) =» (=r)g(s), Vs, then f =, (=g)g.

3. (Non-degeneracy) For all w, f >, g for some f,g € F. Similarly, VE € ¥, f =g g for
some f,g € F.

Axiom 2 (Stable Risk Preferences). For all 7, E, =, and =g agree on constant acts.

Lemma 1.1. Under Continuity and Stable Risk Preferences, = is a continuous preference
relation on 11 x F.

Proof. See appendix. O

Within a fixed partition 7 = {F4,-- -, E,}, we impose m-recursivity to link prior prefer-
ences =, and conditional preferences {>=g, } ;. This is similar to the Dynamic Consistency
axiom in Epstein and Schneider [2003] and Maccheroni et al. [2006b], simplified to two
periods.

Axiom 3 (m-Recursivity). For any 7, £ € 7, and f,g,h € F,

If all =, satisfy m-Recursivity, then all conditional preferences {=p}gex satisfy Conse-
quentialism, that is, Vf, g, h, VE, fEg ~p fEh.' Intuitively, this says that outcomes in

10To see this, let fEg = f' and fEh = g'. Then f'Ef = ¢Ef = f. For 7 = {E,E°}, f'Ef ~x JEf,
and by m-Recursivity, f' ~g ¢'.
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states outside E do not affect E-conditional preferences »>=g. We will return to this when
discussing learning rules.

If an act f is m-measurable, then in both (7, f) and (7*, f), all uncertainties about f are
resolved in the first stage. So the additional information in 7* relative to that in 7 should
not affect the evaluation of f. This idea is reflected in the following axiom.

Axiom 4 (Indifference to Redundant Information). For all =, f € F,, (m, f) ~ (7%, f).

The last axiom, Time Neutrality, abstracts information preferences from any effect due to
preferences for early or late resolution of uncertainty, which is orthogonal to the information
preferences of interest here.

Axiom 5 (Time Neutrality). For all f, (7*, f) ~ (mo, f).

Time Neutrality implies that =.«=)=,,, and both can be viewed as the unconditional
preferences over acts, denoted by »=¢ in the following text. In the next subsection, we specify
how all conditional preferences are updated from a unifying unconditional =, ensuring all
= represent the same ex-ante belief.

For a fixed # = {Ey, -+, E,}, we define the conditional certainty equivalent mapping
c(-|m) « F — Fy, as follows:

c(flEr) Er
c(fim) = | VIR
AfIE) E,

where for each i, ¢(f|E;) € X, and ¢(f|E;) ~g, f. That is, ¢(f|E;) is the certainty equivalent
of f conditional on E;. Existence is guaranteed by Continuity and Monotonicity of each =g, ,
as proved in Lemma A.1 in the appendix.

Recall that = is the ex-ante preference over II x F, while for every 7, =, is the restriction
of %= to {7} x F. For an interval K C R, B(S, K) is the space of functions on S with range
K. For any k € K, denote by k the corresponding constant function in B(S) taking value
k. For any £ and ¢ in B(S, K), and any event E € 3, ¢ E¢ denotes the function such that
(EEQ)(s) =&(s) if s € E, and (EE¢)(s) = ¢(s) if s ¢ E. For a functional I : B(S, K) — R,
we say I is monotone if V€, ¢ € B(S, K), £ > ¢ implies Iy(§) > Iy(¢), and strongly monotone
if in addition £ > ¢ implies I(&) > Io(¢p). We say [ is normalized if I(k) =k for all k € K.
Finally, we say I is translation invariant if [(é+k) = I(&)+k forall ¢ € B(S,K) and k € K
such that £ + k € B(S, K).

Lemma 1.2. For preferences = and {3=g}ges that are continuous and monotone, the fol-
lowing statements are equivalent:

1. {=r}ren and {3=g} pes satisfy m-Recursivity, Independence of Redundant Information,
and Time Neutrality.



CHAPTER 1. PREFERENCES FOR INFORMATION AND AMBIGUITY 10

2. There exists a continuous function u : X — R, and a continuous, monotone, and
normalized function Iy : B(X,u(X)) — R such that for each 7, =, can be represented
by V(m,-): F — R, where

V(m, f) = Io(uoc(f[m))

and c(-|m) : F — Fy is the conditional certainty equivalent mapping.

Using Axioms 1-5, preferences =, and {=g}ge, satisfy m-Recursivity, under which the
value of an act f expecting information 7 can be computed by a folding back procedure. For
each event FE; € 7, replace f on FE; by its conditional certainty equivalent. The constructed
act ¢(f|m) is m-measurable, thus could be evaluated by the unconditional preferences =,
and

(7, f)

Therefore, the ex-ante preferences
and unconditional preferences >=g.
For any , let B(m, u(X)) denote all the m-measurable functions in B(S, u(X)).

(7', 9) & c(f|r) =0 c(gln’)

>;
= are dictated by the conditional preferences {=g}pes

1.3.2 Updating Translation Invariant Preferences

In this subsection, we characterize an updating rule that specifies how the conditional prefer-
ences {>=p}res are derived from unconditional preferences 3=¢. In this way, for two different
information partitions 7 and 7', >=, and =, are related by the same unconditional 3= and
thus have the same underlying beliefs about events in S. Thus any difference between =,
and 5=, is due to differences in information partitions 7 and 7’ rather than ex-ante beliefs.
In particular, to accommodate ambiguity sensitive 5=q, we look for an updating rule that (i)
requires that each =g satisfies Consequentialism, so outcomes on states outside F does not
affect =p; (ii) does not exclude a preference for hedging in »=.

It does not make sense to discuss conditional preferences = if event E has “probability
zero”. We call an event E is Savage =¢-non-null if it is not the case that fEh ~q gEh for
all f, g, h € F. For simplicity, we require that for every event F in X is =p-non-null. For the
purpose of updating ambiguity preferences, we need a stronger notion of non-null events.!!
Here we ensure every event is non-null for =y by imposing a strong monotonicity axiom on
70-

Axiom 6 (Strong Monotonicity). Vf,g € F, if f(s) = g(s) for all s € S, then f =g g. If in
addition one of the preference rankings is strict, then f >¢ g.

Bayesian updating is the universal updating rule in Savage’s SEU theory. The uncon-
ditional preference is represented by an expected utility functional with respect to some
subjective belief p, and the conditional preference on E is represented by an expected utility

HFor a detailed discussion of the relationship between a Savage =g-non-null event and the stronger
condition we need, see Appendix A.2.



CHAPTER 1. PREFERENCES FOR INFORMATION AND AMBIGUITY 11

functional with respect to the Bayesian posterior p(-|E). Behaviorally, =g is derived from
=0 by'?
f=pg9< fEh =y gEh for some h

We refer to this as Bayesian Updating in the rest of the paper. In Savage’s theory, =g is
well-defined because = satisfies the Sure-Thing Principle (STP): for all f, g, h, h/,

The Sure-Thing Principle requires that =, is separable across events, which rules out a
preference for hedging and Ellsberg-type preferences. This condition clearly is too strong
for our purposes. Instead, we consider a weaker condition, called Conditional Certainty
Equivalent Consistency. This condition requires that a constant act x is equivalent to an act
f conditional on F if and only if x is also unconditionally equivalent to fEz, the act that
gives f for states in E, and x for states outside E.

Axiom 7 (Conditional Certainty Equivalent Consistency). Vf € F,x € X, VE € ¥,
f~gr e fEx ~

Conditional Certainty Equivalent Consistency weakens Bayesisan Updating by restricting
g and h to be a constant act x and considering only indifference relations. In particular,
Bayesian Updating imposes two properties. First, »=¢ and > are dynamically consistent:
if f and g agree outside event E, then f is preferred to g conditional on E if and only if
f is preferred to g unconditionally. Second, *>p satisfies consequentialism: if f and g agree
on event E, then f is equivalent to g conditional on E. It is straightforward to verify that
under Conditional Certainty Equivalent Consistency, consequentialism is retained but not
dynamic consistency.

Just as Savage’s Bayesian Updating is not well-defined unless = satisfies the STP, we
also need to impose some structural assumption on =, to ensure that Conditional Certainty
Equivalent Consistency is well-defined. The property needed is translation invariance of the
corresponding aggregating functional Iy. The behavioral axiom that characterizes translation
invariance is Maccheroni et al. [2006a]’s Weak Certainty Independence.'?

Axiom 8 (Weak Certainty Independence). For all f,g € F, z,y € X, and « € (0, 1),
af+(l—a)rzpag+(l—a)z=af + (1 —a)y = ag+ (1 —a)y

Intuitively, Weak Certainty Independence of =y, and thus translation invariance of Iy,
requires that the indifference curves in the space of utility profiles are parallel when moved

12 See, for example, Kreps [1988, chap. 9].

13By Maccheroni et al. [2006a]’s Lemma 28,Weak Certainty Independence, Monotonicity, Continuity, and
Non-degeneracy of =g is equivalent to =g can be represented by an affine risk utility u and normalized,
monotone, and translation invariant functional aggregator Iy.
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along the certainty line. Ambiguity preferences that satisfy translation invariance include
MEU, CEU, and variational preferences. As mentioned in the discussion of related literature,
Conditional Certainty Equivalence Consistency has been used by Pires [2002] to characterize
prior-by-prior updating for MEU, and by Eichberger et al. [2007] to characterize a generalized
Bayes rule for CEU. In Section 1.4, we characterize a simple update rule for variational
preferences using this axiom.

We show that if =y satisfies Weak Certainty Independence and Strong Monotonicity,
then conditional preferences are well-defined. Thus only knowledge about = is needed to
calculate the conditional certainty equivalent, and thus pin down the conditional preferences
=g for all E. Moreover, when combined with axioms characterizing recursiveness in the
previous subsection, knowing %= is sufficient to characterize =, for all 7. Below is a formal
definition.

Definition 1.1. We say > on Il x F and =g on F have a cross-partition recursive repre-
sentation (u, Iy) if

1. There exists a continuous, non-constant, and affine © : X — R, and a continuous,
strongly monotone, normalized, and translation invariant Iy : B(S,u(X)) — R such
that

frog e I(uo f) > Ip(uog)

2. For all £ € ¥, = is represented by Vg : F — R, where Vg(f) is the unique solution
to
k= Iy((uo f)Ek)

3. »= is represented by V : II x F — R, where

Vi(m, f) = L(Vo(f[m))

and
vEl(f) Ey
Vil flm) = | VU E
Ve, (f) En

In this case, we also say = is recursively generated by >=q.
Theorem 1.1. The following statements are equivalent:

1. a) {=x}tren and {=g}rex are continuous and monotone, satisfy m-Recursivity, In-
dependence of Redundant Information, Time Neutrality, and Stable Risk Prefer-
ences;

b) =0 satisfies Weak Certainty Independence and Strong Monotonicity; =¢ and {=g
}res satisfy Conditional Certainty Equivalent Consistency.
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2. %= and =g have a cross-partition recursive representation with (u, Iy).

Moreover, if two affine functions u and u' both represent 3=¢ on X, then there exists a >
0,b € R such that v = au +b. For a given u, Iy is unique.

Proof. See appendix. O

1.3.3 Intrinsic Aversion to Partial Information

In this subsection, we define aversion to partial information as a property of the cross-
partition preference »=. Then we show that under our recursive representation, aversion to
partial information is equivalent to a property of =y called Event Complementarity. We
study the relationship between Event Complementarity and ambiguity aversion. In the next
section, we consider familiar models of ambiguity preferences, and study the connection
among ambiguity aversion, Event Complementarity, and aversion to partial information.

Definition 1.2. We say = exhibits aversion to partial information at act f if (7o, f) = (7, f)
for all w. We say = exhibits aversion to partial information if >= exhibits aversion to partial
information at all acts.

Attraction to partial information and information neutrality are defined analogously.

This definition of aversion to partial information is similar to Preferences for One-Shot
Resolution of Uncertainty in Dillenberger [2010], and preferences to get information “clumped
together rather than apart” as in Koszegi and Rabin [2009]. Our definition only requires
that the DM prefers no information 7y to any information 7. This is weaker than the notion
of information aversion defined in Grant et al. [1998] and Skiadas [1998], which requires that
coarser information is always preferred to finer information.'* If the DM exhibits aversion
to partial information at all acts and obeys Time Neutrality, then (mo, f) ~ (7%, f) = (7, f)
for all f.

In the modal Ellsberg preferences, there is complementarity between the events {G} and
{Y'} in eliminating ambiguity. The DM knows that the joint event {G,Y} has a precise
probability 2, while each subevent {G} or {Y'} has an imprecise probability ranging from 0
to 2. By partitioning the event {G,Y} into the subevents {G} and {Y'}, the information
regarding whether the ball drawn is yellow or not breaks this complementarity and creates
ambiguity. A DM averse to ambiguity might naturally be averse to this information. We
formalize this idea as a condition on = below.

Axiom 9 (Event Complementarity). For all E and f, if fEx ~¢ x for some x, then f =
xEf.

Intuitively, Event Complementarity captures the following thought experiment. For a
given act f and event FE, first calibrate the value of f conditional on F by finding its

14Tn Grant et al. [1998], finer information corresponds to higher Blackwell’s informativeness ranking.
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conditional certainty equivalent, that is, the constant act = such that fEz ~¢ z(= zFEx).
Then replace f on E by x, that is, consider the act zE f, and compare this to the original act
f. By construction, zE'f and f are equivalent conditional on F, and they are identical, and
hence trivially equivalent, conditional on E¢. A DM who satisfies the Sure-Thing Principle
would view f and xE f as equivalent. Replacing f by its conditional certainty equivalent z on
E however, breaks the potential complementarity between the events E and E° with respect
to the act f. A strict preference f =g zE f reveals a DM who values such complementarity.

Proposition 1.1. Suppose =q is represented by (u, ly) where Iy is translation invariant.
Then =q satisfies Fvent Complementarity if and only if for any act f and constant act x
such that fEx ~q x,

In(uo f) > Ip(uo (fEx))+ Io(0E(uo f —uox)) (1.1)
Proof. Fix f,x, F such that fFEx ~q x. By translation invariance of I,
Iy(uo (zEf)) = Io(0E(uo f —uox)) + u(x).
Since fEx ~q z, Iy(uo (fEz)) = u(z), thus

In(uo (xEf)) = Iy(0E(uo f —uox)) + Iy(uo (fEx))
Thus
Io(wo f) > Iyuo 2Ef)

if and only if
In(uo f) > Ip(uo fEx)+ Iy(0E(uo f —uoux))

So f =o zEf if and only if (1.1) holds . O]

Inequality (1.1) describes Event Complementarity of =q in terms of its utility represen-
tation (u, ly). This gives us another way to understand this axiom. Given an act f and a
constant act x such that fFEx ~g x, notice that the utility profile u o f corresponding to f
can be decomposed as follows:

uof=wuo(fEx)+0E(uof—uoux)

Since x is a constant act, u o (fEz) varies only on E, and 0E(u o f — w o x) varies only
on E°¢ by construction. Thus w o f is decomposed into the sum of two utility profiles,
one capturing the variation of w o f on F and one capturing the variation of u o f on
E¢. Proposition 1.1 shows that Event Complementarity holds if and only if the value of
utility profile wo f, In(uo f), is greater than or equal to the sum of the values of these two
pieces, Ip(uo fEx) + IH(0E(uo f —uox)). Notice that if Iy is superadditive, then Event
Complementarity holds. However, the converse is not generally true. This result will be
useful in verifying that Event Complementarity holds in a number of classes of ambiguity
preferences.

Finally, the following proposition shows that in our recursive model, aversion to partial
information is equivalent to Event Complementarity.
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Theorem 1.2. Suppose = is recursively generated by »=q. Then the following statements are
equivalent:

1. »=¢ satisfy Event Complementarity.
2. %= exhibits aversion to partial information.

Proof. See appendix. O

1.4 Ambiguity Preferences

In this section, we investigate further the link between ambiguity aversion and aversion
to partial information. In particular, we examine whether partial information aversion is
implied by ambiguity aversion for four familiar classes of translation invariant ambiguity
preferences: MEU, multiplier preferences, variational preferences, and CEU. Another popular
class of ambiguity preferences, the second order belief model, does not satisfy translation
invariance and thus is not captured by our model. We defer discussion of second order belief
models to Section 1.5.

We first introduce the ambiguity aversion axiom:!®

Axiom 10 (Ambiguity Aversion). For all f,g € F and « € (0,1),

frog=af+(1—a)g=f

As argued by Gilboa and Schmeidler [1989], Ambiguity Aversion captures a preference
for state-by-state hedging. If = is represented by (u, Iy), and I, is continuous, monotone,
normalized, and translation invariant, then =g is ambiguity averse if and only if Ij is concave.

1.4.1 Maxmin EU

MEU is the most popular model that captures ambiguity aversion. The static MEU model
is axiomatized by Gilboa and Schmeidler [1989], and a recursive MEU model is axiomatized
by Epstein and Schneider [2003].1
We say =¢ has an MEU representation (u,P) if it can be represented by a function
Vo : F — R of the form
Vots) = min [ u()ip

peEP

where P is a closed and convex subset of A(S).

15Tn the literature, this axiom is usually called Uncertainty Aversion. Strictly speaking, it does not
coincide with the definition of ambiguity aversion as in Ghirardato and Marinacci [2002] or Epstein [1999].
But for the four families of preferences we study, Axiom 10 implies ambiguity aversion.

16Tn contrast with our model, Epstein and Schneider [2003] assume reduction.
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For any convex and closed prior set P and any partition w, we define the w-rectangular
hull of P to be rect.(P) = {p = & p'(:|E)q(E:)|Vp',q € P}. The set rect,(P) is
the largest set of probabilities that have the same marginal probabilities and conditional
probabilities for events in m as elements of P. By definition, P C rect,(P) for any P
and 7. The set P is called m-rectangular if rect,(P) = P. Whether P is m-rectangular is
closely related to whether a DM with belief set P is strictly averse to partial information 7.
The next proposition summarizes the link between MEU preferences and aversion to partial
information.

Proposition 1.2. Suppose = is recursively generated by =o. Suppose >=q has a MEU repre-
sentation (u, P), and =g has a MEU representation (u, Pg), for all E € X. Then

1. = exhibits aversion to partial information at all acts.

2. For any partition m, there exists some act f such that = is strictly averse to w at f,
i.e., (mo, f) > (m, f), if and only if P is not w-rectangular.

Proof. See appendix. O

Remark 1. MEU has an intuitive interpretation as a malevolent Nature playing a zero-
sum game against the DM [Maccheroni et al., 2006b]. In this interpretation, Nature has a
constraint set P, and chooses a probability in order to minimize the DM’s expected utility. In
our recursive model without reduction, the information 7 turns this into a sequential game.
In period 0, Nature chooses a probability from P for events in 7. In period 1, Nature chooses
a (possibly different) probability from P over states for every event in 7, conditional on that
event. In this way, information 7 expands Nature’s constraint set from P to rect,(P). On
the other hand, the DM has committed ex-ante to a fixed act f. So introducing information
7 helps Nature and hurts the DM. Part (2) of Proposition 1.2 shows that if information
strictly expands Nature’s constraint set, that is, if P C rect,(P), then Nature can make the
DM strictly worse off at some act.

Remark 2. Epstein and Schneider [2003] develop a recursive MEU model in which they
maintain reduction. They show that %= is dynamically consistent with respect to = if and
only if P is m-rectangular. Part (2) of Proposition 1.2 shows that if we instead maintain
dynamic consistency but relax reduction, then information neutrality at 7 is equivalent to
m-rectangularity of P.

Remark 3. When the prior set P is a singleton (so the DM has SEU), or when P = A(S),
the DM is intrinsically information neutral.

1.4.2 Multiplier Preferences

Introduced by Hansen and Sargent [2001] to capture concerns about model misspecification,
and later axiomatized by Strzalecki [2011], multiplier preferences have found broad applica-
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tions in macroeconomics.!” We say 3=¢ has a multiplier preferences representation (u, q, 0) if
it can be represented by a function Vg : F — R of the form

VMﬁ=:mmI/UU%m+9R@Mﬂ

PEA(S)

where ¢ € A(S) is the reference probability, R(p|lg) = [In gdp is the relative entropy
between p and reference probability ¢, and 6 is a scalar measuring the intensity of ambiguity
aversion.

Proposition 1.3. Suppose =¢ has a multiplier preferences representation (u, q,0), and = is
recursively generated by =q. Then = exhibits intrinsic information neutrality.

Proof. See appendix. O

1.4.3 Variational Preferences

Variational preferences are introduced and axiomatized by Maccheroni et al. [2006a,b]. We
say »=o has a variational representation (u, ¢) if it can be represented by a function V : F — R
of the form

%uw:mn/uﬁ@+m»

PEA(S)

where ¢ : A(S) — [0,400] is a convex, lower semicontinuous and grounded (there exists
p such that ¢(p) = 0) function. The function ¢ is interpreted as the cost of choosing a
probability. The MEU model and multiplier preferences model are special cases of varia-
tional preferences.'® Variational preferences are the most general class of ambiguity averse
preferences that satisfy translation invariance.

We let dom(c) = {p : ¢(p) < +o0} denote the domain of c¢. If u(X) is unbounded, then
for a given u, ¢ is the unique minimum convex, lower semicontinuous, and grounded cost
function that represents >=q.

Updating Variational Preferences

For any non-empty E € 3, we say =g has a variational representation (ug, cg) if it can be
represented by a function Vg : F — R of the form

Ve(f) = p;gilgs) /S up(f)dpe + ce(pE)

where cg @ A(S) — [0, +00] is a convex, lower-semi-continuous, and grounded conditional
cost function.

17 See Hansen and Sargent [2007] and references therein.
18Variational preferences have a MEU representation when c is 0 on a set P and +oo elsewhere, and a
multiplier preferences representation when ¢(p) = R(p||q).
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The next theorem shows that within the variational preferences family, Stable Risk Prefer-
ences and Conditional Certainty Equivalent Consistency characterize the following updating
rule for conditional cost functions:

: c(p)

BPE) = s n e PLE) (12

Taking the infimum over all probabilities with posterior pg controls for any concern for

model mis-specification outside event E, which is irrelevant to =g due to consequentialism;

normalization by ﬁ captures a maximum likelihood intuition: probabilities p assigning a

higher probability on the event that occurred are more likely to be selected and determine cg.

Since we imposed Strong Monotonicity on 5=, every event F is =¢-non-null. In particular,

p(E) > 0 for all p € dom(c). Then by Lemma A.4 in the Appendix, the infimum in (A.1)
attains at some p.

Theorem 1.3. Suppose = has a variational representation (u, c) and satisfies Strong Mono-
tonicity. Suppose for any non-empty E € 3, =g has a variational representation (ug,cg).
Then the following are equivalent:

1. =g and =¢ satisfy Stable Risk Preferences and Conditional Certainty Equivalent Con-
sistency.

2. =g has a variational representation (u,cg) such that

[ 7rp g% min /Eu(f)dPE+CE(PE) > min /Eu(g)dpE+CE(pE)

PEEA(E) pr€A(E)
where »)
. c(p
c = min
B(PE) = ) p(E)
Proof. See Appendix. O

This generalizes well-known updating rules for the two important subclasses of varia-
tional preferences: prior-by-prior updating in the MEU class, and Bayesian updating in the
multiplier preferences class.

Corollary 1. Suppose assumptions and Statement 1 in Theorem 1.3 hold.

1. If =¢ also has a MEU representation (u,P), then for any non-empty E, =g has a
MEU representation (u,Pg), where Pg is the set obtained from P by prior-by-prior
updating, that is

Pr =A{p(|E)lp € P}

2. If =o also has a multiplier preference representation (u,q, @), then for any non-empty
E, =g has a multiplier preference representation (u,qg, ), where qg is the Bayesian
posterior of q.

Proof. See Appendix. O
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Variational Preferences and Preferences for Partial Information

In general, recursive variational preferences might not exhibit aversion to partial information
at all acts. This can be explained by the following intuition. Similar to the MEU model,
variational preferences also has the intuitive interpretation of a malevolent Nature playing
a zero-sum game against the DM [Maccheroni et al., 2006b]. With variational preferences,
Nature’s constraint set is the domain of the cost function ¢, dom(c). In addition, Nature
has to pay a non-negative cost (or transfer) of ¢(p) to the DM if it chooses a probability p
in dom(c). Nature seeks to minimize the DM’s expected utility plus the transfer. In our
recursive model without reduction, information 7 turns this into a sequential game, affecting
both Nature’s constraint set and how often Nature has to pay the DM a transfer. Similar
to the MEU model, in period 0, Nature chooses a probability from dom(c) for events in 7.
In period 1, Nature chooses a (possibly different) probability from dom(c) over states for
every event in 7, conditional on that event. So information 7 expands Nature’s constraint
set from dom(c) to rect,(dom(c)). On the other hand, with information 7, Nature also needs
to pay a non-negative transfer to the DM at every node where it chooses a probability. The
total transfer can be higher or lower than what Nature would have paid in the static game,
depending on the cost function c. If the total transfer is higher, then this helps the DM. So
the overall effect from information 7 is indeterminate. Below is an example in which when
the transfer effect dominates and the DM strictly prefers information 7 at an act f.

Example 1.1 (Attraction to Partial Information in VP). Suppose S = {si, s2,53}. Let
u(z) =z (where X = R). Consider the partition 7 = {{s1, s2},{s3}}. Let E = {s1,s2}. Let
p=(33.3),and P ={p e A(S) : p(s;) > 4,Vi =1,2,3}, for some § € (0, £].

Let o = 0. For all p € P\p, in the probability simplex illustrated by Figure 1.3, we
connect p to p by a line segment and extend it to a point p’ on the boundary of P. Let a,

be the ratio of the length of line segment pp to the length of line segment pp’. Consider the

cost function
Q@ itpe P,
c(p) = { g

+o00 otherwise.

Note that ¢ is convex, lower semicontinuous, and grounded, so (u, ¢) characterizes some VP.
Consider the act f = (0,3K,1K), where K is a large number in R, and K¢ > 10.
Without information, V (7, f) = 40 K + 1. Suppose the DM now gets partial information .
Then
c(p) 1

— min 3K i - (30K +1
Ve(f) pEI?i?E)g pE(82)+p(.lr;31)lngp(E) 1_5(3 +1)

V(m, f) = minp(E)ll—é(BéK +1)+p(s3)K+c(p) =30K+1+0K+1=46K +2
» _

Then V(m, f) = 46K +2 > 40K +1 = V(mo, f), so the DM has a strict preference for partial
information 7 at f.
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Figure 1.3. Probability Simplex

The following proposition identifies a necessary and sufficient condition on the uncondi-
tional cost function ¢ under which aversion to partial information holds at all acts. In the
zero-sum game against Nature interpretation, this condition ensures that the total transfer
Nature pays under information 7 does not exceed that in the static game. To formalize this,
we need some additional notation.

For all pg € A(F) and p’ € A(S), define pp @g p’ by

(pe @5 p)(B) =9 (E)pe(B) + p(BNE),YB € X

That is, in pgp ®p p/, we substitute p'(:|E) by pg for probability conditional on E, while
measuring probabilities of events in E°¢ (including E°) by p'.

Proposition 1.4. Suppose =o has a variational representation (u,c), and = is recursively
generated by =o. Then %= exhibits intrinsic aversion to partial information at all f if and
only if for any non-empty £ € X3,

c(p) > inf c(qg ®gp)+p(E) inf e @ q)

, Vp,p(E)>0
T gpeA(E) gea(s)  q(E) P-p(E)

where pg is the Bayesian posterior of p.

It is straightforward to verify that this condition holds for MEU and for multiplier pref-
erences.

The above condition restricts the cost function ¢ so that »= exhibits partial information
aversion at all acts. As shown in Example 1.1, this can be violated by some variational
preferences, where attraction to partial information at some act is possible. So this condition
might be too strong for some purposes.

The next proposition characterizes a joint condition on the cost function ¢ and an act f
under which = exhibits aversion to partial information locally at f. This does not preclude
the possibility that = exhibits attraction to partial information at some other act g. As we
will explain later, this joint condition also has an intuitive interpretation.
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Proposition 1.5. Suppose =¢ has a variational representation (u,c), and = is recursively
generated by =o. Then for any act f such that

pe

1) nargmigl | aldp+ c(p)] £ 0 (13)

= exhibits aversion to partial information at f.
Proof. See appendix. O

If =9 has MEU representation (u,P), then the cost function is an indicator function
where

0 Vp e P
+00  otherwise

c(p) = dp(p) = {

In this case, for any act f, argminyea [ u(f)dp + c(p)] € P = ¢ '(0). So the result that
an MEU DM is averse to partial information at all acts follows as a natural corollary of
Proposition 1.5.

Condition (1.3) has an intuitive interpretation in terms of comparative ambiguity. Fol-
lowing the notion of comparative ambiguity aversion in Ghirardato and Marinacci [2002] and
Epstein [1999], given two static preferences =1 and 5=, over F, we say =1 is more ambiguity
averse than =9 if for all f € F and x € X,

friz= [z

By Maccheroni et al. [2006a] Proposition 8, if »=; has a variational representation (uy,c)
and =5 has a variational representation (us, cs), then %= is more ambiguity averse than =
if and only if u; &~ uy,'® and ¢; < ¢y (provided u; = uy). In the following when discussing
comparative ambiguity aversion, we normalize risk utilities so that u; = 5.2

We say an act f can be locally approximated by an SEU preference that is less ambiguity
averse than >=¢ if there exists a preference relation >’ on F that admits an SEU representation

U(f) = [S o (f)dg

such that (i) >’ is less ambiguity averse than = and (ii) V' (f) = U'(f).

Proposition 1.6. Suppose =q has a variational representation (u,c). Condition (1.3) holds
at some act f if and only if f can be locally approximated by an SEU preference that is less
ambiguity averse than =q. In particular, if f can be locally approximated by an SEU prefer-
ence that is less ambiguity averse than =g, then = exhibits aversion to partial information

at f.

19

u1 = ug if u; = aug + b, for some a > 0, b € R.
20Tn VP, u is unique up to positive affine transformation.
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Proof. Suppose f can be locally approximated by an SEU preference >’ that is less ambiguity
averse than =g. Let >’ be represented by U’ with risk utility u’ and belief ¢ € A(S). Since >’
is less ambiguity averse than $=(, we can normalize v’ so that u = «’. In addition, ¢ € ¢71(0)
by Maccheroni et al. [2006a] Lemma 32. Since V(f) = U'(f),

V() = uinl [ u(dp+ ) = U'1) = [ (e = [ u(fda+elo)

pGA S S S
The last equality follows from the fact that ¢ € ¢=*(0). So ¢ € argminyea[[qu(f)dp + c(p)]
by definition. Together with ¢ € ¢~*(0), this implies that

pe

) nargmigl | aldp+ c(p)] £ 0

Thus condition (1.3) holds at f.

Now suppose there exists some p* € ¢ *(0) N argminyea [y u(f)dp + ¢(p)]. Define U’
by U'(f) = [gu(f)dp*. Then by definition U’ represents an SEU preference >’ that is less
ambiguity averse than >=p. Also

V() = /5 w(f)dp* + (") = / u(f)dp = U'(f)

S

So f can be locally approximated by an SEU preference that is less ambiguity averse than
70- O

Proposition 1.7. Suppose =} has a variational representation (u',c') and f can be locally
approzimated by some SEU preference >' that is less ambiguity averse than =}. Suppose =2
also has a variational representation (u?,c?), and let =% be recursively generated by =%. If
=2 is less ambiguity averse than =} and more ambiguity averse than >', then =% exhibits
partial information aversion at f.

Proof. By Proposition 1.6, f can be locally approximated by an SEU preference >’ that
is less ambiguity averse than 3=} if and only if condition (1.3) holds. Then there exists
p* € ¢ (0) Nargmingealfsui(f)dp + c1(p)] such that Vi(f) = [qui(f)dp* + ci(p*), and
c1(p*) = 0. By definition, =2 is less ambiguity averse than =} if and only if u; = uy
and ¢, > ¢;. Since =2 is more ambiguity averse than >’ uy = v’ and p* € ¢;'(0). Let
u = u; = uy = u'. Therefore:

/Su(f)dp*+02(p*) _ /Su(f)dp*+cl(p*) S/

[ u(p)ipap) < / u(f)dp-+ex(p), ¥p € A(S)

S

The first inequality follows from the fact that p* € arg minyea[[gui(f)dp + c1(p)], and the
second from ¢; < ¢o. Thus p* € arg minpeA[fsu(f)dp + c2(p)]. So

gyl [ a(P)dp+ ()]0 51(0) £ 9

pe

and by Proposition 1.5, 3=2 exhibits aversion to partial information at f. O
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1.4.4 Choquet EU

Finally, we look at the CEU model axiomatized by Schmeidler [1989]. The CEU model
is of particular interest because it allows for both ambiguity averse and ambiguity loving
preferences, so this provides a framework for studying the relationship between information
preferences and ambiguity attitudes more generally.

We say =¢ has a CEU representation (u,v) if it can be represented by a function Vj :

F — R of the form

where v : 3 — [0,1] is a capacity, that is, v(S) = 1, v(0) = 0, and v(F) < v(F) for all
ECF.

If =, satisfies Ambiguity Aversion, then v is a convex capacity.?! In this case, CEU
preferences become a special case of MEU preferences, with the set of priors P being the
core of the convex capacity v.22 So for CEU preferences, ambiguity aversion implies aversion
to partial information.

For CEU preferences, we can say a bit more about the connection between ambiguity
attitudes and information preferences. We can also define ambiguity loving.?

Axiom 11 (Ambiguity Loving). For all f,g € F and «a € [0, 1],

fr~og9=froaf+(1—a)g

We show that within the CEU model, ambiguity aversion implies partial information
aversion, and ambiguity loving implies partial information loving.

Proposition 1.8. Suppose =g, {=g}pex have CEU representations, and %= is recursively
generated by >=.

1. If ¢ satisfies Ambiguity Aversion, then %= exhibits partial information aversion at all
acts.

2. If = satisfies Ambiguity Loving, then %= exhibits attraction to partial information at
all acts.

Proof. See appendix. O

2L A capacity v is convex if v(EUF) 4+ v(ENF) > v(E) + v(F) holds for all E, F € X.
2For a convex capacity v, its core is {p € A(S)|p(E) > v(E) for all E € ¥}.
23This is called “uncertainty appeal” in Schmeidler [1989].
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1.5 Discussion: Second Order Belief Models

Another important class of ambiguity preferences is the second order belief model [Klibanoff
et al., 2005, Seo, 2009, Nau, 2006]. We say »=o has a second order belief representation if

Wmi%iémﬂéwﬁ@wm

where u € A(A(S)) is a second order belief over the space of distributions A(S), and ¢
is a non-decreasing function capturing ambiguity attitude. When ¢ is smooth and concave
(convex), the DM is ambiguity averse (loving).

For the second order belief models, translation invariance fails, and thus Conditional
Certainty Equivalent Consistency cannot provide a well-defined update rule. Instead we
adopt Bayes rule for the second order belief p as our update rule.

Assumption 1. Suppose ¢ has a second order belief representation (u, ¢; ©, ut). Then for
any non-null event F, =g has a second order belief representation (ug, ¢p; O, ug) satisfying

1. Risk and ambiguity attitudes are not updated: up = u, ¢pp = ¢.
2. Prior by prior updating of first order belief: O = {py(:|F)|py € O}.

3. Bayes rule for second order belief:

11(0)pe(E)

ne®) = T ) du(@)

(1.4)

In general, second order belief models exhibit no systematic relation between ambiguity
aversion and information aversion, as the following example illustrates.

Example 1.2. Consider the standard three color Ellsberg urn. Let S = {R,G, Y} and © =
{(%, %9, %(1 —0))0 = %, %} Suppose the second order prior u puts equal probability on py =
(%, %, %), and pz = (%, %, %) Assume the DM is risk neutral with u(z) = z, and ambiguity
averse with ¢(y) = log(y). Information is given by the partition 7 = {{R, G}, {Y'}}. Let

E = {R,G}. Suppose the above update rule captures conditional preferences, so g (p 1 ) =

%, and ,uE(p%) = 1—72 By computation we can show that the DM is strictly averse to m

(V(m, f) < V(mo, f)) at acts f = (1,0,0) and (0,1,1), and strictly loves = (V(m, f) >
V(mo, f)) at acts f = (0,1,0) and (1,0,1).

Observe that the partition 7’ = {{R},{G,Y}} contains only events with known prob-
abilities. The two acts (1,0,0) and (0,1,1), at which the DM is strictly averse to partial
information m, are measurable with respect to 7’ and thus unambiguous. This suggests that
a DM with second order belief preferences will be averse to partial information at acts where
she has local ambiguity neutrality. The next proposition formalizes this idea.
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Following Definition 4 in Klibanoff et al. [2005] we say =¢ displays (local) smooth ambi-
guity neutrality at act f if V(mo, f ol AS) f s u(f)dpedp]. In second order belief models,
ambiguity aversion only implies partlal mformatlon aversion at the subclass of locally ambi-
guity neutral acts.

Proposition 1.9. Suppose =¢ and {=g}pes are second order belief preferences, with update
rule satisfying Assumption 1. If =q is ambiguity averse (loving), then = exhibits partial in-
formation aversion (loving) at all acts where = displays (local) smooth ambiguity neutrality.

Proof. See appendix. O
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Chapter 2

Multi-action Menus and Information
Acquisition Problem

2.1 Set-up

In this chapter we study decision problems with general multi-action menus. We consider a
two stage information acquisition problem. The DM is endowed with some compact menu
F C F. At stage 1, the DM acquires some partial information 7 by paying a cost C(mw),
where C : II — R. At stage 2, she learns which event in 7 realizes, and chooses an action
from the menu F' contingent on that event. Finally, the state s realizes and the DM receives
the consequence of her chosen action.

For any menu F', the information acquisition decision reflects the standard tradeoff be-
tween the cost and benefit of getting information 7. The DM will choose 7 € II to solve

max V(r, F)—C(m)

where V(m, F) is the value of the decision problem (m, F'). Because the cost C'(7) is deter-
ministic, we focus on how the value function is affected by ambiguity attitudes. For a given
menu F', the DM trades off the marginal cost and benefit of getting finer information to
determine the optimal partition.

For any m = {Ey,..., E,}, VE;, let f* be the optimal act conditional on event E;. Ex-
ante, if information 7 is chosen, the DM can expect to get state contingent consequence
of f* = fiE\fsEy--- ff E,_1f}, and the value of decision problem (m,F') is given by
V(m, F') = V(m, f*). So the information acquisition problem can be reduced to the study of
V 1 x F — R, the evaluation of singleton menus, expecting intermediate information 7.

Let M be the collection of compact subsets of F. We want to extend preferences over
information and singleton menus, = on II x F, to preferences over information and menus
=" over IT x M. This extension is straightforward since 3= is m-recursive for each 7.

To that end, for every FF € M and 7 = {E,--- , E,}, define

FTo— {flElfQEQ"'En—lfn : fz € F7V7,: 17 7n}_
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Note FFC F™ C F, and I' = F™ whenever F is a singleton.
Next, for a menu I’ and partition 7, we define its conditional certainty equivalent as

(FIE) E
o(Flm) = | AT B

where ¢(F|E;) € X and
a(e(FIE)) = max (/]

We define the preferences =" on II x M as follows:
(7, F) =" (7', G) if and only if Vg € G™ ,3f € F™,(x, f) = (7', 9)
In this case we say =" is extended from =.

Lemma 2.1. Suppose V : Il X F — R represents i=. If =" 1is extended from 3=, then =7 is
represented by V : 11 x M — R where
V(r, F) = maxV(x, ) = Vo(c(F|))
E T

Since 1:/ and V agree on Il x F, we abuse notation a bit by using V' to denote the extended
function V' : II x M — R. Here V (7, F') is interpreted as the value of the decision problem
(7, F).

The following proposition states some comparative statics of V' (m, F').

Proposition 2.1. 1. If F C F', then V(n, F) < V(m, F").

2. Suppose =" and =% are recursively generated by variational preferences =} and =2. If
=0 18 more ambiguity averse than =3, then Vr, F, Vi(n,F) < V*(r, F).

The proof is straightforward and thus omitted.

Part (1) of Proposition 2.1 says that the DM always weakly prefers bigger menus. This
distinguishes our model from that in Siniscalchi [2011]. In Siniscalchi [2011], the DM might
prefer a smaller menu due to dynamic inconsistency and desire for commitment. This sug-
gests one way to test the two models.

Part (2) of Proposition 2.1 says that the more ambiguity averse the DM is, the less she
values any information and menu pair (7, F'). However, this does not say that the value of
information is decreasing in the degree of ambiguity aversion. Example 2.2 below illustrates
this point.

Furthermore, V (7, F') is not monotone in information 7, so more information can be
strictly worse. Formally, 7y is (strictly) more informative than m, denoted mo > (>)my, if
the partition 7y is (strictly) finer than the partition m;. If = displays non-trivial ambiguity
aversion, then we can find a menu F' and partitions m > m; such that V(mg, F') < V(my, F).
Below is an example.
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Example 2.1. Suppose S = {si, s9, 53}, and =g has a MEU representation (u,P) where
P ={pe Adp(s) = %,p(s;),) € [%, %]} For simplicity assume risk neutrality, so u(z) = x.
Suppose the DM faces menu F' = {(0,1,1),(0.49,0.49,0.49)}. Then V(m, F) = % Let
m = {{s1, 52}, {s3}} > m. The informed DM will choose (0.49, 0.49, 0.49) given {s1, s2}, and

(0,1,1) given {s3}. Therefore V(m, F) = 0.575 < 2 = V(mo, F)." Information hurts.

This non-monotonicity is driven by intrinsic aversion to partial. Dillenberger [2010] shows
that a preference for one-shot resolution of uncertainty in two-stage compound lotteries is
equivalent to a preference for perfect information in an extended model with intermediate
choices. We show a similar result is also true in our model.

We say that =" exhibits a preference for perfect information if VF € M and 7 € 1I,
(7*, F) =" (m, F).

Proposition 2.2. Suppose = is recursively generated by =o, and =" is extended from =.
Then the following statements are equivalent:

1. =7 exhibits a preference for perfect information.
2. %= exhibits partial information aversion at all acts f € F.
3. »=o satisfies Event Complementarity.

Proof. See appendix. O

2.2 Value of Information under Ambiguity

In the rest of this section, we focus on the value of acquiring information 7: AV (w, F) :=
V(rm, F)=V (mo, F'). In appendix B, we analyze the marginal value of information, V (s, F') —
V(my, F') for any mo > 7.

Acquiring information 7 affects the decision problem in two ways. First, information
provides a way for the DM to fine-tune her strategy: expecting to get m, she conditions her
choice of optimal action on the event realized in m, so her effective menu expands from F
to F™. This captures the instrumental value of information, and is always non-negative.
Second, information directly affects the DM’s utility from acts, thus also has intrinsic value.
The value of information 7 in decision problem F' admits the following decomposition:

AV(m, F)=V(m, F) —V(m, F)
= [max V(m, F') — max V(r, )] + [max V(r, f) — max V(m, f)]

The first bracketed term captures the non-negative instrumental value of information. The
second bracketed term captures the intrinsic value of information. It is zero if the DM is
intrinsically neutral to information, so V(r, f) = V(m, f) for all f, and non-positive if the

YP(s2l{s1,52}) =[5, 2], s0 (0.49,0.49,0.49) (4, s,y (0,1,1).
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DM is averse to partial information. So a DM’s willingness to pay for information 7 is the
resulting trade-off of these two components.
Next we look for conditions under which the value of information is non-negative, that
is, the DM is still willing to acquire information 7 when it is free, regardless of ambiguity.
Let Fy = argmaxyep V (mo, f) be the set of uninformed optimal acts.

Proposition 2.3. For any menu F, if there exists an uninformed optimal act fy that is
m-measurable, then AV (mw, F') > 0.

Corollary 2. Suppose =} has a variational representation (ui,c;), and v € X 1is an unin-
formed optimal act from menu F for DM 1. If DM 2 has a variational representation (ug, )
and is more ambiguity averse than DM 1, then AV?(x, F) > 0.

Proposition 2.1 says that for variational preferences =g, V(m, F) is decreasing in the
degree of ambiguity aversion in =g for all (7, F'). Is the same comparative statics true for
the value of information AV (7, F')? The answer is no. The value of information is non-
monotone in the degree of ambiguity aversion. Below is an example.

Example 2.2. Suppose DM 1 has SEU preferences with belief p € A(S). DM 2 has MEU
preferences with non-singleton prior set P C A(S), and P is not rectangular with respect to
some partition 7 (therefore 7 > my). DM 3 has MEU preferences with prior set Q = rect,(P).
Assume further that these three DMs have the same risk preferences, so DM 3 is more
ambiguity averse than DM 2, and DM 2 is more ambiguity averse than DM 1.

Since P C Q, there exists f € F such that VZ(mg, f) > V3(m, f). Also V3(xr, f) =
V3(mo, f) = V3(m, f).2 Therefore

V3, f) = Vi(mo, f) > VA(m, f) = V*(m0, [)-

Increasing ambiguity aversion increases the value of information 7 in this case.
Alternatively, DM 1 is intrinsically neutral to information, so V(m, f) = V*(m, f).
Therefore

Vi(m, f) = Vi(mo, f) = 0> V3(n, f) = VZ(m, f).
Increasing ambiguity aversion decreases the value of information 7 in this case.

Finally, we end this section with an application to portfolio choice problems.

Example 2.3 (Portfolio Choice). Consider the portfolio choice example in Dow and Werlang
(1992). Suppose there is a risk-neutral DM with wealth W. There is a risky asset with unit
price P and present value that is either high, H, or low, L. The DM has MEU preferences
and believes the probability of H belongs to the interval [p,p]. For simplicity, we assume

2The argument is similar to that in the proof of Proposition 1.2.
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the DM could choose to buy a unit of the risky asset (B), short-sell a unit of the risky asset
(5), or not do anything (N). So F' = {B,S, N}. The DM’s optimal portfolio choice is

B ifpH+(1-pL>P;
fo(P)=qN ifpH+(1-p)L>P>xH+ (1-p)L;
S iftP>pH+ (1—-p)L.

We now add an information acquisition stage before the portfolio choice. The DM can
acquire a binary signal, m = {h, [}, which is correlated with the state of the risky asset, with
p(h|H) = p(I|L) = ¢ > . We want to know if the DM will collect information 7 if it is
costless.

Suppose the DM’s uninformed optimal choice is B. Then V' (my, B) = pH 4 (1 —p)L — P,
and V(m, B) = [pgH+(1—p)(1—q)L+p(1—q)H+(1—-p)qL—P] = V(my, B). By Lemma B.1
in the appendix, 7 is valuable. The other two cases could be calculated similarly. Without
the need to compute the informed optimal strategies and V (7, F'), we can conclude that in
this portfolio choice problem the DM will want to collect information 7 if it is costless.

2.3 Conclusion

In this chapter, we extend the basic model in Chapter 1 to allow for choices from menus
after partial information is revealed, and study the properties of the value of information
under ambiguity. We show that the value of information is not monotonic under ambiguity.
Intrinsic aversion to partial information in the basic model is equivalent to a preference
for perfect information in the extended model.?> Moreover, the value of information is not
monotone in the degree of ambiguity aversion.

3This is similar to Proposition 2 in Dillenberger [2010].
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Chapter 3

An Application: Ambiguous Bandits

3.1 Introduction

The K-armed bandit problem has found interesting economics applications, for it captures
a trade-off between exploration (experiment to find out the arm that pays the most) and
exploitation (choose the arm that pays the most according to current knowledge). It has been
applied to model economic problems like job search, consumer behavior and market pricing,
research and development [Bergemann and Valimaki, 2008], adoption of new technology
[Bryan, 2010], and collective experimentation [Strulovici, 2010].

The classic model assumes that the decision maker has a unique prior belief about the
payoff distributions. Recent applications have found that Knightian uncertainty or ambigu-
ity, where the DM has little information and does not have a unique prior about the payoff
distributions, can also be a relevant factor for these applications. For example, workers
searching for a new job might not know the exact distribution of matching [Nishimura and
Ozaki, 2004], farmers considering for a new technology might not know the distribution of
its productivity [Bryan, 2010], investors might not know the return distribution of financial
assets [Epstein and Wang, 1994].

Motivated by the concern, this paper incorporates ambiguity, by allowing the decision
maker (DM) to have multiple Bayesian priors about the likelihood distribution of each arm
[Marinacci, 2002], into the classic K-armed bandit problem. In every period, exactly one arm
is chosen and observation generated for this arm. The DM updates her beliefs about this arm
prior-by-prior based on this observation while maintains beliefs about other arms unchanged
(arms are independent). We assume that the DM evaluates the random payoff stream re-
sulting from a strategy backward recursively, applying maxmin EU criterion [Gilboa and
Schmeidler, 1989] for the sum of instantaneous utility and discounted next period continuity
utility period-by-period at all histories. This ensures that dynamic programming techniques
can be applied.

An earlier paper, Li [2012], studies the same set-up and shows that classic characterization
of the K-armed bandit problem extends under multiple-priors (MP) utility. In particular, in
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one-armed bandit problem where there is only an unknown arm and a safe arm, the optimal
strategy is also a switching time strategy characterized by a generalized MP Gittins index.
In the general case with K unknown arms, the seminal Gittins-Jones index theorem [Gittins
and Jones, 1979] extends to the MP case. This highlights that it is the independence of arms
rather than expected utility assumption that is driving the Gittins-Jones index theorem.

Building on findings in Li [2012], in this chapter we explore implications of ambiguity on
the optimal incentive to experiment that are different from those of risk. First, comparative
statics on ambiguity differs from that on risk. For a given DM (thus fixed risk and ambiguity
attitudes), while increasing risk increases the incentive to experiment, increasing ambiguity
reduces the incentive to experiment. This provides qualitatively different behavioral implica-
tions of risk and ambiguity that are testable in data. This also suggests that ambiguity can
provide an explanation for the widely observed under-experimentation in new technology
and consumer products.! Second, we characterize an upper bound for the multiple-prior
Gittins-Jones index, as the lower envelope of the classic single-prior Gittins-Jones index for
every prior lying in the multiple-priors set. We show by an example that this upper bound
can be strict, and identify conditions under which this upper bound is exact. Finally, the
bandit model provides an easy justification for why ambiguity can persist in the long run
steady state: if information acquisition decision is endogenous and the DM has a safe arm as
outside option, then the DM might stop learning at some finite time and remain ambiguous
about the unknown arm.

3.1.1 Related Literature

We will not attempt to review the vast literature on the classic K-armed bandit problem.?
As mentioned above, this paper clearly builds on a previous paper [Li, 2012]. Below we will
only comment on some recent studies that incorporates ambiguity averse preferences into
one-armed bandit/optimal stopping problems.

Anderson [2012] studies the one-armed bandit problem with Bernoulli distributed payoffs,
and the DM has second-order belief ambiguity averse preferences by Kahn and Sarin [1988]
(which captures a failure to reduce objective compound lotteries). He show theoretically
and test experimentally two behavioral predictions. First, ambiguity averse agents have
a lower Gittins index than ambiguity neutral agents, appearing to undervalue information
for experimentation. Second, the ambiguity averse agent is also willing to pay more than
ambiguity neutral agents to learn the true mean of the payoff distribution. Different from
Anderson [2012], we use a multiple (Bayesian) priors model [Marinacci, 2002] to capture
ambiguity aversion, and consider arbitrary bounded payoff distributions. Our comparative
statics result in Section 3.3 can be viewed as a generalization of Anderson’s first claim in the

!For empirical evidence on underexperimentation, see Anderson [2012] and references therein.
2 Gittins et al. [2011] is an up-to-date textbook on the topic. Bergemann and Valimaki [2008] survey
the economic applications of the multi-armed bandit problem.
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multiple priors case. His second claim is not true in our model.?

Riedel [2009] studies optimal stopping problem with multiple priors. He imposes a time
consistency assumption on the set of priors over the full state space and considers only a
lump-sum payoff at the stopping time. He shows that the Snell envelope and optimal stopping
strategy extends to the multiple-priors case in a straightforward way. In his model, a duality
theorem that the multiple-prior Snell envelope equals to lower envelop of the individual
single-prior Snell envelopes and a minimax identity between the utility maximizing stopping
time and the minimizing prior holds. He also characterizes a multiple-priors version of Doob
Decomposition of supermartingales and optional sampling theorem. Miao and Wang [2011]
apply the multiple-priors model to study option exercise and investment. Different from
Riedel [2009] but similar to our model, they consider recursive utilities by specifying only
sets of one-step-ahead probabilities.

The main difference between our approach and that in Riedel [2009] and Miao and Wang
[2011] is that we explicitly consider a multiple priors Bayesian learning process. Somewhat
surprisingly, with the particular Bayesian learning structure imposed, the minimax type
result in Riedel [2009] fails: the multiple-prior Gittins index is not always equal to the
lower envelope of the single-prior Gittins indices. This suggests a modeling conflict between
time-consistency (recursive models) and conditional i.i.d. assumption.

The rest of the paper is organized as follows. Section 3.2 introduces the K-armed bandit
model with multiple-priors, a recursive construction of the multiple-prior utility, and previous
results [Li, 2012] on the existence of optimal strategies and characterizations in the special
case of one-armed bandit problem that are necessary for later explorations. Section 3.3
explores the comparative statics of the optimal experimentation on ambiguity. Section 3.4
questions the existence of an equivalent single prior for every multiple-prior bandit problem.
Section 3.5 discusses an alternative specification of the multiple-prior utility. Some of the
proofs are relegated to Appendix C.

3.2 The Model

In this section, we will first introduce the model set-up and a recursive construction of the
multiple-prior utility. Then we will summarize results in Li [2012] on the existence of optimal
strategies, and characterization of the optimal strategies and value function by a generalized
MP Gittins index in one-armed bandit problems. In Section 3.3 and 3.4, we will explore
further properties of the MP Gittins index.

30me crucial assumption for Anderson [2012]’s Theorem 2 is that an ambiguity averse agent computes
the ex-ante value from learning the true distribution (f) by expected utility. In our paper, the agent is
always ambiguity averse and adopts a multiple priors model to compute one-step-ahead utilities.
4Therefore every prior considered describes a conditional i.i.d. process.
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3.2.1 Set-up

The set-up is similar to that in Li [2012]. We consider a classic K-armed bandit problem.?
Time is discrete and varies over {1,...,T}. Horizon T can be either finite or infinite. There
are K independent arms, which can be interpreted as competing R&D projects, technologies,
consumer products, jobs, etc. For each period ¢ and arm k, a state s¥ in some compact state
space S is realized, and arm k yields some bounded payoff X*(s¥) € [—M, M], denoted X}.

In each period ¢, the DM can choose exactly one out of the K arms, observe its state
realization, and receive payoff from this arm. Let a;, € {1,..., K} denote the arm chosen
in period t, si* denote the state realization observed in period ¢, and Z; = X" denote the
payoff received in period t. Let hy = (aq, s7", ..., ar, i) be the partial history up to period t,
that is, the record of each arm chosen and state realization of the chosen arm in the first ¢
periods. Thus h; describes all information the DM has prior to choosing the period ¢4 1 arm.
H,=({1,..., K} x S)" is the set of all partial histories up to time ¢. In particular, Hy = ().
A strategy profile is a random vector a = (ay, - -+ ,ar), where a; : H,_y — {1,--- , K}. So in
the beginning of period t 4 1, the DM chooses which arm to pull next based on past history.

We incorporate ambiguity by allowing the DM to have multiple beliefs about the distri-
bution governing the {sF}Z, process. In particular, we adopt Marinacci [2002]’s model of
multiple Bayesian priors. For fixed k, let © be a compact subset of A(S).° Conditional on
Ok, {sF}L, are ii.d. with (unambiguous) likelihood distribution {(:|0). The DM’s a priori
information about the 6 is modeled by a compact and convex set C} of Bayesian priors on
A(O). When C}, is a singleton, there is no a priori ambiguity about arm k and {sf}Z,
reduces to a standard sampling process. We also assume that K arms are independent, so
all prior information can be described by vector C' = (C4,...,Ck). We will refer to such a
bandit problem as a (C,T')-bandit.

Finally we describe the law of motion of beliefs. At each partial history h;, the DM is en-
dowed with a vector of convex and compact posterior belief sets C(-|h:) = (C1(-|he), ..., Ck(-|ht)).
Suppose in period ¢ + 1 the DM selects arm k and observes a state realization s, ;. We as-
sume her posterior belief sets conditional on history hyy1 = (hy, k, sfﬂ) are updated in the
following way:

e For arm k, belief set is updated at sfﬂ prior-by-prior according to Bayes rule, so
Cr(lhesr) = {un(-[st41) = Ve € Cr(-|he)}
e For any arm j # k, no updating occurs, so
Ci(-[hig1) = Ci(-[ha)

Note that the updated posterior belief sets {Ci(-|hsr1)}E, are also convex and compact.
Since arms are independent, beliefs on arm j # k are not updated at observation of sf+1.
Finally, we let C(:|hit1) = (C1(-|hes), - - - Cr (| heta))-

5See, for example, Berry and Fristedt [1985] for a textbook reference.
6For any separable metric space X, we used A(X) to denote the space of Borel probability measures on
X.
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3.2.2 Utility and Value Functions

Now we specify the utility. Suppose a DM follows a strategy a in a (C,T)-bandit and
receives a random payoff stream Z = (Zy,---,Zr), where Z, = X" for all t. In classic
expected utility (EU) model (when C' = {u}), his utility at each history h; is simply the sum
of discounted expected utility U, (1, T,a) = E,pin[>op_, 1 0"7*Zy]. In the multiple-prior
case, we would like to consider a DM who adopts a maxmin expected utility (MEU, Gilboa
and Schmeidler 1989, Epstein and Schneider 2003) criterion: he evaluates a random outcome
by computing the EU with respect to every prior and considering the worst one. In a dynamic
(C, T)-bandit problem, there are two obvious approaches to do this. One is to simply let
U, (C,T,a) = inf,co(n) Eu[Zf:tH §'71Z,] for all hy. Alternatively, Uy, (C,T,a) can be
calculated backward recursively, applying maxmin EU criterion for the sum of instantaneous
utility (Z;11) and discounted next-period continuation utility (0Us,,,(C,T,a)) period-by-
period for all h;. These two approaches coincide in the special case of single-prior EU
model, but differ in general whenever there is non-trivial ambiguity (C'is not singleton). We
will elaborate on this point in Section 3.5. For characterization of the optimal strategies
in (C,T)-bandit problem, we take the second approach so that utilities are recursive and
standard dynamic programming techniques apply.

Finite Horizon

For a fixed strategy a, not all partial histories are consistent with a. For example, if a(()) = 1,
then any partial history that starts with choosing arm 2 can never be reached under strategy
a. We say a partial history h; = (ag,s‘fé,a’l,...,ag,sgé) is consistent with strategy a if
as(hs) = a, ., for all 0 < s <t and h, = (a{),s‘f{),a’l, . .,a;,s?;). For any strategy a and
partial history h; consistent with a, we define ")a(-) = a(hy, -) to be a’s continuation strategy
on Hy/Hy, s > t.

For finite horizon problem (7' < o), we assume that the DM’s recursive multiple-priors
utility from following strategy a in a (C,T)-bandit can be computed backward recursively
as follows: for all a and C,

1. the hp-conditional utility U,,.(C,T,a) = 0 for any final history hr consistent with
strategy a;

2. at any partial history h; (0 < ¢ < T') consistent with a, her h;-conditional utility from
strategy a is

Uht (C, T, a) = pegght) E,u [Zt—i-l + 5Uht+l (Cv Tv a)] (31)

where hyyq = (ht,a(ht),sfﬂt)) is the t + 1-history follows from h,, strategy a, and

N h
random realization of state s?}rf).
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For simplicity, we use U(C, T, a) to denote the ex-ante utility Uy, (C,T,a). We have two
remarks on equation (3.1). First, we interpret payoff Z; in terms of utils instead of consump-
tions or monetary rewards, a simplification that allows us to directly compute Z;,, instead
of u(Zy+1) with some vNM risk index u. Second, conditional on hy, Zy41 + 6Uy,, (C,T,a)
is a function of state sfﬂt) while 1 is a product probability measure on []X A(6). When
there is no confusion, for any f : S — R, we will simplify notation by using £, [f] for
o, Js F(s")dl(s"|0k)dpn ().

The hi-conditional value of a (C,T)-bandit problem is defined as the supremum of h-
conditional utilities from following all strategies a that h; is consistent with, that is,

Vi (C,T) = sup Uy, (C, T, a)

In particular, the value function of a (C, T')-bandit problem is V (C,T') = sup, U(C,T,a). We
say a strategy profile a* is an optimal strategy if value V(C,T) attains at a*, i.e., V(C,T) =
U(C,T,a*).

By the recursive construction of the utility function, applying standard dynamic pro-
gramming techniques, we show that the value functions satisfy recursive relation (3.2) and
an optimal strategy exists.

Proposition 3.1. For any (C,T')-bandit, the conditional value functions satisfy the following
recursive relation

Vht (C7 T) = max inf Eﬂk [Xf—l—l +9- ‘/(ht’k7s§+1) (Cv T)] (32)

a(he)=k preCr(-|ht)

Furthermore, there exists an optimal strategy a* such that at all partial history hy, the optimal
choice is given by

* : k
a*(h) € arg max ukelCIiEIht) By [ X +0- V(ht,k,sfﬂ)(ca 1)

This leads to the following corollary.

Corollary 3. For any (C,T)-bandit, it is optimal to choose arm k at partial history hy if
and only if it is initially optimal to choose arm k in a (C(-|hy), T — t)-bandit.

According to this corollary, to solve for full contingent optimal strategy profile for all
bandits, it suffices to solve for what is initially optimal (a*(0)) for all bandits. This simplifies
the characterization of optimal strategy.

Infinite Horizon

Next we extend the recursive construction of utilities to the infinite horizon case. In a
(C, 00)-bandit, a strategy profile a yields an infinite payoff stream Z = (Z1,...,Z;,...). We
construct the infinite-horizon recursive multiple-priors utilities {Uy,(C, a)}p, in the following
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way. For every finite T and partial history h, (¢ < T), we define U/ (C,a) to be the T-
truncated version of Uy, (C, a), that is, the utility from following strategy a in a (C, T')-bandit,
constructed backward recursively as in the finite horizon case. Then we set Uy, (C,a) =
limy_, Ul (C,a). The sequence {U] (C,a)}7, ., converges by Lemma C.1 in Appendix C.

Similarly we let the conditional value functions Vj, (C') be sup, Uy, (C,a), and define the
optimal strategy a* as the strategy at which the value attains: V(C) = U(C,a*). The
next proposition shows that Proposition 3.1 for the finite-horizon case also holds for the
infinite-horizon case.

Proposition 3.2. For any (C,00)-bandit, the infinite-horizon recursive multiple-priors util-
ities {Up,(C,a)} also satisfy recursive equation:

Uht (C, a) = inf Eu[Zt+1 + 5U(ht7a(ht)’sa(ht))(c, a)]

neC(-|ht) t+1
The value functions {V;,(C)} satisfy recursive equation:

Vi, (C) = inf  E, (X}, +0-V C
(€)= max = inf B [Xi 0 Vi, o (C)
There exists an optimal strateqy a* such that at all partial history hy, the optimal choice is
given by
* : k
a'(h) € argmax  nf B, (X1 40 Vi gst, ) (C)

For all (C, 0o)-bandit, let Vhff be the value of its corresponding T-truncated finite horizon
problem (C,T), that is, V;"(C) := sup, Ul (C,a). We show that the values of the infinite-
horizon bandit problem can be approximated by the values of T-truncated finite horizon
problems.

Proposition 3.3. For all (C,00)-bandits and partial history hy, Vi, (C) = limy_,o V;L(C).

3.2.3 One-armed Bandit

Next we look at the simple case when there are only two arms, and one of them is known and
yields constant payoff. It captures the trade-off between experimenting with the unknown
arm and exploiting the safe arm, and is traditionally called the one-armed bandit problem.”

Let us specify notations for a one-armed bandit problem (C,\,T"). Since only arm 1 is
random, for every ¢ the period state space is S = S! with o-algebra S, and the whole state
space is = ST with o-algebra ¥ = U(H{ S). Tts natural filtration {F;}L, is given by
Fi = o0(s1,--+,8) for all t. Any strategy profile a = (aq,--- ,ar) is a predictable process,

"In some papers, this is also called two-armed bandit problem. To highlight the feature that there is
only one arm with unknown distribution, we follow Berry and Fristedt [1985] and call it one-armed bandit
problem.
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as a; = a(hy_1) € Fi—1. A random variable N : Q — {0,1} is a stopping time if event
(N <t)e F forall t.

When C' is a singleton set, say {u}, the problem reduces to a classic one-armed bandit
problem. In this case, it is well known that in a (i, A, T')-bandit the optimal strategy is a
stopping time, characterized by the Gittins dynamic allocation index®

E N t—le
A(p, T) := max ”(th}vd 0
Nzt By, 0

(3.3)

where N is a random stopping time.

The optimal strategy is a switching strategy characterized by the Gittins dynamic alloca-
tion index: start with arm 1 if and only if A(u,T') > A, keep experimenting with arm 1 as long
as A(p(|s1, -+ ,s), T —t) > A, switch to arm 2 the first time A(u(:|sy, - ,s), T — 1) < A,
and stay with arm 2 until 7.

For intuition about the optimal strategies in the general MP one-armed bandit problem
(C, N\, T), we first look at a simple example with two periods and Bernoulli distributed arm
one. In this case, the optimal strategy can be easily calculated by backward induction.

Example 3.1. Suppose T' = 2, K = 2, and arm 2 yields constant payoff A = % Arm 1 is
unknown. Let S = {0, 1}, and s; has Bernoulli distribution with success rate Pr(s} = 1|0) =
0 lying in © = [0, 1]. Let arm 1's payoff be X'(s;) = s;. Let C C {pta = ad3 +(1—a)d1]a €
[0,1]} be the set of ex-ante beliefs about arm 1.7 Discount rate is § € (0, 1).

Case 1: Suppose C] = { ,u%}, then this reduces to a classic bandit problem. The optimal

strategy is to choose arm 1 in period 1, continue to choose arm 1 in period 2 if si = 1
(success), and switch to arm 2 in period 2 if s; = 0 (failure).

Case 2: Suppose C, = {i|ov € [§ —a, 3 +a]}, where 0 < a < § characterizes the degree
of ambiguity. In this case, only two strategies are potentially optimal: (1) experiment with
arm 1 in period 1, and continue to choose arm 1 in period 2 if and only if s} = 1 (success);
(2) choose arm 2 in both periods. Since Cy(-[s] = 1) = [L252, 12534] and Cy(-[s; = 0) =

[%i55> %EZ;], the first strategy is optimal if and only if V(Y = % —a+ 5((% —a) 1;’__2?;“ + (% +
a)-3) > V® =1(1+46). So the DM will start with experimenting with arm 1 if and only if

a > a*(d), where a*(0) > 0 is an increasing function of § with value in (0, 0.08).

This simple example generates three conjectures about optimal strategies in multiple-
prior one-armed bandits.

1. The optimal strategy is still a switching strategy.

2. The more ambiguity averse a DM is (higher a), the less willing she is to experiment
with the unknown arm.

8See, for example, Berry and Fristedt [1985] Chapter 5.
954, is the Dirac measure that assigns probability 1 to (8 = 6p).
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3. For every multiple-prior set C' and time horizon 7', there exists an equivalent single-
prior u € C'. That is, a multiple-prior DM with belief set C' will behave just as an
expected utility DM with the equivalent prior p, for all levels of constant arm 2 payoff.

Conjecture 1 is formalized in Li [2012]. Below we state it without proof.

Theorem (Theorem 1, Li 2012). For all (C, A, T')-bandit, there exists a unique MP Gittins
indez, A(C,T), such that

- the optimal strategy takes the form of a switching strategy: first experiment with arm
1 from period 1 to period N*, then switch to arm 2 during period N* + 1 to T.

- where N* is a stopping time characterized by the first time the dynamic MP Gittins
index falls below arm 2 payoff, i.e. N* :=inf{t > 0|A(C(‘|s}, -+ ,s}),T —t) < A}.

Moreover, the value of an (C, X\, T)-bandit is

1_T
1—-9

V(C,\T) = max{A(C,T), \} (3.4)
Remark 4. Similar to the classic single-prior Gittins index, the multiple-prior Gittins index
is characterized by the unique cutoff value of arm 2 payoff, at which the DM is indifferent
between a strategy of always choosing arm 2 and a strategy of initially choosing arm 1
and continuing optimally. This is largely due to the backward recursive construction of the
utilities, which ensures that introducing MP will not affect the tractable recursive structure of

the classic bandit problem. However, this backward construction also comes at a cost. Unlike
Eu(O, ot x}
HE(JH f&:l ot—t )7
the MP Gittins index does not have a closed form solution. This is due to non-linearity of
the maxmin EU operator. In Section 3.4, we will relate the MP Gittins index A(C,T) to
lower envelope of classic Gittins indices A(u,T') for every prior u in set C. It turns out that

inf,cc A(p, T) is an upper bound for A(C,T).

the classic Gittins index, which has a clean expression of A(p, T') := maxy>1

3.3 Comparative Statics

In this section, we examine the second conjecture from Example 3.1: increasing ambiguity
(aversion) decreases the incentive to experiment with the unknown arm. This is true in our
model.

We first need a general definition of “more ambiguity (averse) than”. Following Ghi-
rardato and Marinacci [2002], we say i is more ambiguity (averse) than j about the un-
known arm if C; C C;. This can describe two sources of variations. First, ¢ and j can be two
different DMs, who face the same one-armed bandit problem and are given the same prior
information, and DM ¢ is more ambiguity averse than DM j. Second, it can be a single DM
who faces two different one-armed bandit problems, where the unknown arm in problem 7 is
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provided with less precise prior information and thus more ambiguous than that in problem
7. The comparative static statements in the next proposition hold for both interpretations.

Proposition 3.4 (Comparative Statics). For fized A\ and T', and one-armed bandits (C*, X\, T)
and (CV,\,T), if i is more ambiguity (averse) about arm 1 than j, i.e., C; C Cj, then

1. i has a lower MP Gittins index than j, i.e., A(C;,T) < A(C;,T).
2. 1 will experiment less than j, i.e., N < N7.
Proof. For part (1), by construction of utility

C; C G
= U(Cy, A\, T,N) < U(C;,\, T, N),¥YN
— A(C, AT, N) < A(C;, \, T, N),¥N (3:5)
= I]{}g}i(A(CZ-, ANT,N) < I]{}g}i(A(CZ-, AT, N)

Since for all k € {i,j}, A(Cyk, T') is the value of A at which maxy>1 A(Cy, A\, T, N) = 0. By
(3.5) and the fact that maxy>; A(Cy, A, T, N) is strictly decreasing in A\, A(C;, T') < A(C;,T)
follows.

For part (2), N < Nf & [V, (N] > t) = (N; > t)] & [AMCi(-|h),T)) = X =
A(C;(-|ht), T)) > A]. Since C;(-|h) € Ci(-|hy) for all hy, part (1) implies part (2). O

This generates interesting comparison between the effects of a change in ambiguity (aver-
sion) and that of risk (aversion) on the optimal level of experimentation. Increasing ambigu-
ity aversion and risk aversion both lead to lower level of experimentation. More surprisingly,
for a given DM (so a fixed degree of ambiguity aversion/risk aversion), increasing the amount
of risk and ambiguity in the problem have opposite effects on optimal experimentation. Under
risk neutrality,'? the value function is a convex function of arm 1 payoffs (X1), so increasing
risk (a mean-preserving spread of X1) increases the value of experimentation. On the other
hand, increasing ambiguity (an expansion of set C') decreases the minimum expected utility
for any consumption process generated by experimentation, and leads to a lower incentive
to experiment. This is illustrated by the following example.

Example 3.2 (Normal likelihood, normal priors, known variance). Assume arm 1’s payoff
X! = s}, and X! has normal likelihood X}!|# ~ N(f,0?) and normal conjugate priors
O|7,0% ~ N (7,0?). Let 02 be known and given. Denote a conjugate prior with mean 7 and
variance o2 by fi,,2. We introduce ambiguity by allowing mean of the conjugate prior to
take value in a closed real interval [a,b], i.e., Copo2 = {ptr 2|7 € [a,b]}. Assume the safe
arm 2 yields a constant payoff A in every period.

First we state a fact about the value function of a unique prior (p, ,2, A, T)-bandit:'!

10The claim here should not rely on the assumption of risk neutrality. A more careful definition of
“increasing risk” should generalize the comparative static to allow for arbitrary risk attitude. This will be
fixed later.

11 Proof see Appendix C.
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Fact 1. For any given N\, T, V(u, 42, N\, T') is weakly increasing in both 7 and o2, and it is a
convex function of T.

For the normal distribution case, we have!?
V(Cabo2, M\ T) = V(g o2, A, T) (3.6)
ACupo2, T) = Atgo2, T) (3.7)

Thus the comparative statics in ambiguity and risk are opposite:

1. Suppose there is an increase in ambiguity, say the prior set expands from [a, b] to some
bigger interval [a’, ], then by Fact 1, V(i o2, A\,T) < V(pta02, A, T)), and applying
(3.6) and (3.7)

A(Ca7b702, T) > A(Ca/’b/’UQ, T)

Thus the DM is less likely to experiment with arm 1.

2. Suppose there is an increase in risk, say the variance expands from o? to a higher &2,
then by Fact 1 V(itg02, \,T) < V(e 52, A, T), and applying (3.6) and (3.7)

A(Ca,b,crzu T) < A(Ca,b,527 T)
Thus the DM is more likely to experiment with arm 1.

This suggests that ambiguity, instead of risk, may serve as an explanation to the widely
observed underexperimentation of new products or technologies. In one-armed bandit prob-
lems, ambiguity generates testable behavioral implication that is qualitatively different from
risk: within a given DM (and thus the degree of ambiguity aversion is fixed), increasing
uncertainty (ambiguity) in the unknown arm decreases the incentive to experiment while
increasing risk, by raising the option value of the unknown arm, increases the incentive to
experiment.

3.4 Existence of Equivalent Prior

Here we want to examine the third conjecture: for every C' and T', there exists an equivalent
single-prior x € C' such that a multiple-prior DM with belief set C' will behave just as
an expected-utility DM with the equivalent prior y, in all (C, A, T)-bandits. By Theorem
3.2.3, p is the equivalent prior for (C,\,T)-bandit if p € C and A(C,T) = A(u,T). So
the question of whether an equivalence prior exists is equivalent to whether the multiple-
prior Gittins index A(C,T) is equal to the lower envelope of the single-prior Gittins indices,
inf,ueC A(,u, T)

First we show that the multiple-prior Gittins index A(C,T') is bounded above by the
lower envelope of the classic single-prior Gittins indices.

12Proof see Appendix C.
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Corollary 4. For all one-armed bandits (C, \,T),

A(C,T) < inf A7) (3.8)

Proof. For any p € C, let C; := {u}, and C; := C. By Proposition 3.4, A(C,T) < A(p, T).
Since this holds for every p in C, A(C,T') < inf,cc A(p, T). O

Next we ask whether (3.8) holds with equality. If it is true, an equivalent prior exists for
every one-armed bandit. Corollary 5 says that it also implies a minimax duality result: the
utility of a multiple-prior DM who first chooses for each strategy the expected utility mini-
mizing prior then the utility maximizing strategy, is equal to the utility from first choosing
for each prior the expected utility maximizing strategy then the utility minimizing prior.?
In many applications, the minimax equality serves as a trick to simplify characterization of
optimal solutions. In our one-armed bandit problems, it can simplify the task of finding the
multiple-prior Gittins index, an implicit solution, into computing the lower envelope of a set
of single-prior Gittins index, an explicit expression given by (3.3).

Corollary 5. The following statements are equivalent:
1. For allC and T, A(C,T) = inf,cc A(p, T).
2. For allC, T, and \, supy U(C, A\, N, T) = inf,ccsupy U(p, A, N, T).

Somewhat surprisingly, the equivalent prior may not always exist in one-armed bandit
problems. Below is a counter example, when A(C,T) < inf,cc A(p,T). And as a result, for
each prior p in C' and a p-expected-utility DM, it is optimal to keep experimenting; while
for a multiple-priors DM with prior set C', it is optimal to stop experimentation.

Example 3.3. Think of the case of Bernoulli likelihood. Now the DM considers three success
rates possible: ©; = {0.1,0.5,0.9}. A prior will take the form of p, = a1d0.1 + a2d0.5 + azdo.o,
fora € RY, a1+as+as = 1. Consider prior set C' = {y,|(a1—3)?+(az—3)*+(a3—3)? < 0.16},
a 0.4-ball around the equiprobability prior in A3. Let T' = 3 and discount rate § = 1. Suppose
X} =100- L1y, and arm 2 gives constant payoff A = 33.

In (C, A\, T)-bandit, the DM’s utility from choosing arm 1 initially and continuing opti-
mally is strictly lower than the utility from switching to arm 2 at the very beginning, that
is,

VAO(C N T)=9867<99=VEC \T)
So it is optimal for the DM to switch to arm 2 at the very beginning in (C, A, T')-bandit.

13This type of minimax duality theorems can be found in many previous applications of the multiple-prior
utility. See, for example, Theorem 2 in Riedel [2009] for optimal stopping problem and Section 3.2 in Epstein
and Wang [1994] for optimal portfolio choice.
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Alternatively, for all p € C, and the corresponding unique-prior bandit (u, A\, T"), the
DM’s utility from choosing arm 1 initially and continuing optimally is strictly higher than
utility from switching to arm 2 at the very beginning, that is,

inf VO (N, T) =100.36 > 99 = VO (u, X, T)
ns

So for all p € C, it is optimal for the DM to experiment with arm 1 for at least one period
in (u, A, T')-bandit.
Thus in this example A(C,T') < inf,ec A(p, T').

The gap between A(C,T') and inf,cc A(p, T') highlights an interesting dynamic aspect of
how ambiguity (aversion) could affect optimal experimentation. The comparative statics in
Proposition 3.4 describe the effect of ambiguity (aversion) on the incentive to experiment
at a give history node hy: having a set of conditional posterior C'(-|h;) instead of a unique
posterior p(-|h:) (in C(:|h:)) decreases the worst case evaluation of experimenting with arm
1, and thus lowers the incentive to experiment. In Example 3.3, when a multiple-prior DM
with belief set C' evaluates a strategy of experimenting with arm 1, she has the flexibility to
use different minimizing priors for evaluation of arm 1 at different history nodes. Yet when
an expected-utility DM with a single prior i evaluates the same strategy, she is committed to
using conditional posteriors from the same p. This flexibility in choosing different minimizing
prior u at different history nodes, together with ambiguity aversion, makes experimentation
even less attractive. So an ambiguity averse DM might experiment strictly less than any
expected-utility DM with some prior g within her prior set.

An interesting way to understand the difference is to view the MP bandit problem as a
social experimentation under unanimity voting rule.!* Consider the prior set C' as a society
of EU agents, each u € C representing an agent with belief ;1 about the payoff prospect
from experimenting with some social reform (arm 1). If at each history node the society
decides whether to experiment with arm 1 through unanimity voting rule, then the level
of experimentation may be strictly less than, if the society votes through unanimity rule a
dictator in period 0 and let this dictator decide whether to experiment at all subsequence
history nodes. This is because in the former case, the pivotal voter can be different at
different history nodes.

It is natural to ask whether we can characterize conditions under which A(C,T) =
inf,cc A(p, T'), and thus an equivalent prior exists. Here we look at the simple case when
the prior set (C') and likelihood distributions (©) can be parameterized by one-dimensional
real numbers, and generalize properties in Example 3.1 (two-point supported Bernoulli dis-
tribution) and Example 3.2 (normal-normal distribution). It turns out that the condition
needed is quite strong.

141 thank David Ahn for suggesting this story. See Strulovici [2010] for an application of one-armed bandit
problem on collective experimentation decisions under different voting rules.
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Definition 3.1. For real intervals A, B, and function f: A x B — Ry, let f(:[b) : A — R,
be a density function for every b € B.'> We say f has monotone likelihood ratio property
(MLRP) in a if for all a; < as and by < by,

flailbs) _ flaz|by)
flax|br) = flaa|bi)
In particular, MLRP implies that for b; < by, f(+|b2) first order stochastically dominates

(FOSD) f(:|b1). MLRP, instead of FOSD or other stochastic orders, serves our purpose
because it implies FOSD and can be preserved after Bayesian updating.!®

Condition 1. Suppose both © and C' can be parameterized by one dimensional real intervals

and density functions exist. Let © = [0,0] and C = {u, € A(O) : a € [a,a]}. Furthermore,
suppose {l(s|0)}peo has MLRP in s, and {u, € A(©) : a € [a,a]} has MLRP in 6.

Proposition 3.5 (Existence of Equivalent Prior). For one-armed bandit (C,\,T), if C' and
© satisfy Condition 1, then A(C,T) = A(pq, T'). In this case, u, is the equivalent prior for
(C,T).

Proof. See Appendix. O

To sum up, in this section we highlight a discrepancy between the multiple-prior Gittins
index and the lower envelope of classic single-prior Gittins indices for every prior in the belief
set, and characterize a restrictive set of conditions under which this discrepancy disappears.

3.5 Discussion

In Section 3.2, we construct the multiple-prior utility from following a strategy backward
recursively, applying maxmin EU criterion period by period. Alternatively, we could have ap-
plied maxmin EU criterion to the full discounted consumption stream and defined U;, (C, T, a)
infecn EH[ZtT,:t 10" Zy] for all hy. The next proposition says that these two specifica-
tions coincide on all consumption streams if and only if the set of predictive distribution of
C, Poc={P,= [ol(-|0)dp: p € C}, is singleton. That is, when ambiguity disappears.

Proposition 3.6. For any bounded adapted payoff process (Zy,--- , Zr),

UlC)(Zy,--+,Zr) < ;ifelgU({’u})(Zl’ -, Zr) (3.9)

And the inequality holds strictly for some (Zy,--- , Zr) if and only if Pc = { [o 1(:|0)dp :
w € C} is non-singleton.

5[, flalb)da =1 for all b € B.

16This is proved in proof of Proposition 3.5. Other commonly seemed properties, like FOSD or single
crossing properties, cannot be preserved after Bayesian updating and thus are insufficient for our purpose.
See Klemens [2007] for a discussion for this.
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Proof. See Appendix C. O

This says, in a repeated sampling setting, exchangeable probabilities (right hand side of
(3.9)), recursive utility (left hand side of (3.9)), and non-trivial ambiguity cannot be satisfied
at the same time. This modeling trade-off has been shown in generality in Epstein and Seo
[2011].17 Here we give a direct proof for the case of multiple-prior utility.!® In the multiple-
prior one-armed bandit problems, as studied in Section 3.3, this discrepancy generates the
gap between the multiple-prior Gittins index and the lower envelop of all single-prior Gittins
indices, and behaviorally, that a recursive multiple-prior-utility DM might have strictly less
incentive to experiment than any expected-utility DM with belief lying in her prior set.

17Tt is well known that imposing dynamic consistency results in restrictions on the ambiguity representa-
tion. See, for example, Epstein and Schneider [2003], Maccheroni et al. [2006b], Siniscalchi [2011].
18Slightly different from our set-up, Epstein and Seo [2011] does not consider intermediate consumptions.
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Appendix A

Proofs for Chapter 1

Lemma 1.2

Proof of Lemma 1.1. Fix (7w, f). We want to show that the sets U = {(7’,g) : (7', 9g) =
(m, f)} and L ={(n,g) : (7, f) = (7, g)} are closed.

Let {(7],, gn)} be a convergent sequence in the set U, with limit (7', g). We want to show
(7', ¢g) is also in U. Since «/, — 7’ in the discrete topology on II, there exists some N such
that for all n > N, 7, = . Continuity of =, ensures there exists a constant act =, with
(m, f) ~ (m,xf) ~ (7', 2¢), where the last statement follows from Stable Risk Preferences. If
(n',z¢) ~ (m, f) > (7, g), then by continuity of =/, there exists M (> N) such that for all
n> M, (n',x¢) = (7', g,). So (m, f) > (7}, gn) for sufficiently large n, a contradiction to the
assumption {(7/,9,)} CU. O

The next lemma verifies the existence of certainty equivalents as result of Continuity and
Monotonicity.

Lemma A.1. For any nonempty E € X, if =g satisfies Continuity and Monotonicity, then
for every act f we can find an E-conditional certainty equivalent c¢(f|E) € X such that

(f1E) ~e f.

Proof. Let f € F. Since f is finitely ranged, by Monotonicity there exists z*,x, € X
such that z* =g f =g x.. By continuity, U = {a € [0,1] : az* + (1 — o)z, =g f} and
L={ae€l0,1]: f =p ar* + (1 — a)z,} are closed subsets of [0, 1]. Since U U L = |0, 1],
by connectedness of [0,1], U N L # (. Thus there exists ¢(f|F) € UN L, and by definition
(f|E) ~p . .

Proof of Lemma 1.2. First we show equivalence of the two statements. (2) = (1) is a
straightforward verification. We show (1) = (2).

Since = is a continuous and monotone preference relation, there exists a continuous
function V : II x F — R that represents =. By Time Neutrality, (7o, f) ~ (7%, f),Vf, so
V(mo,-) = V(n*,-) : F — R represents the restricted preference relations =., and =,+. Let
Vo(+) := V(m,-), and let u : X — R be the restriction of Vj to constant acts X, where
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u(x) = Vo(x). Since V; is continuous, w is continuous. u(X) is connected and thus an
interval in R, since X = A(Z) is connected. We define the functional Iy : B(X,u(X)) —» R
by In(§) = Vo(f), where £ € B(X,u(X)), f € F satisfy uo f = £. Then I is well-defined
and monotone by monotonicity of =,. For any k € u(X), choose the constant act x such

that u(x) = k. Then by definition, Iy(k) = Vo(z) = u(x) = k. So I is normalized.
Similarly, for every 7, the continuous function V; = V(7,-) : F — R represents 5=,. We
show the connection between V, and (u, ly). Fix 7, f, E; € m. By continuity and mono-
tonicity of =g,, we can find conditional certainty equivalent ¢(f|E;) ~g, f. By m-recursivity,
(7, f) ~ (m,e(f|m)). Then (7, c(f|m)) ~ (7%, ¢(f|m)) ~ (70, c(f|r)), where the first indiffer-
ence is by Indifference to Redundant Information, and the second by Time Neutrality. By
transitivity of =, (m, f) ~ (mo, c(f[m)), so Vx(f) = Vo(c(f]m)) = Lo(u o c(f]m)). O

=o-non-null Events

This subsection clarifies the concept of a =¢-non-null event for defining conditional prefer-
ences.

The literature normally adopts the condition of a non-null event from Savage. An event
FE is Savage =q-non-null if there exists f, g, h, such that fEh =y gEh.

We consider a stronger condition: an event E is =g-non-null if there exist constant acts
x*, x, such that x* =g =, and 2*Fx, =¢ x,. An event F is Savage =g-non-null if it is >=¢-
non-null, but not vice versa. The next lemma compares how these two definitions differ in
the variational preference family.

Lemma A.2. Suppose = has a variational representation (u,c). An event E is =q-non-null
if and only if p(E) > 0 for all p € ¢ '(0). An event E is Savage =o-non-null if and only if
there exists some act f and some p € argmingyen(sy [ w(f)dp' + c(p') such that p(E) > 0.

Proof. For the first claim, we prove E is $=g-non-null iff 3p € ¢71(0) such that p(E) = 0.
Choose constant acts z*,x, such that z* = z,. First, suppose Jp € ¢ 1(0) such that
p(E) = 0. Then

Vo(z" E.) = u(@")p(E) + u(z.)p(E°) + c(p) = ulw.) = Vo(.)

The first equality holds because ¢(p) = 0 and p(E) = 0. Next, suppose instead p(E) > 0 for
all p € ¢™1(0). Then let p* € argmin, u(x*)p' (E) + u(z,)p' (E°) + c¢(p). Either p* € ¢7(0)
and p*(E) > 0, or ¢(p*) > 0. In either case,

Vo(z" Ex.)u(z")p"(E) + u(z.)p*(E) + ¢(p®) > u(z.)

so x*Ex, = .
For the second claim, suppose there exists some act f and some p € argmin,eca(s) Ju(f)dp'+
c(p) such that p(£) > 0. Then we can construct an act f’ such that f'(s) = f(s) for all
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s € B¢, and u(f!) = u(f,) — € for all s € E, and some € > 0. Since p(E) > 0,
W) = [ uthip+ [ ()i +etr)
> [ttt —entB)+ [ atrdnclp
= [ atr)n+ clp) = Vil

So f = f’. For the converse, suppose there exists f, g, h such that fEh =y gEh. Let
p € argmingea(s) [ u(gER)dp + c(p'). We argue that p(E) > 0. If instead p(E) = 0, then

‘Mﬂ%z/u@@+/umdem:/

E E
This contradicts fEh »=q gEh. O

wn@+/umedmzwumw

c c

Suppose =¢ has an MEU representation (u,P). As a corollary, F is »=g-non-null if and
only if p(E) > 0 for all p € P. In contrast, F is Savage =¢-non-null if and only if there exists
f and p € argmin,ep [u(f)dp such that p(E) > 0.

For the results about updating, the stronger »>g-non-null condition is needed. Pires
[2002] shows that if the unconditional preferences =, have an MEU representation (u,P)
and all priors give positive probability to event E, then Conditional Certainty Equivalence
Consistency is satisfied if and only if %= has an MEU representation (u, Pg), where P is the
prior-by-prior updated posteriors from P. In Section 1.4.3, we show that if the unconditional
preferences }=¢ have a variational representation (u,c) and p(E) > 0 for all p € ¢~1(0), then
Conditional Certainty Equivalence Consistency is satisfied if and only if =g has a variational
representation (u,cg), where cg is obtained from ¢ using update rule (A.1). In both cases,
E has to be »=g-non-null instead of Savage =p-non-null.

In the text, we impose Strong Monotonicity on =, to ensure that updating is always
well-defined. The following lemma follows directly by definition.

Lemma A.3. If =y satisfies Strong Monotonicity, then every event E in ¥ is »=¢-non-null.

Theorem 1.1

We first recall a result from Maccheroni et al. [2006a].

Lemma 28, Maccheroni et al. [2006a] A binary relation =y on F satisfies Weak
Order, Weak Certainty Independence, Continuity, Monotonicity, and Non-degeneracy if and
only if there exists a nonconstant affine function u : X — R and a normalized, monotone,
and translation invariant 1y : B(S,u(X)) — R such that

fzog e lo(u(f)) = lo(u(g))

Below we will apply this result to prove our representation Theorem 1.1.
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Proof of Theorem 1.1. We verify only the direction (1) = (2). The other direction is
straightforward.

By Lemma 1.2, (i) implies there exists a continuous function Vj : F — R such that that
for each 7, =, can be represented by

Vi, f) = Vole(f]m))

where c(-|7) : F — F, is the conditional certainty equivalent mapping.

Define u : X — R by u(x) = Vy(z). Define Iy : B(X,u(X)) — R by [y(§) = Vo(f), for
¢ € B(X,u(X)), f € F such that uo f = £. By Lemma 28 in Maccheroni et al. [2006a],
Weak Certainty Independence, Continuity, Monotonicity, and Non-degeneracy of =q implies
that u is continuous, nonconstant and affine, and I is well-defined, continuous, normalized,
and translation invariant. Moreover, for any &, £’ € B(S,u(X)) such that £ > &', there exists
f,g € Fsuch that uo f =& and uog = ¢, f(s) =¢ g(s) for all s, and f(s) »o g(s) for
some s. By Strong Monotonicity of o, f >o ¢ and thus [o(§) > Ip(£'). So Iy is strongly
monotone.

Next we show that for all f and nonempty E € ¥, k = Iy[(uo f)Ek] has a unique solution
in u(X).

Existence. Fix f and nonempty E. Define G(k) = Ip[(uo f)Ek] — k = Ly[(uo f — k) E0],
for all k € u(X). Since f is finite-ranged, we can find z*, x, such that z* = f(s) =¢ . for
all s. Let k* = u(z*), and k., = u(z,). Then G(k*) > 0, and G(k,) < 0 by monotonicity
of Iy. Since Iy is continuous, G is a continuous function of k£ on u(X). By the intermediate
value theorem, there exists kg € [k, k*] such that G (ko) = 0.

Uniqueness. Suppose k; and ky both solve k = Iy[(u o f)Ek], and k; # ky. Without loss
of generality, let ky > ko. By translation invariance of Iy,

]0[(u o f - ];31)E0] == Io[u(fEEl)] - ]{31 =0= Io[u(fEEQ)] - ]{32 = Io[(u o} f — EQ)EO]

Then (uo f — ki)E0 < (uo f — k) EO, since E is non-empty. Since I is strictly monotone,
I[(uo f — k1)EO] < Ip[(uo f — ky)EQ]. A contradiction.

For any m = {Ey, Es, -+, E,}, by Conditional Certainty Equivalent Consistency, x; is
the Ej;-conditional Certainty Equivalent of f if and only if x; ~q fFE;x;. This implies that
u(z;) solves k = Ip[(uo f)Ek] and x; ~o c(f|E;). So u(x;) = u(c(f|E;)), which implies
Vo(flm) = woc(f|m). As aresult, V(m, f) = Vo(e(f|m)) = Io(Vo(f|r)) by definition of Iy.

Finally we prove uniqueness. If both v and u’ are affine representations of =¢ on X, by
the Mixture Space Theorem [Herstein and Milnor, 1953|, ' = au + b for some a,b € R,
and a > 0. If both (u,Iy) and (u, I})) represent =g, then there exists a strictly increasing
¢ u(X) — u(X) such that I}(§) = ¢(1p(§)) for all & € B(S,u(X)). Since Iy and I} are
normalized, for any k € u(X), I(k) = k = ¢(Iy(k)) = ¢(k). This implies that ¢ is the
identity mapping, so I} = I,. O
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Theorem 1.2

Proof. By Conditional Certainty Equivalent Consistency, fEx ~¢ x < x ~g f, for all
f,z, E. So it suffices to show that %= exhibits partial information aversion if and only if
x~g f=froxEf, forall fx E.

Suppose = satisfies Event Complementarity. Fix a finite partition 7 = {Ey, -+, E,},
and an act f. For each i = 1,--- n, let x; € X be the E;-conditional certainty equivalent
of f,ie, x; ~g, f. Let fo :== f, fi = xiEfo, fo = xEsfy, -+, fu = 2, Enfu =
(x1Ev29Fs -+ -2y 1 B, _1x,). Note that f, is m-measurable. Also z; ~g, fi_1,¥Vi=1,--- n,
thus (mo, fi—1) = (mo, fi) by Event Complementarity, and (m, fy) ~ (7, fi) ~ -+ ~ (7, f) by
m-Recursivity. Putting these results together yields:

(m, f) ~ (m, fn) ~ (77, )
~ (mo, fn) (by Time Neutrality)

< (7m0, fue1) - < (7o, f)

Since this is true for an arbitrary act f and partition mw, %= exhibits aversion to partial
information.

We prove the converse by contradiction. Suppose not, so = exhibits aversion to partial
information but there exists some 7, £ € 7, f, and z such that f ~g z, but (7, zEf) >
(7o, f). Let my,---,n,, be labels for states in £, i.e., E° = {s,,, " ,Sn,, .- Then consider
the finer partition 7' = {E, {s,, }, -+, {sn,, }}. Thus xEf is 7’-measurable, and by Axioms
4 and 5, (n',xEf) ~ (", 2Ef) ~ (m,zEf). By n'-Recursivity, (7', f) ~ (7',zEf). By
transitivity, (7', f) ~ (mo,xEf) = (mo, f). This violates partial information aversion, a
contradiction.

U

Proposition 1.2

Proof. For part (1), by Theorem 1.2, it suffices to show that =, satisfies Event Complemen-
tarity. Since =¢ belongs to the MEU class, by Lemma 3.3 in Gilboa and Schmeidler [1989],
Iy is superadditive. Event Complementarity follows from that.

For part (2), if %, has an MEU representation (u,P) and = is recursively generated by
>0, then > can be represented by

n

Vir, £) = mip > lmin [ u(F)dp'EDp(E)

peEP £
1=

= min min [/u(f)dp2(|EZ)]p(Ez)

pEP pieP 4
i=1

= min(P)/u(f)dp’

p'Erecty
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Suppose P is not w-rectangular, so there exists ¢ € rect,(P)\P. Since P is convex and
compact, by the strict separating hyperplane theorem, there exists a nonzero, bounded and
measurable map ¢ € B(X,R) such that

/5dq</§dp,Vp€P

Without loss of generality, let 0 € int(u(X)). There exists f € F such that u(f) = o, for
some a > 0. Thus without loss of generality we can replace & by u(f) in above inequality.
By compactness of P, min,ep [u(f)dp attains at some p* € P, so using above

Vir )= min [unig < (o< [ o)y = Vi)

q’'E€rectr

Thus = is strictly averse to partition 7 at f.
For the converse, suppose P is w-rectangular, so P = rect,(P). Then V(m, f) =
V(mo, f),Vf, and = is intrinsically neutral to information 7.
U

Proposition 1.3

Proof. By Theorem 1 in Strzalecki [2011], if = has a multiplier representation, then Savage’s
Sure-Thing principle is satisfied. So Vf € F' and z such that fFEx ~g z, we have f ~y xEf.
By step 1 of our proof for Theorem 1.2, this yields information neutrality. O

Theorem 1.3 and Corollary 1

Lemma A.4. For the conditional cost function

' c(p)
) f Al
cu(Pe) [PEAS)DUIE)=ps) p(E) (>

if p(E) > 0 for allp € ¢ 1(0), then the infimum attains at some p € A(S), where p(-|E) = pg.

Proof. Let Q(pg) := {p € A(S) : p(:|E) = pr}. Then Q(pg) = Q(pg) UA(E°) is compact in
A(S). If ¢(p) = +oo for all p € Q(pg), then cgp(pr) = 400 and the infimum attains at any
p € Q(pg). Otherwise, cp(pr) < +0o. By the definition of infimum, we can find a sequence
p" € Q(pg), such that ;ﬁ’();)) is decreasing and lim,, ;,S’ZE)) = cp(pg). By compactness of Q(pg),
we can find a subsequence of {p"}, say {p*}, such that p* —, p* € Q(pg). It remains to
show that if p(E) > 0 for all p € ¢1(0), then p* ¢ A(E°).

Suppose not, so p* € A(E°). By assumption, ¢(p*) > 0, so ;ff(’;)) = 4o00. Yet by lower
semicontinuity of ¢, cg(pg) = lim inf; <2 o> ) _ oo A contradiction. O

pM(E) = p*(E)
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From our discussion in Appendix A.2, Strong Monotonicity of =g ensures that all events
are =¢-non-null. As a result, the condition that p(E) > 0 for all p € ¢7*(0) is satisfied for
all E.

We then verify that cg is convex, lower semicontinuous and grounded, so cg can serve as
a cost function.

Lemma A.5. The function cg : A(E) — [0,00] defined in (A.1) is (i) convez, (ii) lower
semicontinuous, and (i) grounded.

Proof. Convexity. By the lower semicontinuity of ¢, Vpg, qp € A(E),« € [0,1], we can find
P q" € A such that p(-|E) = pg,q"(-|E) = qp, and cp(pp) = 222, cplqp) = 24 Fix
a € [0,1]. Then there exists v € [0, 1] such that > P (E) = a. Set p’ == yp*+(1—7)q".

(E)+(1=7)a*(E)
Then p'(-|E) = app + (1 — a)gg. Therefore,

en(aps + (1 — a)gp) < 2 o 2e) + (1 =7)clq’)
E E E) > *(

P(E) ~ i (E)+ (1 —7v)g*(E)
_ pr(E)

Y (E) + (1 —7)q*(E)
= acg(pe) + (1 — a)ce(gr).

(1—-7)q"(E)
vp*(E) + (1 —7)q*(E)

ce(pe) + ce(qr)

Lower semicontinuity. We want to show the epigraph epi(cg) is closed. To that end, let
(P, 1) € epi(cg), (Ph,1m) —n (PE, 7). We Want to show r > cg(pg). Since p(E) > 0 for all

p € ¢ 1(0), by the previous lemma cg(ph) = for some p™ where p"(-|E) = p}. Since

n(E'
A(S) is compact, there exists a subsequence {p*} of {p"} such that p; —; p*.

If p*(E) > 0, then p*(:|E) = limy, p*(:|E) = limy p% = pp. Then liminfy ;,g’(’;)) > ;*(’(’;))
b?f *l)ower semicontinuity of c¢. Since r, — r and 7, > cp(ph) = ;151(’;)), r > liminf, ;,55’(’;)) >
c(p
p*(E) k

If p*(E) = 0, then there must be a subsequence p*(E) —, 0. Since r+e > ég(ph) = CIEI(’E))
for ¢ > 0 and sufficiently large k, liminf, c(p*) = 0 > ¢(p*) > 0. Thus p*(E) = 0 and
c(p*) = 0, a contradiction.

Groundedness. c¢ is grounded, so there exists p* such that ¢(p*) = 0. By assumption,

p*(E) >0, so cg(p*(:|E)) = 0. 0

> cg(pgp). Then we are done.

Lemma A.6. Consider two variational functionals I(¢) = minyea (¢, p) +c(p), and I'(¢p) =
min,ea (o, p) + ¢ (p). If c(po) < ¢(po) for some po, then there exists & € B(X) such that

1(€) < I'(¢).
Proof. Consider the epigraph of ¢

epi(c’) = {(p,r) € AxRlr > ¢ (p)}
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Since ¢ is nonnegative, convex, lower semicontinous, and grounded, epi(c’) is nonempty,
closed and convex. Let ro = c(po). Since ¢(py) < ¢(po), (po,70) ¢ epi(c’). By the strict
separating hyperplane theorem there exists (£, 7*) € B(X) x R, (&, 7*) # 0, that strictly
separates (pg,ro) from the set epi(c’), such that, that is

<§07p0> + 7o - r* < inf <€0>p,> + T, ot
r'>c(p')
Note that we cannot have r* < 0, otherwise we could take ' = +o0 in the right hand side and
the inequality fails. Also we cannot have r* = 0, otherwise we get (£y, po) < inf, (&, p") <
(&0, o), a contradiction. Thus r* > 0, and we can rescale both sides by Ti (take £ = T%{g)
to obtain

(&, po) + 10 < inf (&) +7'
r’Zc’(p’)

Then
(€, p0) + 10 = (& po) + c(po) > Iggg(fa@ +c(p) = 1(§)
and
Anf (& P+t = min(€, p) + () = I'()
Thus [(5) < <§,p0> + 1o < infr’Zc’(p’)<€>pl> +1r' = ll(g) 0

Proof of Theorem 1.3. (2) = (1). Suppose (2) holds. It is straightforward to verify Stable
Risk Preferences and Consequentialism. We prove Conditional Certainty Equivalent Consis-
tency also holds.

Fix f € F and z € X such that x ~g f. We must prove fEx ~g x. Suppose ¢ and cg
satisfy update rule (A.1). Then

v f =@ = ot [ lfdpe+ coioe)

| ' c(p)
_ £ dpg + £
pEéIi(E) /E ulf)dpe peA:pl(ﬁE):pE p(E)

Let p* € A achieve the infimum above.!

u(@) =" (B) [ fpu(Hdp(-1B) + 24 + p (B )u(a)
= [ a(t)dn’ (B ua) + ol

> min / u(f)dp + p(E)u(z) + c(p) = Vo(/ Ex)

pEA

'Let Ip : B(Xp,u(X)) — R be such that Ig(§) = inf,,ca(r) [ Edpe + ce(pp). Then Ig is also a
variational functional. Applying Maccheroni et al. [2006a] Lemma 26, the infimum attains at some p},. In
addition, if p(E) > 0 for all p € ¢~1(0), by the previous lemma there exists p* € A(S), p*(-|E) = p}, at
which the second infimum attains.
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It remains to show that the inequality cannot be strict. If not, then u(x) > Vi(fEz). Let
p € argmingea [, u(fEx)dp+ p(E)u(z) + c(p). Then

) > Vil 1) = mig [ Py +p(Euta) + (o)

— /E u(f)dp + p(E)u(z) + c(p)

If p(F) = 0, then u(x) > u(x)+c(p), which contradicts the non-negativity of c¢. So p(E) > 0.
Then

u(z) >

[ / w(f)dj + (7))

c(p)
p(E)

E)
- / u(f)dp(1E) +

| , c(p)
>
>  min /Eu(f)dpE + pEA;;I)I(1.|12)=pE p(E)

This contradicts the assumption that x ~g f. So fEx ~q x.
For the converse, suppose fEx ~g x. Then

) = VolsBa) = win | uf)p+ u(alp(E) + (o)

- /Eu(f)dp* + u(z)p*(E°) + c(p¥)

where p* € argmin, [, u(f)dp + u(z)p(E°) + c(p). If p*(E) = 0, then the equality above
implies c¢(p*) = 0, a contradiction to the assumption that p(E) > 0,Vp € ¢71(0). So
p*(E) > 0, and

P (B)u(z) = /E u(f)dp” + c(p”)

Thus
uw) = [ utpyim) + 22
; p*(E)
‘ ' c(p)
> d ; -
Sox =g f.
Also, as argued before, we can find ¢* € A(S), ¢*(E) > 0, such that Vip(f) = [, u(f)dg*(-|E)+

C(q*) SO
q*(E)

0" () [ ulda*(1E) + 252] + ¢ (B)u(x) > Vo(fEx) = u(x)
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Thus Vg(f) > u(x), or f =g x. So x ~g f.
(1) = (2). By assumption, =g has a representation of the form

Ve(f) = min / ws(f)dp + cu(p)

PEA(S) Jg

By Stable Risk Preferences, =y and =g agree on constant acts X. We can normalize by
setting ug = u. Next we want to show only p with support on E can achieve the minimum
defining V. For each f € F, choose p* € argminyeas) [gu(f)dp + cg(p). Without loss of
generality, we can choose x, € X such that f(s) =¢ @, for all 5. Since (fFz,)Ex = fEx
for any z, by Conditional Certainty Equivalent Consistency, fEx, ~g f. Then

Ve(f) = / (f)dp* + cx(p) = Ve(fEx) < /E w(f)dp" + p*(EYu(e.) + cx(p’)

So [pe(u(f) — u(zy))dp* < 0. Since u(f) — u(x,) is strictly positive on E°, [..(u(f) —
u(xy))dp* > 0, and this is an equality if and only if p*(E¢) = 0. So p*(E) = 1, and p* has a
natural imbedding in A(E). Therefore Vf,

Ve(f) = min / u(f)dp + cx(p)

PEA(E)

It remains to show that the (unique) conditional cost function cg coincides with ¢g(pg) :=
inf pe Aup(|B)=ps %. Suppose not, so cg # ¢g. Thus there exists p}, such that cg(pl) #
¢e(py). We prove a contradiction for the case cg(p};) > ¢r(p}). The case cr(p}) < ¢r(pl)
can be proved by replicating the arguments. Applying Lemma A.6, we can find {x € B(Xg)
such that min,, [, &pdpg + ép(pp) < min,, [, &pdps + cp(pe). Since u(X) is unbounded,
B(Xg) € B(Xg,u(X)) + R. Thus there is an act f € F such that (u(f) + k)(s) = £g(s) on
E for some constant k. So min,, [, u(f)dpg + ¢g(pr) < min,, [, u(f)dpe + ce(pE).

By Continuity, we can find x € X that is the E-conditional equivalent of f, z ~p f, and
u(z) = Ve(f) = min,, [ u(f)dpe + ce(pp).

Then

PE

u(r) = min[Eu(f)dpE + ce(pE)

PE

> min/Eu(f)dpE + ¢e(pE)

- min/ u(f)dpg + inf ()
E

PE peap(-|E)=pp p(E)

= min in u )
T he pedsp( \fE>= /E ) p(E)

— pEA}&f o0 p(E [fE f)dp + c(p)}

2If not, then u(X) is bounded below and ming u(f )( ) achieves the lower bound. By translation invariance
p* is also a minimizing probability for f’ such that u(f’) = u(f)+e. Then the whole argument works for f’.
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As argued before, we can find p € argmz'npeA,p(Eboﬁ [/ u(f)dp + c(p)]. Then multiplying
both sides of the inequality by p(E) and adding p(E°)u(x) to both sides yields

u(z) > p(E) (pw [l dp+0(23)]) + p(E°)u(z)

/ £)dp+ p(Eyu(z) + c(p)
/ (fEx)dp+ c(p) > Vol f Ex)

So z = fEz, violating Conditional Certainty Equivalent Consistency. O

Proof of Corollary 1. For part (1), suppose = has a MEU representation (u,P). So it has
a variational representation (u,c) with cost function ¢ such that ¢(p) = 0 if p € P and
c(p) = +o0 if p ¢ P. For any nonempty event E, Strong Monotonicity of o ensures that
p(E) > 0 for all p € P. Applying updating rule A.1,
) [011PE €PE= LB € P)
+00 otherwise

So =g has MEU representation (u, Pg).

For part (2), suppose i=¢ also has a multiplier preference representation (u, ¢, 6). So it has

a variational representation (u,c) with cost function ¢(p) = 6 [ lngdp. For any nonempty
event F, Strong Monotonicity of ¢ ensures that ¢(F) > 0. Applying updating rule A.1,

(pE) min i /lnpd
c = i — -
EPE) T ens)mtiE)=ps p(E) ¢’
— i ([ dpep(E) - ( ()
pea(s)pt1B)=pe p(E) g qp e qpe
p(E) p(E)
+ (p(E)In——= + p(E£°)1 )]
q(E) (£°)
) / 2L dpp,
E (4E
In the last step, we choose p such that p(E) = ¢(F) and p(:|E°) = q(-|E€). So =g has
multiplier representation (u, qg, 6). O

Proposition 1.4

Proof. By Theorem 1.2, = exhibits intrinsic information aversion at all acts if and only if V f
and x such that fEx ~¢ z, f =9 *Ef. By Conditional Certainty Equivalent Consistency,
fEx ~q if and only if z ~p f.
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If v ~p f, then u(r) = miny ca(r) fEu(f)dpE + cp(pe). So

Vo(wES) = min p(E)u(e) + [ u(F)dp+ clp)

peEA

= minp(E)[ min /Eu(f)dp}; + ¢r(pr)] +/ u(f)dp + c(p)

pEA prEA(E) ¢

= min min p(E)[/Eu(f)dpE + ¢e(pe)] + +/ u(f)dp + c(p)

pEA pEEA(E) c
— . . d EI ~
win win [ u(7)da+ a(E)ee(ae) + clar 9 0
(change of variable: ¢ = pp ®g p, and qg = p(:|F))
= min/u(f)dq +q(E)ép(qr) + min c(qr ®F q)
qe€A(E)

qeEA
Also

geEA

Vo(f) = min / u(f)dg + e(a)

“If” direction. Suppose inf, car) c(ge @ p) +p(E) infeen(s) % < ¢(p), Vp. Then for
all f, g,

[ u@da+ aE)intar) + min clarora) < [ulf)da+ cla)

9E

so Vo(zEf) < Vo(f). Thus the DM is averse to partial information at all f.
“Only if” direction. For each E € ¥, define

é(p) = inf, cam) c(qe @pp) +p(E)eg(p(-|E)) if p(E) >0
oo otherwise

Define I : B(S,R) — R by I(¢) = infpen(s) [ €dp + é(p). By the calculation above, we
have Vf € F, x ~g f, Vo(zEf) = I(u(f)).

If statement (2) fails, then there exists p such that é(p) > ¢(p). By Lemma A.6, we can
find ¢ € B(S,R) such that I(¢) > I(€). By unboundedness, B(S,R) C B(S,u(X)) + R, so
there exists f € F such that u(f)+k = & for some constant k. So we can find f € F such that
Vo(zEf) = I(u(f)) > I(u(f)) = Vo(f). This contradicts aversion to partial information. [
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Proposition 1.5
Proof. Let p* € ¢7'(0) Nargminyea[fqu(f)dp + c(p)]. Then Vo = {Ey,--- | E,},
Virm, f) = miﬂZp(Ez) [miny,eace) [u(f)dpi + cg,(pi)] + {qu(Sif};i:I; on c(q)
< 2P (B) [[u(Ndp (1E) + ep(prC(IBD] + | min: - e(q")
— [uthyir
S
= [t + et67) = Vi(mo.

The second equality follows from

e, (" (| Ei)) = =0

min
p(1E)=p* (1E:) p(E;)

and

min c(q*) = 0.
{qgeA(S):q=p* ON =} (q )

Proposition 1.8

Proof. (1) Suppose ¢ has a CEU representation (u,r) and satisfies Uncertainty Aversion.
By the Proposition in Schmeidler [1989] the corresponding functional I, is concave and
superadditive. By Proposition 1.1, this implies that Event Complementarity holds. By
Theorem 1.2, = exhibits aversion to partial information.

(2) Suppose =¢ has a CEU representation (u,v) and satisfies Uncertainty Loving. By
Schmeidler [1989] Remark 6 the corresponding functional I is convex and subadditive. By
Proposition 1.1 and Theorem 1.2, »= exhibits attraction to partial information. O

Proposition 1.9

Proof. Fix m = {Fy,--- , E,}. Suppose = has second order belief representation (u, ¢; O, 1)
and = is ambiguity averse. Then by Klibanoff et al. [2005] Proposition 1, ¢ is concave. Let
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f be an act where = displays local ambiguity neutrality. Then

n= [l Zpg )7L o[ ()1 (00)dn?)

/ ZP& // F)ps, (1 g, (0)])dpu(8)
R —

-/ ¢[Z< [ tradn, fpep" (EdL )
<¢/ / / oo @) (EdL oy )
/ [ st ivaduton | L)

/ / f)dpodp) =V (mo, f)

The two inequalities follow from the concavity of ¢. The last equality holds because =
displays local ambiguity neutrality at f.
The case for ambiguity loving =g can be proved analogously. O
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Appendix B

Proofs for Chapter 2

Lemma 2.1

Proof. We first show =" is represented by V(m, F) = max;cp« V (7, f). For all (x, F) and
(7', G), (7, F) =" (7', G) if and only if

Vg e G™,3f € F™,(m, f) = (7', g)
Since V : Il x F represents =, this is equivalent to

max V (7, f) > max V (7',
V(. /) 2 max V(r'.)

Thus (7, F) =1 (7', G) if and only if V(r, F) > V (7', G).
Then we show maxep= V (7, f) = Vo(c(F|7)). By definition, F™ = {fiE 1 foEs- - Ep_1 fp
fie F,¥i=1,--- n}. So
max V(w, f) = max...maxV(m, fiFr - Enfn)

max... max V(r, [c(fi| B:), Eily) by m-Recursivity

= max...max Vo([c(fi| E;), Ei]})

fieFr fn€F
= Vo([e(F|E;), Ei]}) by me-monotonicity

where the second to last equality is due to Independence from Redundant Information and
Time Neutrality. O

Proposition 2.2 and 2.3

Proof of Proposition 2.2. (2) < (3) is due to Theorem 1.2.
To show (1) = (2), take any singleton menu F' = {f}. A preference for perfect informa-
tion implies (7%, f) = (7, f), Vm. By Time Neutrality, (7*, f) ~ (70, f), so (mo, f) = (7, f).
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To show (2) = (1). Let 7 € Il and F' € M. Then

V(r*, F) =V (m, F)=[max V(r*, f) —max V (7", )] + [max V (7", f) — max V(m, f)]

fepT feFT fEFT fEFT

The first term is non-negative since F™ C F'™ . By (2) and Time Neutrality, V (7*, f) =
V(mo, f) > V(m, f), for all 7, f. So

mafoF”V(ﬂ-v f) = V(T{', f*) S V(?T*, f*) S ?Il?}i?X V(ﬂ-*v f)
e ™
where f* € F7 is the act that maximizes V (7, -). So the second term is also non-negative.
Thus V(7*, F') > V (7, F) and the DM has preferences for perfect information. O

Next we prove Proposition 2.3. We first prove a lemma. Let Fy = argmaxep V (o, f)
be the set of uninformed optimal acts. By our decomposition, as long as the DM is not
strictly averse to information 7 at some fy € Fj, then information is valuable.

Let F}' = argmaxsep Vi, (f) be the set of optimal acts in F' conditional on learning about
E;. Consider F* = {fiE1fsEs---E,_1ff: ff € Ff,Vi} C F7. The instrumental value of
information is zero if and only if F* N F # (). We collect these observations below.

Lemma B.1. 1. If there exists an unconditional optimal act fo € Fy such that V (w, fo) >
V (7o, fo) at fo, then V (7, F) — V(m, F') > 0.

2. If there exists a conditional optimal strategy f* € F* such that f* € F and V(w, f*) <
(<)V(mo, [*), then V(m, F) — V(mo, F) < (<)0.

Proof. By definition V (7o, fo) = maxsep V(mo, f). If V(7, fo) > V (7o, fo), then the intrinsic
value of information 7 at menu F' is non-negative:

max Vi, f) - max V(mo, f) = V(m, fo) = V(mo, fo) > 0.

As the instrumental value of information is always non-negative, V(m, F') — V(m, F') > 0
and 7 is valuable.

If there exists f* € F'NF*, then the instrumental value of 7, V (7, f*) —maxep V (7, f) =
0. In addition maxsep V(m, f) = V(m, f*) < V(mo, f*) < maxypep V(mo, f), so the intrinsic
value of 7 is non-positive. O

Remark 5. The first condition is helpful, as it requires only calculation of an optimal act
in the uninformed case. This could simplify checking whether ambiguity aversion generates
information aversion or not. In MEU models, this is equivalent to V(m, fo) = V(mo, fo),
when the intrinsic value of information 7 for menu F' vanishes.

Proof of Proposition 2.3. 1f there exists an uninformed optimal act fy that is m-measurable,
then V (7, fo) = V(7*, fo) = V(mo, fo). By the above lemma, AV (7, F') >0 . O
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Proof of Corollary 2. Let x be the uninformed optimal act for DM 1. So Vl(m,z) >
V(mo, f), for all f in menu F. Since DM 2 is more ambiguity averse than DM 1, uy = u;
and ¢y < ¢q. So for all f € F,

peA(S) pEA(S)

VZ(m, f) = min /SU(f)dpﬂL@(p)S min /SU(f)dp+cl(p)=V1(7To,f)

and V(mg,z) = u(z) = V?(mg,z). Thus V*(m,z) > V3(m, f) for all f € F. Since z is
m-measurable, by Proposition 2.3 we have AV?(w, F) > 0. O

Marginal Value of Information
For any menu F', consider two partitions mo > m;. The marginal value of getting the finer
information o is:

F)—-V F) = — V _ V4
V(m, ) = V(m, F) = [max V(m, f) — max V(ms, f)] + [ max V(rz, f) — max V(m, f)]
The first term captures the instrumental value of getting finer information 7 relative to
7y, and since F™ C F™ this term is non-negative. The second part captures the intrinsic
value of information my relative to my.
Lemma B.1 can be generalized as follows.

Lemma B.2. 1. If there exists an optimal strategy f*' for decision problem (i, F) such
that V(my, f*1) < V(mg, f*), then V(mq, F) — V(my, F) > 0.

2. If there exists an optimal strategy f** for decision problem (my, F') such that f** € F™
and V (mry, f*2) > V(my, [*2), then V (g, F) — V(7m1, F) < 0.

The proof is similar to the proof of Lemma B.1 and hence omitted.
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Appendix C

Proofs for Chapter 3

Properties of the Multiple Priors Utility

Lemma C.1. For all (C,00)-bandit, strategy a, and history hy, {U} (C,a)}3,,, converges
uniformly to some U, (C, a).

Proof. For any fixed h;, C and a, let Z = (Zy,...,Z;,---) be the resulting infinite random
payoff stream, and ZT = (Zy,...,Zr) be corresponding T-truncation. First we show for
every C,a and hy, {U}] (C,a)}3,,, is a Cauchy sequence in R and thus converges.

For any T} > T, > T, think of a large T', let

A:=UlNCa) = U2(Ca) = U2y, ..., 21y Z1yins - Z1y) — Ui (24, ... Z1,,0, ..., 0)
Since |Z;] < M and U;f; ! is monotone in the payoff streams,
UM 0,...,0,—M,...,—M) < A< U(0,...,0,M,..., M)

where in both sides the first 75 coordinates are zero. Thus |A| < 6725, For arbitrary
e > 0, we can pick T large enough that |[A| < e. So the sequence {U} (C,a)} is Cauchy
and converges. Let the limit be Uy, (C,a). Finally since for arbitrary €, the selection of T’
does not depend on C' or a, so the sequence of functions {U}] }52,,, converges uniformly to

function Uy,. O

Lemma C.2. For all one-armed bandit (C,\,T), the value function V(C,\,T) is continu-
ous, non-decreasing, and convex in .

Proof. By Theorem 3.2.3, the value function satisfies

1 -6
V(C,\T) = s max{A(C,T), \}

Since A(C,T) does not depend on A, the lemma follows as a direct consequence. O
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Proofs

Proof of Fact 1. For finite T, we prove by induction on 7. For T = 1,
Vipro2, \1) =B, L[X{IVA=TVA

V is weakly increasing in 7 and o2, and is a convex function of 7.
Now suppose the claim is true for all horizon less than 7. We want to show it is true for
T as well. To see this, note that

1—067

2, \,T) = A
V(II"LT,O' 2 7Y ) max{ 1_ 5

By WX+ V(g AT =1
2 ’

7'—|—X11

—L and o2, and is a convex

By induction hypothesis, V' (i, x; ,,A, T —1) is increasing in
—z 0

7'—|—X11
2

function of . Thus X{ +V(p,x1 AT — 1) is increasing in 7, X{, and ¢*, and is a
—5 0

convex function of X and 7. Since i, 2 is increasing in g in first order stochastic dominance
ranking, and increasing in o2 in second order stochastic dominance ranking, V (p, 52, A, T') is
weakly increasing in 7 and o2, and is a convex function of 7.

For infinite horizon problems, note that the value function can be approximated by the
corresponding finite horizon value function, so monotonicity and convexity is preserved in
the limit. O

Proof of equation (3.6) and (3.7). We prove (3.6) by induction on 7. For T' = 0, (3.6) is
true vacuously. Suppose it is also true for all problems with horizon less than T', we want to
show that it is true for problems with horizon T". So

1—6"
V(Ca,b,aza )‘7 T) = maX{)‘ﬁ? H[lfb} Eu 2 [Xll + 6V(Ca,b702('|Xll)a )‘> T— 1)]}
— T€]a, Hd

, Where

V(Capo(1X1), N T =1) = V(Cosxt sixt 2, AT — 1)

2 2 2

= V(:ua+X% g2 )\a T — ]-)
2 2
by induction hypothesis. Also since X{ 4 0V (trox1 o, A, T — 1) is increasing in X},
2 2
V(Ca,b,a27 )\, T) = maX{)\ﬁ, E;U'a o2 [Xl -+ 5V(/~’La+X% 529 >\, T — 1)]}
- ' 2 2

= v(:ua,a% >\7 T)

When T' = oo, both value functions can be approximated by corresponding finite horizon
value functions, and equality still holds.
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For (3.7), A(Cyp o2, T) is the unique cutoff A that solves

A

147
=g = b Bu X1+ 0V (Copo (1X1), AT — 1)

By (3.6), this is equivalent to the A solving

1 =47

A
1—90

= B L[X1 + 0V (o2 (-1X]), A, T = 1)]
and by definition the latter solution is A(fq42,7"). So (3.7) holds.
U

Proof of Corollary 5. For (1) = (2), note that by Lemma 2 in Li [2012], maxy U(C, A\, N, T) =
V(C,\,T) and min,ec maxy U(p, A, N,T) = min,ec V (i, A, T'). By Theorem 3.2.3,

1—47
V(ICAT) = — 5 max{A(C,T), \}
VA T
min Vs, A, T) = —5— minmax{A (s, T), A} = 55 max{min A(s, T), A}

If (1) also holds, then

_ 1—0"
max U(C,\,N,T) = min max U(p, AN, T) = — 5 max{A(C,T),\}
For (2) = (1), let A = A(C,T). Then by definition V(C,\,T) = A(C T). Also
1— T
minV(p, A, T) = 5—5 minmax{A(s, T), A(C, T)}
o 1=0"
=15 " mmA(,u,T)

where the second equality is by Corollary 4.
If (2) holds, then V(C,N,T) = min,ec V(p, N, T) for all X. As a result, A(C,T) =
min,ec A(p, T'). O

Proof of Proposition 3.5. Suppose C' and © in one-armed bandit (C, \, T) satisfy Condition
1. We first show that if C' and © satisfy Condition 1, then for any observation of s € S,
{1a(+|s) - a € [a,al} also has MLRP in 6. To see this, note that

1, (6)1(5]6)
1al015) = - @)
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for all a. So for a1 < aq, 01 < 605, substituting the above equality

Hay (B2]5) _ pay (02)1(s02) > fa, (02)1(5]02) _ pra, (02]5)
fay (01]8) 10y (01)1(s]01) ™ pray (01)1(s[01)  pra, (B1]s)

where the inequality is due to {u, € A(©) : a € [a,a]} has MLRP in 6. Therefore the MLRP
is preserved after Bayesian updating.

Let P, f@ 10)dpa(0) be the predictive distribution on X induced by Bayesian
prior fig. We show that for all Q <a <ax<a B, FOSD P,, . For any r € R,

P (51 € 0) = [ PO < al0)dins(0) > [ PX: < al0)dpa0) = Pr, (X < )

where the inequality is due to that P(X; < z|f) is weakly decreasing in 6 and p,, FOSD

Hay -
Fix a € [a,a] and x; < 2f, for arbitrary subsequent history (za,...,2:) (1 <t <T), we
have

o (0], 2o, ..o xy) _ I(x})0) . () (o, ..., x4|0) . Jo U@, @a, ... x| 0)dpia (6)
lu’a(0|x17x27"'7xt) Z(ZI}'1|0> Ma(e)l(x27"'7xt|9> f@ l(xllax%'">It|9/)dua(9/)

Note that in the right hand side expression, the second term equals to one and the third

term is independent from 6. Also ﬁgﬂz; is non-decreasing in # since {l(z|0)}yco has MLRP

in x and 77 < x9. So for all (zo,...,z) fixed, % is non-decreasing in 6, and
{pa(O|x1,29,...,2;) : 1 € R} has MLRP in 0. As a result, u,(-|z},z2,...,2;) FOSD
ta(-|x1, 2oy oo xy).

Next we show that for any (u4, A, T')-bandit and first observation X; = x1, V (1o (+|21), A\, T—
1) is weakly increasing in x;. We prove by induction. This holds vacuously when horizon
is 1. Suppose it holds for all problems with horizon less than T', we show that it holds for

problems with horizon T'. Fix 2} > x1, so

V(pa(-2), AT = 1) = By oy [Xo + V(pa(-| X2, 27), A, T = 2)]
> B e[ Xe + V(pa(-[ Xo, 21), A, T — 2)]
> By fen [ X2 + V(g (| Xay 21), A, T — 2)]
= V(mug(-|x1),\, T — 1)

where the first inequality is by induction hypothesis, and the second inequality is by induction
hypothesis and that P,,(j.) FOSD B, (|zy)-

Finally, we prove that A(C,T) = A(uq, T). It suffices to show that V(C,\,T) =
V (g, A, T') for all X\ and we prove it by induction on 7. The claim is vacuously true when
T = 0. Suppose it is true for any problem with horizon less than T". We want to show it also
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holds for horizon 7.

ST
V(CAT) = inf B, [X1+5V(C(-|X1),>\,T—1)]\/>\1 55
fa€ —
167
= inf B [0+ 0V (aa(1X0), AT~ D]V AT
na€C —
|4

= EMQ[Xl _I— 5V(MQ(|X1)a )‘7 T )] \ )\
= V(pa, A\, T)

1—-9¢

where the first and last equality are by recursivity of V', the second equality is by induction
hypothesis. To see the third equality, note that X; + 0V (us(:|X1), A, T — 1) is a weakly
increasing function of X; and Pua2 FOSD Pua1 forall a < a; < ap < a.

The case of T'= oo can be approximated by continuity. O

Proof of Proposition 3.6. The first claim is obvious, since for all u € C, u(-|h;) € C(+|h;) for
all history h;. By backward construction U(C)(Zy,---,Zr) < U({u})(Z1,---, Z7) for all
weC.

We then prove the second claim. The “only if” statement can be easily proved by con-
trapositive. We only show the “if” part. For any measurable event A C S, define a payoft
process as'

1
Z) = 1(81 GA), Loy = 51(52 EAC)7 Zy=0,Vt=3,---.T
Then for all u € C,

U()(L(A), 5140, ,0) = ByfL(s1 € )+ 551(s, € A
Pu(A) + BBy [1(s2 € 4%)
Pu(A) + P,(A%) =1

thus inf,cc U(p)(1(A), $1(A9),0,---,0) = 1. We prove the “if’ part of the second claim
1

by showing that if inf,cc U (p)( (A) % (A%),0,---,0) = U(C)(1(A), $1(A°),0,- - ,0) for all
measurable A C S, then {P,(:) : p € C} has to be singleton.
1 C
U(O)(1(4), 5140, .0)
= inf Eu{l(sl €A+ 5 inf Epus, [1(s2 € A9)]}
peC 0 wec
1 . B

'For all measurable event E C 9, 1 is the indicator function that equals to 1 if s € E, and 0 otherwise.
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This implies that for arbitrary u € C' fixed,

P,(A)+E, ilIéfC Eys[1(s2 € A9} > 1
I

or equivalently

B{ inf Byia[L(s2 € A} = Pu(A%) = By {BylLlss € A°))

Since E,j5,[1(sy € A%)] > infycc Epjs,[1(s2 € A)] for every s, they have to be P, — a.s.
equal
Pujo (A%) = inf Py (A°), P, —as.

we

exchange role of A and A¢ we have

Pujsi(A) = inf P, (A), P, — as.

weC
Since [Ps,(A) =1 — [Py, (A°) =1 —infyec Ps, (A9),

inf P, (A4) = /u% Pus, (A), P, —a.s.

weC we

Since this has to hold for all measurable A, we have P, —a.s., {Py|s, : ¢t € C'} is a singleton
set. Since p is arbitrarily chosen from C, we have {P, : p € C'} is singleton set as well. [





