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developmental-like tissues with

corresponding molecular datasets (RNA-

seq, ATAC-seq, H3K27ac ChIP-seq), to

map over 70,000 multiomic QTLs. By

integrating these multiomic QTLs with

GWAS loci, they advance our

understanding of complex traits and

provide a resource of putative causal

variants for experimental validation.
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SUMMARY
Most GWAS loci are presumed to affect gene regulation; however, only �43% colocalize with expression
quantitative trait loci (eQTLs). To address this colocalization gap, we map eQTLs, chromatin accessibility
QTLs (caQTLs), and histone acetylation QTLs (haQTLs) using molecular samples from three early develop-
mental-like tissues. Through colocalization, we annotate 10.4% (n = 540) of GWAS loci in 15 traits by QTL
phenotype, temporal specificity, and complexity. We show that integration of chromatin QTLs results in a
2.3-fold higher annotation rate of GWAS loci because they capture distal GWAS loci missed by eQTLs,
and that 5.4% (n = 13) of GWAS colocalizing eQTLs are early developmental specific. Finally, we utilize the
iPSCORE multiomic QTLs to prioritize putative causal variants overlapping transcription factor motifs to
elucidate the potential genetic underpinnings of 296 GWAS-QTL colocalizations.
INTRODUCTION

Over 90% of genome-wide association study (GWAS) loci are in

non-coding regions of the genome, and the causal variants at

these loci are presumed to modulate the expression of genes.

Expression quantitative trait loci (eQTL) analyses have been

employed to interpret the regulatory function of GWAS signals,

however, only �43% of GWAS loci colocalize with eQTLs identi-

fied in postmortem adult tissues.1 Various hypotheses have

been proposed to explain this colocalization gap including that

regulatory variants may not be captured by eQTLs identified in

adult bulk tissues because they are only active in context-specific

conditions (e.g., early fetal development,2–7 rare cell types3,8–11).

In addition, it has been proposed that current eQTL study sample

sizes are underpowered and biased toward discovering common

variants that overlap promoters and have large effects on gene

expression.12 In contrast, GWAS loci often overlap distal regulato-

ry elements with small effects.12 These proposed hypotheses for

the existing colocalization gap could be examined by focusing on
Cell Genomics 5, 100775, M
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cells representing early developmental time points, and by

mapping QTLs for other types of molecular assays that specif-

ically capture the function of distal regulatory elements such as

enhancers.

The iPSC Omics Resource (iPSCORE)2,3,13–24 was devel-

oped to study the association between regulatory variation

and molecular phenotypes in tissues representing early devel-

opmental stages. iPSCORE is composed of early embryonic-

like induced pluripotent stem cells (iPSCs) from hundreds of in-

dividuals with whole-genome sequencing (WGS) data,13,14,19

as well as fetal-like iPSC-derived cardiovascular progenitor

cells (CVPCs)3,20–22 and iPSC-derived pancreatic progenitor

cells (PPCs).2 We have previously shown that the iPSCs,

CVPCs, and PPCs are suitable surrogate models to identify

eQTLs active during embryonic and fetal-like stages because

they exhibit early development-like (EDev-like) molecular prop-

erties.2,3,14 Moreover, we have shown the utility of combining

the iPSCORE EDev-like and the GTEx adult expression data-

sets1 to functionally annotate GWAS regulatory variants in a
arch 12, 2025 ª 2025 The Authors. Published by Elsevier Inc. 1
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Overview of iPSCORE multiomic

samples

Overview of the iPSCORE molecular samples

generated from blood, reprogrammed iPSCs, and

derived tissues. Of the 1,261 molecular samples,

861 were previously published and 400 were

newly released in this study. In addition to the 393

samples in the four new molecular datasets

(indicated by asterisks), 7 of the 220 iPSC RNA-

seq samples were not previously published. WGS

analyses identified 16,360,123 single-nucleotide

polymorphisms (SNPs). The RNA-seq, ATAC-seq,

and H3K27ac ChIP-seq libraries were sequenced

to median depths of 71.7, 90.9, and 52.1 million

reads, respectively (see methods). Created in

Biorender. https://BioRender.com/d18y377.
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temporal-specific manner2,3 using colocalization25 and eval-

uate the fetal origins of disease hypothesis.26–28

Molecular assays for transposase-accessible chromatin

(ATAC-seq) and chromatin immunoprecipitation for H3K27 acet-

ylation (H3K27ac ChIP-seq) capture both proximal and distal

regulatory elements that modulate gene expression.29,30

H3K27ac peaks primarily mark active promoters and en-

hancers,31,32 whereas ATAC-seq identifies all open chromatin

regions, which may contain both activating and repressive regu-

latory elements as well as insulators.29 Integration of chromatin

accessibility QTL (caQTL) and histone acetylation QTL (haQTL)

mapping with eQTL analyses in the iPSCORE collection could

be useful for discovering variants that affect different types of

regulatory elements and enhance the annotation of GWAS vari-

ants,33–39 particularly those that are not associated with eQTLs.

To better understand the utility of using multiomic QTLs from

early developmental-like (EDev-like) tissues to functionally anno-

tate GWAS loci through colocalization, we analyzed RNA-seq,

ATAC-seq, and H3K27ac ChIP-seq samples generated from

iPSCs, CVPCs, and PPCs derived from 221 individuals in the

iPSCORE collection. We mapped 70,446 QTLs including,

25,659 eQTLs, 33,618 caQTLs, and 11,169 haQTLs. We anno-

tated the QTLs based on chromatin states, stage specificity,

and the number of qElements (genes and/or peaks) that they

affect (complexity). We performed colocalization with 5,192

GWAS loci from 15 developmental and adult traits and diseases

and identified 540 loci that colocalized with a QTL. We next inte-

grated the QTL annotations to functionally characterize GWAS

loci. Of all 5,192 GWAS loci, 5.8% (n = 301) only colocalized

with caQTLs and/or haQTLs (chromatin QTLs) while 4.6%

(n = 239) colocalized with an eQTL. We show that this 2.3-fold in-

crease in colocalization rate is due to chromatin QTLs capturing

GWAS loci that are distal to promoters and not captured with the

traditional eQTL approach. Of the 239 GWAS loci that colocal-

ized with an eQTL, 5.4% (n = 13) were associated with eQTLs

that were specific to early developmental stage (EDev-specific),

supporting that regulatory variation active during fetal develop-

ment contributes to adult disease.2,28 We also show that com-

plex QTLs affecting multiple qElements (genes and/or peaks)

have higher GWAS colocalization rates compared with singleton

QTLs that only affect one element. Finally, we demonstrate

the utility of multiomic QTLs for prioritizing putative causal

GWAS-associated regulatory variants based on their overlap
2 Cell Genomics 5, 100775, March 12, 2025
with transcription factor (TF) motifs, and highlight two examples

of causal variants that we identified using this approach with

previous experimental validation and/or inferred TF disrupting

activity.40,41

In summary, our study shows that integrative multiomic QTL

analyses could explain a large proportion of GWAS loci that do

not colocalize with eQTLs alone. We colocalized a large set of

temporally annotated iPSCORE EDev-like eQTLs with GWAS

loci and show that 5.4% of the colocalized eQTLs were

EDevspecific, while most were also active in adult tissues.

Finally, we show the utility of the iPSCORE multiomic QTLs for

prioritizing putative causal variants underlying GWAS loci.

RESULTS

Overview of molecular datasets
We analyzed 1,261 molecular samples including WGS and three

molecular data types generated from three different iPSCORE

early developmental like (EDev-like) tissues (Figure 1) from 221

ethnically diverse iPSCORE subjects (170 Europeans, 4 Africans,

34 East Asians, 6 South Asians, and 7 Admixed Americans,

Figure S1; Table S1).13 Specifically, we examined RNA-seq,

ATAC-seq, and H3K27ac ChIP-seq (Table S2), from 220 iPSC

lines, 181 iPSC-derived CVPCs, and 109 iPSC-derived PPCs.

The resource contains paired molecular data types (RNA-seq,

ATAC-seq, and H3K27ac ChIP-seq) from over 100 samples of

each tissue (iPSCs, CVPCs, and PPCs), as well as paired molec-

ular data types across tissues, as the majority of CVPCs and

PPCs are derived from an iPSC line that was also molecularly

profiled (Figure S2). Of the 1,261 molecular samples, 400 are

newly released in this study (Figure 1), and 861 have been

previously published.2,13,14,19,21

iPSCORE early developmental-like tissues display
lineage-specific regulatory landscapes
To examine the epigenomic properties of the three EDev-like

tissues, we performed ATAC-seq on 142 iPSCs, 140 CVPCs,

and 109 PPCs, as well as H3K27ac ChIP-seq on 43 iPSCs and

101 CVPCs (Figure 1). For each tissue and data type, we called

consensus peaks using a subset of the samples from unrelated

individuals. After filtering (see methods), we identified 172,075

iPSCs, 202,941 CVPCs, and 193,428 PPC ATAC-seq peaks.

Across the EDev-like tissues, we observed similar proportions

https://BioRender.com/d18y377


Figure 2. Characterization of multiomic regulatory variation in early developmental tissues

(A) Heatmap showing TFBS enrichments in iPSC-, CVPC-, and PPC-specific ATAC-seq peaks. Two-sided Fisher’s exact tests were performed to test the

enrichment (odds ratio) of the predicted TFBSs in each of the three ATAC-seq peak sets. TFBSs depleted in all three of the tissue-specific ATAC-seq peaks are

considered shared. Each cell is filled with the log2(odds ratio) of the association between predicted TFBSs (y axis) and tissue-specific ATAC-seq peaks (x axis).

Asterisks indicate significant enrichments (Benjamini-Hochberg adjusted ***p < 5 3 10�10; Benjamini-Hochberg adjusted **p < 5 3 10�3; Benjamini-Hochberg

adjusted *p < 0.05). Limits for Log2(odds ratio) were set to �2.5 and 2.5 for plot legibility.

(B–D) Bar plots showing the percent of qElements (eGenes, caPeaks, and haPeaks) with at least one eQTL (B), caQTL (C), and haQTL (D). For eQTLs, variants

(MAF > 0.05) within 1Mb of each gene were tested for an association with gene expression. For chromatin QTLs, variants (MAF > 0.05) within 100 kb of each peak

were tested for an association with chromatin accessibility (C) or histone acetylation (D). If a QTL was discovered for a gene or peak, up to three additional

conditional QTLs were tested by using the lead variant as a covariate. The reported numbers reflect the conditional QTLs remaining after the filtering step. The x

axis is the percent of qElements with a QTL for each tissue and the y axis is QTL type (i.e., primary or conditional). Each bar is colored by tissue (iPSC, light blue;

CVPC, red; PPC, yellow).

(E) Plot showing the enrichment of primary CVPC eQTLs, caQTLs, and haQTLs in chromatin states. The x axis is the enrichment log2(odds ratio) and the y axis

contains the five collapsed chromatin states. The points are colored by the QTL type (eQTL, orange; caQTL, brown; and haQTL, light blue). The whiskers

represent the log2 upper and lower 95% confidence intervals. Significant enrichments are represented by filled circles and non-significant enrichments are

represented by circles without a fill. Enrichment of primary iPSC eQTLs, caQTLs, and haQTLs in chromatin states is shown in Figure S9.

(legend continued on next page)
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of ATAC-seq peaks in promoters (mean = 16.3%), intergenic re-

gions (mean = 28.0%), and intronic regions (mean = 46.3%; Fig-

ure S3). Similarly, after filtering, we identified 44,206 consensus

H3K27ac ChIP-seq peaks in iPSCs and 60,556 in CVPCs. The

largest proportion of ChIP-seq peaks were in intronic regions

(39.4%) and promoters (32.6%), while a smaller proportion

were in intergenic regions (17.0%; Figure S3). A UMAP analysis

of the ATAC-seq and ChIP-seq peaks showed that samples

cluster by tissue, indicating that the iPSCs and the derived

EDev-like CVPCs and PPCs each have distinct regulatory land-

scapes (Figures S4A and S4B).

To examine the TF binding patterns of the EDev-like tissue spe-

cific and shared regulatory elements (Figure S4C), we performed

footprinting analysis to predict TF binding sites (TFBSs) for 1,147

motifs in the consensus ATAC-seq peaks for each tissue.42–44 TFs

with known roles in pluripotency, cardiac development, and

pancreatic development were strongly enriched in iPSC-,

CVPC-, and PPC-specific ATAC-seq peaks, respectively (Fig-

ure 2A; Table S3). For example, NANOG and POU5F1

TFBSs19,45 were exclusively enriched in iPSC-specific ATAC-

seq peaks, MEF2 and NKX2-520,21 TFBSs were strongly enriched

in CVPC-specific ATAC-seq peaks, and HNF1B,46 ONECUT1,47

MEIS1,48 NKX6-1,49 and PDX150 TFBSs were strongly enriched

in PPC-specific ATAC-seq peaks. Alternatively, TFs associated

with essential cellular processes including chromatin organiza-

tion51 (CTCF, CTCFL) and cell growth during the G1 phase52

(E2F family) were strongly enriched in shared ATAC-seq peaks

(Figures 2A and S4C). As expected, TFs associated with tissue-

specific ATAC-seq peaks had higher expression in the corre-

sponding tissue, and TFs associated with binding sites enriched

in shared ATAC-seq peaks had similar expression levels in all

three tissues (Figure S5).

In summary, tissue-specific regulatory elements in the

EDev-like iPSC, cardiac, and pancreatic tissues are bound by

appropriate lineage-specificdevelopmental TFs, andshared reg-

ulatory elements are bound by TFs governing essential cellular

processes such as chromatin organization and cell growth.

Identification of multiomic regulatory variation in
iPSCORE tissues
To identify and characterize regulatory variation associated with

the three molecular phenotypes (gene expression, open chro-

matin, H3K27 acetylation) in the iPSCORE EDev-like tissues,

we established a two-step quantitative trait loci (QTLs) pipeline

(Figure S6). In the first step, we utilized a linear mixed model

to discover QTLs by calculating the association between

single-nucleotide polymorphism (SNP) genotypes (5.5 M with

MAF > 5%) andmolecular phenotypes, while controlling for relat-

edness of iPSCORE donors. Multiple independent QTLs often

exist for a given qElement (gene or peak associated with a

QTL),53 therefore we calculated up to three conditional QTLs

for each data type. In the second step, we filtered conditional
(F) Heatmap showing the enrichment of TFBSs in CVPC ATAC-seq peaks withou

and with caQTLs not overlapping haQTLs (caPeaks). For each category, a two-sid

other two categories as background. The y axis represents the TFBSs, the x axis

corresponding log2(odd ratio) from the Fisher’s exact test. Asterisks (*) indicate

Log2(odds ratio) were set to �0.75 and 0.75 for plot legibility.
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QTLs that were not independent based on their high LD (linkage

disequilibrium; r2 R 0.8 and/or Dʹ R 0.8) with the primary lead

variant (Figure S6).

We identified 25,659 eQTLs (19,305 primary and 6,354 condi-

tional) for 19,305 eGenes across the three iPSCORE EDev-like

tissues (Figure 2B; Table S4). iPSCs had approximately 1.7-

fold more eGenes (n = 9,012) than the CVPCs (n = 4,837) and

PPCs (n = 5,456) most likely because thereweremore iPSC sam-

ples, and they have lower cellular heterogeneity. To examine the

relative power of identifying eQTLs, we compared the three tis-

sues with the 49 tissues in the GTEx Consortium1 and showed

that they had similar eGene discovery rates (Figure S7).

We identified 33,618 caQTLs (30,605 primary and 3,013 condi-

tional) for 30,605 caPeaks (ATAC-seq peaks with at least one

caQTL, Figure 2C; Table S4). Across all three tissues, between

5% and 6% of accessible ATAC-seq peaks had a caQTL. We

examined the caQTL discovery rate by ATAC-seq peak width

and observed that caQTL discovery rates were highest for

ATAC-seq peaks with widths between 751 and 1,000 bp (Fig-

ure S8). To evaluate whether eGenes are more likely to have prox-

imal caPeaks than genes without an eQTL, we first defined a 100

kb window upstream of expressed genes in each tissue. We

then performed Fisher’s exact tests to evaluate the enrichment

of caPeaks in windows upstream of eGenes, using genes without

an eQTL as background. In all tissues, caPeakswere enriched up-

stream of eGenes (iPSC odds ratio [OR] = 1.3, p = 1.1 3 10�16;

CVPC OR = 1.3, p = 2.6 3 10�17; PPC OR = 1.4, p = 4.4 3

10�26), which is consistent with caPeaks being regulatory ele-

ments of neighboring genes whose transcription is affected by

variants.

In the iPSC and CVPC tissues, we identified 11,169 haQTLs

(10,396 primary and 773 conditional) for 10,396 haPeaks

(H3K27ac peaks with at least one haQTL) (Figure 2D; Table S4).

Of the 11,169 haQTLs, 9,690 were detected in the CVPCs and

1,479 were detected in iPSCs, reflecting the greater number of

CVPC H3K27ac samples (n = 101 CVPCs versus n = 43 iPSCs).

Of note, �15% of the CVPC H3K27ac peaks had at least one

haQTL, which was approximately 3-fold greater than the percent

of CVPC ATAC-seq peaks with caQTLs.

In summary, we identified 70,446 QTLs across the three

iPSCORE EDev-like tissues, making this one of the largest

reports of multiomic QTLs from paired samples. We show that

caPeaks are enriched for being near eGenes, and that haPeaks

are discovered at a �3-fold high rate than caPeaks.

Integrative QTL analyses capture variation impacting
different types of regulatory elements
To examine whether regulatory variation affecting the three

molecular phenotypes is located in different types of regulatory

elements,weannotated the iPSCandCVPCprimaryQTL leadvar-

iants with five chromatin states (promoters, enhancers, tran-

scribed, repressed, and quiescent regions). For each tissue, we
t caQTLs (non-caPeaks), with caQTLs overlapping haQTLs (caPeak-haPeak),

ed Fisher’s exact test was performed to test the enrichment of TFBSs, using the

corresponds to the ATAC-seq peak annotation, and each cell is filled with the

significant enrichments (Benjamini-Hochberg adjusted p < 0.05). Limits for
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tested theQTL chromatin state enrichment, using lead variants for

non-significant elements (i.e., genes and peaks) as background

(Figure 2E; Figure S9). Consistent with previous findings,1,12

CVPC primary eQTLs aremost significantly enriched in promoters

(OR = 3.1) and transcribed regions (OR = 1.8), exhibit weaker en-

richments in enhancers (OR = 1.2), and are strongly depleted in

quiescentchromatin (OR=0.56; Figure2E).CVPCprimarycaQTLs

are strongly enriched in both promoters (OR = 1.6) and enhancers

(OR = 1.7), and, similarly, CVPC primary haQTLs are enriched in

promoters (OR = 1.9) and enhancers (OR = 2.2) and exhibit a

weak enrichment in transcribed regions (OR = 1.1; Figure 2E).

iPSC primary QTLs showed similar chromatin state enrichments

(Figure S9). These findings support that eQTLs are biased toward

identifying regulatory variation in promoters,1,12 and suggest that

chromatin QTLs (caQTLs and haQTLs) capture both promoter-

and enhancer-acting regulatory variation.

Recent studies have shown that some TFs are more likely than

other TFs to have their binding sites impacted by variants.35,54 To

investigate if different TFs bind CVPC caPeaks and haPeaks

versus non-caPeaks (i.e., peaks not associated with a caQTL),

we examined the 55,331 CVPC ATAC-seq peaks with at least

one predicted TFBS. We next binned the peaks into three cate-

gories: ATAC-seq peaks without a caQTL (non-caPeak), ca-

Peaks that overlap haPeaks (caPeaks-haPeak), and caPeaks

that do not overlap an haPeak (caPeaks). For each category,

we performed Fisher’s exact tests to evaluate the enrichment

of TFBSs, using the other two categories as background (Fig-

ure 2F). Predicted TFBSs for four TFs were enriched in the

51,097 non-caPeaks (Figure 2F) including CTCF TFBSs (OR =

1.3, p = 7 3 10�14). The binding sites of several cardiac TF

markers (e.g., MEF2 TFs) were enriched in the 1,641 caPeaks

that overlapped haPeaks, and the 2,593 caPeaks not overlap-

ping haPeaks (Figure 2F). Our observations show that caPeaks

harbor different predicted TFBSs than non-caPeaks, which is

consistent with previous findings that regulatory variation im-

pacts the binding of some TFs more than others.35,54

In summary, we show that regulatory variation affecting the

three molecular phenotypes (i.e., gene expression, chromatin

accessibility, or histone acetylation) is located in different types

of regulatory elements and that caPeaks harbor different pre-

dicted TFBSs than non-caPeaks.

Identification and functional characterization of early
developmental-specific QTLs
To identify and characterize temporal QTLs only active during

early development (EDev-specific), we used mashr,55 which

accounts for the correlation structure between eQTLs across

multiple tissues and estimates condition specificity (i.e., tempo-

ral stage, cell-type, response to stimuli) by calculating a local

false sign rate (LFSR) for each SNP-eGene pair. We focused

on the 19,305 iPSCORE primary eQTLs due to the lack of suit-

able adult chromatin QTL datasets. We applied mashr on

250,564 eQTL lead variants for 33,793 unique eGenes (281,938

SNP-eGene pairs) from iPSCORE and GTEx1 tissues. We

removed all SNP-gene pairs that either were not tested in at least

one adult and at least one EDev-like tissue or were not significant

in any tissue (minimum LFSR > 0.05), resulting in 102,375

SNP-eGene pairs for 10,984 eGenes. We identified 2,299
EDev-specific SNP-eGene pairs that were significant in at least

one iPSCORE tissue (LFSR < 0.05) and not significant in any

adult GTEx tissue, 27,881 adult-specific SNP-eGene pairs, and

72,195 shared SNP-eGene pairs that were significant at least

one iPSCORE tissue and one adult GTEx tissue.

To further examine the temporal specificity of the EDev-spe-

cific and adult-specific eQTLs, we determined the correlation

of their effect sizes independently across 50 (3 EDev-like and

47 GTEx adult) tissues. We observed that the EDev-specific

(mean r2 = 1.2 3 10�3) and adult-specific eQTLs (mean r2 =

6.9 3 10�3) had distinct effect sizes in EDev-like and adult tis-

sues (Figure 3A). We then examined the shared eQTL correla-

tions between the 50 tissues and observed that they had similar

effects (mean r2 = 0.28) in the EDev-like and adult tissues. These

observations support our EDev-specific, adult-specific, and

shared SNP-eGene pair classifications based on the mashr

analysis.

To examine the distribution of the EDev-specific SNP-eGene

pairs across the three iPSCORE tissues, we annotated the

19,305 primary iPSCOREeQTLsbasedon themashr assignments

(see methods). Of the three EDev-like tissues, CVPCs exhibited

the largest fraction of EDev-specific eQTLs (17.7%, n = 855) sug-

gesting that CVPCs are a good model to evaluate temporal regu-

latory variation in cardiac tissue (Figure 3B). A large fraction of

iPSC eQTLs are also EDev specific (10.6%, n = 951) likely

because stem cells have a distinct transcriptomic profile and

lack an analogous adult tissue. Finally, we compared the effect

sizes between iPSCORE EDev-specific and adult-shared eQTLs

and found that EDev-specific eQTLs had smaller effects across

the three EDev-like tissues (Figure 3C).

Taken together, these results suggest that the majority of

regulatory variation is not temporal but rather active both in early

development and adulthood. We show that temporal EDev-spe-

cific eQTLs are distinct from adult specific and shared eQTLs

and they have lower effect sizes than shared eQTLs.

A large fraction ofQTLs is complex and regulatemultiple
molecular elements
The same QTL signal can be associated with multiple qEle-

ments,2,39,56 therefore we sought to determine the fraction of

qElements within each EDev-like tissue that shared primary

QTL signals. To identify QTLs with the same genetic signal, we

calculated LD between the lead variants of 60,306 primary

eQTLs, caQTLs, and haQTLs separately for each tissue. We

found 13,604 QTLs (22.6%) that shared a signal (r2 R 0.8 and

lead variant distance %100 kb, see methods) with at least one

other QTL (a total of 11,634 QTL pairs) and hence affected mul-

tiple qElements; and 46,702 (77.4%) QTLs that were not shared

with any other QTL (singletons) and hence affected a single qEle-

ment (Table S4).

To generate discrete annotations for complex QTLs associ-

ated with multiple qElements, we created three networks by

loading the 11,634 QTL pairs as edges for each of the tissues

independently and identified 5,672 modules, representing com-

plex QTLs. Across the three tissues, 4,327 (76.3%) of the com-

plex QTLs were associated with only two qElements (Figure 4A;

Table S4), while the remaining 1,345 (23.7%) were associated

with three or more qElements. The largest complex QTLs
Cell Genomics 5, 100775, March 12, 2025 5



Figure 3. Characterization of EDev-specific QTLs

(A) Boxplot showing the correlation of EDev-specific, adult-specific, and

shared eQTL effect sizes between the EDev-like and adult GTEx tissues. The x

axis is the eQTL specificity, the y axis is the Pearson correlation coefficient (r2)

and each point represents the effect size correlation between one of the 3

EDev-like tissues and one of the 47 adult GTEx tissues. Student’s t tests were

performed to test effect size correlation differences between each group and

the p values are reported for each comparison.

(B) Bar plot showing the fraction of iPSCORE EDev-specific eQTLs found in the

three tissues. The x axis are the tissues, and the y axis is the fraction of EDev-

specific eQTLs. The bars are labeled with the number of EDev-specific eQTLs

found in the indicated tissue.

(C) Boxplot showing the differences in effect size between iPSCORE EDev-

specific and shared eQTLs by tissue. The x axis is the tissue, the y axis is the
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affected between 10 and 15 different qElements and 3.3% com-

plex QTLs (n = 189) affected 5 or more qElements. A total of

2,212 (39.0%) complex QTLs affected at least one eGene and

at least one chromatin qElement (caPeak and haPeak,

Figures 4B–4D), supporting that caQTLs and haQTLs capture

variation affecting regulatory elements that modulate gene

expression. The CVPCs had the greatest number of complex

QTLs, of which 51.3% (1,560) affected only caPeaks and ha-

Peaks (Figure 4C), suggesting that these analyses capture

enhancer-acting regulatory variation (Figure 2E) that is missed

by eQTL analyses conducted using similarly sized sample sets.

Finally, to assess whether complex QTLs compared with

singleton QTLs were enriched for affecting promoters or distal

regulatory elements, we calculated the minimum distance be-

tween the lead variants and TSS of the nearest expressed

gene. Focusing on CVPCs, we showed that the complex QTL

lead variants were closer to TSSs compared with singleton

QTLs across all three phenotypes (two-sided Mann-Whitney U

test, eQTL p = 3.5 3 10�27; caQTL p = 2.4 3 10�44; haQTL p =

9.2 3 10�13; Figure 4E); however, both complex and singleton

caQTLs and haQTLs are more distal to promoters compared

with complex and singleton eQTLs (two-sided Mann-Whitney

U test p = 3.3 3 10�133).

In summary, we identified 5,672 complex QTLs that affected

23.7% of qElements. Notably, we found that nearly half of the

complex QTLs exclusively affect caPeaks and haPeaks, under-

scoring the importance of these QTLs in capturing regulatory

variations missed by eQTL analyses. In addition, our findings

show that, compared with singleton QTLs, complex QTLs are

closer to promoters; and also suggest that complex and

singleton eQTLs are closer to promoters than either complex

or singleton caQTLs and haQTLs.

Colocalization of iPSCORE multiomic QTLs with GWAS
trait and disease loci
To examine the impact of including caQTLs and haQTLs on the

annotation rate of GWAS loci, we performed Bayesian colocali-

zation25 between iPSCORE QTLs (Figure S10) and 5,192

independent GWAS loci from 15 traits associated with early

development, longevity, cardio-metabolism, or diabetes that

were enriched in the peaks from the three EDev-like tissues

(Figures 5A and S11). Given that complex QTLs influence multi-

ple qElements, we randomly chose one qElement per complex

and assigned its corresponding QTL to represent the complex

QTL for GWAS colocalization (Table S5; see methods).

In total, 10.4% of the GWAS loci (n = 540) across the 15 traits

colocalized (PP.H4 R 80%, GWAS p % 5 3 10�8, QTL p % 5 3

10�5, causal SNP PPR 1%) with 863 EDev-like QTLs, including

699 singleton QTLs and 164 representative complex QTLs

(Table S5; see methods). Of the 540 colocalized GWAS loci,

373 (69.0%) colocalized with QTL(s) from only one molecular
absolute effect size of the eQTLs and the boxes are filled by category (EDev,

red; shared, turquoise). A two-sided Mann-Whitney U test was performed to

test the difference between the groups and the asterisks (*p < 5 3 10�5,

**p < 5 3 10�20) indicate that the tests are significant. The whiskers represent

1.5-times the interquartile range (IQR) and the line in the box represents the

median. Outliers are not shown for plot legibility.



Figure 4. Characterization of the 5,672

complex QTLs affectingmultiple qElements

(A) Bar plot showing the number of qElements

associated with each of the 5,672 complex QTLs.

The x axis is the number of complex QTLs, the y

axis represents the number of qElements, and the

bars are colored by tissue (iPSC, light blue; CVPC,

red; and PPC, yellow).

(B–D) Pie charts showing the number of complex

QTLs characterized based on their associated

molecular qElements (i.e., eQTLs, caQTLs, and

haQTLs).

(E) Overlaid histogram showing the different dis-

tributions of the distance between the lead variant

and the TSS of the nearest expressed gene be-

tween complex and singleton QTLs for the three

molecular phenotypes in CVPCs. The x axis is the

minimum distance between the lead variant and

the nearest TSS in kilobases, the y axis is the log10
of the number of QTLs, and the bars show the

number of QTLs in each category (complex QTLs,

dark orange; and singleton QTLs, light orange).

The maximum distance for eQTLs was set to 1 Mb

and the maximum distance for chromatin QTLs

was set to 100 kb.
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phenotype, and 167 (31.0%) colocalized with QTLs from two

or more molecular phenotypes across the three EDev-like

tissues (Figure 5B). Ventricular rate had the largest proportion

of GWAS loci that colocalized with an iPSCORE QTL (n = 3;

27%), all of which only colocalized with a chromatin QTL

(caQTL or haQTL; Figure 5A), followed by aging and birth

weight with 20% of their loci colocalizing with an iPSCORE

QTL. Of the 5,192 GWAS loci, 301 (5.8%) colocalized with only

caQTLs and/or haQTLs compared with 239 (4.6%) that colocal-

ized with QTLs containing an eQTL (caQTL-eQTL-haQTL,

caQTL-eQTL, eQTL-haQTL, eQTL). Therefore, including chro-

matin QTLs increased the number of GWAS loci annotated

with a molecular phenotype by 2.3-fold (Figures 5A and 5B;

Table S5).

Chromatin QTLs colocalize with distal GWAS loci

To evaluate whether the 2.3-fold increase in GWAS colocalization

by including chromatin QTLs was driven by their ability to capture

more distal regulatory elements, we first calculated the distance

between the 5,192 GWAS loci indices and the TSS of the nearest

protein-coding gene. We examined the 540 colocalized to deter-

mine if GWAS loci associatedwith QTLs affecting different molec-

ular phenotypes exhibited distinct distributions relative to the

nearest TSS (Figure 5C).Weobserved thatQTLs affecting all three

molecular phenotypes were the closest to promoters compared

with all other groups (two-sided Mann-Whitney U test p = 5.5 3

10�5; Figure 5C). While many loci associated with only eQTLs or

eQTLs and one chromatin QTL type (caQTL-eQTL, eQTL-haQTL)
Cell G
were located near the promoter, and, in

general, had an intermediate distribution.

Interestingly, the most distal colocalized

GWAS loci are associated with only

chromatin QTLs (caQTL-haQTL, caQTL,

haQTL).
We next sought to determine if GWAS loci that colocalize with

QTLs are closer to promoters compared with GWAS loci that do

not colocalize with QTLs. Consistent with previous observa-

tions,12 colocalized GWAS loci were closer to the nearest TSS

compared with the loci that did not colocalized (Figure 5D;

two-sided Mann Whitney U test p = 1.2 3 10�11).

Taken together, these findings show that GWAS loci that do

not colocalize with QTLs are further from protein-coding genes

and suggest that the integration of chromatin QTLs explain

more GWAS loci because they capture distal regulatory ele-

ments not captured by eQTLs.

Complex QTLs have highest GWAS colocalization rates

We examined if GWAS loci were significantly more likely to coloc-

alize with either complex QTLs or singleton QTLs. We binned the

5,672 complex QTLs and 46,702 singletons into 10 categories

based on their associated molecular phenotypes (Figures 5E and

S12; seemethods).We found that complexQTLsaffectingall three

phenotypes (caQTLs, haQTLs, and eQTLs) were the most en-

riched, which is consistent with our findings that they are closest

to promoters compared with all other QTL categories (Figure 5C).

We found that other categories located near promoters (complex

QTLs affecting eQTLs and caQTLs, as well as singleton eQTLs;

Figure 5E) were also enriched. Complex QTLs associated with

haQTLs and caQTLs were the second most enriched category

(Figure 5E) and the furthest to promoters (Figure 5C).

Altogether, our results show that complex QTLs affecting all

three phenotypes (caQTLs, eQTLs, and haQTLs) have the highest
enomics 5, 100775, March 12, 2025 7



Figure 5. Chromatin QTLs capture distal GWAS loci missed by eQTLs

(A and B) Bar plots showing the percent of GWAS loci that are explained by QTLs in the iPSCORE EDev-like tissues for (A) all traits combined and

(B) independently. The x axis contains the GWAS trait name, along with the total number of GWAS loci for each trait, and the y axis shows the proportion of GWAS

loci that colocalize with iPSCORE QTLs. The bars were colored according to the colocalized QTL types (i.e., caQTL-haQTL-eQTL, eQTL-haQTL, eQTL-caQTL,

caQTL-haQTL, eQTL, caQTL, haQTL), and the numbers correspond to the number of GWAS loci that colocalized with the QTL types. At the top of each bar, we

indicate the total number and percent of GWAS loci that colocalized with the QTLs.

(C) Boxplot showing the distance to the nearest TSS for colocalized GWAS loci (n = 540) by QTL types. The x axis is the distance between the colocalized GWAS

loci index and the TSS of the nearest protein-coding gene in kilobases, and the y axis is the combination of QTLs that colocalize with a GWAS locus. The whiskers

represent the 1.53 IQR and the line in the box represents the median. For plot legibility, the maximum distance was set to 350 kb.

(D) Boxplot showing the distance to the nearest TSS for GWAS loci by colocalization status. The x axis is the distance between the GWAS loci index and the TSS

of the nearest protein-coding gene in kilobases, and the y axis is the GWAS loci colocalization status. The asterisks (**) indicate that there is significantly different

(legend continued on next page)
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colocalization rate because they capture regulatory variation

affecting promoters. In contrast, complex QTLs affecting only

chromatin phenotypes (caQTLs and haQTLs) are in distal regions

and capture regulatory variation not captured by eQTLs.

Early developmental-specific eQTLs explain a small
fraction of GWAS loci
To test the fetal origins of adult disease hypothesis, we deter-

mined the fraction of EDev-specific eQTLs that colocalized

with GWAS loci compared with shared QTLs. Of the 239 colocal-

ized GWAS loci associated with at least one eQTL, 5.4% (n = 13)

were associated with EDev-specific eQTLs, 75.7% (n = 181)

were associated with Shared eQTLs, and 18.8% (n = 45) were

associated with eQTLs with low confidence mashr assignments

(see methods; Table S4).

Our findings suggest that EDev-specific regulatory variation

explains a small fraction of GWAS loci that are not associated

with regulatory variation active during adulthood. Future studies

aimed at exploring these loci may provide important insights into

the role the genetic variation active in this understudied develop-

mental stage plays in complex traits.

Utility of multiomic QTLs for prioritizing putative causal
GWAS variants
Identifying the causal variant(s) in GWAS loci is challenging

because the variant with the highest posterior probability of asso-

ciation is often not the causal variant and is in LD with numerous

other non-causal variants. To furtherdemonstrate theutility ofmul-

tiomic QTLs for the identification of putative causal variants, we

characterized variants within the 99% credible sets of GWAS-

QTL colocalizations based on their overlap with TFmotifs. We first

aggregated the 99% credible sets of 992 QTLs (699 singleton

QTLs, 164 representative complex QTLs, as well as 129 non-

representative complex QTLs; see methods) that colocalized

with one ormore of the 540GWAS loci; and observed that the dis-

tributions of 99% credible set sizes are similar across eQTLs,

caQTLs, and haQTLs (Figure 6A), suggesting that each molecular

phenotype is similarly capable of identifying causal variants.

The posterior probabilities in large credible sets are less reliable,

therefore we focused on the 611 high-confidence GWAS-QTL

colocalizations with small, high-confidence credible sets (%25

SNPs) for downstream analyses. We intersected 6,164 SNPs

from the 611 high-confidence credible sets with the JASPAR43

and HOCOMOCO44 motifs identified from the ATAC-seq peak

footprintinganalyses (Figure2A).Across the15 traitsand3 tissues,

296GWAS-QTLcolocalizationshadhigh-confidencecrediblesets

with 548 motif-overlapping putative causal variants (MOPCVs)

(Figure 6B; Table S6). Interestingly, only 14.4% (n = 84) MOPCVs

were the predicted top variant from the colocalization (maximum
distribution (two-sided Mann-Whitney U test p = 1.23 10�11) between GWAS loc

line in the box represents the median. For plot legibility, the maximum distance w

(E) Plot showing the relative enrichment of GWAS loci colocalization with comple

on their associated molecular phenotype(s). Two-sided Fisher’s exact tests were

GWAS colocalization compared with all other categories. In the first three rows of

affecting different combinations of qElements). In the last two rows of the x axis, re

log2(odds ratio) enrichment. Tests that had p < 0.05 were considered significa

confidence intervals.
posterior probability), suggesting that this approach can be lever-

aged to identify causal variants that are masked by more signifi-

cant variants in high LD. Of the 548 MOPCVs, 13.1% (n = 72)

were present in multiple high-confidence credible sets across

traits and tissues, resulting in 365 unique putative causal variants

that overlapped at least one TF motif (Table S6).

We sought to prioritize the 548 MOPCVs for experimental vali-

dation in future studies, therefore we utilized their epigenomic

properties to bin them into three groups based on the evidence

for casual association. ‘‘High’’ priority was assigned to MOPCVs

if they were present in a caQTL signal that overlapped its asso-

ciated caPeak, and in the case of complex QTLs (with two or

more caPeaks), was assigned to MOPCVs if they were present

in a caQTL signal in the complex and overlapped any caPeak

in the complex. ‘‘Moderate’’ priority was assigned to MOPCVs

that were present in a caQTL signal that overlapped a caPeak

associated with a different caQTL signal (e.g., the MOPCV be-

longed to one caQTL signal and overlapped motifs in a caPeak

associated with a different caQTL signal). ‘‘Low’’ priority was

assigned to MOPCVs that were present in caQTL signals that

overlapped non-caPeaks (e.g., the caQTL signal overlapped an

ATAC-seq peak not associated with any caQTL). In total, we an-

notated 167 high-, 37 moderate-, and 344 low-priority MOPCVs

(Table S6). Focusing on these 167 high-priority MOPCVs for bio-

logical interpretation would result in a 36.9-fold reduction

compared with the 6,164 high-confidence credible set variants.

To substantiate the efficacy of multiomic QTLs in pinpointing

putative causal variants underlying human traits, we present in-

depth analysis for two high priority MOPCVs with experimental

validation40 or inferred motif disrupting activity.41

Multiomic PPC complex QTL colocalizes with type 2

diabetes JAZF1 locus

We identified a high-priority MOPCV (rs1635852; chr7:

28149792:T>C) that was associated with a well-known, experi-

mentally validated40 type 2 diabetes locus within a JAZF1

intron.57 This GWAS locus colocalized with the PPC complex

QTL 122 (PP.H4 = 97.2%), which is composed of two caPeaks

(ppc_atac_peak_244298 and ppc_atac_peak_244305), as well

as the JAZF1 eGene (Figure 6C). rs849133 was identified as

the top variant (PP = 80.7%; Figure 6C); however, MOPCV

rs1635852 (PP = 1.4%) has experimentally been shown to be

the true causal variant.40 As previously noted,40 the T allele of

rs1635852 creates a PDX1 binding site, which we identified in

ppc_atac_peak_244298 but was predicted by TOBIAS to be un-

bound. rs1635852 also overlapped 20 other TF motifs, including

NKX6-1 (Figure 6D) and HNF1B. Our findings align with previous

characterization showing that the rs1635852 T allele in the PDX1

core motif sequence creates a binding site for TFs that repress

JAZF1 expression.40
i with and without colocalization. The whiskers represent the 1.53 IQR and the

as set to 250 kb.

x and singleton QTLs. We categorized each complex and singleton QTL based

performed to test the relative enrichment (odds ratio) of each QTL category for

the x axis, the black circles indicate the QTL composition categories (i.e., QTLs

d circles indicate theQTL category (i.e., complex or singletons). The y axis is the

nt (colored in black). The whiskers represent the log2 upper and lower 95%
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Figure 6. Multiomic QTLs improve the characterization of causal GWAS variants

(A) Histogram showing the size of 99% credible sets for the 992 colocalized QTLs (both complex and singleton) across molecular phenotypes. The x axis de-

scribes the numbers of variants in the credible set, the y axis is the percent of GWAS-QTL colocalizations, and the bars are colored by QTL molecular phenotype

(caQTL, brown; eQTL, orange; and haQTL, light blue).

(B) Bar plot showing the number of the GWAS signals that are associated with a high-confidence credible set SNP that overlaps a TF motif in each of the three

tissues. The x axis is the number of GWAS-QTL colocalizations, the y axis divides the 15 GWAS traits into bars colored by tissue (iPSC, light blue; CVPC, red; and

PPC, yellow).

(C) A type 2 diabetes signal colocalized with PPC complex QTL 122 containing one eGene, and two caPeaks. The genomic coordinates are on the x axes, and

the –log10(p values) for the associations between the genotype of the tested variants and gene expression, chromatin accessibility or type 2 diabetes are plotted

on the y axes. Horizontal lines indicate genome-wide significance thresholds for QTL (p = 53 10�5, red) andGWAS (p= 53 10�8, blue) for plotting purposes. Each

variant was colored according to their LDwith the lead fine-mapped variant (purple diamond; rs849133, chr13:28152661:C>T, causal PP = 61.4%) using the 1000

Genomes Phase 3 Panel (Europeans only) as reference. rs1635852 (yellow diamond; chr7:28149792:T>C, causal PP = 1.4%) disrupts TF motifs and is the

validated causal variant.40

(D) Binding site motifs for PDX1 and NKX6-1 are affected by a high-priority MOPCV (rs1635852; chr7:28149792:T>C) for type 2 diabetes. The light blue arrow

indicates which position in the motifs is affected by rs1635852.
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CVPC complex QTL containing four chromatin

qElements colocalizes with QRS duration locus

We also identified a high-priority MOPCV (rs9573330; chr13:7394

4073:G>A) for the QRS duration GWAS locus41,58,59 in a KLF12

intron. The KLF12 QRS duration GWAS locus colocalized with

the CVPC complex QTL 274 (PP.H4 = 0.99), which is composed

ofonecaPeak (cvpc_atac_peak_73241)and threehaPeaks (cvpc_

chip_peak_17303, cvpc_chip_peak_17034, and cvpc_chip_-

peak_17305; Figure S13A). Through colocalization, the top causal

SNP was rs17061696 (chr13:73937854:G>C; PP = 37.4%; Fig-

ure S13A); however, we identified a high-priority MOPCV
10 Cell Genomics 5, 100775, March 12, 2025
(rs9573330; PP = 22.0%; Figure S13A) that overlapped 10 unique

motifs, including motifs for cardiac markers MEF2A and MEF2C

(Figure S13B). These findings recapitulate a previous observation

that MOPCV (rs9573330) creates a MEF2A binding site in the

KLF12 intron41 and demonstrate that themost likely causal variant

often does not have the highest posterior probability.

Together, these results illustrate that annotating GWAS loci

with complex QTLs and disrupted TF binding sites can help

elucidate the underlying molecular mechanisms relevant to

development and disease and demonstrates the utility of the iP-

SCORE collection of MOPCVs.
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DISCUSSION

After the discovery that 90% of the GWAS variants were in inter-

genic, non-coding regions, eQTL analyses were pursued to un-

derstand the mechanisms by which these variants affect gene

expression and disease pathologies.60 Surprisingly, GTEx

eQTL analyses only explain approximately 43% of GWAS loci,

indicating that they alone are not sufficient to understand genetic

associations with disease. There are several leading hypotheses

for the poor overlap between GWAS and GTEx eQTLs, including

(1) regulatory variation acts in a context-specific manner (e.g.,

during fetal development2–7 and in rarer cell types3,8–11), and

(2) eQTL and GWAS loci have fundamentally different character-

istics.12 Specifically, eQTLs have strong effect sizes and are

biased toward promoter-proximal regulatory regions, while

GWAS variants have weak effect sizes and are biased toward

distal enhancers. We set out to determine if the GWAS colocal-

ization gaps could be overcome by focusing on tissues

representing earlier developmental time points, and by mapping

chromatin QTLs that specifically capture variation affecting

active regulatory elements, such as promoters and enhancers.

In our study, we evaluated the fetal origins of adult disease hy-

pothesis, which suggests that missing heritability from integra-

tive GWAS-eQTL studies is explained by temporal regulatory

variation that is exclusively active during fetal development,

and therefore is not captured in adult tissues.2–4 The EDev-like

phenotypic properties of iPSCs and derived tissues provide a

powerful model to address this understudied interval of human

development. Of the 239 colocalized GWAS loci associated

with at least one eQTL, 5.4% (n = 13) were associated with

EDev-specific eQTLs, suggesting that a small fraction of

GWAS loci are not associated with regulatory variation active

during adulthood.

We leveraged themultiomic data from the iPSCORE collection

to show that, compared with the traditional eQTL approach, in-

clusion of chromatin QTLs capture regulatory variation more

distal to protein-coding genes and explains 2.3-fold more

GWAS loci. Our findings suggest that the fraction of adult dis-

ease GWAS loci annotated as harboring identifiable regulatory

variation would dramatically increase if studies comparable in

sample size with GTEx conducted integrative eQTL, caQTL,

and haQTL analyses.

We defined complex QTLs that affected multiple molecular el-

ements and showed that these phenotypically complex loci co-

localize with GWAS loci at greater rates than singleton QTLs. Of

note, complex QTLs affecting all three phenotypes (caQTLs,

haQTLs, and eQTLs) were the closest to promoters compared

with all other QTL categories and the most enriched for GWAS

loci colocalizaton. On the other hand, complex QTLs associated

with haQTLs and caQTLs were the second most enriched cate-

gory and the furthest to promoters. While power biases may

influence the differential GWAS colocalization rates between

complex and singleton QTLs, the integration of multiple pheno-

types provides additional information that aids in the interpreta-

tion of molecular mechanisms underlying disease-associated

regulatory variation.

Our work underscores the value of integrating multiomic QTL

data with TF motif analysis to enhance the accuracy of putative
causal variant identification within GWAS loci. We demonstrate

that the iPSCORE collection of MOPCVs refines the set of poten-

tial causal variants and provides a framework for understanding

the genetic underpinnings of 296 GWAS-QTL colocalizations in

15 complex traits.
Limitations of the study
Although our study demonstrates the utility of mapping and inte-

grating QTLs affecting multiple molecular phenotypes for the

functional characterization and prioritization of putative causal

GWAS variants, several limitations warrant consideration. First,

the effective sample size in our study is reduced due to the inclu-

sion of related individuals within the iPSCORE cohort. While we

accounted for relatedness in our QTL analysis pipeline by incor-

porating a kinship matrix as a random effects term in the linear

mixed model, the nominal number of individuals in the study

does not accurately reflect the analytical power. This reduction

may influence the robustness of downstream analyses, such

as colocalization. Second, variable sequencing depth across

the eight molecular datasets posed a challenge. To address

this, we calculated the optimal number of PEER factors for

each dataset independently and included them as covariates.

Our analysis revealed that the PEER factors were highly corre-

latedwith sequencing depth-related sample attributes (i.e., num-

ber of reads passing filters) and biological variables, such as

cellular heterogeneity (i.e., %cTnT in CVPCs and %PDX1-

NKX6.1 in PPCs; Figure S14). During optimization (Figure S15),

we observed that the inclusion of PEER factors increased the

number of QTLs mapped, suggesting that they correct for both

technical and biological variability and improve statistical power.

Finally, we conducted integrative analyses using datasets with

uneven sample sizes, which limited our ability to correct for dis-

covery biases across modalities. To mitigate this constraint, we

identified complex QTLs that affect multiple qElements using LD

and proximity between their leading variants. This approach de-

pends less on sample size compared with other techniques such

as colocalization.
Conclusion
In conclusion, we identified 70,446QTLs that affect gene expres-

sion, chromatin accessibility, or H3K27 acetylation using 1,261

molecular assays (including WGS) from iPSCs, CVPCs, and

PPCs in the iPSCORE collection, making this one of the largest

QTL studies conducted using paired multiomic data. By charac-

terizing the properties of the QTLs, we showed that integrating

chromatin QTLs can explain a large fraction of GWAS loci that

are not explained by eQTLs. Our study provides biological in-

sights into the characteristics of regulatory variation underlying

GWAS loci and QTLs and provides a valuable resource for guid-

ing experimental investigation of disease-associated regulatory

variation.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and

will be fulfilled by the lead contact, Kelly A. Frazer (kafrazer@health.ucsd.

edu).
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Materials availability

The individual iPSC lines in the iPSCORE resource are available to non-

profit organizations through WiCell Research Institute (WiCell: www.

wicell.org). Non-profit organizations interested in obtaining the entire iP-

SCORE collection and for-profit organizations can contact the correspond-

ing author directly to discuss the availability of iPSC lines as well as differ-

entiated cell types.

Data and code availability

d Scripts for processing FASTQ files and performing downstream ana-

lyses are in GitHub: https://github.com/frazer-lab/iPSCORE_Multi-

QTL_Resource. The code and source data are also published in Zen-

odo: https://doi.org/10.5281/ZENODO.14585175.61

d The raw FASTQ sequencing data are accessible via dbGaP phs000924

dbGaP: https://www.ncbi.nlm.nih.gov/projects/gapprev/gap/cgi-bin/

study.cgi?study_id=phs000924.v5.p2. WGS data for iPSCORE sub-

jects were downloaded as a VCF file (hg19) from dbGaP

phs001325.v5.p1 dbGaP: https://www.ncbi.nlm.nih.gov/projects/gap/

cgi-bin/study.cgi?study_id=phs001325.v5.p1. QTL summary statistics

from this study are included in dbGaP phs001325.v6.p1 dbGaP:

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=

phs001325.v6.p1. For additional information about iPSCORE and data

availability, please visit https://frazerlab.ucsd.edu. GWAS summary sta-

tistics were obtained from the Pan UK BioBank resource (https://pan.

ukbb.broadinstitute.org/),62,63 the MAGIC (Meta-Analyses of Glucose

and Insulin-related traits) Consortium64 (https://magicinvestigators.

org/downloads/), the Early Growth Genetics (EGG) Consortium

(http://egg-consortium.org/),65–67 the DIAMANTE Consortium68

(https://diagram-consortium.org/downloads.html), and a multivariate

longevity/aging study.69 The processed data generated for this study,

including QTL summary statistics, peak coordinates, count matrices,

TF predictions, mashr results, and GWAS-QTL colocalization results

can be found on Figshare: https://plus.figshare.com/collections/

Multiomic_iPSCORE_QTLs/7553361.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Tra-1-81, Alexa Fluor 488 anti-human Biolegend Cat# 330710; RRID:AB_2561742

SSEA-4, PE anti-human Biolegend Cat# 330406; RRID:AB_1089206

Troponin T, Cardiac Isoform Ab-1, Mouse

Monoclonal Antibody

Thermo Scientific Cat# MS-295-P0; RRID:AB_61807

A11001, Alexa Fluor 488 secondary antibody Life Technologies Cat#: A11001; RRID:AB_2534069

PE Mouse anti-PDX1 Clone-658A5 BD Biosciences Cat# 562161; RRID:AB_10893589

Alexa Fluor� 647 Mouse anti-NKX6.1 Clone R11-560 BD Bioscience Cat# 563338; RRID:AB_2738144

PE Mouse anti-IgG1 k R-PE Clone

MOPC-21

BD Biosciences Cat# 559320; RRID:AB_397218

Alexa Fluor� 647 Mouse anti IgG1 k

Isotype Clone MOPC-21

BD Biosciences Cat# 557732; RRID:AB_396840

H3K27ac antibody Abcam Cat# ab4729; RRID:AB_2118291

Bacterial and virus strains

Cytotune Sendai virus Life Technologies Cat#: A1378001

Chemicals, peptides, and recombinant proteins

FBS Invitrogen Cat# FB-02

DMEM Invitrogen Cat# 11330-057

TrypLE Life Technologies Cat# 12604013

Matrigel BD Corning Cat# 354230

mTeSR1 medium Stem Cell Technologies Cat# 85850

Versene Lonza Cat# 17-711E

Accutase Innovative Cell Technologies Inc. Cat# AT 104

RPMI 1640 Gibco-life Technologies Cat# 11875119

Penicillin – Streptomycin Gibco/Life Technologies Cat# 15140122

B-27 Minus Insulin Gibco/Life Technologies Cat# A1895601

IWP-2 Tocris Cat# 3533

B-27 Supplement 50X Gibco/Life Technologies Cat# 17504044

PBS without Ca2+ and Mg2+ Gibco/Life Technologies Cat# 14190250

RPMI 1640 no glucose Gibco/Life Technologies Cat# 11879020

Non-Essential Amino Acids Gibco/Life Technologies Cat# 11140050

Sodium L-Lactate Sigma Cat# 71718-10G

10 mM Y-27632 ROCK Inhibitor Selleckchem Cat# S1049

Dispase II ThermoFisher Scientific Cat# 17105041

AMPure XP DNA beads Beckman Coulter Prod# A63882

SDS Lysis Buffer Sigma Prod# 20163

Protein G Dynabeads Thermo Scientific Cat# 10003D

Protein A Dynabeads Thermo Scientific Cat# 10001D

RNAse Sigma Prod # 70856

Proteinase K Solution 20 mg/mL ThermoFisher Scientific Cat# 25530-049

L-Glutamine Gibco/Life Technologies Cat# 25030081

HEPES Gibco/Life Technologies Cat# 15630080

Critical commercial assays

STEMdiffTM Pancreatic Progenitor Kit StemCell Technologies Cat#05120

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Fixation/Permeabilized Solution

Kit with BD GolgiStopTM

BD Biosciences Cat#554715

DNEasy Blood & Tissue Kit QIAGEN Cat#69504

TruSeq Nano DNA HT kit Illumina Cat#20015965

Quant-iT Life Technologies Cat# Q33232

AllPrep DNA/RNA Mini Kit QIAGEN Cat# 80204

TruSeq stranded mRNA kit Illumina Cat#20020595

Quick-RNA MiniPrep Kit Zymo Research Cat#R1054

Nextera DNA Library Preparation Kit Illumina Cat# FC-131-1096

NEBNext� High-Fidelity 2X PCR Master Mix NEB Cat# M0541L

Qubit Thermo Scientific Cat# Q33230

KAPA Hyper Prep Kit KAPA Biosystems Cat# 07962363001

KAPA Real Time Library Amplification Kit KAPA Biosystems Cat: 07958951001

Deposited data

iPSCORE WGS Raw data and analysis dbGaP dbGaP: phs001325.v6.p1

iPSCORE RNA-Seq, ATAC-Seq,

and ChIP-Seq Raw data

dbGaP dbGaP: phs000924.v5.p2

Code associated with ‘‘Multiomic QTL mapping

reveals phenotypic complexity of GWAS loci

and prioritizes putative causal variants.’’

This paper61 Zenodo: https://doi.org/10.5281/ZENODO.14585175

UCSC hg38 reference genome UCSC70 https://hgdownload.soe.ucsc.edu/goldenPath/

hg38/bigZips/; RRID:SCR_005780

Gencode version 44 hg38 reference genome Frankish et al.71 RRID:SCR_014966

1000 Genomes Project EUR population The 1000 Genomes Project

Consortium72

broad-alkesgroup-public-requester-pays/

LDSCORE/GRCh38/plink_files.tgz;

RRID:SCR_008801

EpiMap Repository EpiMap Repository73 https://compbio.mit.edu/epimap

GTEx Consortium GTEx Consortium1 https://console.cloud.google.com/storage/

browser/gtex-resources; RRID:SCR_013042;

RRID:SCR_001618

Pan UKBB (UK Biobank) Pan UKBB62,63 https://pan.ukbb.broadinstitute.org/

downloads/index.html; RRID:SCR_012815

Early Growth Genetic Consortium EGG: Early Growth

Genetic Consortium65–67

http://egg-consortium.org/

Meta-Analyses of Glucose and Insulin-related

Traits Consortium

Chen et al.64 http://magicinvestigators.org/downloads/

DIAGRAM Consortium Mahajan et al.68 https://diagram-consortium.org;

RRID:SCR_015675

Aging/Multivariate Longevity Summary Statistics Edinburgh Data Share69 https://datashare.ed.ac.uk/handle/10283/3599

JASPAR (2020 version) Fornes et al.43 https://jaspar.elixir.no/; RRID:SCR_003030

HOCOMOCO v11 Kulakovskiy et al.44 https://hocomoco11.autosome.org/;

RRID:SCR_005409

Experimental models: Cell lines

iPSCORE human iPSC lines WiCell www.wicell.org

Software and algorithms

FlowJo version 10.2 & version 10.4 BD Biosciences https://www.bdbiosciences.com/en-us/

products/software/flowjo-v10-software;

RRID:SCR_008520

CrossMap Zhao et al.74 https://anaconda.org/bioconda/crossmap;

RRID:SCR_001173

STAR 2.7.10b Dobin et al.75 https://github.com/alexdobin/STAR;

RRID:SCR_004463

(Continued on next page)
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Picard v3.1.0 https://github.com/broadinstitute/picard;

RRID:SCR_006525

RSEM v1.3.3 Li et al.76 https://github.com/deweylab/RSEM;

RRID:SCR_000262

Samtools v1.17 Danecek et al.77 https://github.com/samtools/samtools;

RRID:SCR_002105

edgeR v3.38.4 Robinson et al.78 https://bioconductor.org/packages/

release/bioc/html/edgeR.html;

RRID:SCR_012802

ENCODE ATAC-seq pipeline ENCODE Project Consortium30 https://github.com/ENCODE-DCC/

atac-seq-pipeline;

RRID:SCR_023100

ENCODE ChIP-seq pipeline ENCODE Project Consortium30 https://github.com/ENCODE-DCC/

chip-seq-pipeline2;

RRID:SCR_021323

BWA MEM Li et al.79 https://bio-bwa.sourceforge.net/bwa.shtml;

RRID:SCR_010910

Bedtools Quinlan et al.80 https://bedtools.readthedocs.io/en/latest/;

RRID:SCR_006646

featureCounts v2.0.6 Liao et al.81 RRID:SCR_012919

bcftools Li and Dewey76 RRID:SCR_005227

ChIPseeker version 1.26.2 Yu et al.82 RRID:SCR_021322

TOBIAS Bentsen et al.42 https://github.com/loosolab/TOBIAS

plink 1.90b6.21 Purcell et al.83 https://www.cog-genomics.org/plink/;

RRID:SCR_001757

R v4.2.1 The R Project for Statistical

Computing

RRID:SCR_001905

limix v3.0.4 Limix software https://github.com/limix/limix

eigenMT Davis et al.84 https://github.com/joed3/eigenMT

igraph Csardi et al.85,86 RRID:SCR_019225

mashr Urbut et al.55 https://github.com/stephenslab/mashr

tabix Danecek et al.77 https://github.com/samtools/htslib/

blob/develop/tabix.c

LD Score Regression v1.0.1 Bulik-Sullivan et al.87 https://github.com/bulik/ldsc

MACS2 Zhang et al.88 https://hbctraining.github.io/Intro-to-ChIPseq/

lessons/05_peak_calling_macs.html
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EXPERIMENTAL MODEL AND STUDY PARTICIPANTS

Subject information
The iPSCORE collection consists of whole genome sequences (WGS) for 273 iPSCORE subjects, 238 iPSCs derived from 221 of

these individuals (Figure S1; Table S1) as well as iPSC-derived cell types (cardiovascular progenitor cells [CVPC] and pancreatic pro-

genitor cells [PPC]) with RNA-seq, ATAC-seq and H3K27 acetylation ChIP-seq. Of the 221 individuals with iPSCs, 141 belong to 40

families composed of two or more subjects (range: 2–14 subjects) and 80 are genetically unrelated (some individuals were in the

same family but only related by marriage).13 Each subject was assigned a Universal Unique Identifier (UUID) and an iPSCORE_ID

(i.e., iPSCORE_4_1) which designates family (4) and individual number (1). Sex and age were recorded at the time of enrollment,

with molecular data analyzed from 123 females and 98males, aged 9 to 88 years. We previously estimated the ancestry of each sub-

ject by comparing their genomes to those of individuals in the 1000 Genomes Project (KGP).13 Of the 221 iPSC donors, 170 are of

European descent, 34 are of East Asian descent, 7 are admixed Americans, 6 are of South Asian descent, and 6 are of African

descent. Other subject information can be found in Table S1 and Figure S1. Recruitment of individuals was approved by the Insti-

tutional Review Boards of the University of California, San Diego, and The Salk Institute (project no. 110776ZF).

Molecular data sources
We used the following datasets from the iPSCORE resource.
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(1) 50X WGS (Illumina; 150 bp paired-end) generated from the blood or skin fibroblasts of the 273 iPSCORE subjects.14.

(2) RNA-seq data (Table S2) from:

� 220 iPSC lines from 220干 individuals14

� 178 CVPCs derived from 147 iPSC lines from 137 individuals3,21,22

� 107 PPCs derived from 106 iPSC lines from 106 individuals2

(3) ATAC-seq data (Table S2) from:

� 142 iPSC lines from 129 individuals19

� 140 CVPCs derived from 132 iPSC lines from 124 individuals *

� 109 PPCs derived from 108 iPSC lines from 108 individuals *

(4) H3K27ac ChIP-seq data (Table S2) from:

� 43 iPSC lines from 38 individuals *

� 101 CVPCs derived from 97 iPSC lines from 96 individuals *

*The datasets previously published are referenced while the four datasets released here are indicated by an asterisk. In addition to

the samples in these four new datasets, 7 of the 220 iPSC RNA-seq samples were not previously published.
干There are 221 subjects in the study and 220 iPSC RNA-seq samples from 220 subjects. One subject had CVPC and PPC RNA--

seq samples but not an iPSC RNA-seq sample.

METHOD DETAILS

iPSC generation and differentiation
iPSC generation

Generation of the 238 iPSC lines has previously been described in detail.13 Briefly, cultures of primary dermal fibroblast cells were

generated from a punch biopsy tissue, expanded for approximately 3 passages, and cryopreserved. In batch, the fibroblasts were

thawed and plated at a density of 2.5x105 cells/well of 6-well plate and infected with the Cytotune Sendai virus (Life Technologies) per

manufacturer’s protocol to initiate reprogramming. The Sendai-infected cells were maintained with 10% FBS/DMEM (Invitrogen) for

Days 4–7 until the cells recovered and repopulated the well. These cells were then enzymatically dissociated using TrypLE (Life Tech-

nologies) and seeded onto a 10-cm dish pre-coated with mitotically inactive mouse embryonic fibroblasts (MEFs) at a density of

5x105 cells/dish and maintained with hESC medium, as previously described. Emerging iPSC colonies were manually picked after

Day 21 and maintained on Matrigel (BD Corning) with mTeSR1 medium (Stem Cell Technologies). From each individual, multiple

independently established iPSC clones (i.e., referred to as lines) were derived, cultured typically to passage 12 (P12), and then

cryopreserved. Sendai virus clearance typically occurred at or before P9 and was not detected in the iPSC lines at the P12 stage

of cryopreservation. A subset of the iPSC lines was evaluated by flow cytometry for expression of two pluripotent markers: Tra-1-

81 (Alexa Fluor 488 anti-human, Biolegend) and SSEA-4 (PE anti-human, Biolegend). Pluripotency was also examined using

PluriTest-RNAseq.89

Harvesting of material for molecular assays.

(1) At P12, for 220 iPSC lines from 220 individuals, pellets were collected and frozen in RTL plus buffer (Qiagen) for the RNA-seq

assay.

(2) iPSC nuclear pellets for the ATAC-seq and H3K27ac ChIP-seq assays were collected at D0 of the CVPC differentiation

protocol (see below: CVPC differentiation).

CVPC differentiation

As previously described in detail,90 to generate CVPCs, we used a small molecule cardiac differentiation protocol.91 The 25-day dif-

ferentiation protocol consisted of four phases.

(1) Expansion of iPSC: One vial of each iPSC line was thawed intomTeSR1medium containing 10 mMROCK Inhibitor (Sigma) and

plated on one well of a 6-well plate coated overnight with matrigel. During the expansion phase, cells were cultured in mTeSR.

The iPSCs were passaged using Versene (Lonza) from one well into three wells of a 6-well plate. Next, the iPSCs were

passaged using Versene onto three 10-cm dishes at 2.5x104 per cm2 density. The iPSCs monolayer was plated onto three

T150 flasks at the density of 3.7x104 per cm2 using Accutase (Innovative Cell Technologies Inc.). iPSCs were at passage

22.7 ± 4.8 (range 17–44) at the monolayer stage (i.e., initiation of differentiation). When iPSC lines were visually estimated

to be at 80% confluency, they were passaged in mTeSR1 medium containing 5 mM ROCK inhibitor.

(2) Differentiation: After reaching 80% confluency, differentiation (D0) was initiated with the addition of the RPMI 1640 medium

(Gibco-life technologies) with Penicillin-Streptomycin (Gibco/Life Technologies) and B-27 Minus Insulin (Gibco/Life Technol-

ogies) (hereafter referred to as RPMIMinus) supplementedwith 12mMCHIR-99021. After 24h of exposure to CHIR-99021 (D1),

mediumwas changed to RPMI Minus. On D3, mediumwas changed to 1:1 mix of spent and fresh RPMIMinus, supplemented

with 7.5mM IWP-2 (Tocris). On D5, after 48h of exposure to IWP-2, the medium was changed to RPMI Minus. On D7, medium

was changed to RPMI 1640 with Penicillin-Streptomycin (Gibco/Life 22 Technologies) and B-27 Supplement 50X (hereafter

referred to as RPMI Plus) (Gibco/Life Technologies). Between D7 and D13, RPMI Plus medium was changed every 48h.
e4 Cell Genomics 5, 100775, March 12, 2025
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For CVPCs with a sufficient proportion of cardiomyocytes, the first beating cells were usually observed between D7 and D9,

with some as early as D7 (immediately after the media change). Robust beating was usually observed between D8 and D11.

(3) Purification: Since fetal cardiomyocytes have a higher capacity to use lactate as a primary energy source than other cell

types,92,93 we incorporated lactate metabolic selection for five days to increase CVPC purity.94 On D15, the cells were

collected from the flask using Accutase and plated onto fresh T150 flasks at confluency 1-1.3x106 per cm2. On D16, cells

were washed with PBS without Ca2+ and Mg2+ (Gibco/Life Technologies), and medium was changed to RPMI 1640 with no

glucose (Gibco/Life Technologies) supplemented with Non-Essential Amino Acids (Gibco/Life Technologies), L-Glutamine

(Gibco/Life Technologies), Penicillin-Streptomycin 10,000U (Gibco/Life Technologies) and 4mM Sodium L-Lactate (Sigma)

in 1MHEPES (Gibco/Life Technologies). Medium supplemented with lactate was changed on D17 and D19. During the lactate

selection, CVPCs were beating robustly less than 16 h after reseeding.

(4) Recovery:After metabolic selection, CVPCsweremaintained in cell culture for five days. OnD21, cells were washedwith PBS,

and the medium was changed to RPMI Plus. We changed the media on D23 using RPMI Plus. To evaluate the efficiency of

CVPC differentiation, we performed flow cytometry on D25 with the cardiac marker Troponin T (cTnT, TNNT2). Specifically,

5x105 CVPCs were permeabilized and blocked in 0.5% BSA, 0.2% TX-100 and 5% goat serum in PBS for 30 min at room

temperature. Cells were stained with Troponin T, Cardiac Isoform Ab-1, Mouse Monoclonal Antibody (Thermo Scientific,

MS-295-P0) at 4�C for 45 min, followed by Alexa Fluor 488 secondary antibody (Life Technologies, A11001). Stained cells

were acquired using BD FACSCanto II system (BD Biosciences) and the fraction of cTnT-positive cells were calculated using

FlowJo software version 10.2.21

Harvesting of material for molecular assays.

(1) At D0 of the CVPC differentiation, 142 iPSC lines from 129 individuals were collected and frozen as nuclear pellets for the

ATAC-seq assay**.

(2) At D0 of the CVPC differentiation, 43 iPSC lines from 41 individuals were collected and frozen as nuclear pellets for the

H3K27ac ChIP-seq assay**.

(3) At D25, 178 CVPCs derived from 147 iPSC clones from 137 individuals, pellets were collected and frozen in RTL plus buffer

(Qiagen) for the RNA-seq assay.

(4) At D25, 140 CVPCs derived from 132 iPSC clones from 124 individuals were collected and frozen as nuclear pellets for the

ATAC-seq assay.

(5) At D25, 101 CVPCs derived from 97 iPSC clones from 96 individuals were collected and cross-linked for the H3K27ac ChIP-

seq assay.

Asterisks (**) indicate that the iPSC ATAC-seq and H3K27ac ChIP-seq data were generated for iPSC lines treated with ROCK in-

hibitor before initiating CVPC differentiation, whereas the RNA-seq data were generated on ROCK inhibitor-naı̈ve iPSC lines.

PPC differentiation

As previously described,2 the iPSC lines were differentiated into PPCs using the STEMdiff Pancreatic Progenitor Kit (StemCell Tech-

nologies, Catalog #05120) protocol withminor modifications. Briefly, iPSC lines were thawed intomTeSR1medium containing 10 mM

Y-27632 ROCK Inhibitor (Selleckchem) and plated onto one well of a 6-well plate coated with Matrigel. iPSCs were grown until they

reached 80% confluency and then passaged using 2 mg/ml solution of Dispase II (ThermoFisher Scientific) onto three wells of a

6-well plate (ratio 1:3). To expand the iPSC cells for differentiation, iPSCs were passaged a second time onto six wells of a 6-well

plate (ratio 1:2). When the iPSCs reached 80% confluency, cells were dissociated into single cells using Accutase (Innovative Cell

Technologies Inc.) and resuspended at a concentration of 1.85x106 cells/ml in mTeSR medium containing 10 mM Y-27632 ROCK

inhibitor. Cells were then plated onto six wells of a 6-well plate and grown for approximately 16–20 h to achieve a uniform monolayer

of 90–95% confluence (3.7x106 cells/well; about 3.9x105 cells/cm2). Differentiation of the iPSC monolayers was initiated by

replacing the mTeSR medium with STEMdiff Stage Endoderm Basal medium supplemented with Supplement MR and Supplement

CJ (2mL/well) (Day 1, D1). The followingmedia changeswere performed every 24 h after initiation of differentiation (2mL/well). On D2

and D3, themediumwas changed to fresh STEMdiff Stage Endoderm Basal medium supplemented with Supplement CJ. On D4, the

medium was changed to STEMdiff Pancreatic Stage 2–4 Basal medium supplemented with Supplement 2A and Supplement 2B. On

D5 and D6, the mediumwas changed to STEMdiff Pancreatic Stage 2–4 Basal medium supplemented with Supplement 2B. FromD7

to D9, the medium was changed to STEMdiff Pancreatic Stage 2–4 Basal medium supplemented with Supplement 3. From D10 to

D14, the mediumwas changed to STEMdiff Pancreatic Stage 2–4 Basal medium supplemented with Supplement 4. On D15, to eval-

uate the efficiency of PPC differentiation, we performed flow cytometry on two pancreatic precursor markers, PDX1 and NKX6-1.

Specifically, at least 2x106 cells were fixed and permeabilized using the Fixation/Permeabilized Solution Kit with BD GolgiStop

TM (BD Biosciences) following the manufacturer’s recommendations. Cells were resuspended in 1x BD Perm/Wash TM Buffer at

a concentration of 1x107 cells/ml. For each flow cytometry staining, 2.5x105 cells were stained for 75 min at room temperature

with PE Mouse anti-PDX1 Clone-658A5 (BD Biosciences; 1:10) and Alexa Fluor 647 Mouse anti-NKX6.1 Clone R11-560 (BD Biosci-

ence; 1:10), or with the appropriate class control antibodies: PE Mouse anti-IgG1 k R-PE Clone MOPC-21 (BD Biosciences) and

Alexa Fluor 647 Mouse anti IgG1 k Isotype Clone MOPC-21 (BD Biosciences). Stained cells were washed three times, resuspended
Cell Genomics 5, 100775, March 12, 2025 e5
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in PBS containing 1% BSA and 1% formaldehyde, and immediately analyzed using FACS Canto II flow cytometer (BD Biosciences).

The fraction of PDX1-and NKX6-1-positive cells were calculated using FlowJo software version 10.42.

Harvesting of material for molecular assays.

(1) At D15, 107 PPCs derived from 106 iPSC clones from 106 individuals, pellets were collected and frozen in RTL plus buffer

(Qiagen) for the RNA-seq assay.

(2) At D15, 109 PPCs derived from 108 iPSC clones from 108 individuals were collected and frozen as nuclear pellets for the

ATAC-seq assay.

(3) H3K27ac ChIP-seq assay was not performed for the PPCs, however, we have frozen samples, and this dataset could be

added in the future.

Molecular data generation and sequencing
Whole Genome Sequencing

As previously described,13,14 we generated whole genome sequences (WGS) for 273 iPSCORE subjects, though only 221 had their

fibroblasts reprogrammed into 238 iPSC lines. Genomic DNA was isolated from whole blood (or in 19 cases directly from the fibro-

blasts) using DNEasy Blood & Tissue Kit (Qiagen), quantified, normalized, and shearedwith a Covaris LE220 instrument. The samples

were normalized to 1 mg and submitted to Human Longevity (HLI) for whole genome sequencing. DNA libraries were prepared

(TruSeq Nano DNA HT kit, Illumina), characterized with regards to size (LabChip DX Touch, PerkinElmer) and concentration

(Quant-iT, Life Technologies), normalized to 2-3.5nM, combined into 6-sample pools, clustered and sequenced to �50X depth on

the Illumina HiSeqX (150 bp paired-end).

RNA-seq

As previously described in detail,14 for the iPSCs, total RNAwas isolated from cell lysates using AllPrep DNA/RNAMini Kit (QIAGEN).

RNA quality was assessed based on RNA integrity number (RIN) using an Agilent Bioanalyzer, and libraries were prepared using the

Illumina TruSeq stranded mRNA kit and sequenced with 100 bp paired-end reads on an Illumina HiSeq2500 (an average of 22 million

read pairs/per sample).

As previously described in detail,3,21,22 for the CVPCs, total RNA was isolated from cell lysates using the Quick-RNA MiniPrep Kit

(ZymoResearch). RNA quality was assessed based on RIN, and libraries were prepared using the Illumina TruSeq strandedmRNA kit

and sequenced with either 100 bp paired-end or 150 bp paired-end reads on an Illumina HiSeq4000 (an average of 28 million read

pairs/per sample).

As previously described in detail,2 for the PPCs, total RNA was isolated from cell lysates using the Quick-RNA MiniPrep Kit (Zymo

Research), RNA quality was assessed based on RIN, and libraries were prepared using the Illumina TruSeq stranded mRNA kit and

sequenced with 100 bp paired-end reads on an Illumina NovaSeq 6000 (an average of 71 million read pairs/sample).

ATAC-seq

All ATAC-seq samples were processed in the samemanner using a modified version of the Buenrostro et al. protocol29 as previously

described.19 Briefly, frozen nuclear pellets of 2.5x104 iPSC or 1x105 CVPC or PPC cells were thawed on ice and tagmented in total

volume of 25mL in permeabilization buffer containing digitonin (10mMTris-HCl pH 7.5, 10mMNaCl, 3mMMgCl,2 0.01%digitonin) and

2.5mL of Tn5 from Nextera DNA Library Preparation Kit (Illumina) for 45-75 min at 37�C in a thermomixer (500 RPM shaking). We

included a double size selection step during purification using AMPure XP DNA beads (Beckman Coulter). To eliminate confounding

effects due to index hopping, all libraries within a pool were indexed with unique pairs of i7 and i5 barcodes. Libraries were amplified

for 12 cycles using NEBNext High-Fidelity 2X PCR Master Mix (NEB) in total volume of 25mL in the presence of 800nM of barcoded

primers (400nM each) custom synthesized by Integrated DNA Technologies (IDT) and sequenced with either 100 bp paired-end and

150 bp paired-end reads on an Illumina HiSeq4000 for iPSCs and CVPCs and 150 bp paired-end reads on an Illumina NovaSeq 6000

for PPCs.

H3K27 acetylation ChIP-seq

All H3K27ac ChIP-seq samples were processed in the same manner. For H3K27ac, 5-15x106 formaldehyde crosslinked cells were

lysed and sonicated in 110mL of SDS Lysis Buffer (0.5% SDS, 50mM Tris-HCl pH 8.0, 20mM EDTA, 1x cOmplete Protease Inhibitor

Cocktail (Sigma)) using Covaris E220 Focused-ultrasonicators (Covaris) for 14 cycles, 1min per cycle, duty cycle 5. For each sample,

H3K27ac antibody (Abcam ab4729, lot GR00324078) was coupled for 4 h to 40mL of 1:1 mix Protein G and Protein A Dynabeads

(Thermo Scientific) and used for overnight chromatin immunoprecipitation in IP buffer (1% Triton X-100, 0.1% DOC, 1x TE buffer,

1x cOmplete Protease Inhibitor Cocktail). Beads with immunoprecipitated chromatin were washed with 150mL of following buffer:

four times with RIPA Low Salt Buffer (0.1% SDS, 1% Triton X-100, 2mM EDTA, 20mM Tris-HCl pH 8.0, 300mM NaCl, 0.1%

DOC), two times in RIPA High Salt Buffer (0.1% SDS, 1% Triton X-100, 1mM EDTA, 20mM Tris-HCl pH 8.0, 500mM NaCl, 0.1%

DOC), twice in LiCl Buffer (250mM LiCl, 0.5% NP-40, 0.5% DOC, 1mM EDTA, 10mM Tris-HCl pH 8.0) and twice in 1X TE buffer

(10mM Tris-HCl pH 8.0, 1mM EDTA). Next samples were eluted in 150 mL of Direct Elution Buffer (0.1% SDS, 10mM Tris-HCl pH

8.0, 5mM EDTA) and reverse crosslinked by incubation for 15 min at 65�C with rotation and subsequent incubation with 5 mL RNAse

(Sigma) for 1h at 37�C and Proteinase K Solution (20 mg/mL, Thermo Fisher Scientific) for 1h at 55�C. After reverse crosslinking sam-

ples were purified with 2X Agencourt AMPure XP DNA beads (Beckman Coulter), eluted in 30 mL of H2O and Qubit (Thermo Scientific)

quantified. Libraries were generated using KAPA Hyper Prep Kit (KAPA Biosystems) and KAPA Real Time Library Amplification Kit
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(KAPA Biosystems) following manufacturers manual. Libraries were barcoded using TruSeq RNA Indexes (Illumina), size selected for

300 bp to 500 bp, and sequenced with either 100 bp paired-end or 150 bp paired-end reads on an Illumina HiSeq 4000 (an average of

44 million read pairs/per sample).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data Processing
Whole Genome Sequencing

We downloaded the VCF in hg19 for 273 iPSCORE individuals13,14 (see Molecular data generation and sequencing: Whole

Genome Sequencing) from dbGaP (phs001325.v5.p1), and performed liftOver to hg38 using CrossMap74 and the hg38 reference

genome from UCSC (https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/).

RNA-seq

All RNA-seq samples were processed in a uniformmanner (Table S2). Libraries that were sequencedmore than onceweremerged by

concatenating the FASTQ files. The reads were aligned onto the hg38 human reference genome downloaded from Gencode version

4471,95 using STAR 2.7.10b (https://github.com/alexdobin/STAR) with the following parameters: –outSAMattributes All –outSAMun-

mappedWithin –outFilterMultimapNmax 20 –outFilterMismatchNmax 999 –alignIntronMin 20 –alignIntronMax 1000000 –alignMates-

GapMax 1000000. PCR duplicates were marked with Picard (https://github.com/broadinstitute/picard) (v3.1.0) and counted using

samtools flagstat77 (v1.17). Number and percentage of mapped reads were calculated using samtools flagstat77 (v1.17). Percentage

of intergenic andmRNA bases were determined using Picard (v3.1.0) CollectRnaSeqMetrics. Gene TPM expression and read counts

were calculated using RSEM76 (v1.3.3) with gene annotations from Gencode version 4471,95 (hg38) and the following parameters:

–seed 3272015 –estimate-rspd –forward-prob 0 –paired-end. RNA-seq samples were examined for quality using GTEx standards.1

Specifically, we required that samples met the following metrics: 1) the number of mapped reads >10 million; 2) percent of intergenic

bases <30; 3) percent of mRNA bases >70; 4) percent of duplicate reads <30; 5) percent mapped reads >85%; 6) number of reads

passing filters >25M, and 7) matched via a sample identity check to the correct subject with PI_HAT >0.90 (Figure S16).

For all downstream analyses, gene expression values were normalized and filtered using the same procedure as GTEx.1 Specif-

ically, 1) read counts were TMM normalized across all genes using edgeR78 (v3.38.4) with functions DGEList, calcNormFactors, and

cpm; 2) autosomal genes were selected and filtered based on expression thresholds of R 0.1 TPM in R 20% of samples and R 6

reads (unnormalized) inR 20% of samples; 3) TMM expression values for each gene were inverse normal transformed across sam-

ples using rank and qnorm in R v4.2.1 and used as input for eQTL analyses. This resulted in 18,720 iPSC, 18,314 CVPC, and 20,738

PPC genes used for eQTL mapping.

ATAC-seq

All ATAC-seq samples were processed in a uniform manner using the same procedure as the ENCODE (https://github.com/

ENCODE-DCC/atac-seq-pipeline) (Table S2). Illumina adapters were removed from the reads using cutadapt.96 Reads were aligned

using BWA MEM79 (https://bio-bwa.sourceforge.net/bwa.shtml) onto the hg38 human reference genome from UCSC (https://

hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/). Multi-mapped reads were randomly assigned using ENCODE’s custom

script (assign_multimappers.py) (https://github.com/ENCODE-DCC/atac-seq-pipeline). Using samtools,77 reads that were either

unmapped, not in primary alignment, failed Illumina QC metrics, or had an unmapped mate were removed (samtools view -F

1804). Properly paired reads with mapping qualityR 30 were retained (samtools view -f 2 -q 30). Duplicates were marked by Picard

and then removed with samtools. Mitochondrial reads were also excluded from downstream analyses. Filtered BAM files were con-

verted to bed files (bedtools bamtobed) and shifted for Tn5 bias, and then used to call narrow peaks using MACS288 with ENCODE

default parameters (https://github.com/ENCODE-DCC/atac-seq-pipeline): –shift 75 –extsize 150 -q 0.01 –nomodel -B –SBMR –

keep-dup all. Peaks overlapping blacklisted regions were removed. ATAC-seq samples were examined for quality and excluded

if they did not pass one of the following metrics: 1) non-redundant fraction (NRF) > 0.9; 2) PCR-bottlenecking coefficient 1

(PBC1) > 0.9; 3) PCR-bottlenecking coefficient 2 (PBC2) > 3; 4) percent of mapped reads >0.95; 5) fraction of reads in peaks

(FRIP) > 10; 6) TSS enrichment97 (TSSE) > 4, and 7) matched via a sample identity check to the correct subject with PI_HAT

>0.90 (Figure S17). Across all ATAC-seq samples, the number of read pairs passing filters ranged from 6.4 million to 46.2 million

with an average of 31.4 million.

To identify consensus peaks for each tissue, we selected high quality reference samples using the following filters: 1) 25 < FRiP

<45; 2) 5 < TSSE <25; and 3) 75,000 < number of peaks <200,000) from unrelated individuals in different families with two or

more individuals in the iPSCORE collection (Figure S17). If multiple samples from the same family passed these filters, we selected

the sample with the highest TSSE, which resulted in 24 iPSC, 24 PPC, and 23 CVPC reference samples. For each reference sample,

we removed short peaks (<150 bp), then concatenated and merged peaks across all the reference samples for each tissue, resulting

in 208,581 iPSC, 278,471 CVPC, and 289,980 PPC reference peaks. For each ATAC-seq sample, we used featureCounts81 (v2.0.6) to

count the number of reads in each reference peak.

For all downstream analyses, for each dataset, we first TMM-normalized the reference ATAC-seq peak counts across samples

using the calcNormFactors and cpm functions in in the edgeR package v3.38.4. We then removed ATAC-seq peaks on sex chromo-

somes or with low accessibility (TMM <1 in at least 20% of the samples), resulting in 172,075 iPSC, 202,941 CVPC, and 193,428 PPC

ATAC-seq peaks.
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H3K27 acetylation ChIP-seq

All H3K27ac ChIP-seq data was processed in a uniform manner using the same procedure as the ENCODE (https://github.com/

ENCODE-DCC/chip-seq-pipeline2) (Table S2). Illumina adapters were removed from the reads using cutadapt.96 Readswere aligned

using BWA MEM onto the hg38 human reference genome downloaded from UCSC (https://hgdownload.soe.ucsc.edu/goldenPath/

hg38/bigZips/). Properly paired readswere retained (samtools view -f 2). Using samtools unmapped and non-uniquelymapped reads

were removed (samtools view -F 1804), and PCR duplicates were marked with Picard and removed (samtools -F 1804). BAM files for

each sequencing run were merged by library and then used to call narrow peaks using MACS2 with ENCODE default parameters:

–shift �75 –extsize 150 -p 0.01 –nomodel -B –SPMR –keep-dup all. H3K27ac ChIP-seq samples were examined for quality and

excluded if they did not pass one of the following metrics: 1) > 20 million usable fragments; 2) NRF >0.9; 3) PBC1 > 0.9; 4)

PBC2 > 10; and 5) FRIP >1; and 6) matched via a sample identity check to the correct subject with PI_HAT >0.90 (Figure S18). Across

all H3K27ac ChIP-seq samples, the number of read pairs passing filters ranged from 10.0M to 64.6M with an average of 27.2M.

To identify CVPC H3K27ac ChIP-seq consensus peaks, we selected 29 high-quality reference samples using the following filters:

1) 5 < FRiP <10; 2) 40M < number of reads passing filters <100M; and 3) 25,000 < number of peaks <75,000) from unrelated individ-

uals in 29 families (Figure S18). If multiple samples from the same family passed these filters, we selected the sample with the highest

FRiP. Since there were only 43 iPSC H3K27ac ChIP-seq samples, we did not consider sample quality to establish consensus peaks

and selected 28 iPSC reference samples from 28 families. For families that had multiple individuals with iPSC H3K27ac ChIP-seq

samples, we selected the sample with the highest FRiP. For each reference sample, we filtered peaks (500 bp > peak length

>5000 bp), then concatenated and merged peaks across all the reference samples in the corresponding tissue, resulting in

45,729 iPSC, and 63,811 CVPC reference peaks. For each H3K27ac ChIP-seq sample, we used featureCounts81 v2.0.6 to count

the number of reads in each reference peak.

For all downstream analyses, for each dataset we first TMM-normalized the reference ChIP-seq peak counts across samples using

the calcNormFactors and cpm functions in the edgeR78 package v3.38.4. We then removed ChIP-seq peaks on sex chromosomes or

with low read counts (TMM <1 in at least 20% of the samples), resulting in 44,206 iPSC, and 60,556 CVPC ChIP-seq peaks.

Sample identity

Sample identity was performed as previously described.2,3,13,14,19,21 Briefly, genotypes were called from BAM files of eachmolecular

dataset for common variants with minor allele frequency (MAF) > 45% and <55% using bcftools77 mpileup and call, and then

compared to WGS genotypes using plink –genome,83 which calculates IBD between each pair of samples. Samples that matched

the correct subject with PI_HAT >0.90 passed sample identity check.

Characterization of epigenomic properties
Chromatin state peak Annotation

We annotated the five ATAC-seq and H3K27ac ChIP-seq peak datasets using the ChIPseeker (version 1.26.2) R package.82 We fol-

lowed the tutorial (https://hbctraining.github.io/Intro-to-ChIPseq/lessons/12_functional_analysis.html) and used the UCSC hg38

default parameters for gene annotations. We used the plotAnnotBar function to generate Figure S3.

Comparing Epigenomes Across Tissues

Independent consensus ATAC-seq peaks and H3K27ac ChIP-seq peaks were defined for each tissue and molecular dataset, there-

fore we could not use them to compare chromatin accessibility or histone acetylation across tissues. To create global consensus

ATAC-seq peaks in order to compare all 391 ATAC-seq samples, we concatenated the 172,075 iPSC, 202,941 CVPC, and

193,428 PPC accessible (TMM <1 in at least 20% of the samples) ATAC-seq peaks, then sorted and merged using bedtools merge

with parameters: -c 4 -o distinct, which reports the IDs of the peaks that were merged. After merging, there were 348,429 global

consensus ATAC-seq peaks from all three tissues. Likewise, we created 83,680 global consensusChIP-seq peaks by concatenating,

sorting, and merging the 44,206 iPSC, and 60,556 CVPC ChIP-seq peaks. We applied featureCounts81 (v2.0.6; as described inData

Processing: ATAC-seq) to count the number of reads in 391 ATAC-seq samples and 143 ChIP-seq samples, using the correspond-

ing global consensus peaks. The counts were TMM-normalized, using edgeR78 v3.38.4 (as described in Data Processing: ATAC-

seq and Data Processing: H3K27 acetylation ChIP-seq). A PC analysis was performed on the top 2000 most variable global

consensus peaks for ATAC-seq and ChIP samples, independently. A UMAP dimensionality reduction was performed on the top 9

PCs for ATAC and the top 10 PCs for ChIP samples (Figure S4A and S4B).

Tissue-specific and shared ATAC-seq peaks

Using the 348,429 global consensus ATAC-seq peaks calculated above (see Comparing Epigenomes Across Tissues), we iden-

tified peaks that were only present in one tissue. An ATAC-seq peak from a given tissue that overlapped (R 1 bp) at least one ATAC-

seq peak from a different tissue was considered ‘‘Shared’’ (Figure S4C).

ATAC-seq Peak Transcription Factor Predictions

The TOBIAS42 algorithm leverages the distribution of reads across the genome for a given sample, therefore to profile TF

occupancy, we ran TOBIAS to predict binding at 1,147 motifs across ATAC-seq peaks for each tissue, independently. We first

merged BAM files for the reference samples used to establish reference peaks for each tissue. We followed the standard

workflow in the TOBIAS tutorial (https://github.com/loosolab/TOBIAS). Briefly, for each merged reference BAM file, we applied ATA-

Correct to correct for cut site biases introduced by the Tn5 transposase within the 172,075 iPSC, 202,941 CVPC, and 193,428 PPC

ATAC-seq peaks, using the following parameters: –genome hg38.fa (https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/)
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and –blacklist hg38-blacklist.v2.be (https://github.com/Boyle-Lab/Blacklist/blob/master/lists/hg38-blacklist.v2.bed.gz). Next, we

calculated footprints scores with ScoreBigwig, using the corresponding narrowPeak file for each tissue as input. To identify the pre-

dicted transcription factor binding sites, we ran BINDetect with 746 motifs from JASPAR43 (2020 version) and 401 HOCOMOCO44

v11 TF motifs independently, using the hg38 fasta as the reference genome file. The tables for predicted TFBSs at JASPAR and

HOCOMOCO motifs are deposited on Figshare.

ATAC-seq peak TFBS enrichment

We performed two-sided Fisher’s Exact tests to calculate the enrichment of TFBSs in tissue-specific ATAC-seq peaks. For the three

sets of tissue-specific ATAC-seq peaks, we calculated the differential TFBS enrichment relative to the corresponding shared ATAC-

seq peaks, using peaks with at least one TFBS. For example, of the 66,333 tissue-specific and 105,742 shared ATAC-seq peaks in

the iPSCs (Figure S4C), we used 5,109 tissue-specific and 40,633 shared peaks that were bound by at least one TFBS to calculate

enrichment, using the shared peaks as background.

Quantitative Trait loci (QTLs) mapping
Whole Genome sequencing variant selection

For all QTL analyses, we used single nucleotide polymorphisms (SNPs) that met the following criteria across the 273 individuals (see

Data Processing: Whole Genome Sequencing): 1) passed Illumina QC; 2) in Hardy-Weinberg equilibrium (p > 0.000001); 3) gen-

otyped in at least 99% of the individuals; and 4) had MAF >0.05. After filtering, 5,536,303 SNPs remained.

Kinship matrix

To account for genetic relatedness between samples, we performed LD pruning on the 5,536,303 variants using plink83 1.90b6.21

(-indep-pairwise 50 5 0.2). We then used the 323,697 LD-pruned variants to construct a kinship matrix for the 273 iPSCORE individ-

uals using plink83 1.90b6.21 (–make-rel square).

Genotype principal component analysis

To calculate global ancestry, we performed genotype principal component analysis (PCA) across all 273 individuals in the iPSCORE

Collection. First, we intersected the 323,697 LD-pruned variants above with 1000 Genomes98–100 single nucleotide polymorphisms

(SNPs). Then, using plink83 1.90b6.21 (–pca-cluster-names AFR EUR AMR EAS SAS –pca), we performed PCA excluding 1000

Genome subjects without super-population information. We determined that the first five genotype PCs for QTL analysis were suf-

ficient and captured the majority of the variability that was due to global ancestry (Figure S1c). The ancestries reported for the 221

subjects in this study (Figure S1a-b), were assigned in a previous study describing the iPSCORE Collection.13

PEER Factor Calculation

To account for hidden technical and biological confounders that influence gene expression variability, we used Probabilistic Estima-

tion of Expression Residuals101 (PEER) to estimate a set of latent factors for each tissue (iPSC, CVPC, PPC) and molecular data type

(RNA-seq, ATAC-seq, H3K27ac ChIP-seq). We used the top 2,000 most variable genes/peaks to calculate a maximum number of

PEER factors that is equivalent to �25% of the samples (for instance, for the CVPC RNA-seq dataset of 178 samples, we set the

maximum number of PEER factors to 50), as recommended by the original developers.101 As previously described,2,3 to determine

the number of PEER factors to use for QTL discovery, we piloted QTL mapping on a random set of 1,000 genes or 4,000 peaks using

varying numbers of PEER factors as covariates (Table S2) and selected the least number of PEERs that resulted in maximum eGene,

caPeak, and haPeak discovery (Figure S15). For eQTLs, we used 51, 35, and 22 PEER factors for iPSC, CVPC, and PPC, respectively

as covariates. For caQTLs, we used 28, 28, and 20 PEER factors for iPSC, CVPC, and PPC, respectively, as covariates. For haQTLs,

we used 8 and 19 PEER factors for iPSC andCVPC, respectively, as covariates.We found that the variance captured by PEER factors

was correlated with known biological and technical factors recorded for each sample (Figure S14). In particular, we observed that the

top PEER factors across all the molecular data types were highly correlated with sequencing quality, differentiation efficiency,

and sex.

QTL covariates

For all QTL analyses, we included the following as general covariates: sex, iPSC passage number, the first five genotype PCs to con-

trol for global ancestry, and PEER factors to account for hidden confounders of molecular phenotype variability (see Quantitative

Trait Loci (QTL) Mapping: PEER Factor Calculation).

QTL mapping

QTL mapping was performed in two steps: 1) QTL Discovery, and 2) QTL Filtering, for each of the 8 iPSCORE molecular datasets

independently (see Supplemental Methods).

Step 1: QTL Discovery

The QTL Discovery step was performed using a linear mixedmodel (LMM) with the kinship matrix as a random effect to account for

the genetic relatedness between samples. First, using rank and qnorm in R (v4.2.1), we inverse normal transformed the TMM gene

expression/peak accessibility or acetylation values across the samples. Genes within 1 Mb and peaks within 100 kb of the MHC re-

gion102 (chr6:28,510,120-33,480,577) were removed due to the complex LD structure in the interval. For the elements (i.e., genes and

peaks) outside the MHC region, we used bcftools77 query to obtain the genotypes for all the variants within 1 Mb for genes or 100 kb
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for ATAC-seq peaks and H3K27ac ChIP-seq peaks. Then, we applied the scan function in limix (v3.0.4) (https://github.com/limix/

limix) to run the following linear mixed model:

Yi = bjXij +
XM

m = 5

gmPCim +
XN

n = 1

gnPEERin +
XP

p = 1

gpCip + ui + eij

Where Yi is the normalized expression value for sample i, bj is the effect size (fixed effect) of SNP j, Xij is the genotype of sample i at

SNP j,M is the number of genotype principal components used (M = 5 for all QTL analyses), gm is the effect size of them th genotype

principal component, PCim is the value of them th genotype principal component for the individual associated with sample i,N is the

number of PEER factors (See Quantitative Trait Loci (QTL) Mapping: PEER Factor Calculation), gn is the effect size of the n th

PEER factor, PEERin is the value for the n th PEER factor for sample i, P is the number of covariates used (P = 1 for all QTL analyses

corresponding to the iPSC passage number), gp is the effect size of the p th covariate,Cip is the value for the p th covariate for sample

i, ui is a vector of random effects for the individual associated with sample i defined from the kinship matrix, and ˛ ij is the error term

for individual i at SNP j.

For FDR correction, we used a two-step procedure described in Huang et al.,103 which first corrects at the gene or peak level and

then at the genome-wide level. First, we performed FDR correction on the p-values of all independent variants tested for each gene or

peak using eigenMT,84 which considers the LD structure of the variants. Then, we extracted the lead variant for the QTL for each gene

or peak based on the most significant FDR-corrected p-value. If more than one variant had the same FDR-corrected p-value, we

selected the one with the largest absolute effect size as the lead variant for the QTL. For the second correction, we performed

FDR-correction on all lead variants using Benjamini-Hochberg (q-value). We considered only QTLs with q-value <0.05 as significant

(Table S4).

To identify additional independent QTL associations for a gene or peak (i.e., conditional QTLs), we performed stepwise regression

analysis in which we re-performed QTL analysis with the genotype of the lead variant for the QTL as a covariate. We repeated the

procedure to discover up to three conditional associations. For each iteration, we performed the two-step procedure described

above and considered conditional eQTLs with q-values <0.05 as significant.

Step 2: QTL Filtering

The conditional QTL analysis corrects for variants in high LD with the lead variants from the primary QTL (i.e., the primary signal is

corrected for in the conditional 1 signal). However, we observed that �43% of the conditional QTL lead variants were still in high D0

with the primary QTL lead variants, suggesting that they are not independent genetic signals. Therefore, we incorporated a filtering

step that identified and removed conditional QTLs in high LD (D’ R 0.8 and/or r2 R 0.8) with the primary QTL (Figure S6). To filter

conditional QTLs with lead variants in LD with their corresponding primary QTL lead variants, we required that both variants be pre-

sent in the 1000 Genomes Project EUR population. We removed conditional QTLs that did not meet this requirement, but we retained

the primary QTLs for use in downstream analyses even if they were not present in the 1000 Genomes Project EUR population.

To filter conditional QTLs with lead variants in LD (D’R 0.8 and/or r2R 0.8) with their corresponding primary QTL lead variants, we

first required that the conditional lead variants be present in the 1000 Genomes Project EUR population, hence 254 conditional QTLs

were removed. After this initial filtering, 46,264 qElements only had a primary QTL signal, while 14,042 qElements had conditional

signals. Of these 14,042 qElements, 255 had primary QTLs with lead variants that are not present in the 1000 Genomes EUR pop-

ulation. In these cases, we cannot determine the relationship between the primary lead variant and the conditional lead variant(s);

therefore, we retained the 255 primary QTLs associated with these qElements and removed the 343 conditional QTLs. We retained

the 255 primary QTLs even though their lead variants were not in the 1000 Genomes Project EUR population because downstream

analyses, such as GWAS colocalization, do not require the QTL lead variant to be present to calculate the posterior probabilities for

the remaining SNPs in the loci.

After the above filtering, we retained 13,787 qElements with both primary and conditional QTL lead variants in the 1000 Genomes

Project EUR population. We next calculated the LD and D0 between the 17,949 conditional QTL lead variants and their corresponding

13,787 primary QTL lead variant in the 1000 Genomes EUR population, using plink.83 We identified 7,792 non-independent

conditional QTLs (r2 R 0.8 and/or D’ R 0.8), 4 primary QTLs with monomorphic lead variants (in the 1000 Genomes Project EUR

population) with 5 associated conditional QTLs, and 12 conditional QTLs with monomorphic lead variants. We removed the 7,792

non-independent conditional QTLs, 12 monomorphic conditional QTLs, and the 5 conditional QTLs associated with monomorphic

primary QTLs. This resulted in 4,963 qElements that lost all associated conditional QTLs and 8,820 qElements with 10,140 conditional

QTLs. The 8,820 primary QTLs with conditional QTLs were regressed prior to GWAS colocalization (see GWAS Associations with

QTLs: Primary QTL Regression and Figure S10).

In summary, QTL Filtering (Step 2), resulted in 70,446 QTLs including 60,306 primary (51,486 non-regressed and 8,820 regressed)

and 10,140 conditional. Since conditional QTLs are identified in a stepwise manner, we sorted and re-numbered the remaining con-

ditional QTLs sequentially after filtering non-independent conditional QTLs (Table S4). We characterize the 60,306 primary and

10,140 conditional QTLs after the filtering step in Figures 2B–2D; use the 60,306 primary lead variants in characterization analyses

(Figures 2E, 3, and 4); and use the 60,306 primary QTLs for GWAS colocalization (Figures 5 and 6).
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QTL characterization
eGene discovery rate

To examine the relative power of identifying eQTLs, we compared the three iPSCORE EDev-like tissues to the 49 tissues in the GTEx

Consortium1 and showed that they had similar eGene discovery rates (Figure S7). We note that sequencing depth differences across

molecular data types may have resulted in different caPeak and haPeak discovery rates.

caPeaks enriched near eGenes

We performed a two-sided Fisher’s Exact test to evaluate the enrichment of caPeaks within a 100 kb window upstream any eGene

compared to 100 kb window upstream of any expressed gene without an eQTL.

caQTL discovery rate by peak width

To evaluate whether the caQTL discovery rate differed by ATAC-seq peak width, we first divided all the ATAC-seq peaks into seven

bins based on their peak width. For each bin, we calculated the fraction of peaks that had at least one caQTL signal (caPeaks;

Figure S8).

Chromatin state enrichment

We obtained ChromHMM chromatin states in the hg38 build for iPSC line 18a (BSS00737) and embryonic stem cell-derived cardiac

muscle (BSS00171) from the EpiMap Repository (https://compbio.mit.edu/epimap). We collapsed the 18 chromatin states into 5 cat-

egories: Promoter (which included TssA, TssBiv, TssFlnkU, TssFlnkD, TssFlnk), Enhancer (EnhA1, EnhA2, EnhG1, EnG2, EnhWk,

EnhBiv), Repressed (ReprPC, ReprPCWk, Het, ZNF/Rpts), Transcribed (Tx, TxWk), and Quiescent (Quies). For iPSCs and CVPCs,

using bedtools intersect, we annotated the lead variant, regardless of significance, from each QTL test across the three molecular

phenotypes with the 5 collapsed chromatin states that they overlapped in their corresponding EpiMap tissue. For both tissues,

we performed two-sided Fisher’s Exact tests to test the enrichment of unique lead variants from significant QTLs of each molecular

data type in each of the 5 collapsed chromatin states, using the unique lead variants from non-qElements (i.e., genes and peaks

without a QTL, q-value >0.05) as background.

TFBS enrichment in CVPC caPeaks and haPeaks

To characterize TF binding in regulatory elements affected by variation, we analyzed the CVPC ATAC-seq and H3K27ac ChIP-seq

datasets. We first classified CVPC ATAC-seq peaks based on whether they were a caPeak and whether that caPeak overlapped (R

1 bp) a CVPC haPeak. Using only ATAC-seq peakswith at least one predicted TFBS, we performed a two-sided Fisher’s Exact test to

calculate the enrichment of 444 JASPAR motifs of TFs that are expressed in CVPCs (see ATAC-seq Peak Transcription Factor

Predictions) in caPeaks, caPeaks-haPeaks and CVPC ATAC-seq peaks without a caQTL (no QTL).

Temporal eQTL annotations
Identification of temporal eQTLs with mashr
We usedmashr55 to identify temporal (early developmental-specific and adult-specific) and shared eQTLs. First, we downloaded full

eQTL summary statistics from https://console.cloud.google.com/storage/browser/gtex-resources for 47 adult tissues in the GTEx

Consortium. We filtered all INDEL lead variants, resulting in 281,938 SNPs. Using the eQTL analysis vignette in https://

stephenslab.github.io/mashr/articles/eQTL_outline.html, we computed posterior summaries (local false sign rate, LFSR) for all

lead variants discovered in the 3 iPSCORE tissues and the 47GTEx tissues using amodel fitted on: 1) data-driven covariances calcu-

lated from the ‘‘top’’ eQTL for each eGene based onmaximum absolute beta effect size, and 2) canonical covariances and correlation

structure calculated on a random set of 200,000 SNP-gene pairs tested in more than 50% of all 50 tissues.

We used the 47 adult GTEx tissues to represent the adult-stage and the three iPSCORE tissues to represent the early develop-

mental (EDev-like) stage. We removed all SNP-gene pairs that either were not tested in at least one adult and at least one EDev-

like tissue or were not significant in any tissue (minimum LFSR across the 50 tissues >0.05). The mashr output is deposited on

Figshare.

Temporal annotations of SNP-eGene pairs

We calculated the minimum LFSR across adult and EDev-like tissues and considered a QTL to be EDev-specific if it was significant

(LFSR <0.05) in any EDev-like iPSCORE tissue and not significant (LFSR >0.05) in any adult tissue. Alternatively, adult-specific QTLs

were only significant (LFSR <0.05) in one or more adult GTEx tissues. Shared QTLs were significant in at least one EDev-like tissue

and at least one adult tissue. This resulted in 2,299 EDev-specific, 27,881 adult-specific, and 72,195 shared eQTLs between EDev-

like and adult tissues (i.e., CVPC vs. adult left ventricle). We note that the set of iPSCORE EDev-specific QTLs may vary from those

that would be identified using early developmental tissues.

Temporal eQTL validation

To validate the activity of temporal-specific and shared eQTLs in EDev-like and adult tissues, we independently calculated the Pear-

son correlation coefficient (r2) of the effect sizes of the 2,299 EDev-specific, 27,881 adult-specific, and 72,195 shared eQTLs. We

performed two-sided t-tests to show that the effect sizes of the temporal eQTLs were not correlated in EDev-like and adult tissues,

while the effect sizes of the shared eQTLs were correlated.

EDev or Shared Annotation of iPSCORE eQTLs

We used the mashr classifications to annotate the iPSCORE EDev-like eQTLs for downstream analyses not including the GTEx

eQTLs. We annotated the 19,305 primary eQTL lead variants from the EDev-like tissues with mashr specificity assignment (EDev-

specific, adult-specific, and shared). mashr can calculate a non-significant LFSR for an eQTL lead variant or assign specificity
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that is not aligned with the original annotation (i.e., a CVPC eQTL is annotated as adult-specific), which we classified as ‘‘No Asso-

ciation’’. Initially, we annotated 2,269 EDev-specific, 10,998 Adult-specific, and 6,038 No Association eQTLs. Since complex QTLs

are composed of qElements affected by the same QTL, they cannot be composed of qElements with lead variants with different

mashr assignments. If a complex QTL was annotated by a ‘‘No Association’’ SNP-eGene pair, we considered all qElements within

that complex QTL to be ‘‘No Assocation’’. Further, complex QTLs composed of qElements of both ‘‘EDev-specific’’ and ‘‘Shared’’

lead variants were considered shared. After the reassignments, we annotated 2,046 EDev-specific, 10,717 Shared, and 6,542 No

Association eQTL lead variants. This set of eQTLs were used to examine the fraction of EDev-specific eQTLs found in the iPSCs,

CVPCs, PPCs, and evaluate the effect size differences between EDev-specific and shared eQTLs in the 3 iPSCORE tissues. To ac-

count for differences in statistical power between the 3 EDev-like tissues, we performed two-sidedMannWhitney U tests to compare

the absolute effect size of the lead variants of EDev-specific and shared eQTLs within each EDev-like tissue, independently.

Identification of Complex QTL
Complex QTLs

We sought to identify qElements (eGenes, caPeaks, and haPeaks) across the three molecular data types that shared primary QTLs.

We used plink83 to extract the primary QTL lead variants from the 1000 Genomes EUR population for each chromosome indepen-

dently and calculated the LD between all variants. Within each tissue, QTLs with lead variants in high LD (r2 > 0.8) and within 100 kb

were considered shared.

To identify complex QTLs affecting multiple qElements, we loaded each pair of shared QTLs (r2 > 0.8) as edges into an igraph

(v1.3.2)85,86 network, for each tissue independently. We clustered the QTL networks using the cluster_louvain function to assign

QTLs to independent modules. In total, there were 5,672 modules representing complex QTLs affecting two or more qElements,

and 46,702 singleton QTLs that were not in LD with another QTL (Table S4).

Complex and Singleton QTL qElement distance

We calculated the minimum distance between the lead variant of the 25,013 primary CVPC QTLs and their corresponding qElement.

For all CVPC QTLs, we calculated the minimum distance between the lead variants and the nearest TSS of an expressed gene. We

performed two-sided Mann Whitney U tests to evaluate whether complex and singleton QTLs had different distributions.

GWAS associations with QTLs
GWAS traits

From the UK Biobank (https://pan.ukbb.broadinstitute.org/downloads/index.html), we downloaded summary statistics for ten traits:

angina pectoris, atrial fibrillation, bodymass index, HDL cholesterol, ischemic heart disease, LDL direct, acute myocardial infarction,

pulse rate, QRS duration, and ventricular rate. From the Early Growth Genetic Consortium (http://egg-consortium.org/), we down-

loaded summary statistics for two traits: childhood obesity66 and birth weight.67 From the Meta-Analyses of Glucose and Insulin-

related Traits Consortium (http://magicinvestigators.org/downloads/), we downloaded summary statistics for fasting glucose.64

From the DIAGRAM Consortium (https://diagram-consortium.org) we downloaded summary statistics for type 2 diabetes.68 From

the Edinburgh Data Share (https://datashare.ed.ac.uk/handle/10283/3209; https://datashare.ed.ac.uk/handle/10283/3599), we

downloaded summary statistics for a multivariate GWAS that accounted for parental lifespan, healthspan, and longevity.69 All traits

are listed in Table S5, along with their study sources. All summary statistics were provided in hg19 coordinates. To convert coordi-

nates from hg19 to hg38, we used the liftOver software downloaded from UCSC (https://genome-store.ucsc.edu/). Then, we sorted

and indexed each GWAS summary statistics file using tabix.77

LD Score Regression

To estimate the enrichment of heritability for the 15 developmental and adult GWAS traits in ATAC-seq and ChIP-seq peaks in the

three EDev-like tissues, we performed LD Score Regression (LDSC, v1.0.1)87 using the HapMap3 variants that the developers found

to be optimal for the analysis. First, we annotated each HapMap3 variant with a binary label (1/0) indicating whether the variant over-

lapped the ATAC-seq peak or H3K27ac ChIP-seq peak in iPSC, CVPC, and PPC. Then, we estimated LD scores for each annotation

with ldsc.py –l2 using 1000 Genomes Phase 3 reference files in hg38 available at broad-alkesgroup-public-requester-pays/

LDSCORE/GRCh38/plink_files.tgz. Finally, we tested for heritability enrichment with ldsc.py –h2 using regression weights down-

loaded from broad-alkesgroup-public-requester-pays/LDSCORE/GRCh38/weights.tgz and baseline annotations (v.1.2) from

broad-alkesgroup-public-requester-pays/LDSCORE/GRCh38/baseline_v1.2.tgz. Annotations were enriched for trait heritability if

p-values (Enrichment_p) < 0.01 (Figure S11).

Primary QTL regression

The presence of multiple signals for a given qElement (eGene, caPeak, and haPeak) can affect Bayesian colocalization, therefore,

prior to GWAS-QTL colocalization. we regressed the effects of conditional QTLs from the primary QTL signals (Figure S10). After

non-independent conditional QTLs were removed (Figure S6; see section QTL Filtering), for each Primary QTL (n = 8,820 with at

least one conditional QTL), we modified the QTL equation (see sectionQTL Discovery) by including the conditional QTL lead variant

genotype(s) as covariates. We next performed FDR correction on the p-values of all independent variants tested for each gene or

peak using eigenMT84 and assigned the variant with the most significant FDR-corrected p-value as the lead variant for the GWAS

colocalization analysis. If two or more variants had equally significant FDR-corrected p-values, we selected the one with the largest
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absolute effect size as the lead variant for the QTL. The summary statistics for the 8,820 regressed Primary QTLs, along with the

51,486 non-regressed Primary QTLs (Figure S6; Figure S10), were used for GWAS-QTL colocalization.

GWAS-QTL colocalization

For all 60,306 primary QTLs (51,486 non-regressed and 8,820 regressed), we performed pairwise colocalization with GWAS variants

for 15 traits (seeGWASTraits for list of GWAS summary statistics) using effect size and variance as input into the coloc.abf function in

coloc25 (v5.2.2). Given that complex QTLs influence multiple qElements, we chose one qElement per complex and assigned its

corresponding QTL to represent the complex QTL for GWAS colocalization (Table S5).We randomly chose from all qElements whose

lead variants were in the 1000 Genomes Project EUR population to represent the complex QTL; but if none of the lead variants were

present in the 1000 Genomes Project EUR population, we randomly chosen the lead variant from all qElements in the complex QTL.

To determine whether representative complex or singleton QTLs colocalized with a GWAS loci, we required that all of the following

criteria were satisfied: 1) had at least 50 overlapping variants; 2) PP.H4R 80%; 3) the lead candidate causal variant is genome-wide

significant for GWAS association (p-value% 5x10�8); 4) the lead candidate causal variant is genome-wide significant for QTL asso-

ciation (p-value % 5x10�5); and 5) the lead candidate causal variant had a PP R 1%. For each GWAS-QTL colocalization, coloc25

outputs a causal PP for each variant that was tested during colocalization. We assigned a lead candidate causal variant for each

GWAS-QTL pair by taking the variant with the highest causal PP.

Fraction of GWAS loci colocalized with QTLs

To determine the fraction of GWAS loci explained by QTLs, we calculated the number of independent genome-wide significant loci

for each of the 15 GWAS studies. Specifically, we first filtered for variants that were above the genome-wide significant threshold of

p < 5x10�8. Then, we LDpruned theGWAS variants using plink83 with the following parameters: –indep-pairwise 500 5 0.1, where 500

is the variant count window, 5 is the step count, and 0.1 is the LD threshold.We found that these parameters yielded the same number

of distinct association signals in type 2 diabetes previously observed (n = 403).68 Considering each of the 15 traits independently, the

above command outputs a list of 11 to 1,837 independent variants (i.e., not in LD) that each represent an independent genome-wide

significant GWAS locus. Combining all 15 traits, 5,192 GWAS loci were found.

We then sought to identify the subset of the 5,192 GWAS loci that colocalized to a QTL (either a complex or singleton). Using 1000

Genomes (Europeans only) as reference, we calculated LD between the lead candidate causal variants from the GWAS-QTL coloc-

alization (seeGWAS-QTLColocalization) and the LD-pruned GWAS variants using plink –tag-kb 350 –tag-kb 0.7.83 If the lead candi-

date causal variant was in high LD (r2 R 0.7 within 350 kb) with an LD-pruned GWAS variant, then we assigned the complex or

singleton QTL to that GWAS locus. For lead candidate causal variants absent from the reference panel, and therefore LD could

not be calculated, we assigned the complex or singleton QTL to the nearest GWAS locus. We observed that 80 of the 5,192

(1.5%) GWAS loci were in LD with multiple complex/singleton QTLs from the same tissue (range 2–4 complex/singleton QTLs per

GWAS signal) (Table S5), which could reflect independent signals within the same GWAS locus or a limitation of coloc in assuming

a single causal variant.25 In total, 863 (164 representative complex and 699 singleton) QTLs colocalized with 540 GWAS loci.

Comparing GWAS Loci Distance to Nearest Gene

We calculated the distance between the LD-pruned GWAS variants for the 5,192 GWAS loci and the Gencode version 4471,95

coordinates of the nearest protein-coding gene’s TSS, using bedtools closest.80 We performed a two-sided Mann Whitney U test

to evaluate if distance distributions were different between colocalized and non-colocalized GWAS loci (Figure 5D).

Comparing GWAS loci-gene distance by QTL Type

Weannotated the 540 colocalized GWAS loci with theQTL types that they were associated with (caQTL, eQTL, haQTL, caQTL-eQTL,

caQTL-haQTL, eQTL-haQTL, caQTL-eQTL-haQTL). We performed two-sided Mann Whitney U tests to evaluate if distance distribu-

tions (calculated in Comparing GWAS Loci Distance to Nearest Gene) were different between colocalized GWAS loci associated

with different QTL types (Figure 5C).

Enrichment of Complex QTLs with GWAS variants

We annotated each QTL based on their associated molecular phenotypes and whether they were a representative complex QTL or a

singleton QTL (Table S4). For example, if the QTL represented a complex QTL affecting only caPeak(s) and eGene(s), we annotated

the complex QTL as a ‘‘complex caQTL-eQTL’’. If an eQTL was a singleton, we annotated the QTL as ‘‘eQTL singleton’’. We consid-

ered a total of ten categories: 1) complex caQTL-haQTL-eQTL, 2) complex caQTL-haQTL, 3) complex haQTL-eQTL, 4) complex

caQTL-eQTL, 5) complex caQTL, 6) complex eQTL, 7) complex haQTL, 8) singleton caQTL, 9) singleton eQTL, 10) singleton haQTL

(Figure 5B). Enrichment of each of these categories for GWAS colocalization was calculated using a two-sided Fisher’s Exact test,

where the contingency table consisted of two classifications: 1) if the complex or singleton QTL corresponded to the category, and 2)

if the complex or singleton QTL colocalized with at least one GWAS trait. A category was considered enriched for GWAS colocaliza-

tion if the p-value <0.05. In addition to performing enrichment analysis across all three tissues (Figure 5E), we examined each tissue

independently (Figure S12).

GWAS loci stage-specificity

Since mashr compares lead variant effect sizes to calculate specificity (LFSR),55 an eQTL assigned as ‘‘EDev-specific’’ can still

exhibit diminished, but significant regulatory activity in adult tissues, thus affecting the annotation of temporal regulatory variation

and the interpretation of GWAS colocalization.We annotated 239GWAS loci that colocalizedwith an eQTL as EDev-specific, Shared,

or ‘‘No association’’ based on the annotation of their colocalized iPSCORE eQTLs (section EDev or Shared Annotation of iPSCORE

eQTLs). There were 7 GWAS loci that colocalized with multiple eQTLs with different temporal annotations which could be a result of
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themashr LFSR calculation or the assumption of a single causal variant in coloc. To resolve a single temporal annotation, we consid-

ered GWAS loci ‘‘Shared’’ (n = 181) if they colocalized with any Shared eQTL, including those that also colocalized with an eQTL with

an EDev-specific and/or ‘‘No association’’ annotation. We next considered GWAS loci as ‘‘EDev-specific’’ (n = 13) if they colocalized

with an EDev-specific eQTL, including those that also colocalized with an eQTL with ‘‘No association’’ annotation. Finally, we anno-

tated the remaining GWAS loci as ‘‘No association’’ (n = 45) because they did not colocalize with either an EDev-specific or

Shared eQTL.

Putative casual variant TF Overlap

To identify putative causal variants for GWAS loci, we calculated the 99%credible sets from eachGWAS-QTL colocalization from the

coloc25 output. We aggregated the credible sets for the 699 singleton and 164 representative complex QTLs that colocalized with at

least one of the 540 GWAS loci. To include additional putative causal SNPs in complex QTLs, we also aggregated 129 non-repre-

sentative QTLs (i.e., QTLs associated with other qElements in the 164 complex QTL modules) that colocalize with the same

GWAS loci as the corresponding representative complex QTL for a total of 992 GWAS-QTL colocalizations. We characterized the

number of SNPs in these credible sets and defined 611 high-confidence credible sets as those with fewer than 25 SNPs. We next

aggregated all predicted JASPAR43 and HOCOMOCO44 TF motifs identified using TOBIAS (ATAC-seq Peak Transcription Factor

Predictions), regardless of whether they had a predicted binding site.

To identify motif-overlapping putative causal variants (MOPCVs), we intersected 6,164 SNPs in the 611 high-confidence credible

sets with the predicted TF motifs, using bedtools intersect.80 For the 164 complex QTLs modules, we collapsed credible sets from

QTLs for different qElements. We assigned priority ranks to the MOPCVs based on the strength of their causal evidence. The High

ranked MOPCVs were in caPeaks containing the associated caQTL lead variant, the Moderate ranked MOPCVs were in caPeaks

containing a caQTL lead variant associated with a different caPeak, and the Low rank MOPCVs were in ATAC-seq peaks that

were not associated by a caQTL. In Figure 6B, we report the number of GWAS loci that colocalized with a QTL (GWAS-QTL

colocalization) with one or more SNPs in a credible set that overlapped a TF motif. In Table S6, for each GWAS locus (GWAS-

QTL colocalization), we report the MOPCVs, their affected motifs, priority ranks, and other information that enable experimental

validation.
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