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Purpose 

 Dose conformality and robustness are equally important in Intensity-Modulated 

Proton Therapy (IMPT). Despite the important role of beam orientation on both dosimetry 

and robustness, an automated, robust beam orientation optimization algorithm has not 

been incorporated due to the problem complexity and paramount computational challenge. 

In this dissertation, we propose a novel IMPT framework that integrates robust beam 

orientation optimization (BOO) and robust fluence map optimization (FMO) in a unified 

framework. 



 

iii 

Methods 

 The unified framework is formulated to include a dose fidelity term, a 

heterogeneity-weighted group sparsity term, and a sensitivity regularization term. The 

dose fidelity term encourages less physical dose deviation from ideal distribution. The 

L2,1/2-norm group sparsity is used to reduce the number of active beams from the initial 

1162 evenly distributed non-coplanar candidate beams, to between 2 and 4. A 

heterogeneity index, which evaluates the lateral tissue heterogeneity of a beam, is used to 

weigh the group sparsity term. With this index, beams more resilient to setup uncertainties 

are encouraged. There is a symbiotic relationship between the heterogeneity index and the 

sensitivity regularization; the integrated optimization framework further improves beam 

robustness against both range and setup uncertainties. This Sensitivity regularization and 

Heterogeneity weighting based BOO and FMO framework (SHBOO-FMO) was tested on two 

skull-base tumor (SBT) patients and two bilateral head-and-neck (H&N) patients. The 

conventional CTV-based optimized plans (Conv) with SHBOO-FMO beams (SHBOO-Conv) 

and manual beams (MAN-Conv) were compared to investigate the beam robustness of the 

proposed method. The dosimetry and robustness of SHBOO-FMO plan were compared 

against the manual beam plan with CTV-based voxel-wise worst-case scenario approach 

(MAN-WC). 

Results 

 With SHBOO-FMO method, the beams with superior range robustness over manual 

beams were selected while the setup robustness was maintained or improved. On average, 

the lowest [D95%, V95%, V100%] of CTV were increased from [93.8%, 91.0%, 70.6%] in 
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MAN-Conv plans, to [98.6%, 98.6%, 96.1%] in SHBOO-Conv plans with range uncertainties. 

With setup uncertainties, the average lowest [D98%, D95%, V95%, V100%] of CTV were 

increased from [92.0%, 94.8%, 94.3%, 78.9%] in MAN-Conv plans, to [93.5%, 96.6%, 

97.0%, 91.9%] in SHBOO-Conv plans. Compared with the MAN-WC plans, the final SHBOO-

FMO plans achieved comparable plan robustness and better OAR sparing, with an average 

reduction of [Dmean, Dmax] of [6.3, 6.6] GyRBE for the SBT cases and [1.9, 5.1] GyRBE for 

the H&N cases from the MAN-WC plans.  

Conclusions 

 A novel robust optimization method was developed for IMPT. It integrates robust 

BOO and robust FMO into a unified framework, and the resulting optimization problem can 

be solved efficiently. Compared with the current clinical practice, where beam angles are 

manually selected and fluence map is optimized by worst-case method, the planning 

efficiency is improved, and it generates plans with superior dosimetry and good 

robustness.  
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1 INTRODUCTION 

1.1 Intensity-Modulated Proton Therapy  

 Since the discovery and first medical application of X-rays in 18951, radiation 

therapy has been one of the primary treatments for cancer. The ultimate goal of radiation 

therapy is to deliver a sufficient dose to eradicate cancerous tissue, while minimizing the 

irradiation to healthy tissue. Many developments and improvements have been made to 

reach this goal. Among them, utilizing the unique dose deposition characteristic of proton 

particles has drawn massive attention. As shown in Figure 1-1, compared with the photon, 

proton beam has low entrance-dose, a sharp rise near the end of its range, which is called 

Bragg peak, and negligible exit-dose. The finite range and the characteristic Bragg peak 

make proton a promising radiotherapy modality to spare healthy tissue while delivering a 

conformal dose to the target. 

 Since 1946 when the concept was first brought up by Wilson2, proton therapy has 

been gradually translated into clinical treatment. The protons generated by an accelerator, 
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either a cyclotron or a synchrotron, forms a narrow pencil beam. In order to cover the 

entire treatment field, the narrow pencil beam needs to be scattered by a foil or scanned by 

magnets, referred to as passive scattering and active scanning3, respectively (Figure 1-2).  

Even though passive scattering was the mainstream due to its simplicity, the freedom of 

modulation is limited, and the dose conformality fails to outperform than the commonly 

used Intensity-Modulated X-ray Therapy (referred to as IMXT). The recent decade sees 

rapid development and increasing adoption of pencil beam scanning (PBS) technique4 in 

proton therapy. With PBS, the energy and intensity of the Bragg peaks of well-defined 

narrow pencil beams can be modulated in 3D space to generate a sophisticated dose 

distribution for tumor coverage and normal tissue sparing5,6. This technique is called 

Intensity-Modulated Proton Therapy (IMPT). The pencil beam scanning is also called spot-

scanning, and the narrow pencil beam is referred to as scanning-spot, or spot, as well. 

 
Figure 1-1: Depth-dose curve of photon beam and monoenergetic proton beam. 
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Figure 1-2: The difference of passive scattering and active scanning. The narrow proton 
beam from a cyclotron or synchrotron is either scattered by a foil or scanned by magnets to 
cover the treatment field. Reprinted from “Intensity-Modulated Radiation Therapy, 
Protons, and the Risk of Second Cancers” by E. Hall and D. Phil, Int J Radiat Oncol Biol Phys, 
2006 ,65(1):1-7. Copyright 2006 by Elsevier Inc. 3 

 There are several variations of intensity modulation, including 2D modulation, 

distal edge tracking, 2.5D modulation, and 3D modulation5.  Among them, 3D modulation 

places the Bragg peaks throughout the target volume in 3 dimensions and optimizes the 

intensity of each individual pencil beam, therefore fully takes advantage of the freedom of 

Bragg peaks localizations. 3D IMPT can be further divided into two categories, single-field 

uniform dose (SFUD) and multi-field optimization (MFO)5. In SFUD, each radiation field is 

optimized independently to achieve a uniform dose distribution. In MFO, all fields are 

optimized simultaneously. Therefore each field generates a highly heterogeneous dose, but 

the combination from all fields achieves a highly conformal dose. MFO-IMPT utilizing all 

available degrees of freedom has the greatest versatility for normal organ sparing. This 

dissertation focuses on MFO-IMPT, which will be simply termed IMPT in the following 

sections. 
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1.2 Uncertainties in IMPT 

 Due to the sharp drop-off of proton Bragg peak, IMPT is very sensitive to 

uncertainties occurring during planning and delivery, including setup errors, patient 

anatomy changes, and range uncertainties7–11. The setup uncertainties are from the 

misalignment between patient anatomy and proton beams as well as the shifting of internal 

density heterogeneity8. The range uncertainties originate from various sources, such as CT 

(Computed Tomography) image artifacts, uncertainties in CT numbers, and the conversion 

from CT numbers to stopping powers. Patient anatomy change and tumor shrinkage will 

also lead to different proton range than expected. The existence of these uncertainties can 

make the actual dose distribution substantially differ from what is indicated in the 

treatment plan. Different from X-ray treatment planning, the perturbation of dose 

distribution in IMPT not only exists in the proximal and distal edge of the target volume but 

also within it, introducing significant cold or hot spots. 

 Multi-field optimized IMPT is even more susceptible to positioning errors or range 

uncertainties due to the high dose heterogeneity in a single field. In MFO, the dose in an 

individual beam is not homogeneous and only covers a partial volume of the target, with 

the rest usually compensated by the dose from other fields. Range uncertainties can 

possibly lead to overshooting (protons shoot deeper than expected) or undershooting 

(protons shoot shallower than expected) of two compensating beams, leaving cold or hot 

spots in the target.  

 If uncertainties are unaccounted for, the effectiveness of IMPT from Bragg peak 

and 3D modulation may be greatly diminished by its high sensitivity.  Therefore, dose 
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conformality and plan robustness are two equally critical factors to consider in IMPT 

treatment planning. 

1.3 Beam Orientation Optimization 

 A typical treatment planning process of IMPT involves three steps: first, a number 

of proton beams are manually selected by the planner. For complicated cases, multiple tries 

are needed to decide the number and orientations of beams; second, proton pencil beam 

dose calculation is performed for these beams; finally, inverse planning is carried out to 

obtain the intensity map and final dose distribution6. The intensity map of the scanning-

spots is also referred to as the fluence map. The inverse planning process to obtain the 

fluence map is called fluence map optimization (FMO).  

 Different from X-ray therapy where equiangular or arc beams are often acceptable, 

the proton beam orientations are typically asymmetric, and need to be more carefully 

considered for factors such as the water-equivalent thickness to the target, nearby OAR 

sparing, heterogeneity of tissues in the beam path, and setup robustness etc12–14. Because 

of the unique proton beam physics, the need to further reduce body dose, the limited beam 

time, and to relieve the patient-specific QA efforts, 2~4 proton fields are typically utilized 

in an IMPT session6,15. The smaller number of beams makes the selection of proton beam 

angle particularly important. In the current clinical practice of manual beam selection, 

planners’ experience and skill can heavily influence the final treatment plan quality.  For 

complicated patient cases, tedious trial-and-error attempts may be needed to find better 

beam configurations. Yet, human operators cannot effectively search the enormous 

coplanar and non-coplanar beam space, resulting in inconsistent planning results. Beam 
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orientation optimization (BOO) using a computational model is therefore essential for 

improving IMPT.  

1.4 Biological Effectiveness 

 Aside from robustness, the biological effect is another prominent issue to consider 

for IMPT. While conventional radiation treatment is prescribed based on the physical 

absorbed dose, it is insufficient for proton. The difference in radiation interactions makes 

the energy deposition pattern differ between photons and protons; thus, the same 

absorbed dose can lead to various biological outcomes. The concept of relative biological 

effectiveness (RBE) was developed to account for the biological effect when comparing 

different modalities under the same physical dose. RBE is defined as the ratio of the 

physical doses to reach the same endpoint X when comparing a reference radiation source 

and proton.  

𝑅𝐵𝐸(EndpointX) =
𝐷𝑜𝑠𝑒𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(EndpointX)

𝐷𝑜𝑠𝑒𝑝𝑟𝑜𝑡𝑜𝑛(EndpointX)
 

Equation 1-1    

 As recommended by the International Commission on Radiation Units and 

Measurements (ICRU)16, the doses in proton therapy are prescribed as the product of RBE 

and absorbed dose, with the unit of GyRBE. 

 In the current clinical application, proton therapy is regarded to be 10% more 

effective than high-energy photons, represented by a constant RBE of 1.117–19. However, the 

constant 1.1 value is an average of in vivo measurements performed around 1970s20–23. 

Multiple pieces of evidence have shown that actual RBE depends on multiple factors like 
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physical dose, tissue radiobiological properties (𝛼  and 𝛽  value), LET (linear energy 

transfer), endpoint, and et al17,24–26. In vitro study suggests that, given dose, cell type and 

biological endpoint, the RBE may increase from values between 1.0 and 1.1 in the entrance 

region to values around 1.3 at the Bragg peak and 1.6 in the falloff region27. Therefore, even 

though an ideal physical dose distribution is guaranteed, it is possible to induce higher 

normal tissue complication probabilities when RBE in normal tissue is underestimated. In 

addition, with the pencil beam scanning technique replacing passive scattering to be the 

mainstream delivery modality, the biological doses potentially differ from the previous 

observation on passive scattering28,29, warranting further investigation in the universal use 

of RBE=1.1. 

 There have been concerns that using the generic RBE value in proton therapy can 

lead to underdosage in the target or underestimation of the normal tissue toxicities. 

Therefore, it is essential to incorporate the biological dose into clinical treatment planning 

to achieve a higher therapeutic ratio. Moreover, the ability to optimize biological 

effectiveness depends on patient geometry and beam arrangement30. For example, if an 

OAR abuts the target in the distal edge of a proton beam, it is difficult to reduce the 

biological dose in this OAR without compromising physical dose coverage. In clinical 

practice, a planner can avoid some of the undesirable beam orientations based on 

experience31–34, but evaluating all beam angles for their dosimetry, robustness, and the 

biological effect is a large computational task unsuited for human operators. A beam 

orientation optimization algorithm for both physical and biological dose optimization is 

essential for IMPT. 



 

8 

1.5 Overview 

Prior to presenting the beam orientation optimization method integrating dosimetry 

and robustness of IMPT, separate investigations performed related to IMPT BOO problems 

will first be discussed. 

Chapter 2 describes the unified framework integrating BOO and FMO in IMPT based 

on the group sparsity regularization, to select beams and generate plans with superior 

dosimetry. It is the foundation for the rest studies in this thesis. It is a version of a 

manuscript titled “Integrated beam orientation and scanning-spot optimization in Intensity 

Modulated Proton Therapy for brain and unilateral head and neck tumors” published in 

Medical Physics35. 

In Chapter 3, works utilizing the group sparsity for different aspects of proton 

therapy will be discussed. First is a work using group sparsity to select variant beams in 

different treatment fractions to further improve the dosimetry of IMPT plans. The 

manuscript titled “Fraction-Variant Beam Orientation Optimization for Intensity-

Modulated Proton Therapy” has been submitted to Medical Physics. The second section is a 

study integrating biological effectiveness into BOO of IMPT, to achieve superior physical 

and biological dose distribution. The manuscript titled “Biological effectiveness-integrated 

beam orientation optimization for Intensity-Modulated Proton Therapy” has been 

submitted to Medical Physics. The third section describes an optimization method for 

proton arc therapy based on group sparsity, to improve dosimetry and delivery efficiency 

from the IMPT. It is a version of the manuscript titled “A novel energy layer optimization 

framework for spot-scanning proton arc therapy” published in Medical Physics36. 
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Chapter 4 describes the robust optimization method with sensitivity regularization 

and combines it with group sparsity to achieve robust integrated BOO and FMO framework 

in IMPT. The first section is a version of the manuscript “Robust optimization for Intensity-

Modulated Proton Therapy with soft spot sensitivity regularization” published in Medical 

Physics37, detailing the formulation of sensitivity regularization. The second section 

integrates sensitivity regularization and group sparsity for the ultimate goal of robust IMPT 

BOO, which is a version of the manuscript “Robust beam orientation optimization for 

Intensity-Modulated Proton Therapy” published in Medical Physics38. 
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2 INTEGRATING BEAM 

ORIENTATION AND FLUENCE 

MAP OPTIMIZATION IN 

IMPT BASED ON GROUP 

SPARSITY REGULARIZATION 

2.1 Introduction 

 Because of the small beam number in IMPT plans (2~4 proton fields), each beam 

heavily influences the final quality. The importance of beam orientation was highlighted in 

several studies12–14. However, due to the vast search space, it is essentially impossible for a 

human operator to test all combinations and find the optimal set of beams. Especially non-

coplanar space is commonly used in proton therapy because of the modern robotic patient 

positioning device typically installed in a proton treatment room. Therefore, there arises a 

need for beam orientation optimization (BOO) for IMPT. 
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 For IMXT, BOO is viewed as a combinatorial problem, which by its nature is 

mathematically intractable for realistic BOO problems. The challenge is greater with the 

additional depth dimension in IMPT optimization. While methods for IMXT BOO have been 

developed using heuristic and stochastic algorithms to overcome the mathematical 

challenge9–15, the BOO problem is rarely touched in IMPT. In a previous study by Cao et 

al.46, the coplanar BOO problem was treated as a combinatorial problem. To reduce the 

problem size, starting from a set of initial beams, a local search was performed to identify 

beams that improve dosimetric quality and robustness. This method is clearly limited in its 

ability to perfrom a global search in a large solution space, like the 4𝜋 steradians. 

 In this study, we present a novel framework to efficiently integrate BOO and FMO 

that allows a global search in all feasible beams. The problem is formulated to include a 

dose fidelity term and a group sparsity regularization to control the number of active 

beams. Group sparsity, also known as structured sparsity, was originally used in optimizing 

X-ray beam orientations and showed the potential of reducing the number of beams yet 

maintaining dense beamlets47.  

 In this work, different regularization and dose fidelity terms are introduced as well 

as a solver that is capable of handling a larger problem than the original IMXT BOO 

problem owing to the additional depth dimension. 
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2.2 Methods 

 The group sparsity based integrated BOO and scanning-spot optimization problem 

is formulated under two different dose fidelity terms, with either convex or nonconvex 

group sparsity term. The details are described as follows. 

2.2.1 Problem formulation 

 The simultaneous beam orientation and scanning-spot intensity optimization 

problem is formulated under the following general framework: 

minimize
𝑥

   Γ(𝐴𝒙) +∑𝛼𝑏‖𝒙𝑏‖2
𝑝

𝑏∈ℬ

, 

subject to    𝒙 ≥ 0, 

Equation 2-1    

where the optimization variable 𝒙 is a vector of the intensities of all scanning-spots, which 

is the fluence map. 𝐴 is the dose-calculation matrix that transforms the spot intensities 𝒙 to 

dose. A single column of matrix 𝐴 contains the vectorized doses delivered to the voxels in 

the patient from one unit intensity spot; and 𝐴 includes columns of all the candidate spots 

from all candidate beams. ℬ is the set including all candidate beams, 𝒙𝑏 is a vector of spot 

intensities for the candidate beam 𝑏 (so 𝒙 is the concatenation of the vectors 𝒙𝑏), and 𝛼𝑏 is 

the regularization parameter for beam 𝑏. Γ(𝐴𝒙) is a dose fidelity term, to penalize dose 

deviation from prescriptions. ∑ 𝛼𝑏‖𝒙𝑏‖2
𝑝

𝑏∈𝐵   is the group sparsity term to control the 

number of active beams to between 2 and 4. The L2,𝑝-norm (0 < 𝑝 ≤ 1) encourages most 

candidate beams to be zero, resulting in a small number of beams being selected. A 

common choice for the exponent for the group sparsity term is  𝑝 = 1, which makes the 
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objective function convex. However, in the BOO problem, the adjacent block columns of the 

dose-calculation matrix (corresponding to adjacent candidate beams) can be correlated in 

homogeneous areas. Subsequently, the group restricted isometry property may not be well 

satisfied and the L2,1-norm may lead to a degenerate solution, i.e. aggregated beams. To 

avoid degeneracy, the nonconvex group sparsity with 𝑝 = 1/2 is also explored in this study. 

We choose the weighting parameter 𝛼𝑏 on the individual beam 𝑏 to be 

𝛼𝑏 = 𝑐 (
‖𝐴𝒯

𝑏  �⃗⃗� ‖
2

𝑛𝑏
)
𝑝/2

, 

Equation 2-2    

where 𝐴𝒯
𝑏  is the dose-calculation matrix of planning target volume (PTV) for beam 𝑏, 𝑛𝑏 is 

the number of candidate spots in beam 𝑏, and 𝑐 is a regularization parameter. The term 

‖𝐴PTV
𝑏  �⃗⃗� ‖

2
 in the numerator is used to ensure that beams penetrating different depths in 

the patient are unbiasedly weighted. Without this term, the group sparsity has a tendency 

towards only selecting beams passing through less tissue. The denominator 𝑛𝑏 prevents 

the group sparsity penalty from having a bias against the beams with more spots. By this 

weighting method, we are able to tune a single parameter 𝑐 to control the number of active 

beams in the solution to Equation 2-1. 

 In this work, PTV is designated to be the target volume for dose optimization. 

Although the concept of PTV originally from X-ray therapy is not exactly applicable in IMPT 

to maintain tumor coverage48,49, without losing generality, the term PTV here is used to 

indicate the target volume without the additional implication of plan robustness. 
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2.2.2  Dose fidelity 

 The function Γ can take different forms based on the dosimetric goals and whether 

a compatible solver exists. Two different choices of Γ are implemented and compared in 

this work.  

 The first is the quadratic loss function, which is a common choice for dose fidelity. 

The overall cost is written as: 

Γ(𝐴𝒙)  = ∑𝜔𝑗
𝑗∈𝒯

‖𝐴𝑗𝒙 − 𝑝𝑗‖2
2
+∑𝜔𝑗

𝑗∈𝒪

‖(𝐴𝑗𝒙 −𝑚𝑗)+‖2

2

, 

Equation 2-3    

where 𝒯 is the structure set of the target volumes, with 𝑝𝑗  being the prescription dose to 𝑗th 

target, and 𝒪  is the dose-limiting structure set which includes the OARs, with 𝑚𝑗  being the 

prescribed maximal allowed dose to the 𝑗th structure. 𝐴𝑗  is the dose calculation matrix block for 

structure 𝑗. The dose-limiting penalty terms utilize the one-sided quadratic function‖𝑧+‖2
2, 

where 𝑧+ = max(𝑧, 0). This component-wise maximum allows us to consider only the 

voxels with doses larger than 𝑚𝑗  in the 𝑗th OAR. 𝑚𝑗  can also be set to 0 to penalize any 

nonzero dose in an OAR. The weights 𝜔𝑗  are the structure-specific weighting parameters to 

emphasize the different importance of different structures.  

 The quadratic penalty is mathematically desirable for being convex and 

differentiable. It heavily penalizes the dose volumes that exceed the constraint. However, in 

radiation therapy, more controls on the dose volume behavior are often desirable. For 

serial organs, such as the spinal cord, hot spots need to be avoided. However, for parallel 

structures, such as the parotid glands, the mean dose can be more important than the 
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maximum dose. Therefore, the second type of function Γ we use is a linear combination of 

structure mean dose and maximum dose penalty, which is referred as the linearized 

equivalent uniform dose (LEUD)50 cost function in this work. The LEUD penalty function is 

formulated as: 

Γ(𝐴𝒙)  =∑
𝜔𝑗

√𝑁𝑗𝑗∈𝒯

‖𝐴𝑗𝒙 − 𝑝𝑗‖2 +∑𝜔𝑗 (𝛾𝑗mean(𝐴𝑗𝒙) + (1 − 𝛾𝑗)max(𝐴𝑗𝒙))

𝑗∈𝒪

+ 𝐼≤𝑞(𝐴𝒙), 

Equation 2-4    

where 𝑁𝑗  is the number of voxels in 𝑗th target, and the weighting factor 𝛾𝑗 ∈ [0,1] balances 

the mean dose and maximum dose for different organs. The penalty on the target is a voxel-

normalized L2-norm. The L2-norm is chosen because it has better coverage than the L1-

norm (which is mean(|𝐴𝑗𝒙 − 𝑝𝑗|)), and is consistent with the OAR cost with regard to the 

order (the quadratic term is in the order of 2, while the mean dose is linear). Because the 

L1-norm on OARs (mean dose) is not as sensitive to outliers, it allows for hot spots in 

parallel OARs. Therefore, in order to eliminate any dose higher than the upper bound dose 

𝑞, an upper bound constraint 𝐼≤𝑞(𝐴𝒙) is added to the objective function. 𝐼≤𝑞(𝑧) is defined 

as: 

𝑰≤𝒒(𝒛) = {
𝟎          𝐢𝐟    𝒛 ≤ 𝒒,
  ∞         𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞.

 

Equation 2-5    

2.2.3 Evaluations 

 Four cases, which included three unilateral head and neck (H&N) patients and one 

skull base chordoma (CHDM) patient with simultaneous-integrated boost (SIB), were 

evaluated in this study. The candidate beams included 1162 non-coplanar beams that were 
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evenly distributed across the 4𝜋 steradians with 6° separation. Geometrically undesired 

beams and beams of infeasible energies, such as those directed through the feet to the head, were 

manually excluded from the candidate set, resulting in about 700 to 800 candidate beams for 

each patient. For each candidate beam, the doses of all scanning-spots covering the PTV and 

a 2.5mm margin were calculated using matRad51,52, a MATLAB-based 3D treatment 

planning toolkit. The dose calculation resolution was 2.5 mm with a cut-off of 5 × 10−5 of 

the maximal dose. The prescriptions, PTVs, and number of scanning-spots are shown in 

Table 2-1. The magnitude of the optimization problem can be estimated based on the 

product of the spot number per beam and the total number of candidate beams. The 

average number of beamlets per beam needed in IMXT for the same patient is also given in 

Table 2-1 as a comparison of the BOO problem size in IMPT and in IMXT. The IMXT 

multileaf collimator resolution is 5 mm. 

Case 
Prescription 

Dose 
(GyRBE) 

PTV Volume 
(cc) 

Average Spots 
Number per 

Beam 

Average IMXT 
Beamlets Number 

per Beam 

H&N #1 40 23.76 906 85 
H&N #2 40 32.29 1109 103 
H&N #3 66 33.64 1589 111 

CHDM 
PTV6300 63 86.07 

3166 241 
PTV7400 74 26.42 

Table 2-1: Prescription doses, PTV volumes, and average spots number per beam of each 
tested patient. 

 A greedy BOO approach, column generation53,54,  was also applied for each patient, 

as a comparison for our group sparsity method.. The dose fidelity term used in the column 

generation method is LEUD cost. 

 The BOO plans were evaluated against plans with manually selected beams. The 

manual beam orientations were selected to avoid OARs as much as possible. In total, 7 
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plans were generated for each patient: three plans with quadratic dose fidelity: manual 

plan (Quad-MAN), L2,1/2-group sparsity (Quad-L2,1/2-GS) and L2,1-group sparsity(Quad-

L2,1-GS); and four plans with LEUD dose fidelity: manual plan (LEUD-MAN), L2,1/2-group 

sparsity(LEUD-L2,1/2-GS), and L2,1-group sparsity (LEUD-L2,1-GS), and column 

generation (LEUD-CG). All H&N plans were normalized so that 100% of the prescription 

dose covers 95% of the PTV volume. The CHDM plan with a simultaneous boost volume 

was normalized to have 100% of the 63Gy prescription dose covering 95% of the PTV6300 

volume.  

 For evaluation, PTV homogeneity, D95, D98, D99, maximum dose and mean dose 

were evaluated. PTV homogeneity is defined as D95/D5. The maximum dose is defined as 

the dose to 2% of the structure volume, D2, following the recommendation by IRCU-8355. 

The mean and maximum doses for OARs were also evaluated.  

2.3 Results 

 The matRad-based dose calculation for all candidate beams using an i7 6-core CPU 

and Matlab parallel computing toolbox took 30 min to 1 h depending on the size of the 

tumor. The dose matrix size ranged from 20 MB to 70 MB per beam based on target size. 

The group sparsity based BOO process took 2 - 7 minutes and 3 - 20 minutes for the 

quadratic and LEUD cost to complete, respectively.  

 Three beams for each H&N case and four beams for the CHDM case were selected. 

Figure 2-1 shows the beam arrangement of each plan for the CHDM patient. The beams 

selected by using the L2,1/2-GS term were spatially well separated. In comparison, the 
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L2,1-GS term resulted in aggregated beams with both quadratic and LEUD cost terms, 

indicating a potential degeneracy issue with this group sparsity term. And the CG method 

tended to choose beams with short pathlengths to target. Interestingly, the beam 

orientations optimized by L2,1/2-GS were similar to the actual angles selected by an 

experienced dosimetrist in this CHDM case.  

  

MAN Quad L2,1/2-GS Quad L2,1-GS 

LEUD L2,1/2-GS LEUD L2,1-GS CG 
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Figure 2-1: The beam arrangement of each plan for the CHDM patient. 

 



 

20 

Figure 2-2 shows the DVHs comparison between GS plans and MAN plan for each patient. 

Table 2-2 and Table 2-3 show the OAR statistics for each patient with quadratic cost and 

LEUD cost, respectively. On average, the L2,1/2-GS plans reduced the OAR [Dmean, Dmax] 

from MAN plans by [2.4%, 4.2%] and [2.3%, 3.8%] of the prescription dose for Quad and 

LEUD cost, respectively, while achieving comparable target coverage.   

 The L2,1-GS method produced competitive plan for H&N#1 and CHDM case, but 

led to worse and OAR dose over MAN plan for H&N#2 and H&N#3 case with similar PTV 

coverage. The average decrease in OAR [Dmean, Dmax] from MAN plans are [-1.0%, 0.1%] 

and [-1.2%, 1.2%] of the prescription dose for Quad and LEUD cost, respectively. 

Case 

L2,1/2 - MAN (GyRBE) L2,1 - MAN (GyRBE) 

Dmean Dmax Dmean Dmax 

Largest 
Value 

Average 
Value 

Largest 
Value 

Average 
Value 

Largest 
Value 

Average 
Value 

Largest 
Value 

Average 
Value 

H&N#1 
-1.2 

L 
Parotid 

-0.5 
-8.1 

Brainstem 
-2.8 

-3.1 
L 

Parotid 
-0.5 

-10.4 
L 

Parotid 
-2.6 

H&N#2 
-3.8 

Carotid 
-1.0 

-2.1 
Pharynx 

-1.0 
-0.2 

Larynx 
+0.8 

-1.5 
Larynx 

+0.9 

H&N#3 
-20.1 
TMJ 

-3.0 
-34.6 

R Opt Nrv 
-3.9 

-26.3 
TMJ 

+1.8 
-35.1 
TMJ 

+3.7 

CHDM 
-7.0 

L 
Cochlea 

-0.7 
-16.4 

L Cochlea 
-1.0 

-4.5 
L 

Cochlea 
+0.4 

-11.2 
L 

Cochlea 
-1.2 

Table 2-2: The difference of OAR doses between GS and MAN plans for all patients under 
Quad cost. A negative sign represents a reduction of dose in GS plan from MAN plan. 

 

Cases 

L2,1/2 - MAN (GyRBE) L2,1 - MAN (GyRBE) 

Dmean Dmax Dmean Dmax 

Largest 
Value 

Average 
Value 

Largest 
Value 

Average 
Value 

Largest 
Value 

Average 
Value 

Largest 
Value 

Average 
Value 

H&N#1 -1.5 -1.0 -6.75 -2.8 -0.98 -0.1 -8.9 -1.9 
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L 
Parotid 

Pharynx Pharynx Pharynx 

H&N#2 
-0.8 

Carotid 
-0.3 

-3.75 
Larynx 

-1.1 
0.04 

Mandible 
+2.2 

1.0 
Mandible 

+4.1 

H&N#3 
-16.2 
TMJ 

-2.5 
-28.83 
R Opt 
Nrv 

-2.3 
-19.52 

TMJ 
+0.8 

-21.0 
R Opt 
Nrv 

+1.0 

CHDM 
-8.8 

R 
Cochlea 

-1.4 
-10.99 

R 
Cochlea 

-1.0 
-8.89 
R Opt 
Nrv 

-1.3 
-9.6 

R cochlea 
-1.3 

Table 2-3: The difference of OAR doses between GS and MAN plans for all patients under 
LEUD cost. A negative sign represents a reduction of dose in GS plan from MAN plan. 
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Figure 2-2: DVH comparison of the MAN plan (solid line), L2,1/2-GS plan (dotted line) and 
L2,1-GS plan (dashed line) for each patient. The plans with quadratic cost are listed on the 
left column and the plans with LEUD cost are on the right column. 
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 The limitation of using L2,1-norm can be observed from the final value of dose 

fidelity cost. Figure 2-3 compares the convergence between L2,1/2-norm and L2,1-norm 

group sparsity for the H&N#3 case. For the quadratic and LEUD cost functions, the L2,1/2-

norm group sparsity method converged after about 800 iterations and 1800 iterations 

respectively. In contrast, with an L2,1-norm group sparsity term, the problem quickly 

converged within 30 iterations and 80 iterations under the quadratic and LEUD cost 

functions, respectively. However, the converged dose fidelity function values using the 

L2,1-norm are substantially greater than the corresponding values of using the L2,1/2-

norm (~105 for L2,1 vs. ~102 for L2,1/2), showing a larger deviation from the prescription 

dose using L2,1-norm in this case. 

 
Figure 2-3: The convergence comparison between L2,1/2-norm (solid) and L2,1-norm 
(dotted) group sparsity for case H&N#3. Left is Quad-GS and right is LEUD-GS. The blue 
curve shows the value of entire cost function and the red curve shows the value of dose 
fidelity term. 

 The DVHs comparison between L2,1/2-GS plans and CG plans is shown in Figure 

2-4. In all H&N cases, the CG method produced plans with similar PTV coverage as L2,1/2-

GS method, but the OAR doses were inferior to the group sparsity algorithm. In the CHDM 

case, the CG plan performed comparably with the L2,1/2-GS plan with regard to PTV and 
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OAR dose. The CG methods reduced the mean dose to brainstem by 9.8Gy over L2,1/2-GS 

plan by forcing all beams entering from the anterior direction, increasing the risk of 

exposing the eyes to high dose with slight positioning error.   

 
Figure 2-4: DVH comparison between L2,1/2-GS plan (solid) and the CG plan (dotted) for 
each patient. 

2.4 Discussion 

 This work introduces a group sparsity based IMPT optimization method that 

simultaneously selects beams and optimizes the fluence map. In addition to the superior 

dosimetry compared with plans using manually selected beams, the planning method using 

optimized beams reduces the dependence on the individual operators who select beams 

based on experience and intuition.  
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 Compared to the earlier coplanar X-ray optimization study using group sparsity47, 

the current work expands its scope in several ways. This is a new application to the IMPT 

problem, which is intrinsically a higher-dimensional optimization problem than IMXT due 

to the additional modulation in the depth direction. The number of candidate beams in this 

study is an order of magnitude larger than in the original IMXT BOO study that used only 

72 candidate beams. The optimization solver used in the original study was based on 

ADMM and is not well suited to the current much larger IMPT BOO problem, because the 

linear systems that ADMM requires to be solved at each iteration would be intractably 

large. Therefore, we developed an approach based on FISTA, which requires only matrix-

vector multiplications involving the dose-calculation matrix. To enable the use of FISTA, we 

derived several key proximal operators. FISTA has been shown to have an optimal 

convergence rate of 𝑂(1 𝑘2⁄ ) among first-order methods56, and the numerical results 

demonstrate that FISTA is able to solve the large scale optimization problem in a clinically 

acceptable time. Although standard convergence results for FISTA assume that both 𝑓 and 

𝑔 are convex56, we have found that FISTA converged to a good solution even in the case of 

using the nonconvex L2,1/2-norm group sparsity penalty. 

 In this study, two different group sparsity terms, L2,1 and L2,1/2 norms, were 

compared for the IMPT BOO problem. Although the L2,1-norm is convex and offers certain 

computational advantages, it leads to suboptimal  dosimetry and tends to converge to a 

worse fidelity value when compared against the nonconvex L2,1/2-norm group sparsity 

term. Therefore, in this case, the ability to avoid degeneracy and select spatially separate 

beams appears to be dosimetrically advantageous. This finding shows that while the group 
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sparsity method is well suited to solve the BOO problem, the selection of the sparsity 

function is a subtle point that can make a critical difference. 

 The group sparsity beam orientation optimization method was tested on two 

different dose fidelity functions: quadratic and LEUD terms. Compared to the quadratic 

dose fidelity term, the LEUD cost function with a combination of mean and maximum dose 

constraints is easier to tune to achieve desired DVHs. This is reflected in the process of 

creating plans for the four cases in this study: the quadratic L2,1/2-GS method took on 

average 9-10 rounds of parameter tuning, and the LEUD method took 4-5 rounds. The 

advantage of quadratic dose fidelity function is that while the structure parameters need to 

be tuned, the group sparsity regularization weighting parameter remains constant for a 

specific number of beams. In comparison, with LEUD dose fidelity, the group sparsity 

regularization weight is sensitive to the structure weighting parameter changes, requiring 

additional adjustment to maintain the desired number of beams. Quadratic dose fidelity 

also resulted in, on average, more sparse scanning spots.  

 The group sparsity BOO method was also compared against the greedy column 

generation BOO algorithm. The results show the GS method produces comparable or 

superior plans over CG. Specifically, the CG method tends to select aggregated beams with 

short pathlengths to the target, such as the anterior beams in the CHDM case. The result 

indicates degeneracy that did not present in the IMXT BOO solution, possibly due to the 

substantial difference in dose distribution between the first proton beam and photon beam. 

Additional heuristics, such as minimal separating between selected beams, may be 

enforced to ameliorate the problem. 
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 The dose matrix size is determined by the target, which is limited to be 

approximately 110 cm3 to fit the calculation into a desktop with 64GB memory. For more 

general IMPT cases with larger tumor targets, either workstations with substantially larger 

memory or methods to intelligently reduce the dose matrix size without impacting plan 

quality are needed. These methods include (1) non-uniform sampling resolution with a 

higher resolution in the target and nearby organs, and lower resolution in the volumes that 

are considered less critical and faraway from the target, (2) clustering of the proton pencil 

beam dose matrices, and (3) using heuristics to reduce the number of candidate beams. We 

will investigate these directions for more general integrated BOO and scanning-spot 

optimization problems. 

2.5 Conclusion 

 This work shows the first IMPT planning approach that integrates non-coplanar 

beam orientation and fluence map optimization in a single mathematical framework, which 

was further formulated to have a computationally efficient solution despite its large 

problem size. This method resulted in dosimetrically competitive plans compared with the 

manual planning method and is less operator-dependent. It sets up the framework for the 

optimization problems that are handled in the subsequent studies. 
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3 APPLICATIONS OF GROUP 

SPARSITY REGULARIZATION 

FOR PROTON THERAPY 

3.1 Fraction-Variant Beam Orientation Optimization for 
IMPT 

3.1.1 Introduction 

 Different from X-ray therapy that found success in using more beams and arcs, 

proton therapy is conventionally limited to fewer beams due to three reasons. First, 

because of the unique physics of proton beams, it is feasible to achieve acceptable normal 

tissue sparing using fewer beams6,15. Second, using fewer beams spares larger normal 

tissue volumes from low-dose radiation exposure, which is one of the main benefit of 

proton therapy. Third, the proton treatment time is expensive; thus, it is economically 

desirable to use as few beams as possible to improve throughput. In today’s practice, it is 

typical to use two to four beams in IMPT. 
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 Nevertheless, sparing of organs adjacent to the targets can still benefit from using 

more proton beams. Studies have shown better OARs sparing in three to four-beam plans 

compared with 2-beam plans46. The addition of non-coplanar beams would also improve 

the plan quality35. Further increase in the number of beams to form arc delivery may lead 

to substantial improvement in dose conformity and adjacent organ sparing36,38,57–64. On the 

other hand, using a larger number of beams in IMPT can be impractical. Spot-scanning 

proton arc therapy is not clinically deliverable and will likely be limited to selected proton 

delivery systems. For static beam IMPT, the time to deliver more than four beams in single 

treatment fraction is increasingly unaffordable, particularly in multi-room configurations 

when proton beams are shared among different treatment rooms or when increased setup 

time is needed for non-coplanar beams. 

 One solution to the apparent conflict between the number of beams and delivery 

efficiency is to use different groups of beams on different treatment days. For IMXT, 

approaches have been developed to allow for a large number of beams in the entire 

treatment while limiting the number of beams in a single fraction. Dink et al65 proposed a 

field rotation method, in which multiple sets of coplanar beams were interchanged 

between fractions using a mixed integer linear program. Results showed an improvement 

of dose objectives based on this time-varying method. O’Connor et al66 proposed to use 

group sparsity regularization to select different beam angles for different fractions out of a 

large number of non-coplanar candidates. This fraction-variant beam orientation 

optimization scheme showed that the same dosimetry as conventional plans could be 

achieved using half as many beams per fraction. 
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 In this study, we aim to investigate the dosimetric and delivery efficiency benefit of 

fraction-variant beam orientation optimization in IMPT and its potential to improve 

treatment delivery efficiency. 

3.1.2 Methods 

 The goal of fraction-variant BOO (FVBOO) framework is to select a small number of 

beams from the candidate set for each fraction in a single step, but allow variant beam 

angles from fraction-to-fraction. More importantly, the target dose homogeneity is 

maintained regardless of the number of beams per fraction to avoid undesirable hot or cold 

spots within each fraction.  

3.1.2.1 Problem formation 

 Let 𝐹 indicate the number of treatment fractions and assume each fraction sharing 

the same candidate beam set. The number of candidate beams in each fraction is 𝐵. The 

problem is formulated as the following objective function: 

minimize
𝒙

       ∑𝜔𝑖
𝑖∈𝒯

(∑‖𝐴𝑖𝒙𝑓 − 𝑝𝑖 𝐹⁄ ‖
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𝑖∈𝒪
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2

𝐵

𝑏=1

𝐹

𝑓=1

 

subject to    𝒙 ≥ 0. 

Equation 3-1    

 In Equation 3-1, 𝒙𝑓,𝑏 is a vector representing the intensities of scanning spots of 

the 𝑏th candidate beam in the 𝑓th fraction. Then 𝒙𝑓 is the concatenation of the vectors 𝒙𝑓,𝑏 
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(for 𝑏 = 1,… , 𝐵), representing the spot intensities of fraction 𝑓, and 𝒙 is the concatenation 

of the vectors 𝒙𝑓 (for 𝑓 = 1,… , 𝐹),  indicating the entire intensity map. 

 𝐴𝑖  is the dose-calculation matrix for structure 𝑖 (𝑖 ∈ 𝒯 or 𝒪, where  𝒯 is the set of 

target volumes, and 𝒪 is the set of OARs). Each column of 𝐴𝑖  is the vectorized dose 

delivered to structure 𝑖 from one scanning spot of unit intensity.  Therefore, the product of 

𝐴𝑖  and 𝒙𝑓 is the dose delivered to structure 𝑖 in the 𝑓th fraction.  

 Equation 3-1 includes three terms. The first term is a fractional dose fidelity term 

on target volume. If the prescription dose to structure 𝑖 (𝑖 ∈ 𝒯) of the entire treatment is  

𝑝𝑖,the first term intends to penalize any dose deviation in each fraction from 𝑝𝑖 𝐹⁄ , which is 

the prescription dose per fraction. The second term captures cumulative dose fidelity on 

OARs, to encourage the dose to structure 𝑖 (𝑖 ∈ 𝒪) over the entire treatment not to exceed a 

maximum value 𝑚𝑖. 𝑚𝑖 can also be set to 0 so that any nonzero doses in the OARs are 

penalized. 𝜔𝑖 is a structure-specific weighting parameter. 

 The third term in Equation 3-1 is the non-convex group sparsity term developed in 

Chapter 2, used for beams selection. It groups the spots in the same candidate beam and 

same fraction in a L2,1/2 -norm term. With a proper value of weighting hyperparameter 𝛼𝑏 

of each beam 𝑏, most of the candidate beams in each fraction will be turned off, leaving a 

small active set, consisting of 1-4 active beams. Moreover, the non-convexity of the L2,1/2-

norm allows varying beam combinations in different fractions, making the BOO fraction-

variant.  
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3.1.2.2 Evaluations 

 This FVBOO method was tested on one patient with the base-of-skull tumor (BOS), 

one bilateral head-and-neck (H&N) patient, and one esophageal cancer (ESG) patient. For 

all patients, the treatment includes 30 fractions. For the BOS patient, an additional plan 

with 5-fractions (5f) was generated. This BOS case was not clinically treated with 5 

fractions, but the 5-fractions plans were created to test the ability of the FVBOO method for 

hypofractionated treatments. The initial candidate beams included 400~800 non-coplanar 

candidate beams. For each candidate beam, dose calculation for the scanning spots 

covering the PTV and a 5 mm margin was performed using  matRad51,52. The dose 

calculation resolution was 2.5×2.5×2.5 mm. The prescription dose, target volume, and the 

number of fractions for each patient are shown in Table 3-1. 

Case 
Prescription Dose 

(GyRBE) 
PTV Volume 

(cc) 
Number of fields 
in the FIBOO plan 

Number of  
fractions 

BOS 56 66.8 4 5, 30 

H&N 
PTV54 54 179.1 

3 30 
PTV60 60 204.4 

ESG 50 480.9 3 30 

Table 3-1: Prescription doses, PTV volumes, number of fields, and number of fractions for 
each patient 

 To determine the effectiveness, the FVBOO plans were compared with the plans 

with fixed beams throughout the treatment. The fixed beam plans, termed Fraction-

Invariant BOO (FIBOO) plans, were created using the group sparsity based BOO algorithm 

proposed in Chapter 2. Different from FVBOO that penalizes the dose of PTV in each 

individual fraction, FIBOO penalizes the cumulative PTV dose of all fractions. The number 

of beams per fraction used in the FIBOO plans is also listed in Table 3-1.  
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 To match the number of beams in the FIBOO plans, the parameter 𝛼𝑏 in Equation 

3-1 was tuned in the FVBOO plans. Different from the integer beam numbers in FIBOO, the 

average beam numbers in the matching FVBOO plans are either the same or slightly lower. 

FVBOO plans with further reduced average beams per fraction were also generated in 

either the 5f or 30f setting for the BOS patient to determine the feasibility of creating more 

efficient IMPT plans without compromising dosimetry.  

3.1.3 Results 

3.1.3.1 Runtime and selected beams 

 FVBOO planning was performed using an i7 CPU desktop at 4.2 GHz clock. The 

resultant average number of selected beams and the BOO runtime of each method are 

listed in Table 3-2.  

 For the BOS patient, under the 5-fractions (5f) setting, three FVBOO plans were 

generated, with an average number of beams per fraction (b/f) of 3.8, 3, and 1.8, 

respectively. The 3.8 b/f plan used a total of 19 beams, among which, 12 and 7 are used in 

single and multiple fractions, respectively. The 3 b/f plan reduced the number of total 

beams to 15 with 11 single-use beams. The 1.8 b/f plans further reduced the number of 

total beams to 9, respectively with 7 single-use beams. 

 In the 30-fractions (30f) setting, four FVBOO plans were generated for the BOS 

patient, with an average number of beams per fraction being 3.6, 2.8, 2, and 1.3, 

respectively. In the 3.6 b/f plan, 109 beams are selected with 22 being single-use. In the 2.8 

b/f, 2 b/f and 1.3 b/f plans, the total number of beams reduced to 84, 61 and 40, 

respectively, with 20 to 13 single-use beams. 
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 For the H&N and ESG patient, the 30f-FVBOO plan selected 90 (24 single-use) 

beams and 84 (36 single-use) beams, respectively. 

 As shown in Table 3-2, compared with the FIBOO, the runtime of FVBOO selecting 

similar number of beams per fraction is approximately 4 time longer for the 5f plans and 9-

20 times longer for 30f plans. In the worst case for the 30f ESG FVBOO plan with a PTV 

volume of 480cc, the runtime is close to 10 hours. The runtime was shortened by up to 

40% when the goal was to achieve fewer total and per fraction beams in FBVOO.  

Case 
Num. 

fractions 
Method 

Num. beams selected 
BOO runtime 

(min) Total Unique 
Avg. per 
fraction 

BOS 

5 

FIBOO 20 4 4 13.4 

FVBOO 

19 12 3.8 52.4 

15 11 3 36.5 

9 7 1.8 33.6 

30 

FIBOO 120 4 4 13.4 

FVBOO 

107 22 3.6 129.9 

84 20 2.8 118.5 

61 20 2 95.2 

40 13 1.3 72.3 

HN 30 
FIBOO 90 3 3 25.1 

FVBOO 90 24 3 500.8 

ESG 30 
FIBOO 90 3 3 34.0 

FVBOO 84 36 2.8 590.0 

Table 3-2: Number of fractions, total number of beams selected, number of unique beams 
selected, average number of beams selected per fraction, and BOO runtimes. 

3.1.3.2 FIBOO and FVBOO with similar number of beams per fraction  

 The FIBOO and FVBOO plans with a similar number of beams per fraction are first 

compared. The cumulative dose distributions for the 5f and 30f FVBOO plans are shown in 

Figure 3-1. These plans with different BOO methods and different numbers of active beams 

achieved similar PTV dose coverage. Several OARs are selected and the differences of their 
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mean and maximum doses between the FVOO plans and the FIBOO plans are presented in 

Figure 3-2. 

 For the 5f setting of the BOS patient, the 3.8 b/f plan achieves better OARs sparing 

compared with the FIBOO plan using four beams. The average reduction of [Dmean, Dmax] 

of the 3.8 b/f plans from the FIBOO plans were [0.9, 2.1] GyRBE.  

 For the 30f setting, the FVBOO plans of each patient achieve superior OARs sparing 

compared with the FIBOO plan with a similar number of  beams per fraction, with an 

average reduction of [Dmean, Dmax] of [1.9, 4.1] GyRBE. The maximal reduction to the 

Dmax for each patient is right optical nerve (10.4 GyRBE) for the BOS patient, spinal cord 

(10.9 GyRBE) for the H&N patient and  trachea (9.8 GyRBE) for the ESG patient.  

 The volumes of the patient body irradiated by 2, 5, 10 and 20 GyRBE are listed in 

Table 3-3. As expected, with more beams being used, the FVBOO plans resulted in a larger 

volume being irradiated by the 2 GyRBE low dose. However, V5 is actually lower with 

FVBOO in the H&N and ESG cases. 

Case Plan fractions V2 V5 V10 V20 

BOS 

FIBOO 5,30 1165.9 438 343.2 189 

FVBOO 
5 909.5 639.5 370.9 156.5 

30 962.9 683.1 367.7 162.5 

HN 
FIBOO 30 3819.7 3359.4 2650.4 1672.2 

FVBOO 30 4519.6 3315.6 2440.3 1641 

ESG 
FIBOO 30 5501.3 4757.5 3702.3 1748.2 

FVBOO 30 9782.9 4525.2 2358.6 1265.8 

Table 3-3: The V2, V5, V10, V20 GyRBE to the body in volume (cc). 
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Figure 3-1: The beam angles of the 30f FVBOO plans (left), and the DVH comparison of the 
30f FVBOO plans (solid) with the FIBOO plan (dotted) for the three patients. The FVBOO 
plans have the similar number of beams per fraction as FIBOO. 
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Figure 3-2: The difference of OAR Dmean (blue) and Dmax (red) in GyRBE of the FVBOO 
plans from the FIBOO plans. A negative value represents a reduction from the FIBOO plan, 
and a positive value represents an increase.   

 In addition to the cumulative doses, the dose distributions of individual fractions 

are presented. The DVH for each fraction of the 5f plans for the BOS patient and the first 5 

fractions of the 30f plans for every patient are shown in Figure 3-3. In Figure 3-3, the 

dotted lines are the fractional dose. The solid lines are the cumulative dose from all 

fractions re-scaled to the fractional prescription dose (divided by the number of fractions), 

drawn for comparison. Consistent with our planning goal, despite varying beams, the PTV 

is covered by a homogeneous dose in individual fractions. While all the cumulative plans 
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are normalized so D95% = 100% of the prescription dose, the D95% of CTV in all fraction 

has an average value of 99.6% and a standard deviation of 0.4%. 

 
Figure 3-3: DVH of each fraction in the FVBOO 5-fractions plan of the BOS patient and the 
DVH of the first 5 fraction in the FVBOO 30-fractions plan of each patient. The dotted lines 
are the fractional dose. The solid lines are the cumulative dose from all fractions re-scaled 
to the fractional prescription dose. 

3.1.3.3 Reduce the number of beams in FIBOO  

 For the BOS patient, the number of beams per fraction is further reduced from 

around 4 to around 1. The DVH and dose wash comparison with decreasing number of 

beams are shown in Figure 3-4. For the 5f setting, while the 3.8 b/f plan achieves the best 

OARs sparing, with an average reduction of [Dmean, Dmax] from the FIBOO plans of [0.85, 

2.08] GyRBE, the FVBOO plan with 3b/f achieves slightly better OARs sparing compared 

with the FIBOO, with an average reduction of [Dmean, Dmax] of [0.17, 1.45] GyRBE. The 1.8 
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b/f plan has worse OAR doses than FIBOO plan, except the sparing to the right eye and 

right retina. 

 
Figure 3-4: The DVH and dose wash using different number of beams for the BOS patient. 
(a) The DVH comparison of the 5f FVBOO plans (solid) with the FIBOO plan (dotted), and 
the cumulative dose distribution of the 5f FVBOO plans. (b) The DVH comparison of the 30f 
FVBOO plans (solid) with the FIBOO plan (dotted), and cumulative dose distribution of the 
30f FVBOO plans. (c) The dose wash of the FIBOO plan.  

 For the 30f setting,  when further reducing the beams per fraction, to 2.8 and 2, the 

FVBOO plan still achieves better OARs sparing compared with the FIBOO plans with more 

beams, with an average reduction of [Dmean, Dmax] of [1.7, 4.1] GyRBE for the 2.8 b/f plan 

and [1.3, 3.2] GyRBE for the 2 b/f plan. The average beam number of 1.3 is too low for 

FVBOO to compete with FIBOO using 4 beams. 
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3.1.4 Discussion 

 While traditional fractionated IMPT plans use fixed fields and fluence map to 

deliver the same dose distribution to the patient during the treatment sessions, this work 

describes a novel method to treat different fractions with varying beam angles and fluence 

maps. The fraction-variant beam orientation and fluence map are simultaneously obtained 

using an optimization framework integrating modified dose fidelity terms and a group 

sparsity term for beam selection. The FVBOO framework generates fractionated plans that 

allow the OAR doses to vary for superior cumulative sparing without compromising PTV 

dose homogeneity in individual fractions. Different from proton arc therapy relying on the 

proprietary hardware and control system, FVBOO can be delivered on all existing proton 

systems capable of IMPT.  

 Besides the ability to improve the cumulative dose distribution using a similar 

number of beams, FVBOO can reduce the number of beams used per fraction without 

compromising dosimetry. For example, in the 5-fraction scheme, a 3-beam FVBOO plan 

performs comparatively with a 4-beam FIBOO plan. In the 30 fraction scheme, a 2-beam 

FVBOO plan better spares OARs than the 4-beam FIBOO plan. Considering the slow gantry 

rotating speed and the fact that a beamline is usually shared between multiple gantry 

rooms, the use of fewer beams in a treatment fraction allows for reducing the patient 

treatment time and improve the patient throughput without compromising the treatment 

quality.  

 Moreover, this fraction-variant scheme can be complementary to FLASH therapy, 

which utilizes ultra-high dose rate to enhance therapeutic ratio67–69. While proton has 
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potential to achieve the FLASH dose rate for clinical treatment in a single field, the time 

between two beams cannot be substantially reduced. The proposed method would allow 

fewer beams to be used to shorten the total treatment time without compromising the 

physical dose distribution.  

 In the current problem formulation, the fractional dose of PTV and the cumulative 

dose of OARs are considered and penalized. Under this condition, the OARs doses in each 

fraction are not strictly constrained but naturally limited by the dose to the PTV. To avoid 

overdosing an OAR in a single fraction, an OAR fractional dose penalization can be similarly 

incorporated in the FVBOO Equation 3-1. 

 For the same reason, our FV approach is different from the spatiotemporal 

modulation proposed by Unkelbach et al70–72 that introduces a heterogeneous fractional 

tumor dose for the improved overall biologically equivalent dose (BED). By maintaining the 

same uniform tumor dose throughout the treatment course, out method does not need to 

assume a radiobiological model and is more compatible with the current clinical practice. 

 The ability to select variant beams for the FVBOO method relied on the non-convex 

L2,1/2-norm group sparsity. We derived the proximal function for the group sparsity term 

so Equation 3-1 can be solved by FISTA, which is by far more efficient than ADMM.  FISTA 

originally assumes the function convexity56. Nevertheless, we found that FISTA converged 

to a good solution even in the case of using the non-convex L2,1/2-norm group sparsity 

penalty35,66. In this particular case, we observed in the 30 fractions plans, only 20 out of 

109 total selected beams are single-use. This is possibly due to the local minima and 

initialization condition, which currently use random initialization, and that the 
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optimization is trapped in local minima. Besides the demonstrated dosimetric 

performance, further improvement may be possible by using a different initialization 

strategy. On the practical side, re-using the “good” beam angles can reduce the QA 

workload. The tradeoff between using more beams and using the best beams can be further 

explored. 

 FVBOO method would create a challenge in the measurement-based patient-

specific qualify assurance (PSQA), which needs to be performed for individual fractions 

instead of the entire plan. However, the hurdle may be overcome by adopting calculation 

73–75 and treatment log file analysis76–78 based PSQA. 

 Another challenge of FVBOO is its longer computational time. For the ESG case 

with a large PTV volume of 480cc, the FVBOO plan took about 10 hours in comparison to 

the 30 minutes used by FIBOO planning. On the other hand, the extra computational time 

can be unsupervised after adopting the same planning parameters from the FIBOO plan.  

 Similar to proton arc therapy, FVBOO improves the dose conformity and adjacent 

organ sparing at the cost of increased low dose bath to normal tissue, as shown by the 

increase V2 and V5. Therefore, the use of FVBOO has to consider individual clinical 

requirements to balance the need for high dose conformality (to spare adjacent OARs) and 

the need to minimize low-dose bath effects. Nevertheless, FVBOO offers an alternative 

option to the clinicians.  

3.1.5 Conclusion 

 This work demonstrates a new IMPT optimization approach to vary beam angles 

during different treatment sessions. It provides a solution to use few beams per fraction 
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but many more beams throughout the entire treatment to improve either the plan quality 

or treatment delivery efficiency. 

3.2 Integrating Biological Effectiveness into Beam 
Orientation Optimization for IMPT 

3.2.1 Introduction 

 In current proton therapy clinical practice, a constant relative biological 

effectiveness (RBE) value of 1.1 is used17–19, assuming proton therapy is 10% more 

effective than high-energy photons. However, the generic RBE of 1.1 is an averaged value at 

the center of a spread-out Bragg peak (SOBP) for 65-250 MeV proton of in-vivo systems18. 

The RBE can vary substantially along treatment fields (ranging from 1.0 to 1.6 in SOBP)27. 

RBE values also depend on several other factors, such as linear energy transfer (LET), 

tissue radiobiological properties (𝛼 and 𝛽 value), physical dose, and specific biological 

endpoint18,27,79. In addition, with the pencil beam scanning (PBS) technique replacing 

passive scattering to be the mainstream delivery modality, the biological doses potentially 

differ from the previous observation on passive scattering28,29, warranting further 

investigation in the universal use of RBE=1.1. 

 There have been concerns that using the generic RBE value in proton therapy can 

lead to underdosage in the target or underestimation of the normal tissue toxicities. Several 

empirical RBE calculation models have been proposed26,79–82 to more accurately predict the 

RBE values. Efforts have then been made to include the RBE-weighted dose into treatment 

planning83–86. However, the dependence of these models on fitting parameters and tissue 



 

44 

radiobiological properties introduces considerable uncertainties in RBE-weighted dose 

prediction, making it difficult to incorporate them into clinical treatment planning.  

 Alternatively, dose-averaged LET has been suggested as a surrogate for indirect 

biological optimization87. The increase of biological effectiveness from the entrance to the 

distal edge of the Bragg peak is largely due to the increase of LET towards the end of proton 

range. Although the relationship is nonlinear, RBE increases monotonically with LET26,27,79–

82, making LET a reasonable first order approximation of RBE. Moreover, in contrast to the 

large RBE estimation uncertainties, LET can be accurately calculated via analytical 

modeling88–91 or Monte Carlo simulation92–95. The LET values can then be utilized in multi-

field optimized Intensity-Modulated Proton Therapy (MFO-IMPT, shorted as IMPT)30,96. 

 Studies have been performed to incorporate dose-averaged LET into biological 

optimization of IMPT. Tseung et al97 and Fager et al98 used LET painting to directly 

optimize the biological dose instead of the physical dose, which was considered impractical. 

A safer and more acceptable strategy is to simultaneously optimize LET and physical dose. 

Works have be done to maximize the LET in the target or minimize the LET in the critical 

organs at risk (OARs), while achieving the physical prescription doses in the target and the 

OARs30,31,99–103. For example, Unkelbach et al30 suggested to reoptimize the product of LET 

and physical dose (LET×D) after obtaining an initial IMPT plan based on the physical dose. 

They showed reduced LET hot spots in the critical structures with little physical dose 

degradation.  

 However, existing LET or LET×D optimization is limited to fixed beams despite the 

significant implication of beam orientations on the LET distribution30–34. For example, if an 

OAR abuts the target in the distal edge of a proton beam, it is difficult to reduce the LET in 
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this OAR without compromising physical dose coverage. In clinical practice, a planner can 

avoid some of the undesirable beam orientations based on experience31–34, but evaluating 

all beam angles for their dosimetry, robustness, and LET values is a large computational 

task unsuited for human operators. A beam orientation optimization (BOO) algorithm for 

both physical and biological dose optimization is essential for IMPT but has not been 

developed. In this work, we expand the group sparsity BOO framework developed in 

Chapter 2 for IMPT biological dose optimization.  

3.2.2 Methods 

 This Biological effectiveness-coupled Beam Orientation Optimization (BioBOO) 

method aims to select proton beams and generate treatment plans with both superior 

physical dose distribution and biological dose sparing. The dose and LET product (LET×D) 

is used as a surrogate of biological dose. The optimization function is formulated with a 

dose fidelity term, a LET×D and a group sparsity term. The details are described as follows. 

3.2.2.1 Dose and LET product 

 As proposed by Unkelbach et al30, the RBE-weighted dose at voxel 𝑖, written as 𝑏𝑖, 

can be approximated by: 

𝑏𝑖 = 𝐷𝑖 + 𝑐𝐿𝐷𝑖 , 

Equation 3-2    

where 𝐷𝑖  is the physical dose delivered to voxel 𝑖, 𝐿𝐷𝑖 is the dose and LET product at voxel 

𝑖, and 𝑐 is a scaling factor. The two terms represent the physical and LET weighted doses, 

respectively. The scaling factor 𝑐 value is assumed 0.04 𝜇m/keV following the publication30. 



 

46 

 In order to formulate the optimization problem, two matrices, 𝐴 and 𝐿, are first 

defined. The matrix 𝐴 is the dose calculation matrix as defined in Section 2.2.1. The element 

in the 𝑖th row and 𝑗th column of matrix 𝐴, denoted as 𝑎𝑖𝑗, representing the physical dose 

contribution from the pencil beam 𝑗 of unit intensity to the voxel 𝑖. Matrix 𝐿 is the LET 

calculation matrix. Similar to 𝐴, the 𝑖𝑗th element in 𝐿, denoted as 𝑙𝑖𝑗, is the LET from the 

pencil beam 𝑗 to the voxel 𝑖 of unit intensity. Let 𝒙 be a vector representing the intensities 

of all the scanning spots, with 𝑥𝑗  indicating the intensity of 𝑗th spot, then the physical dose 

to voxel 𝑖 from all scanning spots is calculated as 

𝐷𝑖 =∑𝑎𝑖𝑗𝑥𝑗
𝑗

. 

Equation 3-3    

 The dose-averaged LET to voxel 𝑖 over all scanning spots is 

𝐿𝐸𝑇𝑖 =
1

𝐷𝑖
∑𝑙𝑖𝑗𝑎𝑖𝑗𝑥𝑗
𝑗

. 

Equation 3-4    

 Therefore, the product of dose and LET at voxel 𝑖 is: 

𝐿𝐸𝑇𝑖 × 𝐷𝑖 =∑𝑙𝑖𝑗𝑎𝑖𝑗𝑥𝑗
𝑗

. 

Equation 3-5    

 In matrix-vector representation, the vectorized physical dose in the patient 

volume, denoted as 𝐷, can be written as 

𝐷 = 𝐴𝒙. 

Equation 3-6    
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 The product of dose and LET in the patient volume, denoted as 𝐿𝐷, can be 

calculated as the following matrix and vector multiplication: 

𝐿𝐷 = (𝐿 ∘ 𝐴)𝒙, 

Equation 3-7    

where the symbol ‘∘’ represents element-wise multiplication. 

3.2.2.2 Problem formulation 

 In the BioBOO framework, the LET×D constraint is incorporated into the group 

sparsity based BOO to encourage selecting proton beams which minimize LET×D in the 

OARs, while maintaining LET×D to the target as well as achieving superior physical dose 

distribution. Assume ℬ is the set containing all the feasible candidate beams. The BioBOO 

problem is formulated as 

minimize
𝒙

  ∑𝜔𝑗‖𝐴𝑗𝒙 − 𝑝𝑗‖2
2

𝑗∈𝒯

+∑𝜔𝑗‖𝐴𝑗𝒙‖2
2

𝑗∈𝒪

   

+∑𝛽𝑘 ‖((𝐿𝐷)𝑘
ref − (𝐿 ∘ 𝐴)𝑘𝒙)+‖2

2

𝑘∈𝒯

+∑𝛽𝑘‖(𝐿 ∘ 𝐴)𝑘𝒙‖2
2

𝑘∈𝒪

 

+∑𝛼𝑏‖𝒙𝑏‖2
1/2

𝑏∈ℬ

 

subject to    𝒙 ≥ 0, 

Equation 3-8    

where 𝒙𝑏 is the fluence map candidate beam 𝑏, so the optimization variable and 𝒙 is the 

concatenation of all the vectors 𝑥𝑏  (𝑏 ∈ ℬ). The dose calculation matrix 𝐴 and LET 

calculation matrix 𝐿 include all the candidate beams along the column direction.  𝒯 is the 

set including the target volumes and 𝒪 is the set including the OARs. 



 

48 

 The first two terms in Equation 3-8 are the conventional physical dose fidelity 

term similar to Equation 2-3. The first term penalizes the dose deviation of target 𝑗 from 

prescription dose 𝑝𝑗 , to ensure a homogeneous physical dose distribution in the target. The 

second term penalizes any non-zero doses in the OARs, to reduce the doses delivered to the 

OARs. The third and fourth terms together are the LET×D conditions. The third term 

encourages the LET×D values in the target 𝑘 to be greater than (𝐿𝐷)𝑘
ref, to prevent cold 

spots in the biological dose. The fourth term minimizes the LET×D values in the OARs. 𝜔𝑗  

and 𝛽𝑘 are the structure weighting hyperparameters for dose and LET×D constraints, 

respectively. The last term  ∑ 𝛼𝑏‖𝒙𝑏‖2
1/2

𝑏∈ℬ  is the L2,1/2-norm group sparsity term defined 

in Section 2.2.1 for selecting beams.  

 Without the third and fourth terms penalizing LET×D, the Equation 3-8 describes 

the group sparsity based BOO framework proposed in Chapter 2, only ensuring physical 

dose sparing. After adding these two terms, proton beam angles and treatment plans are 

generated simultaneously with optimum physical and biological dose sparing. FISTA56 is 

used to solve this non-differentiable problem.  

3.2.2.3 Evaluations 

 Three patients with skull base tumor (SBT) and three patients with bilateral head-

and-neck (H&N) cancer were tested. The candidate beam set included 700 to 800 non-

coplanar beams for the SBT patients, and approximately 600 beams for the H&N patients. 

For each candidate beam, dose and LET calculation for the scanning spots covering the PTV 

(planning target volume) and a 5 mm margin was performed by  matRad51,52. The dose 

calculation matrix 𝐴 and LET calculation matrix 𝐿 including all feasible candidate beams 
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were hence generated. The calculation resolution was 2.5×2.5×2.5 mm3. Since robust 

optimization is not considered in this work yet, the PTV was set as the optimization target. 

The prescription dose, target volume, and average spot count per beam for each patient are 

shown in Table 3-4.  

Case 
Prescription Dose 

(GyRBE) 
PTV Volume 

(cc) 
Average Spots 

Number per Beam 

SBT #1 56 66.80 2537 

SBT #2 70 70.26 2650 

SBT #3 
PTV6300 63 128.86 

4071 
PTV7400 74 26.58 

H&N #1 

PTV5400 54 257.41 

10065 PTV6000 60 274.38 

PTV6300 63 121.52 

H&N #2 
PTV5400 54 205.76 

10077 
PTV6000 60 210.43 

H&N #3 

PTV5400 54 206.10 

9433 PTV6000 60 173.56 

PTV6300 63 21.20 

Table 3-4: Prescription doses, PTV volumes and average number of spots per beam for each 
patient. 

 For comparison, in addition to the BioBOO plan, the following four plans were also 

generated for each patient: 1) conventional plan optimizing physical dose with manually 

selected beams (MAN); 2) the same MAN plan reoptimized with additional cLET×D 

constraint (BioMAN); 3) the plan generated by group sparsity based BOO with only 

physical dose constraint (GSBOO); 4) the same GSBOO plan reoptimized with additional 

cLET×D constraint (GSBOO_BioFMO, with FMO representing fluence map optimization). 

The differences of these plans are listed in Table 3-5. 
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Acronym 

Initial optimization Re-optimized 
with cLET×D 
constraint ? 

Beam selection 
method 

Physical dose 
constraint ? 

cLET×D 
constraint ? 

MAN Manual selection Yes No No 

BioMAN Manual selection Yes No Yes 

GSBOO Group sparsity Yes No No 

GSBOO_BioFMO Group sparsity Yes No Yes 

BioBOO Group sparsity Yes Yes No 

Table 3-5: Acronyms of different methods and the comparison. 

 For all plans, the goal of physical dose optimization is the same as conventional 

treatment planning. We set the physical dose distribution in the target to be homogeneous 

and a constant RBE value of 1.1 was used. The plans are normalized so that 95% of the 

target volume receives the prescribed physical dose, which is  
prescription dose

1.1
. For the 

biological component, since there is no predefined reference value for cLET × D that can be 

used, we set the  𝑐(𝐿𝐷)ref of the PTVs to the mean cLET × D value of the PTVs in the MAN 

plans. 

3.2.3 Results 

3.2.3.1 Runtime and selected beams 

 The calculation and optimization were performed on a Xeon 14-core CPU server 

operating at 2.40 GHz clock. To calculate the dose and LET of all feasible candidate beams, 

the Matlab Parallel Computing Toolbox was used to accelerate the computation. The times 

spent on the dose and LET calculation and the BOO runtime for the GSBOO and BioBOO 

plans are listed in Table 3-6. The couch and gantry angles for the beams from manual 

selection, GSBOO, and BioBOO, are also listed in Table 3-6. In matRad, the physical dose 
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calculation and LET calculation share the same ray-tracing procedure, which is also the 

most time-consuming step. Therefore, the total time for dose and LET calculation is shown. 

With the analytical calculation model and parallel computing, the total time for dose and 

LET calculation is between 10 to 60 min depending on the target size. While the GSBOO 

process with only physical dose constraint took about 20-70 minutes to complete, the 

BioBOO process with additional cLET×D constraint increased the BOO time by 30-80%.  

Case  

Dose, LET 
calculation 
time (min) 

BOO runtime 
(min) 

Selected beam angles (gantry, couch) 

GSBOO BioBOO MAN GSBOO BioBOO 

SBT #1 11 21 31 
(60,275)(270

,0) 
(90,0) 

(303,62)(97,324) 
(42,37) 

(288,45)(123,33
1) 

(42,37) 

SBT #2 16 25 46 
(60,275)(270

,0) 
(90,0)(180,0) 

(62,339)(341,19) 
(300,353)(17,46) 

(95,281)(60,332) 
(137,18)(276,34

2) 

SBT #3 21 31 56 
(60,275)(270

,0) 
(90,0)(180,0) 

(66,0)(84,0) 
(270,342)(316,3

14) 

(268,84)(276,0) 
(67,20)(33,66) 

H&N 
#1 

56 70 101 
(0,0)(160,0) 

(200,0) 

(51,320)(154,29
3) 

(330,321) 

(188,45)(38,20) 
(330,321) 

H&N 
#2 

58 55 73 
(0,0)(160,0) 

(200,0) 

(322,20)(167,29
6) 

(212,23) 

(167,296)(212,2
3) 

(324,301) 

H&N 
#3 

55 62 89 
(0,0)(160,0) 

(200,0) 

(149,348)(193,2
7) 

(41,50) 

(149,348)(188,4
5) 

(31,76) 

Table 3-6: Optimization time and selected beam angles for each patient. 

3.2.3.2 SBT cases 

 BioBOO is compared with MAN and GSBOO. The dose volume histograms and 

cLEDxD volume histograms for the three SBT patients comparing MAN, BioMAN and 
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BioBOO are shown in Figure 3-5 and that comparing GSBOO, GSBOO_BioFMO and BioBOO 

are shown in Figure 3-6. The differences in dose and LET×D of BioMAN, GSBOO_BioFMO 

and BioBOO plan from the MAN plan for some OARs are shown in Figure 3-7. 

 
Figure 3-5: Comparison of dose and cLEDxD between BioBOO (solid), BioMAN (dotted) and 
MAN (dashed) for the SBT patients. Left column is the dose volume histogram and right 
column is the cLEDxD volume histogram. 

 Qualitatively, all the five methods achieved similar PTV dose coverage. In the 

GSBOO plans, the cLET×D values of the PTVs were not guaranteed, which can be higher 

(SBT #1) or lower (SBT #2) than the MAN plan. With the LET×D constraint in the BioMAN, 

BioBOO and GSBOO_BioFMO plans, the mean and maximal values of LET×D of the PTVs 
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were similar compared with the MAN plans, but the minimal values of PTV LET×D were 

improved relative to the MAN plans. 

 
Figure 3-6: Comparison of dose and cLEDxD between BioBOO (solid), GSBOO_BioFMO 
(dotted) and GSBOO (dashed) for the SBT patients. Left column is the dose volume 
histogram and right column is the cLEDxD volume histogram. 

 Reoptimizing the MAN plan based on the proposed LET×D constraint resulted in 

lower LET×D of the OARs while maintaining similar physical dose distribution. In the 

GSBOO plans, where only physical dose constraint was considered, the physical dose was 

improved, but the sparing of LET×D was not guaranteed. For example, the maximal cLET×D 
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of the left optical nerve for SBT #1 in the GSBOO plan was 2.4 Gy higher than the MAN plan. 

Reoptimizing LET×D based on the GSBOO plans leads to slightly degraded physical dose 

distribution and lower LET×D, but the LET×D sparing was not as good as BioMAN. On 

average, the GSBOO_BioFMO plans reduced [Dmean, Dmax] from the BioMAN plans by [3.8, 

4.5] GyRBE on average, but increasing [cLET×Dmean, cLET×Dmax] by [0.1, 0.4] Gy.  

 The BioBOO plans achieved better OARs dose sparing and further reduced the 

OARs LET×D. The physical dose was reduced in the BioBOO plans from the MAN plan for 

most considered OARs except the chiasm in SBT #1 and SBT #3, and the right optical nerve 

in SBT #2. Even for these structures that were not improved compared with MAN, the 

difference was smaller than 1 GyRBE. The structure with the largest reduction in the 

maximal doses from the MAN plans were left eye (9.1 GyRBE) for SBT #1, pharynx (13.8 

GyRBE) for SBT #2, and hippocampus (15.7 GyRBE) for SBT #3. The averaged reduction in 

[Dmean, Dmax] of the BioBOO plans from the MAN plans were [2.85, 4.6] GyRBE, while the 

averaged reduction of [Dmean, Dmax] of the BioMAN plans from the MAN plans were [0.1, 

0.5] GyRBE. 

 Meanwhile, even though the BioBOO method did not improve the physical dose for 

certain structures in the SBT cases, it further reduced the LET×D compared with BioMAN. 

For example, the maximal cLET×D of chiasm in the three cases were 1.5 Gy, 0.9 Gy and 1.0 

Gy lower than the BioMAN plans, respectively, while the physical dose were similar. 

Compared with the BioMAN plans, the structure with the largest reduction of maximal 

cLET×D by BioBOO in each case was right optical nerve (1.7 Gy) for SBT #1, pharynx (2.9 

Gy) for SBT #2, and brainstem (1.6 Gy) for SBT #3. The averaged reduction of 

[cLET×Dmean, cLET×Dmax] of the BioBOO plans from the MAN plans were [1.1, 2.9] Gy, 
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while the averaged reduction of [cLET×Dmean, cLET×Dmax] of the BioMAN plans from the 

MAN plans were [0.7, 1.7] Gy. 

 
Figure 3-7: The difference of OAR dose and cLET×D metrics of BioMAN, GSBOO_BioFMO 
and BioBOO from MAN for the three SBT patients. A negative sign represents a reduction 
from the MAN plan and a positive sign represents an increase.   
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3.2.3.3 H&N cases 

 The dose volume histograms and cLEDxD volume histograms for the three H&N 

patients comparing MAN, BioMAN, and BioBOO are shown in Figure 3-8 and that 

comparing GSBOO, GSBOO_BioFMO, and BioBOO are shown in Figure 3-9. The differences 

in dose and LET×D of BioMAN, GSBOO_BioFMO and BioBOO plans relative to the MAN plan 

for selected OARs are shown in Figure 3-10. 

 
Figure 3-8: Comparison of dose and cLEDxD between BioBOO (solid), BioMAN (dotted) and 
MAN (dashed) for the H&N patients. Left column is the dose volume histogram and right 
column is the cLEDxD volume histogram. 

 

 

H&N #1 

H&N #2 

H&N #3 
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Figure 3-9: Comparison of dose and cLEDxD between BioBOO (solid), GSBOO_BioFMO 
(dotted) and GSBOO (dashed) for the H&N patients. Left column is the dose volume 
histogram and right column is the cLEDxD volume histogram. 

 Similar to the SBT cases, all the five methods achieved similar PTV dose coverage 

and comparable cLET×D distribution. An improvement of minimal cLET×D is observed in 

the BioMAN, BioBOO and GSBOO_BioFMO plans from the MAN plans, indicating reduced 

cLET×D cold spots in the PTVs. Compared with BioMAN, GSBOO_BioFMO reduced [Dmean, 

Dmax] by [1.7, 2.6] GyRBE on average, with similar LET×D and an average increase of 

[cLET×Dmean, cLET×Dmax] by [-0.1, 0.1] Gy. 

 

H&N #1 

H&N #2 

H&N #3 
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Figure 3-10: The difference of OAR dose and cLET×D metrics of BioMAN, GSBOO_BioFMO 
and BioBOO from MAN for the three H&N patients. A negative sign represents a reduction 
from the MAN plan and a positive sign represents an increase.   

 The OARs doses in the BioBOO plans were consistently reduced compared with the 

MAN plans except the right submandibular gland in H&N #1 and H&N #3. The structure of 

the largest reduction of maximal dose from the MAN plan in each case was the right parotid 
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(5.9 GyRBE) for H&N #1, constrictors (4.6 GyRBE) for H&N #2, and larynx (4.4 GyRBE) for 

H&N #3. The averaged reduction of [Dmean, Dmax] of the BioBOO plans from the MAN 

plans were [0.9, 2.5] GyRBE, while on average the [Dmean, Dmax] of the BioMAN plans 

were increased by [0.5, 0.2] GyRBE from the MAN plans. 

 Even though the doses to the right submandibular gland in the three BioBOO plans 

were comparable to the MAN plans, an effective reduction of LET×D by the BioBOO method 

was observed. Compared with the BioMAN plans, the maximal cLET×D of the right 

submandibular gland in the three cases was 2.3 Gy, 2.2 Gy and 1.2 Gy lower in the BioBOO 

plans. The averaged reduction of [cLET×Dmean, cLET×Dmax] of the BioBOO plans from the 

MAN plans were [0.8, 2.6] Gy, while the averaged reduction of [cLET×Dmean, cLET×Dmax] 

of the BioMAN plans from the MAN plans were [0.3, 1.2] Gy. 

3.2.4 Discussion 

 Unexpected high LET-weighted pencil beam dose deposition inside a sensitive OAR 

has raised considerable concerns in IMPT plans. Although the beam direction strongly 

correlates with the distal proton biological effect, IMPT optimization may scatter high-LET 

beams throughout the target volume or sometimes within OARs. Manual selection of 

proton fields for multiple planning goals including optimal dosimetry, biological 

effectiveness and robustness is a computational task beyond the capability of human 

planners. To the best of our knowledge, this work describes the first mathematical 

framework and actual implementation that include biological effectiveness in IMPT beam 

orientation optimization. In contrast to the limited manual trial and error approach, the 

BioBOO framework performs a global search among all feasible candidate beams by solving 
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a group sparsity problem integrating physical dose objectives and biological dose 

constraints.  

 Compared with the previous approaches appending LET optimization to the 

physical dose optimization using manually selected beams, which were shown to reduce 

LET in the OARs at the cost of the physical dose30, BioBOO further reduced both the 

physical dose and LET×D in the OARs. The OAR dose and LET reduction was achieved 

while maintaining the physical target dose and LET×D coverage, eliminating concerns due 

to uncertain tumor radiobiology and RBE modeling. It is worth noting that the current 

framework is flexible to increase LET×D in the tumor for potentially greater tumor cell 

killing by setting the (𝐿𝐷)ref value in  Equation 3-8 higher. 

 A limitation of the current BioBOO framework is that the reference LET×D values 

for targets and normal tissues are unknown. Subsequently, the(𝐿𝐷)refand weighting 

hyperparameters for the LET×D constraints cannot be mechanistically determined. In this 

study, the (𝐿𝐷)ref value for the BioMAN and BioBOO plans of each patient was extracted 

from the corresponding conventional MAN plan so that we could compare the biological 

effectiveness with the MAN plan. However, in the clinical setting, the lack of reference 

values makes it difficult to directly use BioBOO for a new case. A potential solution is to set 

a typical SOBP single field plan before treatment planning and calculate the mean LET×D 

for the targets as the reference value.  Another alternative solution is that templates can be 

built for different sites, e.g., H&N and skull base in this study. Meanwhile, further preclinical 

and clinical research is needed for more quantitative integration of RBE modeling in 

treatment planning as recommended by AAPM TG-25619.  
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 Due to the prohibitively long time required to calculate dose and LET for over 500 

candidate beams using Monte Carlo, the current study used an analytical method. While the 

analytical method was shown to be acceptably accurate for dose calculation and BOO 

planning in our previous paper35,38, it has compromised accuracy for LET calculation due to 

reasons including failing to account for secondary protons88. Despite the limitation, the 

proof-of-principle study used the same analytical calculation engine across different 

methods for a fair comparison. Without changing the optimization framework, the dose 

calculation engine can be replaced by fast Monte Carlo or analytical calculation models, 

including secondary protons90 in future work.    

3.2.5 Conclusion 

 We developed a novel biological effectiveness-coupled BOO method for IMPT 

based on group sparsity regularization and LET×D constraint. Beams and plans with 

superior physical dose and biological OAR sparing are generated. 

3.3 A Novel Energy Layer Optimization Framework for 
Spot-Scanning Proton Arc Therapy36 

3.3.1 Introduction 

 To further reduce healthy tissue irradiation, the concept of proton arc therapy 

(PAT) has been proposed since 1997104–106, to combine the unique dose deposition curve of 

protons and the benefit of rotating beams. Passive-scattering based proton arc therapy is 

not practical for clinical application mainly due to the difficulty of changing beam-specific 

compensator and range modulation wheel during gantry rotation. But with the recent 
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development and increasing adoption of the spot-scanning technique4,107,108, the 

modulation is integrated into the gantry, making PAT technically viable.  

 Using the modern scanning nozzle, the modern proton systems deliver treatments 

spot-by-spot and layer-by-layer109–111. The time of spot scanning within the same energy 

layer is on the order of milliseconds, but it requires seconds to change energy to another 

layer112,113, particularly from low to high energies. The slow energy layer switch is mainly 

due to magnetic hysteresis accompanying changing magnetic field strengths in the energy 

selection system. The energy layer switching time (ELST) cannot be easily reduced. 

Therefore, for practical proton arc delivery, reduction of the energy switching steps is an 

essential consideration besides the dosimetric quality.  

 Different delivery methods have been proposed for spot-scanning proton arc 

therapy (SPAT), like multiple static fields114,115, distal edge tracking116,117, and single energy 

modulation118–120. However, these delivery methods either cannot perform continuous 

rotation-delivery, or fail to fully utilize the freedoms in spot-scanning techniques, and the 

delivery efficiency is not optimized. 

 Ding et al63 proposed a delivery-efficient and practical algorithm called SPArc. 

Similar to volumetric modulated arc therapy (VMAT)121, this greedy algorithm starts with a 

coarse sampling of beams, also known as control points, and iteratively increases the 

sampling frequency while redistributing the energy layers, until reaching the desired 

sampling frequency. By this method, 1-3 energy layers remain active at each control point, 

ensuring acceptable delivery time. Later this algorithm was updated to optimize the energy 

delivery sequence from high to low instead of arbitrary switching to further shorten the 
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delivery time122. Retrospective studies show the potential of SPArc plans that improve plan 

dosimetry compared with intensity-modulated proton therapy (IMPT) to lung cancer61,63, 

prostate cancer62, and whole-brain radiotherapy59. Recently, the first prototype of SPArc 

delivery was performed on a clinical IBA Proteus One proton machine, with a Proton 

Dynamic Arc Delivery (PDAD) module. It demonstrated the feasibility of SPArc treatment 

within the clinical requirements58.  

 However, in the current SPArc algorithm, the energy layer selection and 

optimization are greedy and heuristic. Due to the separate sequencing and plan 

optimization steps122, the optimality of the plan delivery efficiency and the dosimetric 

quality cannot be promised.  The alternating back-and-forth operation between the fluence 

map optimization and energy layer processing required for final plan creation is 

computationally inefficient.  

 To further improve SPAT, in this work, we present a novel optimization method to 

integrate energy layer selection and sequencing with scanning-spot optimization in a single 

framework, which affords a global search of all feasible energy layers and then 

simultaneously optimizes the energy sequence. The energy layer selection is achieved by 

the group sparsity regularization developed in Chapter 2. An energy-sequencing 

regularization is developed to improve the SPAT delivery efficiency. 

3.3.2 Methods 

 The proposed Energy Layer Optimization incorporated Spot-scanning Proton Arc 

Therapy (ELO-SPAT) optimization framework aims to select as few as possible energy 

layers from the available candidate layers and then encourage energy switch from high to 
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low, for a predefined control point. Considering the continuity in gantry rotating, the 

optimization goal to be exactly one active energy layer at each control point. 

 Motivated by this consideration, the ELO-SPAT framework is formulated with a 

dose fidelity, a group sparsity regularization, a log barrier regularization, and an energy-

sequencing (ES) penalty term. The details are described in the following sections. 

3.3.2.1  Notations 

 Before presenting the optimization framework, we establish the following 

notations.  

• 𝐵 is the number of static beams used as sampled control points. The fixed spacing of 

2.5° or 2°  is used in this study. 

• 𝐸 is the number of candidate energy layers in each beam. To simplify the notation, it 

is assumed that each beam has the same candidate energy layers. The infeasible 

layers can be eliminated during optimization. So the number of all candidate energy 

layers is 𝐵 × 𝐸. 

• The vector 𝒙𝑏𝑒 is the spot intensities of 𝑒th energy layer in 𝑏th beam. The length of 

𝒙𝑏𝑒, denoted as 𝑁𝑏𝑒, which is the number of scanning-spots in the specific layer, 

varies with beams and layers. 

• The vector 𝒙𝑏 is the concatenation of 𝒙𝑏𝑒 (for 𝑒 = 1,… , 𝐸) with increasing energy, 

representing the spot intensities of 𝑏th beam. And the vector 𝒙 is the concatenation 

of 𝒙𝑏 (for 𝑏 = 1,… , 𝐵), following the sequence of gantry rotation. 
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𝒙 =

[
 
 
 
 
 
𝒙1
𝒙2
⋮
𝒙𝑏
⋮
𝒙𝐵]
 
 
 
 
 

 and 𝒙𝑏 =

[
 
 
 
 
 
𝒙𝑏1
𝒙𝑏2
⋮
𝒙𝑏𝑒
⋮
𝒙𝑏𝐸]

 
 
 
 
 

.  

Equation 3-9    

• The vectors 𝒚 and  𝒚𝑏 are compact representations of 𝒙 and 𝒙𝑏𝑒 to eliminate the 

dimension of scanning-spot, with the element 𝑦𝑏𝑒 being the sum of all elements in 

𝒙𝑏𝑒. Therefore, all the 𝒚𝑏 (for 𝑏 = 1,… , 𝐵) are in the same length of 𝐸. 

𝒚 =

[
 
 
 
 
 
𝒚1
𝒚2
⋮
𝒚𝑏
⋮
𝒚𝐵]
 
 
 
 
 

, 𝒚𝑏 =

[
 
 
 
 
 
𝑦𝑏1
𝑦𝑏2
⋮
𝑦𝑏𝑒
⋮
𝑦𝑏𝐸]

 
 
 
 
 

 and 𝑦𝑏𝑒 =∑𝑥𝑏𝑒𝑖

𝑁𝑏𝑒

𝑖=1

. 

Equation 3-10    

Equation 3-15 can also be written as matrix-vector multiplication: 

𝒚 = 𝑊𝒙, 

Equation 3-11    

where  𝑊 is a summation matrix, to sum up 𝒙 along the spot dimension. 

• A new variable �̃�𝑏 is defined by replacing each element in 𝒚𝑏 with 0 except the 

maximal element. 

�̃� =

[
 
 
 
 
�̃�1
⋮
�̃�𝑏
⋮
�̃�𝐵]
 
 
 
 

, �̃�𝑏 =

[
 
 
 
 
�̃�𝑏1
⋮
�̃�𝑏𝑒
⋮
�̃�𝑏𝐵]

 
 
 
 

 and �̃�𝑏𝑒 = {
𝑦𝑏𝑒 , if 𝑦𝑏𝑒 = max (𝒚𝑏)

0, otherwise
. 

Equation 3-12    
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• The matrix 𝐷𝑏
𝐵 is a discrete gradient operator for 𝑏th beam along the beam direction. 

For example,  𝐷𝑏
𝐵𝒚𝑏 is a vector of the intensity difference between 𝒚𝑏+1 and 𝒚𝑏,  

𝐷𝑏
𝐵𝒚𝑏 = 𝒚𝑏+1 − 𝒚𝑏. 

Equation 3-13    

• �̃�𝑏
𝐵 is a specially designed gradient operator to make 

�̃�𝑏
𝐵𝒚𝑏 = 𝐷𝑏

𝐵�̃�𝑏 . 

Equation 3-14    

• The matrix 𝐷𝑏
𝐸  is a discrete gradient operator for 𝑏th beam along energy direction, 

while ignoring all zero elements. For example,   

𝐷𝑏
𝐸

[
 
 
 
 
 
 
 
 
0
⋮

𝑦𝑏𝑒1
0
𝑦𝑏𝑒2
⋮
0
𝑦𝑏𝑒3]

 
 
 
 
 
 
 
 

= [
𝑦𝑏𝑒2 − 𝑦𝑏𝑒1
𝑦𝑏𝑒3 − 𝑦𝑏𝑒2

] , and  𝑦𝑏𝑒1 , 𝑦𝑏𝑒2 , 𝑦𝑏𝑒3 ≠ 0 . 

Equation 3-15    

• 𝐴 is the dose-calculation matrix. 𝐴 contains all the spots from the entire 𝐵 × 𝐸 

candidate layers.  

• A sigmoid operator 𝒮 on a vector 𝒖 of length 𝐾, is defined as  

𝒮(𝒖) =

[
 
 
 
 
𝑠(𝑢1)
⋮

𝑠(𝑢𝑘)
⋮

𝑠(𝑢𝐾)]
 
 
 
 

 and 𝑠(𝑡) =  
2

1 + 𝑒−𝜂𝑡
− 1,  

Equation 3-16    
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where 𝑠(𝑡) is a modified sigmoid function, as a smooth approximation of sign function, and 

𝜂 controls the level of smoothness. The function of 𝒮 is to normalize each element in 𝒖 to 

−1, 0 or +1. 

3.3.2.2 Formulation of ELO-SPAT 

 The ELO-SPAT is formulated as follows: 

argmin   
𝒙

Γ(𝐴𝒙) +∑∑𝛼𝑏𝑒‖𝒙𝑏𝑒‖2
1/2

𝐸

𝑒=1

𝐵

𝑏=1

− 𝛽∑log (∑𝑦𝑏𝑒

𝐸

𝑒=1

)

𝐵

𝑏=1

 + 𝛾∑ℎ(𝐷𝑏
𝐸𝒮(�̃�𝑏

𝐵𝒚𝑏))

𝐵−1

𝑏=1

 

subject to    𝒙 ≥ 0, 

𝒚 = 𝑊𝒙. 

Equation 3-17    

 The first term is the dose fidelity term, penalizing the actual dose, calculated by 𝐴𝒙, 

from the prescription dose. The same quadratic function as Equation 2-3 is used in this 

study, but the choice of dose fidelity cost is flexible. The second term is the L2,1/2-norm 

group sparsity term. With proper tuning of the weighting hyperparameter 𝛼𝑏𝑒, the non-

convex ½ norm effectively turns off most candidate layers. But the term alone can result in 

aggregated layers in some beam blocks and leaving some control points with no layers 

active, which does not fully utilize the rotating beams. In the third term, a log barrier 

regularization function is used to distribute the selected layers to the whole gantry rotating 

range. The term sums up the intensity of each beam and penalizes the zero intensities, 

therefore forcing each beam to keep at least one layer selected. 𝛽 is the regularization 

parameter for the log barrier function. By picking a proper value of  𝛽 and setting 𝛼𝑏𝑒 large 

enough, one energy layer per beam can be ensured.  
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 The fourth term regularizes energy-sequencing (ES) with a weighting parameter 𝛾. 

ES regularization asymmetrically penalizes energy switching low-to-high harder than high-

to-low. The details of ES regularization can be found in Section 3.3.2.3.  

3.3.2.3 Energy-sequencing regularization 

 The method using the group sparsity to select a few layers out of the candidates is 

by gradually reducing the 𝒙𝑏𝑒 of the layer with a lower weight to zero during the iterations. 

As a result, in each beam, the layer with the maximal intensity is most likely kept in each 

iteration. Therefore, in the energy-sequencing term, instead of  𝒚𝑏, we control �̃�𝑏, which 

only keeps the maximal element in 𝒚𝑏 and sets all others to zero, as defined in Section 

3.3.2.1. 

 To better understand how energy sequencing works, we consider two adjacent 

beams during gantry rotation, beam 𝑏, and beam 𝑏 + 1. Assume the only nonzero elements 

of  �̃�𝑏 and  �̃�𝑏+1  are  𝑦𝑏𝑒1 and 𝑦𝑏𝑒2 , respectively, at the position of 𝑒1 and 𝑒2. As shown in 

Figure 3-11, if 𝑒2 > 𝑒1, meaning energy going up from beam 𝑏 to beam 𝑏 + 1, the vector 

�̃�𝑏+1 − �̃�𝑏, or  𝐷𝑏
𝐵�̃�𝑏, shows a pattern of transitioning from a negative value to a positive 

value, with possible zeros before, between, and after. A sigmoid operator 𝒮 is suited to 

normalize each nonzero element in  𝐷𝑏
𝐵�̃�𝑏 to −1 or +1.  

 With normalization, 𝒮(𝐷𝑏
𝐵�̃�𝑏) is a vector with only two non-zero elements −1, and 

+1, respectively. When the energy goes up, taking the difference of the non-zero elements 

along 𝑒 direction (the 𝐷𝑏
𝐸  operator defined in Section 3.3.2.1) results in +2. 

 Similarly, if the energy goes from high to low, the result of  𝐷𝑏
𝐸  operation on 

𝒮(𝐷𝑏
𝐵�̃�𝑏) is −2. Maintaining the same energy would result in zero values. 
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 The above process can be written as 𝐷𝑏
𝐸𝒮(𝐷𝑏

𝐵�̃�𝑏) or equivalently 𝐷𝑏
𝐸𝒮(�̃�𝑏

𝐵𝒚𝑏), as 

defined in Section 3.3.2.1. In summary, the value of 𝐷𝑏
𝐸𝒮(𝐷𝑏

𝐵�̃�𝑏) indicates the energy 

changing pattern between adjacent beams in the following relationship: 

𝐷𝑏
𝐸𝒮(�̃�𝑏

𝐵𝒚𝑏) = {

+2, energy switch − up,
−2,   energy switch − down,
0, energy unchanged.

 

Equation 3-18    

 For delivery efficiency, fewer energy switch-ups during gantry rotating are 

encouraged. Therefore, positive 𝐷𝑏
𝐸𝒮(�̃�𝑏

𝐵𝒚𝑏) is more heavily penalized. In this work, the 

energy switch-down is less penalized than staying unchanged for two reasons. First, energy 

switching down has a small impact on the total delivery time. For example, the switching-

down time is 0.6 s, according to the IBA Proton Dynamic Arc Delivery module, which is 

considered a negligible increase compared with staying unchanged in this study. Second, 

doing so encourages more layers to be used for better dosimetry. Mathematically, a one-

sided quadratic cost function is used to penalize energy switching. The cost function, ℎ(𝑡), 

is defined as: 

ℎ(𝑡) = {
1

4
(𝑡 + 2)2 − 1, if 𝑡 ≥ −2,

  −1, otherwise.
 

Equation 3-19    

 The quadratic term makes the function ℎ(𝑡) convex, smooth and differentiable, and 

the function definition is designed to give a value of 0 at 0 for simplicity.  
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Figure 3-11: Schematic workflow of energy-sequencing regularization. Two adjacent 
beams, beam b and beam b + 1, are shown, with the situation of energy switch-up in the 
middle column and energy switch-down in the right column.  (a) ỹb and ỹb+1 are shown as 
row vectors, while energy increases from left to right. ybe1  and ybe2 are the sole nonzero 

element of  ỹb and ỹb+1, respectively. (b) Db
Bỹb = ỹb+1 − ỹb. (c) Db

Bỹb is normalized to −1 or 

+1. (d) Take the gradient of 𝒮(Db
Bỹb) along e direction, which is the difference of the 

element at high e index and that at low e index. It yields a positive gradient when energy 
switches up and a negative gradient when energy switches down. (e) The positive gradient 
is penalized harder to encourage less energy switch-up. 

3.3.2.4 Evaluations 

 ELO-SPAT was tested on one frontal base-of-skull (BOS) patient, one chordoma 

(CHDM) patient with the simultaneous integrated boost, one bilateral head-and-neck 

(H&N) patient, and one lung (LNG) patient. A full arc was used for the H&N case, and a 

partial arc was used for the rest of the cases. Gantry rotation was assumed clockwise. The 
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control points for individual beams were spaced 2° in the LNG case and 2.5° otherwise. 

Dose calculation for the scanning spots covering the PTV and a 5 mm margin was 

performed using matRad51,52. We assumed a constant RBE of 1.1. IMPT plans with 2~4 

manually selected beams were created for these tested patients for comparison. The 

prescription dose, target volume, arc range and IMPT beam angles for each patient are 

shown in Table 3-7 . 

 To investigate the effectiveness of ES regularization, we created two proton arc 

plans for each patient with or without ES regularization in Equation 3-17. In the latter plan, 

the energy layers were selected by group sparsity and log barrier regularization, but not 

sequenced.  

 We compared the ELO-SPAT plans against the arc plans created using the SPArc 

method proposed by Ding et al63. Because robustness is not considered yet in this work, the 

robust optimization used in SPArc is replaced with a conventional PTV-based fluence map 

optimization for a fair comparison. We created the SPArc plans using arc setting and dose 

calculation identical to ELO-SPAT. To match the two plans, in SPArc optimization, we 

pushed the number of layers per beam to be 1 for as many beams as possible, leaving only a 

few beams to have two energy layers. Similarly, we created SPArc plans with122 or without 

energy sequencing to compare with ELO-SPAT. The SPArc method with or without ES is 

denoted as SPArc-ES or SPArc-noES, and the ELO-SPAT method with or without ES is 

denoted as ELO-ES or ELO-noES. 

 All plans were normalized to deliver prescription dose to 95% of volume. The time 

spent on treatment planning and delivery of ELO-SPAT and SPArc were compared. For 
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delivery, because energy layer switching time (ELST) is the major factor affecting the total 

delivery time, we use the total time spent on energy layer switching as the surrogate. The 

times required for switching energy up, down and keeping it unchanged were 5.5 s, 0.6 s, 

and 0 s according to the IBA Proton Dynamic Arc Delivery (PDAD) module. A constant ELST 

of 2.1 s was also used for calculation according to the M.D. Anderson proton therapy 

system109 with a synchrotron accelerator. 

Case 
Prescription 

Dose 
(GyRBE) 

PTV 
Volume 

(cc) 

Arc angle (degree) 
IMPT (gantry, 

couch) 
angle (degree) Start 

angle 
Stop 
angle 

Spacing 

BOS 56 66.8 225 135 2.5 
(60, 273), (270, 0), 

(90, 0), (180, 0). 

CHDM 

PTV63 63 128.9 

225 135 2.5 
(60, 273), (270, 0), 

(90, 0), (180, 0). 
PTV74 74 26.6 

H&N 

PTV54 54 179.1 

180 180 2.5 
(0, 0), (160, 0), 

(200, 0). 
PTV60 60 204.4 

LNG 42 297.8 160 0 2 (180, 0), (315, 0). 

Table 3-7: Prescription doses, PTV volumes, arc range and IMPT beam angles for each 
patient. 

3.3.3 Results 

3.3.3.1 Optimization and delivery efficiency 

 The dose calculation and optimization were performed on a Xeon 28-core CPU 

server operating at 2.40 GHz clock, with Matlab and its Parallel Computing Toolbox. The 

energy layer delivery sequence for each patient using SPArc or ELO-SPAT with and without 
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energy sequencing is shown in Figure 3-12. The number of energy switches for different 

arc plans is plotted in Figure 3-13. The optimization time and expected delivery time are 

also shown in Figure 3-13.  

 Without ES regularization, although single energy layer at each control point is 

achieved, the energies are not ordered, resulting in 40 to 60 switch-up for the tested cases, 

adding a non-trivial amount of time to delivery. With ES regularization, the energy layer 

was sequenced to reduce the number of energy switch-up to fewer than 20, which are 

comparable to that of the SPArc plans with energy sequencing. Despite the similar number 

of energy up-switching, SPArc uses a regular sequencing pattern with the same number of 

down-switching between up-switchings. In comparison, ELO-SPAT sequencing patterns 

vary to meet dosimetric optimization needs. For the synchrotron plans, with a constant 

ELST of 2.1 s, the total ELST of ELO-ES plans was similar with the ELO-noES plans, with an 

averaged time reduction of 9%. For cyclotron plans, with an ELST-up of 5.5 s and ELST-

down of 0.6s, the total ELST was reduced to around 2 min in ELO-ES from the 4-7 min in 

ELO-noES, with an averaged reduction of 61%. Meanwhile, considering both the ELO-SPAT 

and SPArc plans with ES, the ELO plans had 10-30 more unchanged energies between 

adjacent control points compared with SPArc, therefore leading to an averaged reduction 

of total ELST time by 24% for the synchrotron plans and by 14% for the cyclotron plans. 

In addition to efficient delivery, the ELO-SPAT reduced the runtime of optimization by 84% 

on average, from the 0.5-2 hours in the SPArc plans to 5-30 min. 



 

74 

 
Figure 3-12: Energy layer delivery trajectory comparison between SPArc (blue) and ELO-
SPAT (red). The gantry rotates in clockwise following the angle of x-axis from left to right.  
The delivery sequences without ES are shown in the left column and with ES in the right 
column. 

 

Without ES with ES 

BOS 

CHDM 

LNG 

H&N 
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Figure 3-13: (a) Optimization runtime of the four arc plans. (b) The total ELST time of the 
four arc plans when the ELST time is 2.1s (left) and the ELST-up is 5.5 s and ELST-down is 
0.6s (right). (c) The number of energy switch up, down, and staying the same. The total 
number of energy switches is also plotted. 

3.3.3.2 Optimization and delivery efficiency 

 The DVH comparison of ELO-SPAT and SPArc without ES is shown in Figure 3-14, 

the DVH comparison of the two arc plans with ES is shown in Figure 3-15. The IMPT plan is 

plotted in both figures for comparison. The mean dose and max dose for several selected 

OARs were evaluated in the four arc plans and their differences from the IMPT plans are 

plotted in Figure 3-16. 
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 All compared plans achieved similar PTV dose coverage. Qualitatively, both the 

ELO and SPArc plans achieved better sparing compared with the IMPT plans for most 

OARs, either with or without ES. But in the lung case, the low dose region of the right lung 

is larger in the arc plans compared with the IMPT plans. 

 Without ES, the ELO-SPAT plans further improved the OAR sparing compared with 

the SPArc plans. Lower DVH lines are observed in the ELO-SPAT plans. For example, in the 

CHDM case, the maximum dose to the left and right cochleas were reduced by 8.1 GyRBE 

and 6.4 GyRBE, respectively. In the lung case, the maximum dose to the spinal cord was 

reduced by 5.6 GyRBE. On average, the ELO-SPAT plans without ES reduced the [Dmean, 

Dmax] of the OARs by [1.6, 3.3] GyRBE from the SPArc plans without ES. 

 While adding ES regularization, the dosimetry of the quality of ELO-SPAT plans 

degraded but was still slightly better than the SPArc plans with ES. For example, in the 

CHDM case, the maximum dose to the left and right cochleas were reduced by 2.8 GyRBE 

and 4.4 GyRBE, respectively. In the lung case, the maximum dose to the spinal cord was 

reduced by 2.6 GyRBE.  On average, the ELO-SPAT plans with ES reduced the [Dmean, 

Dmax] of the OARs by [1.4, 2.3] GyRBE from the SPArc with ES. 
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Figure 3-14: DVH comparison of plans without ES. The ELO-SPAT plan is in solid line, the 
SPArc plan is in dashed line, and the IMPT plan is in the dotted line. 

 
Figure 3-15: DVH comparison of plans with ES. The ELO-SPAT plan is in solid line, the 
SPArc plan is in the dashed line, and the IMPT plan is in the dotted line. 

 

BOS CHDM 

LNG H&N 

 

BOS CHDM 

LNG H&N 
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Figure 3-16: The difference of OAR Dmax (top) and Dmean (bottom) in the four arc plans 
from IMPT. A negative value represents a reduction from the IMPT plan, and a positive 
value represents an increase.   
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3.3.3.3 Convergence and effect of 𝜸 

 A convergence plot of the ELO-SPAT method, for the BOS patient, is shown in 

Figure 3-17. The cost of each component in Equation 3-17 during the iterations is also 

plotted. Dose fidelity, group sparsity, and log barrier all converged. The group sparsity is 

the component with the highest value because the tuning parameter 𝛼𝑏𝑒 need to be large 

enough to make only one layer selected per control point. Since the differential matrices 

𝐷𝑏
𝐸   and 𝐷𝑏

𝐵 were updated after every iteration, the cost on ES fluctuated during the 

iterations. But in general, the ES cost started from a high value, meaning lower delivery 

efficiency, converged to a low value, presenting higher delivery efficiency. 

 
Figure 3-17: Convergence plot of the ELO-SPAT method, for the BOS patient. The total cost 
and the cost components of dose fidelity, group sparsity, and log barrier are shown in the 
logarithm scale following the y-axis on the left. The ES cost is shown on a linear scale 
following the axis on the right. 

 Figure 3-18 shows how the ES weighting parameter 𝛾 affects the number of 

switch-up and the value of dose fidelity cost. Generally, when 𝛾 increases from zero, the 

number of energy switch-up decreases and the dose fidelity increases. When gamma 

reaches a certain value, such as 16 in this case, the number of switch-up plateaus, while the 
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fidelity cost is still in the trend of increasing. In this study, 𝛾 = 16 is picked for a minimum 

number of energy switch-up and the highest delivery efficiency. 

 
Figure 3-18: The number of energy switch-up and the value of final dose fidelity versus γ, 
for the BOS patient. 

3.3.4 Discussion 

 We present an integrated energy layer optimization method for scanning-spot 

proton arc therapy. The novel framework allows an integrated optimization of fluence map 

optimization, global search of candidate energy layers, and the delivery sequence. The 

energy-sequencing penalty is added as a soft regularization to dose fidelity term, thus 

providing a flexible trade-off between dosimetry and delivery speed. In this work, the final 

ELO-SPAT plans were selected as the ones with the lowest achievable number of energy 

switch-up for best delivery efficiency, with slight scarification of dosimetry. In clinical 

practice, the balance between dosimetry and delivery time can be tuned case-by-case. In 

the case of synchrotron where there is no difference between the time between energy 

layer switch up and down, the ES regularization can be removed for superior dosimetry.  

 The number of energy switch using the SPArc energy sequencing method is 

comparable to our optimization result, showing good performance with the heuristic 
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method. On the other hand, energy switching patterns are distinctly different. Compared 

with the regular SPArc pattern, the energy sequencing pattern using ELO-SPAT is flexible to 

take advantage of the patient and arc geometry. For example, for the patient with a frontal 

BOS tumor, when the gantry rotates in clockwise from posterior to anterior in the first half 

arc, the overall energies of the candidate layers decrease because the tumor becomes 

shallower from the beam’s eye view. The ELO-SPAT algorithm exploits the geometry and 

makes more switch-down before energy going up. The flexibility can facilitate future arc 

trajectory optimization to further enhance efficiency and dosimetry. 

 With a similar number of energy switch-up between the ELO-SPAT and SPArc 

plans, we observed 15-20% less total energy layer switching time in the ELO-SPAT method. 

This is because SPArc does not allow the energy to stay at the same level between control 

points due to the progressive sampling scheme and the way energy layers are distributed. 

Using ELO-SPAT, energy switching-down, and unchanged are both encouraged, thereby 

shortening the total energy layer switching time.  

 Another major benefit of ELO-SPAT is the significantly shortened optimization 

time by 5-10 fold from SPArc. In the progressive SPArc sampling scheme from coarse to 

fine control point resolution, repetitive fluence map optimization is required after either 

energy layer filtration or redistribution, resulting in long optimization runtime. In the ELO-

SPAT optimization, although the algorithm starts with all candidate layers, the number of 

active layers is gradually reduced to the desired number, shrinking the size of the dose 

matrix needed for calculation during computation, shortening the time for each iteration. 

Furthermore, ELO needs only one run to obtain the final delivery sequence and fluence 

map. The optimization was further accelerated by FISTA, which converges at an optimal 
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rate of 𝑂(1 𝑘2⁄ ) 56.  We expect additional acceleration using the graphics processing unit 

(GPU) platform and multi-resolution sampling of the dose matrix. 

 Due to the L2,1/2-norm for group sparsity and the sigmoid function for ES, 

Equation 3-17 is highly non-convex. Originally, FISTA has been used to solve convex 

problems. However, recent FISTA work35,38 and the convergence results (Figure 3-17) in 

this study suggest that FISTA can be used to solve certain non-convex problems with stable 

convergence. The differential matrices 𝐷𝑏
𝐸   and 𝐷𝑏

𝐵 need to be updated after every iteration, 

but their changes are gradual. Regardless of the ES cost fluctuation, the optimization 

converges in a few hundred iterations. On the other hand, because of the high non-

convexity and the need to update 𝐷𝑏
𝐸   and 𝐷𝑏

𝐵, a high weighting parameter on the ES term 

does not necessarily promote high delivery efficiency. As shown in Figure 3-18, the number 

of switch-up plateaus after reaching 16 for the BOS case. The main reason is that the 

problem is trapped in local minima due to the high non-convexity of the problem 

formulation. Still, the overall trend of decreasing the number of switch-up and increasing 

fidelity cost is observed can still be used to guide parameter tuning. While a random 

initialization is used in current work to assign the initial spots intensities during 

optimization, which is common but not necessarily optimal, other initialization schemes 

can be explored to improve the convergence of the optimization problem and overcome the 

local minima problem. 

 A limitation of the current ELO-SPAT algorithm is that only one energy layer 

allowed per control point for simplicity, while a few more layers could lead to better 

dosimetry with small scarification of delivery time. Without the energy-sequencing term, 

multiple layers are readily achievable by tuning the group sparsity term. However, allowing 
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multiple energy layers complicates energy sequencing in the current framework that only 

regulates the layer with maximal weight at each control point. This is a point for future 

improvement. 

 In the current problem formulation, the energy switching pattern is used as the 

surrogate of delivery time and the order of energy switching is penalized by a simple one-

sided quadratic Equation 3-19. In future work, Equation 3-19 can be designed to directly 

correlate the cost with machine-specific energy switching time, thereby allowing intuitive 

control of actual delivery time. Furthermore, the delivery time penalty can be incorporated 

as a hard constraint instead of the soft regularization in the current framework for the 

planner to specify the maximal permissible delivery time directly. 

3.3.5 Conclusion 

 We developed a computationally efficient spot-scanning proton arc method based 

on the group sparsity penalty and the novel energy-sequencing regularization. It solved 

energy layer selection and sequencing in an integrated optimization framework, generating 

proton plans with good dosimetry and high delivery efficiency. 
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4 INCORPORATING PHYSICAL 

DOSE ROBUSTNESS INTO 

BEAM ORIENTATION 

OPTIMIZATION 

4.1 Robust Fluence Map Optimization for IMPT with Soft 
Spot Sensitivity Regularization37 

4.1.1 Introduction 

 Due to the sharp drop-off at the proton Bragg peak2 and the beam-by-beam dose 

heterogeneity in the MFO plans49, IMPT is more susceptible to patient positioning errors or 

proton beam range uncertainties7–11. If the setup and range uncertainties are unaccounted 

for, dose to the tumor or OARs can substantially differ from what is indicated in the 

treatment plan. Different from X-ray treatment planning, the proton dose deviation can 

happen not only at the target boundaries but also inside the target, making traditional PTV 
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-based optimization, which expands the clinic target volume (CTV) by a safety margin, 

ineffective for IMPT48.  

 Several approaches have been developed to address this problem. Rather than a 

constant margin, a beam-specific PTV123 is introduced, to vary the margin based on the 

field and tissue property for passive scattering and single-field uniform dose IMPT (SFUD-

IMPT). Nevertheless, this approach is inapplicable to MFO-IMPT. A theoretically appealing 

way to account for uncertainties was reported to calculate the dose distribution under 

random perturbations and optimizes the expectation value of the objective function10,11. 

However, due to the large statistical sampling required, the probabilistic approach is too 

slow for practical use. An alternative probabilistic approach is analytical probabilistic 

modeling (APM)124,125, which uses a Gaussian pencil beam dose calculation algorithm to 

generate closed-form propagation of probability distributions to quantify uncertainty input 

for probabilistic optimization. APM is faster because scenario-sampling is not required, but 

estimation of the covariance requires non-trivial amount of computational resource that 

increases the optimization time. Furthermore, APM is incompatible with non-model-based 

pencil beam dose calculation, e.g., Monte Carlo, that is particularly important in handling 

the lateral dose profile and tissue heterogeneity in proton treatment planning. Coverage 

optimized planning126 is also a probabilistic treatment planning based method, which uses 

dose coverage histogram criteria to replace PTV margin and improves target dose coverage 

against geometric uncertainties, e.g. setup error. Nonetheless, range uncertainty is not 

considered in this method. Alternatively, Pflugfelder et al127 proposed to use a 

heterogeneity number to quantify lateral tissue heterogeneity of single scanning spot, and 

incorporated it in the inverse optimization to suppress the spots with a high heterogeneity 
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number. This empirical method only considers the effect of tissue lateral heterogeneity to 

setup uncertainty without accounting for the range uncertainties. This method later 

pivoted towards beam angle selection128,129 , a separate problem from our current focus of 

robust scanning spot intensity optimization.  

 Presently, a class of methods referred to as “worst-case robust optimization” is 

more commonly used to handle setup and range uncertainties10,49,130–139. Instead of 

considering all possible variations, the worst-case method penalizes the maximal dose 

deviation for the estimated worst positioning and range estimation errors, to ensure 

acceptable dose distribution in these cases. In practice, the worst-case approach has 

reduced plan sensitivity to uncertainties, but on the other hand increased computational 

cost. Furthermore, the worst cases use generic estimation that may not be applicable to all 

cases. The actual patient anatomical and range uncertainties may still exceed the 

estimation, causing unexpected dosimetric deviations.  

 In this work, we aim to overcome these limitations and develop a novel 

mathematical framework to exploit the intricate balance between the proton scanning spot 

distribution, robustness and dose conformality. The plan robustness is incorporated as a 

sensitivity term in IMPT fluence map optimization, which minimizes the dose deviation 

from ideal dose distribution and penalizes the combination of scanning spots with high 

sensitivity. 

4.1.2 Method 

 The sensitivity-based robust optimization problem is formulated with a dose 

fidelity term and a robustness regularization term. The details are described as follows. 
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4.1.2.1  Sensitivity analysis 

 The dose calculation matrix, or the dose influence matrix, denoted as 𝐴, contains 

the vectorized dose information delivered to the patient volume from scanning spots of 

unit intensities. In this study, the position of individual scanning spots is denoted by the 

location of the Bragg peak in the patient volume. The sensitivity of a spot is determined by 

the magnitude of dose distribution for the perturbation due to patient position and range 

variations. To make the plan more resilient to changes, we penalize the spot position 

combinations with high sensitivity. The spatial dose gradient, which is used as a surrogate 

of spot sensitivity, is mathematically described as follows. 

 As shown in Figure 4-1, a coordinate system (𝒖𝑏 , 𝒗𝑏 , 𝒘𝑏) is first designated for the 

beam 𝑏, with the origin centered at the isocenter. 𝒖𝑏 represents the beam direction pointing from 

the source to the isocenter, and 𝒗𝑏 and 𝒘𝑏 are orthogonal vectors in the plane perpendicular to 

the beam direction. We define  𝒑𝑏,𝑖 as the spatial position of scanning-spot 𝑖 from beam 𝑏, which 

points from the isocenter to the position of its Bragg peak in the patient. 𝒂𝑏,𝑖  is the full 

dosimetric contribution of spot 𝑖 in beam 𝑏 to all voxels of the patient, embedded as a column 

vector in the dose calculation matrix 𝐴, and 𝒂𝑏 is the submatrix of 𝐴 that contains only the 𝒂𝑏,𝑖 

for all the spots in the same beam 𝑏. Then we evaluate the gradient field of 𝒂𝑏,𝑖 with respect to 

the spot position 𝒑, denoted as 𝛻𝒑𝒂𝑏,𝑖. If there are 𝑚 elements (meaning 𝑚 voxels in the 

patient volume) in the vector 𝒂𝑏,𝑖, then 𝛻𝒑𝒂𝑏,𝑖 is a 3 × 𝑚 matrix, with each row representing 

a directional derivative. 

 Then the directional derivatives of 𝛻𝒑𝒂𝑏,𝑖  along 𝒖𝑏 , 𝒗𝑏  and 𝒘𝑏  are in the respective 

functional forms: 
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𝐷𝒖𝑏𝒂𝑏,𝑖 = (𝛻𝒑𝒂𝑏,𝑖) ∙ 𝒖𝑏 , 

𝐷𝒗𝑏𝒂𝑏,𝑖 = (𝛻𝒑𝒂𝑏,𝑖) ∙ 𝒗𝑏 , 

𝐷𝒘𝑏𝒂𝑏,𝑖 = (𝛻𝒑𝒂𝑏,𝑖) ∙ 𝒘𝑏 . 

    Equation 4-1    

 This equation set evaluates the dose sensitivity level at each voxel from a specific 

scanning spot along the longitudinal direction (beam direction) and the lateral directions 

(orthogonal to beam direction). Since both 𝐷𝒗𝑏𝒂𝑏,𝑖 and  𝐷𝒘𝑏𝒂𝑏,𝑖 represent the lateral sensitivity, 

only 𝐷𝒖𝑏𝒂𝑏,𝑖 and  𝐷𝒗𝑏𝒂𝑏,𝑖 are used for optimization in the following sections. 

 We can obtain the vector specific to spot 𝑖 of beam 𝑏 in each direction, 𝒖𝑏 or 𝒗𝑏, by 

simply extracting column 𝑖 from 𝐷𝒖𝑏𝒂𝑏 or 𝐷𝒗𝑏𝒂𝑏, respectively. After performing this operation 

on every beam-specific submatrix of the 𝐴, we can obtain two sensitivity matrices, written as  

𝐷𝑢𝐴 and 𝐷𝑣𝐴.  

 
Figure 4-1: Diagram showing the coordinates and the vectors used in spot sensitivity 
calculation. The beam divergence due to spot lateral distance to the isocenter is 
exaggerated for illustration purposes. The actual proton system source-to-axis distance is 
substantially greater than the target size and the individual pencil beams in the same beam 
direction are nearly parallel.  
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4.1.2.2 Problem formation 

 As mentioned before, the spots are penalized based on their sensitivities. With the 

formation of sensitivity matrices along the beam direction and perpendicular to the beam 

direction, an intuitive approach is to penalize the L2,2-norm of 𝐷𝑘𝐴𝒙, (𝑘 ∈ {𝒖, 𝒗}), which is 

formulated as: 

minimize
𝒙

   Γ(𝐴𝒙) + 𝜆𝒖‖𝐷𝑢𝐴𝒙‖2
2 + 𝜆𝒗‖𝐷𝑣𝐴𝒙‖2

2, 

subject to   𝒙 ≥ 0, 

                                                                       Equation 4-2    

where 𝒙 is the optimization variable representing the scanning spot intensities,  Γ(𝐴𝒙) is 

the dose fidelity term penalizing the dose deviation from ideal dose distribution as defined 

in Section 2.2.1, and 𝜆𝒖 and  𝜆𝒗are the sensitivity regularization parameters.  

However, the matrix 𝐷𝑘𝐴𝒙, (𝑘 ∈ {𝒖, 𝒗}) has the same size as the matrix 𝐴, which makes it 

time- and memory-expensive to solve the problem Equation 4-2. To improve the 

computational efficiency, as suggested by Ungun et al.140, an L1-norm is used as a surrogate 

of the L2,2-norm and column clustering on the sensitivity matrix  is performed to reduce 

the problem size. The problem is then formulated as: 

minimize
𝒙

   Γ(𝐴𝒙) + ∑ 𝜆𝑘
𝑘∈{𝒖,𝒗}

‖𝐷𝑘𝐴𝒙‖1, 

subject to   𝒙 ≥ 0, 

                                                                       Equation 4-3    

 Then the absolute values of the rows of 𝐷𝑢𝐴 and 𝐷𝑣𝐴 are summed up, and the two 

resulting row vectors are transposed to produce the longitudinal and lateral sensitivity vectors, 



 

90 

denoted as 𝒔𝒖 and 𝒔𝒗, respectively. Then the sensitivity-regularized robust optimization 

problem is written as: 

minimize
𝒙

   Γ(𝐴𝒙) + ∑ 𝜆𝑘𝒔𝑘
𝑇𝒙

𝑘∈{𝒖,𝒗}

, 

subject to   𝒙 ≥ 0, 

                                                                       Equation 4-4    

 The initial large-scale matrix and vector multiplication in Equation 4-2 is reduced 

to a vector inner product, which is computationally inexpensive. Moreover,  Equation 4-4 is 

a convex problem and can be solved using FISTA56.  

4.1.2.3 Evaluation 

 This proposed Sensitivity Regularized (SenR) method was tested on three patients 

with skull base tumor (SBT) and three bilateral head-and-neck (H&N) patients, and was 

compared against conventional PTV-based optimization method (Conv) and voxel-wise 

worst-case optimization method (WC)10,49,132,134. The voxel-wise worst-case optimization 

considered nine scenarios, including one nominal scenario and 8 worst-case scenarios. The 

8 worst-case scenarios consist of (1) 6 setup uncertainties scenarios, by shifting the beam 

isocenter by ±3 mm along anteroposterior, superior-inferior, and mediolateral directions; 

(2) 2 range uncertainties scenarios, by scaling the CT number by ±3%. The worst-case 

method is solved by a first order primal-dual algorithm known as Chambolle-Pock 

algorithm141.  

 For every patient, the same beam arrangement, scanning spot population scheme 

and dose calculation engine were used for the three methods. The dose calculation for all 
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scanning spots covering the CTV and a 5 mm margin was performed by matRad51,52. The 

target volume for worst-case approach was chosen to be CTV, and the conventional method 

was planned based on the PTV, which was a 3-mm isotropic expansion of the CTV. Our 

sensitivity-regularized method was applied to both CTV and PTV to investigate the impact 

of margin in the new optimization framework. The prescription dose, target volume and 

the beam arrangement are shown in Table 4-1.  

Case 
Prescription Dose 

(GyRBE) 
CTV Volume (cc) Beam Angle 

SBT #1 
CTV63 63 86.07 

(270, 0) 
(90, 0) 

(180, 0) 
(60, 275) 

CTV74 74 26.42 

SBT #2 70 36.8 

SBT #3 56 33.7 

H&N #1 

CTV54 54 141.29 

(0,0) 
(160,0) 
(200,0) 

CTV60 60 160.89 

CTV63 63 68.00 

H&N #2 
CTV54 54 108.00 

CTV60 60 127.26 

H&N #3 

CTV54 54 110.38 

CTV60 60 98.94 

CTV63 63 10.23 

Table 4-1: Prescription doses, CTV volumes, and the beam angles (gantry, couch). 

 The nominal dose distribution and robustness against range uncertainties and 

setup uncertainties were both evaluated. The robustness was evaluated by the same 9 

scenarios used for worst-case optimization. The DVH band plot, as well as the worst dose 

metrics occurred among uncertainties scenarios, was used for analysis. In addition to the 

3% range uncertainty, a stress test was performed on the normalized CTV volume covered 



 

92 

by the 100% prescription dose for the range estimation error varying from 0.5% to 4.0%, 

with 0.5% interval.  

4.1.3 Results 

 Using an i7 6-core CPU desktop, the time spent on dose calculation, sensitivity 

vector evaluation and optimization of each method are list in Table 4-2. Parallel computing 

toolbox in Matlab was used to accelerate the worst-case dose calculation and sensitivity 

evaluation. The preparation time before optimization for the WC method and the SenR 

method was comparable. During optimization, the SenR method using PTV as target 

volume (SenR-PTV) was as efficient as the Conv method, and it was on average 22 times 

faster than the WC method. And the SenR plans using CTV as target volume (SenR-CTV) 

were faster than the SenR-PTV plans due to fewer voxels to consider during optimization. 

One thing to note is that the computational time comparison is based on the solvers 

developed in our group, and the actual time of voxel-wise worst-case method will be 

different in commercial treatment planning system.  

Case 

Pre-optimization time (s) Optimization runtime (s) 

Nominal 
dose 

calculation 

Worst-case 
dose 

calculation 

Sensitivity 
calculation 

Conv WC 
SenR-
PTV 

SenR-
CTV 

SBT #1 41.8 106.3 129.8 75.5 2296.5 74.1 66.7 

SBT #2 30.0 66.8 55.3 73.1 1070.6 73.4 73.0 

SBT #3 28.2 75.5 44.7 76.0 909.5 75.1 59.9 

H&N #1 210.0 638.1 408.6 129.7 2211.6 129.4 93.8 

H&N #2 208.7 649.2 346.6 114.7 2477.0 105.4 80.9 

H&N #3 174.3 546.6 408.6 121.5 3269.0 133.0 103.4 

Table 4-2: Computational time comparison of the four plans of each patient. 
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4.1.3.1 Nominal dose comparison 

 Figure 4-2 shows the nominal DVHs comparison among the WC plans, SenR-CTV 

plans and SenR-PTV plans for the SBT #1 patient and H&N #2 patient. Several OARs are 

selected for the SBT and H&N sites, respectively, and the differences of their mean and 

maximum doses between the SenR plans and the WC plans are presented in Table 4-3 and 

Table 4-4. Without uncertainties, the Conv, WC, SenR-PTV and SenR-CTV methods achieved 

similar CTV dose coverage.  

 The SenR-CTV plans had better OAR sparing compared with the WC plans. For 

example, in the SBT #1 patient, SenR-CTV reduced the mean dose and max dose of the left 

cochlea by 20.2 GyREB and 18 GyRBE from WC, and the dose sparing of other OARs were 

also improved except the max dose to the right optical nerve. In the H&N #1 patient, the 

doses to the parotids were also lower in SenR-CTV plan compared with the WC plan. The 

average reduction of [Dmean, Dmax] of the SenR-CTV plans from the WC plans were [4.7, 

3.4] GyRBE for the SBT cases and [2.5, 3.3] GyRBE for the H&N cases.  

 The overall OAR sparing of SenR-PTV was comparable with the WC. For example, 

in the three SBT cases, the mean and max brainstem doses were both reduced in SenR-PTV 

relative to WC. SenR-PTV plans also achieved lower Dmax to the left optical nerve and 

chiasm, but the Dmax to the left cochlea in the SBT #2 patient was greater due to an 

overlap with PTV. In the H&N case, a reduction of dose in the brainstem, larynx and spinal 

cord was observed in the SenR-PTV plans. The average reduction of [Dmean, Dmax] of the 

SenR-PTV plans from the WC plans were of [2.0, 1.5] GyRBE for the SBT cases, and [0.8, 0.8] 

GyRBE for the H&N cases. 
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Figure 4-2: Comparison of nominal DVHs for patients SBT #1 and H&N #1 of the WC 
method (solid), SenR-CTV method (dotted), and SenR-PTV method (dashed). 

 
SenR-CTV – WC (GyRBE) SenR-PTV – WC (GyRBE) 

Dmean Dmax Dmean Dmax 

SBT Case #1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3 

L Opt Nrv -8.4 -4.3 -4.8 -3.5 -2.9 -1.1 -2.3 -5.0 +1.1 -1.5 -2.1 -0.7 

R Opt 
Nrv 

-4.5 -1.0 -9.9 +0.5 -4.2 -2.7 -0.7 -0.7 -2.0 +1.3 -1.0 +2.0 

 

SBT #1 

H&N #1 
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Chiasm -1.2 -8.9 -1.6 0.0 -4.2 -0.3 +2.1 -3.3 +0.5 -0.1 -8.0 -0.9 

Brainste
m 

-6.8 -3.6 -1.3 -1.9 -7.6 -3.7 -6.2 -2.5 -1.2 -2.4 -0.9 -2.7 

L Cochlea -20.2 -3.5 0.0 
-

18.0 
-1.0 0.0 -13.1 +6.2 0.0 -9.0 +11.4 0.0 

R Cochlea -4.4 -0.6 0.0 -9.6 -0.8 0.0 -7.0 -2.0 0.0 -11.2 -1.4 0.0 

Table 4-3: OAR mean dose and max dose reduction of the SenR plans from the WC plans, 
for the SBT cases under nominal situation. A negative sign represents a dose reduction 
from the WC plans. 

 
SenR-CTV – WC (GyRBE) SenR-PTV – WC (GyRBE) 

Dmean Dmax Dmean Dmax 

H&N Case #1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3 

Brainstem -0.5 -1.1 -0.2 -2.0 -4.8 -2.6 -0.1 -1.2 -0.1 -1.0 -8.3 -1.6 

Constrictors -3.5 -3.2 -2.9 
-

10.6 
-3.1 -1.2 -1.0 +0.5 +3.3 +3.7 +2.4 +3.2 

R 
Submandib
ular Gland 

+3.4 
-

16.0 
+1.2 0.0 -3.7 -1.2 +3.0 -0.6 -10.0 +0.4 -1.2 -1.5 

Larynx -6.3 -1.9 -2.8 
-

11.7 
-4.9 -7.5 -3.4 -0.8 -2.7 -4.0 -1.0 -6.3 

L Parotid -3.8 -9.5 -1.2 -0.5 -2.1 -0.3 -0.8 -2.1 +1.6 -0.7 -1.1 +1.7 

R Parotid -0.8 -0.7 -0.1 -3.1 -0.2 -0.7 +0.2 -0.8 +1.1 +3.4 -1.8 +3.9 

Spinal Cord -1.3 -1.1 -1.3 -3.3 -2.3 -4.3 -1.1 -0.7 -1.3 -1.5 -0.1 -5.4 

Table 4-4: OAR mean dose and max dose reduction of the SenR plans from the WC plans, 
for the H&N cases under nominal situation. A negative sign represents a dose reduction 
from the WC plans. 

4.1.3.2 Robust analysis 

 The DVH bands of CTVs and selected OARs indicating the plan robustness with 

range and setup uncertainties for the SBT #1 and the H&N #2 patients are shown in Figure 
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4-3 and 

 

Figure 4-4, where the solid lines in each plot are the DVHs of the nominal case, and the 

bands bound the worst-case distributions. A narrower band means greater resilience to 

uncertainties. Qualitatively, both the SenR approach and WC method improved the 

robustness of CTVs and OARs from conventional PTV-based method for the two disease 

sites.  
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 With range uncertainties, similar or more compacted CTV bands were observed in 

the SenR-PTV plans compared with the WC plans. The SenR-CTV plans also resulted in 

narrow CTV bands, but there was a slightly larger underdosed region of CTV in these plans. 

The robustness against setup uncertainties was similarly improved by SenR-PTV and SenR-

CTV.  

 In addition to better target volume robustness, a decrease in OAR sensitivity was 

observed in both the SenR-PTV and SenR-CTV plans. For example, the DVH bands of the 

optical nerves and optical chiasm in the SBT #1 patient, and the left parotid in the H&N#2 

patient are narrower than that in Conv.  

 Compared with Conv plans, the lowest D95%, V95% and V100% were improved 

by SenR and WC. Overall SenR-PTV and WC achieved better CTV dose metrics. On average, 

under range uncertainties, the lowest [D95%, V95%, V100%] of CTV were increased from 

[93.8%, 88.5%, 47.4%] in Conv, to [99.3%, 99.5%, 86.6%] in WC, [97.7%, 97.9%, 81. %] in 

SenR-CTV and [98.8%, 99.3%, 85.1%] in SenR-PTV, respectively. Under setup 

uncertainties, the average lowest [D95%, V95%, V100%] of CTV were increased from 

[95.4%, 94.9%, 65.1%] in Conv, to [99.4%, 99.6%, 87.1%] in WC, [97.0%, 97.1%, 77.9%] in 

SenR-CTV and [98.2%, 98.3%, 83.9%] in SenR-PTV, respectively. 
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Figure 4-3:  DVH bands of the SBT #1 patient including 2 range uncertainties (left column) 
and 6 setup uncertainties (right column). The first row is Conv plans, the second row is the 
WC plans, the third row is SenR-CTV plans, and the last row is the SenR-PTV plans. 
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Figure 4-4: DVH bands of the H&N#2 patient including 2 range uncertainties (left column) 
and 6 setup uncertainties (right column). The first row is Conv plans, the second row is the 
WC plans, the third row is SenR-CTV plans, and the last row is the SenR-PTV plans. 

 Figure 4-5 shows the V100% stress test results, where the range estimation error 

increased from 0% to 4%, which is 1.0% outside of the expected worst case. V100% 

degrades with increasing range estimation error but the SenR-PTV method shows slower 

degradation and greater robustness than WC.  
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Figure 4-5: The patient-averaged worst V100% of the three methods, when range 
uncertainty varies from 0.0% to 4.0%.  

4.1.3.3 Spot level analysis 

 In order to better understand the mechanism of SenR method, an analysis on the 

scanning spot level is demonstrated using the SBT #1 patient as an example. The spot-level 

dose difference between Conv method and SenR-CTV method when undershooting (+3% 

range uncertainties) happens is shown in Figure 4-6. In this analysis, a point of interest in 

the target, which is inside an underdosing area when undershooting, is found and the 

scanning spots located within 2 cm radius sphere of this cold spot are extracted. These 

scanning spots from four different beam directions are the main contributors to the dose of 

the point of interest. The total dose from these local scanning spots is shown in Figure 

4-6.A, with the first row being the transverse plane and the second row being the sagittal 

plane. From left to right, each column represents the Conv nominal, the Conv 

undershooting, SenR-CTV nominal and SenR-CTV undershooting conditions, respectively. 

The peak position of the dose distribution in the Conv (SenR) nominal plan is marked P1 

(P2), denoted as the crosshairs in the first (last) two columns of images in Figure 4-6. P1 
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and P2 are used as the reference points when comparing the dose change when 

undershooting. For comparison, the isodose display is normalized to the P-point dose of the 

corresponding nominal case without range error. When the range is overestimated, a 20% 

reduction in the P-point dose is observed in the Conv case. However, the high sensitivity 

combination is quantified in the new optimization framework and correctly penalized. As a 

result, to deliver dose to the same point of interest, a different combination of spots is 

selected. When the same undershooting happens, the P-point dose only drops 5% in the 

SenR plan. A closer examination of the scanning spots distribution reveals why the SenR 

optimized combination is more resilient to the range estimation error. Different from the 

Conv approach that chooses spots that match their distal edges, in the SenR approach, 

spots are slightly mismatched. Spots from beam 1 and 4 contribute their proximal edges to 

P and the spot from beam 3 contributes its lateral edge. When the range is over-estimated, 

the slightly undershoot spots from beam 1 and 4 would retract while the contribution from 

beam 3 remains unchanged due to the smooth lateral dose profile. This combination is 

equally resilient to range underestimation due to the same reason that the dose to a given 

point is contributed by a mixture of distal, lateral, and proximal edges. The last two are not 

as sharp as the distal edge thus more resilient to range estimation error.  
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Figure 4-6: Spot-level analysis around a cold spot for the SBT #1 patient when range 
undershooting. (A) The total dose from the local scanning spots within 2 cm radius sphere 
of the cold spot. The first row is the transverse plane and the second row is the sagittal 
plane. (B) The dose contribution of the local spots from each beam direction. From left to 
right, each column represents the Conv nominal condition, Conv undershooting condition, 
SenR-CTV nominal condition and SenR-CTV undershooting condition. 
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4.1.4 Discussion 

 Current proton treatment planning methods manage robustness by performing 

optimization on a finite number of hypothetical worst cases. A drawback for the existing 

worst-case method is that it may be too conservative in certain cases, resulting in 

unacceptable dosimetric compromise142 yet is inadequate for extreme case where the error 

exceeds expectation. The uncertainties are sparsely sampled in the worst-case approach, 

which is unprepared for positioning and range errors different from these sparsely-

sampled cases. In comparison, in the SenR framework, robustness is included as a linear 

regularization term that not only softens the impact of robustness consideration, but also 

allows flexible adjustment of the robustness to meet varying requirements. In the nominal 

cases where the uncertainties are low, the dosimetric quality is better preserved. Due to 

the differences, SenR method may particularly benefit cases where the uncertainties are 

difficult to accurately estimate, highly heterogeneous in the same cohort, or variable over 

the treatment course. Since the sensitivity is calculated as a gradient of the spot dose 

distribution, our method does not depend on a specific set of expected positioning or range 

uncertainties, which is needed in the worst-case optimization.  This difference lends the 

flexibility of trading off the robustness with dosimetry by adjusting the sensitivity term 

weighting without needing to estimate the uncertainties explicitly. This new robust 

optimization method is thus different from previous approaches of adjusting the worst case 

weights132, using multi-criteria optimization135, and using the normalized dose interval 

volume constraints143. 

 Another drawback of worst-case methods is that they are computationally 

inefficient due to the time needed to optimize a significantly larger optimization problem 
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for all scenarios. The runtime of the SenR optimization is 22 times shorter than that of the 

voxel-wise worst-case method excluding pre-optimization calculation of the sensitivity 

matrix and worst-case doses, and 8 times shorter including pre-optimization calculation, 

while achieving comparable robustness in the hypothetical worst cases. 

 In this study, the SenR method is implemented on both CTV and PTV. The SenR-

PTV method achieves comparable robustness towards the expected worst cases and OAR 

sparing as the WC method. Sen-CTV attains superior OAR sparing with a slight compromise 

in the CTV robustness while avoiding the substantial degradation seen in the conventional 

PTV plans. The different target volumes offer additional flexibility in clinical practice for 

the trade-off between OAR sparing and CTV coverage robustness. This is also feasible due 

to the demonstrated fast SenR planning speed. As an additional advantage, SenR is versatile 

and independent of the underlying proton dose calculation algorithms, of which, a model-

based method and a Monte Carlo method were used showing consistent results.  

 The proposed method is particularly effective for targets in the heterogeneous 

environment where the sensitivity is captured in the perturbation term. The effectiveness 

of the regularized-sensitivity is highly dependent on the beam and spot arrangement. As 

shown by the spot level analysis, instead of matching the distal edges, SenR tends to 

combine distal, proximal and lateral edges of spots for improved robustness.  Figure 4-6 

shows one such possible robust combinations and the new optimization framework allows 

us to efficiently and globally find these combinations. The importance of combining spots 

for both plan robustness and conformality was discussed by Liu et al49,144. One of the main 

contributions here is to describe the intricate spot interdependence with a new 

mathematical model that can be efficiently solved.  
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 The proposed method applies to scenarios where the same location is covered by 

multiple beams. However, field-matching may happen when different parts of the CTV are 

treated by different beams. The proposed method may result in a mismatch in the 

gradients at the field-matching lines that leads to cold and hot spots with position and 

range uncertainties. Further investigation is needed to understand and mitigate such dose 

heterogeneities. 

4.1.5 Conclusion 

 We developed a novel computationally efficient robust optimization method for 

IMPT. The robustness is calculated as the spot sensitivity to both range and shift 

perturbations. The dose fidelity term is then regularized by the sensitivity term. The new 

SenR method offers the flexibility to balance between the dosimetry and the robustness. In 

the stress test, SenR is shown resilient to greater than expected uncertainties. The SenR 

FMO method is incorporated into the group sparsity based framework for robust BOO in 

the next section. 

4.2 Robust Beam Orientation Optimization for Intensity-
Modulated Proton Therapy38  

4.2.1 Introduction  

 In general, both plan robustness and plan quality/conformality of IMPT depend on 

beam angle selection. An ideal IMPT treatment planning process should include beam angle 

selection and fluence map optimization (FMO) simultaneously. In current clinical practice, 

the proton beam angles are manually selected first by a planner. Different from X-ray 
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therapy where equiangular or arc beams are often acceptable, the proton beam 

orientations are typically asymmetric, and need to be more carefully considered for factors 

such as the water-equivalent thickness to the target, nearby OAR sparing, heterogeneity of 

tissues in the beam path, and setup robustness etc12–14. To minimize low dose regions and 

speed up treatment delivery, there are practically fewer beam angles in a typical proton 

plan, which makes the selection of proton beam angle particularly important. Planners’ 

experience and skill can heavily influence the final treatment plan quality.  For complicated 

patient cases, tedious trial-and-error attempts may be needed to find better beam 

configurations. Yet, human operators cannot effectively search the enormous coplanar and 

non-coplanar beam space, resulting in inconsistent planning results. Beam orientation 

optimization (BOO) using a computational model is, therefore essential for improving IMPT.  

 There have been limited IMPT BOO studies. Cao et al.46 applied a local 

neighborhood search (LNS) algorithm to the IMPT BOO problem and implemented it on 

prostate cancer to improve beam arrangement145. The LNS is confined to be within a small 

search space near the initial condition, which still has to be manually selected. Later Lim et 

al.146 used global search methods, such as branch-and-bound and simulated annealing, to 

find a good feasible solution as the initial condition for LNS, but these stochastic methods 

were only demonstrated on much smaller coplanar IMPT problems. In Chapter 2, we 

developed an integrated BOO and FMO framework for non-coplanar IMPT35. Based on 

group sparsity regularization, this algorithm efficiently performs a global search on non-

coplanar candidate beams and finds a dosimetrically optimal solution. 

 Besides plan dosimetric quality, uncertainty or plan robustness is important for 

IMPT. The proton dose uncertainties sensitive to both patient positioning and range 
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estimation uncertainties8–10,49,127 can lead to severely under-dosed target and over-dosed 

OARs. For IMPT, the commonly worst-case optimization method21-40 improves the plan 

robustness at the cost of substantially increased computational cost10,133. To avoid the 

additional burden of calculating the worst cases and provide the robustness consideration 

as a soft constraint, we modeled the scanning spot sensitivity concerning range and 

positioning uncertainties as a regularization term in the optimization in Section 4.137. We 

showed improved dosimetry, robustness to larger range uncertainties, and an order of 

magnitude faster optimization time than the worst case approach. 

 In the previous IMPT frameworks, robustness and BOO were studied separately, 

despite their obvious inter-dependence. For instance, beams passing through highly 

heterogeneous tissues are likely more sensitive to range and positioning uncertainties than 

beams passing through homogeneous tissues. It may cause more dosimetric compromise to 

achieve robustness for these beams. The robustness consideration complicates beam 

selection in manual IMPT planning, making integrated robust BOO and FMO even more 

urgently needed. Pflugfelder et al127 modeled the interdependence of beam orientation and 

robustness as a lateral tissue heterogeneity across the proton pencil beams. Their 

heterogeneity number, is then used to guide beam angle selection128,129. After evaluating the 

heterogeneity of each beam, Bueno et al128 recommended to change the beam direction if 

the heterogeneity exceeded a threshold, and Toramatsu et al129 proposed to use the beams 

with minimum heterogeneity in single field uniform dose (SFUD) plans. These heuristic 

heterogeneity-guided beam angle selection methods have not quantitatively incoporated 

the robustness consideration in IMPT optimization and potentially dismiss dosimetrically 

superior beam orientations. Cao et al46,145,146 combines the worst-case approach and local 
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neighborhood search algorithm to achieve robust beam angle selection. However, in 

addition to the limitations above being confined to the local search, in each search step, a 

subproblem of worst-case FMO is solved, making the method impractically slow.  

 In this work, we develop a novel unified robust optimization framework for IMPT, 

that integrates robust beam orientation selection and robust fluence map optimization in a 

single problem and then solve this global optimization problem. The BOO is achieved by 

group sparsity regularization, and robustness is promoted by the lateral tissue 

heterogeneity penalty and dose sensitivity regularization.  

4.2.2 Methods  

 The integrated robust BOO and FMO framework is formulated with a dose fidelity 

term, a heterogeneity-weighted group sparsity term, and a dose sensitivity regularization 

term. The details are described as follows. 

4.2.2.1 Heterogeneity-weighted group sparsity 

 The group sparsity-based BOO (GSBOO) framework presented in Equation 2-1 is 

designed to select beams for good dosimetry, and the robustness is not considered yet. In 

order to select beams with less sensitivity to setup uncertainties, we incorporate lateral 

tissue heterogeneity into the current group sparsity term, to encourage the algorithm to 

choose beams with less lateral tissue heterogeneity. The lateral tissue heterogeneity 

observed along beam 𝑏 is quantified by its heterogeneity index  ℎ𝑏 , which is defined as 

follows. 
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 First, as shown in Figure 4-7, a coordinate system is created for each pencil beam 

(scanning spot) in beam 𝑏, with the 𝑧 axis along the central axis of the pencil beam and 

pointing from the source to the patient. The central axis of 𝑖th pencil beam is located at 

(𝑥𝑖, 𝑦𝑖), and the position of (𝑥𝑖, 𝑦𝑖 , 0) is where the pencil beam enters the patient.  

 
Figure 4-7: Diagram showing the coordinates used in the heterogeneity index calculation 
for a specific pencil beam.  

 With discrete sampling, the heterogeneity index of 𝑖th pencil beam in beam 𝑏 at the 

depth 𝑧𝑘, denoted as  ℎ𝑏,𝑖
𝑘 , is defined as: 

ℎ𝑏,𝑖
𝑘 = (

∑ 𝜙𝑖(𝑥𝑗 , 𝑦𝑗 , 𝑧𝑘)𝑗∈𝒮𝑖(𝑧𝑘)
∙ [𝑆rel(𝑥𝑗 , 𝑦𝑗 , 𝑧𝑘) − 𝑆rel(𝑥𝑖, 𝑦𝑖, 𝑧𝑘)]

2

∑ 𝜙𝑖(𝑥𝑗 ,  𝑦𝑗 , 𝑧𝑘)𝑗∈𝒮𝑖(𝑧𝑘)

)

1/2

, 

                                                                       Equation 4-5    

where 𝑆rel(𝑥𝑗 , 𝑦𝑗 , 𝑧𝑘)  is the relative stopping power ratio at the voxel (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑘), and  

𝜙𝑖(𝑥𝑗 ,  𝑦𝑗 , 𝑧𝑘) is the particle fluence at (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑘) for the 𝑖th pencil beam. The sampling set 

of lateral voxels at depth 𝑧𝑘 is written as 𝒮𝑖(𝑧𝑘). In the analytical model, the lateral dose 

distribution of pencil beam 𝑖 is approximated as a single Gaussian distribution, with a 

standard deviation of 𝜎𝑖(𝑧𝑘) at depth 𝑧𝑘. The sampling set 𝒮𝑖(𝑧𝑘) at each depth is selected 

to include the voxels within 3𝜎𝑖(𝑧𝑘) from the central axis. 
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 The depth-specific  ℎ𝑏,𝑖
𝑘  is evaluated and summed up from 𝑧𝑘 = 0…𝑅𝑏,𝑖, which is 

the path spanning from where the pencil beam enters the patient to the end of its range. 

The sum generates a single metric to indicate the lateral heterogeneity affecting the 𝑖th 

pencil beam in beam 𝑏: 

ℎ𝑏,𝑖 =∑ℎ𝑏,𝑖
𝑘

𝑅𝑏,𝑖

𝑘=0

. 

                                                                       Equation 4-6    

 The heterogeneity index values of all scanning spots in the same beam 𝑏 are then 

averaged to represent the beam heterogeneity. Therefore, the heterogeneity index of beam 

𝑏, denoted as ℎ𝑏 , is calculated as: 

ℎ𝑏 = 
1

𝑛𝑏
∑ℎ𝑏,𝑖

𝑛𝑏

𝑖=1

, 

                                                                       Equation 4-7    

where 𝑛𝑏 is the number of scanning spots in beam 𝑏. 

 Then ℎ𝑏 is evaluated for each candidate beam and used to weigh the group sparsity 

in Equation 2-1. The heterogeneity-weighted group sparsity BOO (HBOO) is thus 

formulated as: 

minimize
𝒙

   Γ(𝐴𝒙) +∑𝛼𝑏ℎ𝑏‖𝒙𝑏‖2
1/2

𝑏∈ℬ

   

subject to   𝒙 ≥ 0. 

                                                                       Equation 4-8    
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In this algorithm, the beams with higher lateral heterogeneity are more heavily penalized 

in the group sparsity term, resulting in selecting beams with higher dose fidelity and less 

sensitivity to setup errors. 

4.2.2.2 Robust BOO-FMO 

 Even though the beams more resilient to setup errors are preferred in Equation 

4-8, the range uncertainty has not been considered in FMO. Sensitivity regularization37 is 

thus incorporated into Equation 4-8 to achieve simultaneous robust beam angle selection 

and robust fluence map optimization. The integrated robust BOO and FMO framework is 

written as: 

minimize
𝒙

   Γ(𝐴𝒙) +∑𝛼𝑏ℎ𝑏‖𝒙𝑏‖2
1/2

𝑏∈ℬ

+ ∑ 𝜆𝑘𝒔𝑘
𝑇𝒙

𝑘∈{𝒖,𝒗}

   

subject to   𝒙 ≥ 0, 

                                                                       Equation 4-9    

 This Sensitivity regularization and Heterogeneity weighting based BOO and FMO 

framework (SHBOO-FMO), allows robust beams to be selected and robust fluence map to 

be generated in a single equation.  SHBOO will be used in place of SHBOO-FMO for the rest 

of the section when referring to the BOO algorithm and the selected beams for brevity. 

4.2.2.3 Evaluations 

 This SHBOO-FMO method was tested on two patients with the skull base tumor 

(SBT) and two bilateral head-and-neck (H&N) patients. Four beams were selected for the 

SBT patients and three beams for the H&N patients. For each patient, there were about 700 

to 800 candidate beams. For each candidate beam, dose calculation for the scanning spots 
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covering the CTV and a 5 mm margin was performed by  matRad51,52. In matRad, the lateral 

beam width is calculated as the root sum square of the initial beam width from Safai et al153 

and the lateral broadening from Gottschalk et al154. The CTV was set as the optimization 

target. The prescription dose, target volume, and average spot count per beam for each 

patient are shown in Table 4-5.  

Case 
Prescription Dose 

(GyRBE) 
CTV Volume 

(cc) 
Average Spots per 

Beam 
SBT #1 56 33.7 2537 
SBT #2 70 36.8 2650 

H&N #1 
CTV54 54 108.0 

10077 
CTV60 60 127.3 

H&N #2 
CTV54 54 110.4 

9433 CTV60 60 99.0 
CTV63 63 10.2 

Table 4-5: Prescription doses, CTV volumes and average number of spots per beam for each 
patient. 

 The dosimetry and plan robustness of the proposed SHBOO-FMO method was 

compared against 1) the voxel-wise worst-case FMO method with manually selected beams 

(MAN-WC), and 2) sensitivity-regularized FMO method with the same manual beams 

(MAN-SenR). The voxel-wise worst-case optimization considered nine scenarios, including 

one nominal scenario and the 8 worst-case scenarios same as those in Section 4.1.2.3. 

 In addition to the robustness of the final plan, the sole robustness of the selected 

beams by SHBOO-FMO, was also evaluated and compared with the following beam sets: 1) 

manually selected beams, 2) GSBOO beams selected by Equation 2-1, and 3) HBOO beams 

selected by Equation 4-8. The comparison was performed by creating plans using the same 

conventional CTV-based FMO method (Conv), using the aforementioned beam sets. Same 

candidate beam set, spot population, and dose calculation scheme were used for different 
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BOO algorithms. The acronym used for each method and its definition can be found in 

Table 4-6. 

Acronym Definition 

SHBOO-FMO 
Group sparsity based integrated BOO and FMO framework with 

sensitivity regularization and heterogeneity weighting 

SHBOO 
Short for SHBOO-FMO when referring to the BOO algorithm and the 

beams selected by SHBOO-FMO 

MAN Manually selected beams 

GSBOO Group sparsity based BOO algorithm 

HBOO Heterogeneity-weighted group sparsity BOO algorithm 

Conv Conventional CTV-based FMO method 

MAN-Conv 

GSBOO-Conv 

HBOO-Conv 

SHBOO-Conv 

Conventional CTV-based FMO plan with MAN, GSBOO, HBOO, and 

SHBOO beams, respectively 

MAN-WC 
CTV-based voxel-wise worst-case FMO method with manually selected 

beams 

MAN-SenR Sensitivity-regularized FMO method with manually selected beams 

Table 4-6: Acronym of each method and its definition. 

4.2.3 Results 

4.2.3.1 Runtime and selected beams 

 The dose, sensitivity and heterogeneity calculation for all the candidate beams 

were performed on a Xeon 20-core CPU server operating at 3.10 GHz clock, with Matlab 

and its Parallel Computing Toolbox. The averaged time per beam to calculate the three data 

is listed in Table 4-7. The most time-consuming step during preparation is the evaluation of 

the sensitivity vector. The averaged runtime for GSBOO, HBOO, and SHBOO, on an i7 CPU 
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desktop, is also shown in Table 4-7. Depending on the target size, these BOO process took 

about 6-75 minutes to complete. With the additional heterogeneity weighting and 

sensitivity regularization, the SHBOO method reduced the runtime from the original GSBOO 

method approximately by half. 

Case 
Calculation time per beam (s) BOO runtime (s) 

Dose Sensitivity Heterogeneity GSBOO HBOO SHBOO 

SBT #1 0.4 1.5 1.5 804 745 362 

SBT #2 0.6 2.0 1.6 1102 999 682 

H&N #1 1.9 24.0 8.2 3214 2978 1446 

H&N #2 1.4 14.9 7.2 4407 3996 2728 

Table 4-7: Preparation time and runtime of each BOO method for the tested patients. 

4.2.3.2 Beam robustness 

 The beam robustness was compared among the plans using different BOO methods 

but the same conventional CTV-based approach (Conv) for fluence map optimization.  

 Figure 4-8 shows the DVH bands of the CTVs of these Conv plans with range 

uncertainty and setup uncertainty for the SBT patients and H&N patients. In these DVH 

band plots, the solid lines are the nominal DVHs without uncertainties, the dotted lines and 

bands bound the worst-case dose distributions, and the horizontal and vertical lines label 

the worst D95% of each method for each CTV. For the tested cases, the beam robustness of 

the GSBOO method is not maintained. For example, the GSBOO beams lead to wide DVH 

bands under range uncertainties for the SBT #2 and H&N #2 patients, and wide bands 

under setup uncertainties for the two SBT patients. With heterogeneity-weighted group 

sparsity, the beam robustness against setup uncertainty is improved from the GSBOO 

beams for the four tested patients, while the robustness against range uncertainty varies 
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among patients. With the SHBOO method, the beams with superior range robustness over 

manual beams and HBOO beams are selected while the setup robustness is maintained or 

improved.  

 The D98%, D95%, V95% and V100% of each CTV with range uncertainties and 

setup uncertainties were evaluated and plotted in Figure 4-9. Compared with the manual 

selection, the lowest (worst) D98%, D95%, V95%, and V100% were improved by the 

SHBOO method. On average, the lowest [D98%, D95%, V95%, V100%] of CTV increased 

from [90.9%, 93.9%, 91.1%, 70.6%] in MAN beams, to [96.0%, 98.6%, 98.6%, 96.1%] in 

SHBOO beams. Under setup uncertainties, the average lowest [D98%, D95%, V95%, 

V100%] of CTV increased from [92.1%, 94.8%, 94.3%, 78.9%] in MAN beams, to [93.5%, 

96.6%, 97.0%, 92.0%] in SHBOO beams. 
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Figure 4-8: CTV DVH bands of the four patients, indicating the robustness of the beams 
chosen by different methods. The situation with only range uncertainty is shown on the left 
and situation with only setup uncertainty is shown on the right. The worst D95% of each 
method is labeled by reference lines in the x-y plane. The two CTVs in the H&N #1 patient 
are plotted together in the third row, and the three CTVs in the H&N #2 patient are plotted 
together in the fourth row, with different transparencies. 
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H&N #2 

SBT #1 
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Figure 4-9: The comparison of worst D98% (top row), D95% (second row), V95% (third 
row), and V100% (bottom row) of the CTVs as a percentage of prescription doses, for every 
patient, between the plans with Conv FMO and MAN, GSBOO, HBOO and SHBOO beams, 
respectively. The situation with only range uncertainty is shown on the left and situation 
with only setup uncertainty is shown on the right in each plot. 
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4.2.3.3 Plan robustness 

 The plan robustness of SHBOO-FMO method was compared with the plan with 

manual beams and voxel-wise worst-case FMO (MAN-WC) as well as that with manual 

beams and SenR FMO (MAN-SenR). The CTV DVH bands of the three methods are shown in 

Figure 4-10 for the SBT patients and the H&N patients. Under range uncertainties, 

narrower DVH bands were observed in the SHBOO-FMO plans compared with the MAN-WC 

plans, and the CTV underdosage in the MAN-SenR plans was also improved by the SHBOO-

FMO method. Under setup uncertainties, the SHBOO-FMO method was less robust than 

MAN-WC but comparable with or more robust than MAN-SenR. 

 The lowest (worst) D98%, D95%, V95% and V100% of each CTV with range 

uncertainties and setup uncertainties were also evaluated and plotted in Figure 4-11.  

Compared with MAN-SenR, the D98%, D95%, V95% and V100% were improved by the 

SHBOO-FMO method. On average, the lowest [D98%, D95%, V95%, V100%] of CTV were 

increased from [94.0%, 97.4%, 97.6%, 94.6%] in MAN-SenR plans, to [96.2%, 98.8%, 

98.7%, 96.7%] in SHBOO-FMO plans. Under setup uncertainties, the averaged lowest 

[D98%, D95%, V95%, V100%] of CTV were increased from [93.1%, 96.5%, 96.9%, 92.0%] 

in MAN-SenR plans, to [93.8%, 96.9%, 97.3%, 93.0%] in SHBOO-FMO plans. Overall the 

MAN-WC method achieved the best CTV metrics, with the averaged lowest [D98%, D95%, 

V95%, V100%] of [97.5%, 98.8%, 99.4%, 97.4%] under range uncertainties and [97.9%, 

99.1%, 99.6%, 97.9%] under setup uncertainties. 
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Figure 4-10: CTV DVH bands of the four patients, indicating the robustness of the plans 
generated by SHBOO-FMO, MAN-WC and MAN-SenR. Situation with only range uncertainty 
is shown on the left and situation with only setup uncertainty is shown on the right. The 
two CTVs in the H&N #1 patient are plotted together  in the third row, and the three CTVs 
in the H&N #2 patient are plotted together in two figures in the fourth row. The worst 
D95% of each method is labeled by reference lines in the x-y plane.  
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Figure 4-11: The comparison of worst D98% (top row), D95% (second row), V95% (third 
row), and V100% (bottom row) of the CTVs as a percentage of prescription doses, for every 
patient, between the MAN-WC plan, MAN-SenR plan and SHBOO-FMO plan Situation with 
only range uncertainty is shown on the left and situation with only setup uncertainty is 
shown on the right. 
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4.2.3.4 Nominal dose comparison 

 Several OARs are selected for the SBT and H&N sites, respectively, and the 

differences of their mean and maximum doses between the SHBOO plans and the MAN 

plans are presented in Table 4-8, and Table 4-9, respectively. Figure 4-12 shows the 

nominal DVHs comparison between the SHBOO-FMO method and MAN-WC method for the 

four tested patients. 

 The SHBOO-FMO plans achieved substantially better OAR sparing compared with 

the MAN-WC plans. For example, in the SBT cases, the dose sparing of all the OARs was 

improved. In the SBT #2 patient, the SHBOO-FMO plan reduced the max dose to the right 

optical nerve and left eye by 13.9 GyRBE and 25.6 GyRBE from the MAN-WC plan. In the 

H&N cases, the overall OAR sparing was also improved by SHBOO-FMO method from MAN-

WC method, except for the increase of mean dose to the right submandibular gland. The 

average reduction of [Dmean, Dmax] of the SHBOO-FMO plans from the MAN-WC plans 

were [6.3, 6.6] GyRBE for the SBT cases and [1.9, 5.1] GyRBE for the H&N cases.  

 From Table 4-8 and Table 4-9, the overall OAR sparing of SHBOO-FMO was better 

than MAN-SenR in the SBT cases and comparable with the MAN-SenR in the H&N cases. 

The average reduction of [Dmean, Dmax] of the SHBOO-FMO plans from the MAN-SenR 

plans were of [2.1, 2.4] GyRBE for the SBT cases, and [-0.4, 2.5] GyRBE for the H&N cases. 
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Figure 4-12: Comparison of nominal DVHs for four patients between the SHBOO-FMO 
method (solid) and MAN-WC method (dotted). 

SBT Case 

SHBOO-FMO – MAN-WC (GyRBE) SHBOO-FMO – MAN-SenR (GyRBE) 

Dmean Dmax Dmean Dmax 

#1 #2 #1 #2 #1 #2 #1 #2 

L Opt Nrv -5.1 -15.1 -1.4 -0.9 +0.1 -10.1 +0.8 +1.4 

R Opt Nrv -13.9 -1.8 -4.6 -11.2 -2.1 -0.2 -2.0 -4.6 

Chiasm -2.4 -13.7 -0.8 -7.2 -2.1 -5.1 +0.2 -4.2 

Brainstem -1.5 -4.6 -5.8 -7.3 -0.4 -0.4 -3.3 2.3 

L Eye -0.6 -13.7 -5.4 -25.6 +0.5 -6.0 -2.2 -16.7 

R Eye -1.2 0.0 -8.4 0.0 -0.1 0.0 -0.7 0.0 

L Cochlea 0.0 -3.6 0.0 0.0 0.0 0.8 0.0 +1.2 

R Cochlea 0.0 -4.9 0.0 -6.7 0.0 -2.1 0.0 -3.5 

Table 4-8: OAR mean dose and max dose reduction of the SHBOO-FMO plans from the 
MAN-WC plans and MAN-SenR, for the SBT cases under nominal situation. 
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H&N Case 

SHBOO-FMO – MAN-WC(GyRBE) 
SHBOO-FMO – MAN-

SenR(GyRBE) 

Dmean Dmax Dmean Dmax 

#1 #2 #1 #2 #1 #2 #1 #2 

R 
Submandibular 

Gland 
-6.8 +11.5 -5.3 -0.3 +9.2 +10.3 -1.6 +0.8 

L Parotid -3.8 -0.4 -1.9 -0.3 +5.7 +0.9 +0.3 0.1 

R Parotid -1.5 -3.3 0.0 -4.3 -0.8 -3.2 +0.2 -4.0 

Larynx -3.2 -2.3 -5.4 -9.6 -1.3 0.0 -0.5 -3.9 

Spinal Cord -1.6 -2.3 -5.9 -8.7 -0.5 -0.3 -3.6 -2.8 

BrainStem -1.8 -0.4 -13.6 -4.1 -0.7 -0.1 -8.8 -0.8 

Oral Cavity +0.1 -3.3 +2.9 -9.2 +1.9 -0.4 +5.5 +1.5 

Constrictors -3.4 -1.2 -6.3 -2.2 -0.2 +1.0 -3.2 0.0 

L Middle Ear -3.4 -5.3 -10.1 -9.1 -1.8 -10.5 -4.8 -16.5 

Esophagus -1.8 -3.4 -6.8 -11.9 -0.8 -1.3 -2.0 -7.7 

Mandible +0.7 -4.9 0.2 -0.1 +4.0 -3.5 +3.0 -6.0 

Table 4-9: OAR mean dose and max dose reduction of the SHBOO-FMO plans from the 
MAN-WC plans and MAN-SenR, for the H&N cases under the nominal situation. 

4.2.4 Discussion 

 To the best of our knowledge, this work describes the first integrated IMPT 

optimization method that optimizes beam orientation and scanning-spot intensities for 

both nominal dose conformality and robustness. In clinical IMPT planning, it is known that 

the beam orientation directly impacts the IMPT dose conformality and robustness, 

requiring substantial manual effort from the dosimetrists to find better beam angles. 

However, a manual search is ineffective in identifying beams from the enormous non-

coplanar space for both dosimetry and robustness goals. The combination of group sparsity, 



 

124 

lateral heterogeneity, and sensitivity into a formulation that allows global search on all 

feasible candidate beams is a major contribution of this study.  

 Proton beam has a unique feature that protons stop at the end of its Bragg Peak. 

This is different from the photon beam. As a result, the experience in beam angle selection 

is different from the photon experience, in particular for non-coplanar beams. The results 

on tested patients show that the proposed robust BOO algorithm selects beams that are 

more resilient to range and setup uncertainties. The final SHBOO-FMO plans better spared 

the OAR sparing compared with the voxel-wise worst-case method on the manual beams 

while maintaining similar robustness. Compared with the plans using manually selected 

beams and SenR FMO, the proposed method achieved better target coverage under 

simulated uncertainties. 

 Furthermore, the sensitivity regularization term helps to directly generate the 

fluence map which is more robust to range and setup uncertainties. In the limited existing 

IMPT BOO studies, the FMO is a nested subproblem that is solved post-hoc, which not only 

is inefficient but also compromises plan optimality as the FMO results could influence the 

selected beams. Our algorithm integrates FMO and BOO in a single function to ensure that 

both the beam orientations and the spot intensities are matched for the desired dosimetry 

and robustness. The second important aspect of our study is that rather than the commonly 

used worst-case scenario optimization method for FMO, we apply sensitivity regularization 

to improve the plan robustness against errors. This non-scenario-based method can be 

easily and efficiently incorporated into the optimization framework and provides the 

flexibility between the dosimetry and the robustness. Our previous study37 showed that the 

sensitivity regularization is more effective to mitigate range uncertainties than setup 
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uncertainties. The latter weakness is largely remedied in the current framework by 

incorporating lateral tissue heterogeneity in the BOO. 

 Compared with GSBOO35 or SenR37 alone, the planning time of SHBOO-FMO is 

longer. The computational cost of the proposed method attributes to two main components: 

the pre-optimization calculation and optimization of the objective function. 

Preoptimization includes calculating a dose calculation matrix, heterogeneity index, and 

sensitivity vector for each candidate beam. Under the analytical calculation model, the dose 

calculation and heterogeneity evaluation, in theory, could have shared the same ray tracing 

step to reduce the calculation time shown in Table III. Calculation of the sensitivity is more 

time-consuming. However, this parallel calculation process can be accelerated using the 

modern graphics processing unit (GPU) platform. Further acceleration is expected using a 

non-uniform sampling of the dose matrix to have a higher resolution in the CTV and its 

vicinity and lower resolution elsewhere. 

 For the optimization step, the Equation 4-9 itself is a large-scale problem due to 

the extra freedom of proton energy in IMPT and a large number of non-coplanar candidate 

beams used in this study. With the linear formulation of the sensitivity regularization term 

and the proximal operators derived in Section 235, we are able to efficiently solve the 

problem with FISTA, which converges at a rate of  𝑂(1 𝑘2⁄ ) amongst the first-order 

methods56. Moreover, by adding the sensitivity regularization term, the time spent on beam 

pruning within the SHBOO method is reduced to approximately half of the initial group-

sparsity based BOO method.  
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 It is necessary to clarify that the study only handles range uncertainties and setup 

errors from interfractional setup variations. Other sources of uncertainties such as 

intrafractional respiratory motion and anatomy changes, which heavily affect the beam 

selection process, require separate approaches to tackle. Biological effect is another 

important factor to consider in BOO. In our future work, linear energy transfer (LET) will 

be included in this framework to encourage selecting beams with a higher biological effect 

on the target and lower biological risk on the OARs. 

4.2.5 Conclusion 

 We developed a novel IMPT robust optimization method, which efficiently solved 

robust BOO and FMO in a unified framework, generating plans with superior dosimetry and 

good robustness. 
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5  APPENDIX 



 

128 

THE FISTA ALGORITHM 

 The Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)56, an accelerated 

proximal gradient algorithm, has been successfully utilized to solve all of the problems 

presented in this dissertation. In this appendix, the format of the optimization problem 

required for this algorithm, and line-search procedure, will be described. 

5.1 Optimization Problem Formulation 

The FISTA algorithm solves problems in the following canonical form 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝒙) + 𝑔(𝒙), 

Equation 5-1 

where 𝑓 is a smooth convex function, which is continuously differentiable with Lipschitz 

continuous gradient (∇𝑓); 𝑔 is a function which is possibly nonsmooth, but has a proximal 

operator that can be evaluated efficiently. The proximal operator with step size 𝑡 > 0 for 

function 𝑔 is defined by 

prox𝑡𝑔(𝒙) = argmin
𝒚

  𝑔(𝒚) +
1

2𝑡
‖𝒚 − 𝒙‖2

2. 

Equation 5-2 

To solve an optimization problem with FISTA, the optimization must be rewritten to fit this 

canonical form. All problems in this dissertation can easily be expressed in this canonical 

form.  

5.2 The Line-Search Algorithm 

The implementation of line-search FISTA algorithm is shown below. 
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FISTA with line-search  

Initialize  𝒙𝟎: =  𝟎, 𝒗𝟎: = 𝒙𝟎 , 𝒕𝟎 > 𝟎 ,𝟎 < 𝒓 < 𝟏 

for  𝒌 = 𝟏, 𝟐,… , 𝒏,   do 

            𝒕 ≔ 𝒕𝒌−𝟏/𝒓  

            Repeat 

                  𝜽 ≔ {
 𝟏                                                                                 𝐢𝐟   𝒌 = 𝟏 
𝐩𝐨𝐬𝐢𝐭𝐢𝐯𝐞 𝐫𝐨𝐨𝐭 𝐨𝐟 𝒕𝒌−𝟏𝜽

𝟐 = 𝒕𝜽𝒌−𝟏
𝟐 (𝟏 − 𝜽)         𝐢𝐟   𝒌 > 𝟏

 

                  𝒚 ≔ (𝟏 − 𝜽)𝒙𝒌−𝟏 + 𝜽𝒗𝒌−𝟏 

                  𝒙 ≔ 𝐩𝐫𝐨𝐱𝒕𝒈(𝒚 − 𝒕𝜵𝒇(𝒚)) 

              break if   𝒇(𝒙) ≤ 𝒇(𝒚)+< 𝜵𝒇(𝒚), 𝒙 − 𝒚 > +
𝟏

𝟐𝒕
‖𝒙 − 𝒚‖𝟐

𝟐 

              𝒕 ≔ 𝒓𝒕 

        𝒕𝒌 ≔ 𝒕 

        𝜽𝒌 ≔ 𝜽 

        𝒙𝒌 ≔ 𝒙 

        𝒗𝒌 ≔ 𝒙𝒌 +
𝟏

𝜽𝒌
(𝒙𝒌 − 𝒙𝒌−𝟏) 

end 

return 𝒙 

Table 5-1: Pseudo code for FISTA with line search. 

5.3 Solving Group Sparsity based BOO Problem 

The group sparsity based problems are re-written to fit the canonical form in Equation 5-1. 

The process of re-writing Equation 2-1 is shown in this section as an example.  Solving the 

rest of group-sparsity based problems follows the similar rule. The objective function in 

Equation 2-1 can be re-written in the following format 

𝑓(𝒙) =   Γ(𝐴𝒙), 

𝑔(𝒙) = ∑𝛼𝑏‖𝒙𝑏‖2
𝑝

𝑏∈𝐵

+ 𝐼≥0(𝒙), 
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Equation 5-3 

where 𝐼≥0(𝒙) is an indicator function, defined as 

𝐼≥0(𝒙) = {
0          if 𝒙 ≥ 0
∞       otherwise

 

Equation 5-4 

The gradient of  𝑓(𝒙) is calculated as 

∇𝑓(𝒙) = 𝐴T∇Γ(𝐴𝒙) 

Equation 5-5 

After obtaining the gradient of the function 𝑓, the next step is to derive a formula for the 

proximal operator of the function 𝑔. In the BOO problem, 𝑔(𝒙) is a separable sum: 𝑔(𝒙) =

∑ 𝑔𝑏(𝒙𝑏)
𝐵
𝑏=1 , where 

𝑔𝑏(𝒙𝑏) = ∑𝛼𝑏‖𝒙𝑏‖2
𝑝

𝑏∈𝐵

+ 𝐼≥0(𝒙𝑏) 

Equation 5-6 

It follows from the separable sum rule for proximal operators that the problem evaluating 

the proximal operator of  𝑔(𝒙) reduces to independently evaluating the proximal operators 

of the functions 𝑔𝑏(𝒙𝒃). To simplify notation, we derive an expression for the proximal 

operator of the function ℎ(𝒙) = 𝛼‖𝒙‖2
𝑝 + 𝐼≥0(𝒙). Evaluating the proximal operator of ℎ 

requires solving the optimization problem: 

minimize
𝒙

 𝛼‖𝒙‖2
𝑝 +

1

2𝑡
‖�̂� − 𝒙‖2

2  

subject to 𝒙 ≥ 0 

Equation 5-7 

The proximal operator of function ℎ is: 
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prox𝑡ℎ(𝒙) = prox𝛼𝑡‖∙‖2
𝑝(max (𝒙, 0)) 

Equation 5-8 

There is a known form of proximal operator for both L2,1-norm and L2,1/2-norm155:  

prox𝑡‖∙‖2(𝒙) =  𝒙 − 𝒙 ∙ min (
𝑡

‖𝒙‖2
, 1) 

prox
𝑡 ‖∙‖2

1
2
(𝒙) =

{
 
 

 
 0,                                                                       if 𝑡‖𝒙‖2

−1.5 >
2√6

9

𝒙√
2

√3
sin (

1

3
(arccos (

3√3

4
𝑡‖𝒙‖2

−1.5) +
𝜋

2
)) ,   otherwise

 

Equation 5-9 

By deriving the gradient of function 𝑓 and proximal operator of function 𝑔, the Equation 

2-1 is then readily solved using FISTA.  



 

132 

6 REFERENCES 

 

1.  Khan FM, Gibbons JP. Khan’s the Physics of Radiation Therapy. Lippincott Williams & 

Wilkins; 2014. 

2.  Wilson RR. Radiological use of fast protons. Radiology. 1946;47(July):487-491. 

doi:10.1148/47.5.487 

3.  Hall EJ. Intensity-modulated radiation therapy, protons, and the risk of second 

cancers. Int J Radiat Oncol Biol Phys. 2006;65(1):1-7. 

doi:10.1016/j.ijrobp.2006.01.027 

4.  Kanai T, Kawachi K, Kumamoto Y, et al. Spot scanning system for proton 

radiotherapy. Med Phys. 1980;7(1980):365-369. doi:10.1118/1.594693 

5.  Lomax  a J. Intensity modulation methods for proton radiotherapy. Phys Med Biol. 

1999;44:185–205. doi:10.1088/0031-9155/44/1/014 

6.  Lomax AJ, Böhringer T, Bolsi A, et al. Treatment planning and verification of proton 



 

133 

therapy using spot scanning: initial experiences. Med Phys. 2004;31(11):3150-3157. 

doi:10.1118/1.1779371 

7.  Albertini F, Bolsi A, Lomax AJ, Rutz HP, Timmerman B, Goitein G. Sensitivity of 

intensity modulated proton therapy plans to changes in patient weight. Radiother 

Oncol. 2008;86(2):187-194. doi:10.1016/j.radonc.2007.11.032 

8.  Lomax AJ. Intensity modulated proton therapy and its sensitivity to treatment 

uncertainties 1: The potential effects of calculational uncertainties. Phys Med Biol. 

2008;53(4):1027-1042. doi:10.1088/0031-9155/53/4/014 

9.  Lomax AJ, Boehringer T, Coray A, et al. Intensity modulated proton therapy: A clinical 

example. Med Phys. 2001. doi:10.1118/1.1350587 

10.  Unkelbach J, Chan TCY, Bortfeld T. Accounting for range uncertainties in the 

optimization of intensity modulated proton therapy. Phys Med Biol. 2007;52(10). 

doi:10.1088/0031-9155/52/10/009 

11.  Unkelbach J, Bortfeld T, Martin BC, Soukup M. Reducing the sensitivity of IMPT 

treatment plans to setup errors and range uncertainties via probabilistic treatment 

planning. Med Phys. 2009. doi:10.1118/1.3021139 

12.  Jäkel O, Debus J. Selection of beam angles for radiotherapy of skull base tumours 

using charged particles. Phys Med Biol. 2000;45(5):1229-1241. doi:10.1088/0031-

9155/45/5/311 

13.  Trofimov A, Nguyen PL, Coen JJ, et al. Radiotherapy Treatment of Early-Stage 

Prostate Cancer with IMRT and Protons: A Treatment Planning Comparison. Int J 

Radiat Oncol Biol Phys. 2007;69(2):444-453. doi:10.1016/j.ijrobp.2007.03.018 



 

134 

14.  Kase Y, Yamashita H, Fuji H, et al. A treatment planning comparison of passive-

scattering and intensity-modulated proton therapy for typical tumor sites. J Radiat 

Res. 2012;53(2):272-280. doi:10.1269/jrr.11136 

15.  Steneker M, Lomax A, Schneider U. Intensity modulated photon and proton therapy 

for the treatment of head and neck tumors. Radiother Oncol. 2006;80(2):263-267. 

doi:10.1016/j.radonc.2006.07.025 

16.  DeLuca PM, Wambersie A, Whitmore G. Prescribing, recording, and reporting proton-

beam therapy. J ICRU. 2007. doi:10.1093/jicru/ndm021 

17.  Gerweck LE, Kozin S V. Relative biological effectiveness of proton beams in clinical 

therapy. Radiother Oncol. 1999;50(2):135-142. doi:10.1016/S0167-8140(98)00092-

9 

18.  Paganetti H, Niemierko A, Ancukiewicz M, et al. Relative biological effectiveness 

(RBE) values for proton beam therapy. Int J Radiat Oncol Biol Phys. 2002;53(2):407-

421. doi:10.1016/S0360-3016(02)02754-2 

19.  Paganetti H, Blakely E, Carabe-Fernandez A, et al. Report of the AAPM TG-256 on the 

relative biological effectiveness of proton beams in radiation therapy. Med Phys. 

2019. doi:10.1002/mp.13390 

20.  Dalrymple G V., Lindsay IR, Ghidoni JJ, et al. Some Effects of 138-Mev Protons on 

Primates. Radiat Res. 1966. doi:10.2307/3572210 

21.  Dalrymple G V., Lindsay IR, Hall JD, et al. The Relative Biological Effectiveness of 138-

Mev Protons as Compared to Cobalt-60 Gamma Radiation. Radiat Res. 1966. 

doi:10.2307/3572211 



 

135 

22.  Tepper J, Verhey L, Goitein M, Suit HD, Phil D, Koehler AM. In vivo determinations of 

RBE in a high energy modulated proton beam using normal tissue reactions and 

fractionated dose schedules. Int J Radiat Oncol Biol Phys. 1977;2(11-12):1115-1122. 

doi:10.1016/0360-3016(77)90118-3 

23.  Urano M, Goitein M, Verhey L, Mendiondo O, Suit HD, Koehler A. Relative biological 

effectiveness of a high energy modulated proton beam using a spontaneous murine 

tumor In vivo. Int J Radiat Oncol Biol Phys. 1980;6(9):1187-1193. doi:10.1016/0360-

3016(80)90172-8 

24.  Wouters BG, Lam GK, Oelfke U, Gardey K, Durand RE, Skarsgard LD. Measurements of 

relative biological effectiveness of the 70 MeV proton beam at TRIUMF using Chinese 

hamster V79 cells and the high-precision cell sorter assay. Radiat Res. 

1996;146(2):159-170. doi:10.2307/3579588 

25.  Paganetti H, Goitein M. Biophysical modelling of proton radiation effects based on 

amorphous track models. Int J Radiat Biol. 2001;77(9):911-928. 

doi:10.1080/09553000110066059 

26.  Wilkens JJ, Oelfke U. A phenomenological model for the relative biological 

effectiveness in therapeutic proton beams. Phys Med Biol. 2004;49(13):2811-2825. 

doi:10.1088/0031-9155/49/13/004 

27.  Paganetti H. Relative biological effectiveness (RBE) values for proton beam therapy. 

Variations as a function of biological endpoint, dose, and linear energy transfer. Phys 

Med Biol. 2014;59(22):R419-R472. doi:10.1088/0031-9155/59/22/R419 

28.  Gridley DS, Pecaut MJ, Mao XW, Wroe AJ, Luo-Owen X. Biological Effects of Passive 



 

136 

Versus Active Scanning Proton Beams on Human Lung Epithelial Cells. Technol 

Cancer Res Treat. 2013;14(1):81-98. doi:10.7785/tcrt.2012.500392 

29.  Mishra M V, Khairnar R, Bentzen SM, et al. Proton beam therapy delivered using 

pencil beam scanning vs. passive scattering/uniform scanning for localized prostate 

cancer: Comparative toxicity analysis of PCG 001-09. Clin Transl Radiat Oncol. 

2019;19:80-86. doi:10.1016/j.ctro.2019.08.006 

30.  Unkelbach J, Botas P, Giantsoudi D, Gorissen B, Paganetti H. Reoptimization of 

intensity-modulated proton therapy plans based on linear energy transfer. Int J 

Radiat Oncol Biol Phys. 2016;96(5):1097-1106. doi:10.1016/J.IJROBP.2016.08.038 

31.  An Y, Shan J, Patel SH, et al. Robust intensity-modulated proton therapy to reduce 

high linear energy transfer in organs at risk: Med Phys. 2017;44(12):6138-6147. 

doi:10.1002/mp.12610 

32.  Fjæra LF, Li Z, Ytre-Hauge KS, et al. Linear energy transfer distributions in the 

brainstem depending on tumour location in intensity-modulated proton therapy of 

paediatric cancer. Acta Oncol (Madr). 2017. doi:10.1080/0284186X.2017.1314007 

33.  Giantsoudi D, Adams J, MacDonald SM, Paganetti H. Proton Treatment Techniques for 

Posterior Fossa Tumors: Consequences for Linear Energy Transfer and Dose-Volume 

Parameters for the Brainstem and Organs at Risk. Int J Radiat Oncol Biol Phys. 2017. 

doi:10.1016/j.ijrobp.2016.09.042 

34.  Mohan R, Peeler CR, Guan F, Bronk L, Cao W, Grosshans DR. Radiobiological issues in 

proton therapy. Acta Oncol (Madr). 2017;56(11):1367-1373. 

doi:10.1080/0284186X.2017.1348621 



 

137 

35.  Gu W, O’Connor D, Nguyen D, et al. Integrated beam orientation and scanning-spot 

optimization in intensity-modulated proton therapy for brain and unilateral head 

and neck tumors. Med Phys. 2018. doi:10.1002/mp.12788 

36.  Gu W, Ruan D, Lyu Q, Zou W, Dong L, Sheng K. A Novel Energy Layer Optimization 

Framework for Spot‐Scanning Proton Arc Therapy. Med Phys. 2020. 

doi:10.1002/mp.14083 

37.  Gu W, Ruan D, O’Connor D, et al. Robust optimization for intensity-modulated proton 

therapy with soft spot sensitivity regularization. Med Phys. 2019. 

doi:10.1002/mp.13344 

38.  Gu W, Neph R, Ruan D, Zou W, Dong L, Sheng K. Robust Beam Orientation 

Optimization for Intensity-Modulated Proton Therapy. Med Phys. 2019;0(ja). 

doi:10.1002/mp.13641 

39.  Bortfeld T, Schlegel W. Optimization of beam orientations in radiation therapy: some 

theoretical considerations. Phys Med Biol. 1993;38(2):291-304. doi:10.1088/0031-

9155/38/2/006 

40.  Li Y, Yao J, Yao D. Automatic beam angle selection in IMRT planning using genetic 

algorithm. Phys Med Biol. 2004;49(10):1915-1932. doi:10.1088/0031-

9155/49/10/007 

41.  Pugachev A, Li JG, Boyer AL, et al. Role of beam orientation optimization in intensity-

modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2001;50(2):551-560. 

doi:10.1016/S0360-3016(01)01502-4 

42.  Li Y, Yao D, Yao J, Chen W. A particle swarm optimization algorithm for beam angle 



 

138 

selection in intensity-modulated radiotherapy planning. Phys Med Biol. 

2005;50(15):3491-3514. doi:10.1088/0031-9155/50/15/002 

43.  Djajaputra D, Wu Q, Wu Y, Mohan R. Algorithm and performance of a clinical IMRT 

beam-angle optimization system. Phys Med Biol. 2003;48(19):3191-3212. 

doi:10.1088/0031-9155/48/19/007 

44.  Wang X, Zhang X, Dong L, Liu H, Wu Q, Mohan R. Development of methods for beam 

angle optimization for IMRT using an accelerated exhaustive search strategy. Int J 

Radiat Oncol Biol Phys. 2004;60(4):1325-1337. doi:10.1016/j.ijrobp.2004.06.007 

45.  Dias J, Rocha H, Ferreira B, Lopes MC. IMRT beam angle optimization using 

dynamically dimensioned search. In: IFMBE Proceedings. Vol 42. ; 2014:1-4. 

doi:10.1007/978-3-319-03005-0_1 

46.  Cao W, Lim GJ, Lee A, et al. Uncertainty incorporated beam angle optimization for 

IMPT treatment planning. Med Phys. 2012;39(8):5248-5256. doi:10.1118/1.4737870 

47.  Jia X, Men C, Lou Y, Jiang SB. Beam orientation optimization for intensity modulated 

radiation therapy using adaptive l(2,1)-minimization. Phys Med Biol. 

2011;56(19):6205-6222. doi:10.1088/0031-9155/56/19/004 

48.  Albertini F, Hug EB, Lomax AJ. Is it necessary to plan with safety margins for actively 

scanned proton therapy? Phys Med Biol. 2011;56(14):4399-4413. doi:10.1088/0031-

9155/56/14/011 

49.  Liu W, Zhang X, Li Y, Mohan R. Robust optimization of intensity modulated proton 

therapy. Med Phys. 2012;39(2):1079-1091. doi:10.1118/1.3679340 



 

139 

50.  Thieke C, Bortfeld T, Küfer K-H. Characterization of dose distributions through the 

max and mean dose concept. Acta Oncol. 2002;41(9):158-161. 

doi:10.1080/028418602753669535 

51.  Cisternas E, Mairani A, Ziegenhein P, Jäkel O, Bangert M. matRad – a multi-modality 

open source 3D treatment planning toolkit. In: IFMBE Proceedings. Vol 51. ; 

2015:1608-1611. doi:10.1007/978-3-319-19387-8_391 

52.  Wieser HP, Cisternas E, Wahl N, et al. Development of the open-source dose 

calculation and optimization toolkit matRad. Med Phys. 2017;44(6):2556-2568. 

doi:10.1002/mp.12251 

53.  Romeijn HE, Ahuja RK, Dempsey JF, Kumar A. A Column Generation Approach to 

Radiation Therapy Treatment Planning Using Aperture Modulation. SIAM J Optim. 

2005;15(3):838-862. doi:10.1137/040606612 

54.  Nguyen D, Thomas D, Cao M, O’Connor D, Lamb J, Sheng K. Computerized triplet 

beam orientation optimization for MRI-guided Co-60 radiotherapy. Med Phys. 

2016;43(10):5667-5675. doi:10.1118/1.4963212 

55.  Grégoire V, Mackie TR. State of the art on dose prescription, reporting and recording 

in Intensity-Modulated Radiation Therapy (ICRU report No. 83). 

Cancer/Radiotherapie. 2011;15(6-7):555-559. doi:10.1016/j.canrad.2011.04.003 

56.  Beck A, Teboulle M. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear 

Inverse Problems. SIAM J Imaging Sci. 2009;2(1):183-202. doi:10.1137/080716542 

57.  Liu C, Bhangoo RS, Sio TT, et al. Dosimetric comparison of distal esophageal 

carcinoma plans for patients treated with small-spot intensity-modulated proton 



 

140 

versus volumetric-modulated arc therapies. J Appl Clin Med Phys. 2019. 

doi:10.1002/acm2.12623 

58.  Li X, Liu G, Janssens G, et al. The first prototype of spot-scanning proton arc 

treatment delivery. Radiother Oncol. 2019. doi:10.1016/j.radonc.2019.04.032 

59.  Ding X, Zhou J, Li X, et al. Improving dosimetric outcome for hippocampus and 

cochlea sparing whole brain radiotherapy using spot-scanning proton arc therapy. 

Acta Oncol (Madr). 2019. doi:10.1080/0284186X.2018.1555374 

60.  Liu C, Sio TT, Deng W, et al. Small-spot intensity-modulated proton therapy and 

volumetric-modulated arc therapies for patients with locally advanced non-small-cell 

lung cancer: A dosimetric comparative study. J Appl Clin Med Phys. 2018. 

doi:10.1002/acm2.12459 

61.  Li X, Kabolizadeh P, Yan D, et al. Improve dosimetric outcome in stage III non-small-

cell lung cancer treatment using spot-scanning proton arc (SPArc) therapy. Radiat 

Oncol. 2018. doi:10.1186/s13014-018-0981-6 

62.  Ding X, Li X, Qin A, et al. Have we reached proton beam therapy dosimetric 

limitations?–A novel robust, delivery-efficient and continuous spot-scanning proton 

arc (SPArc) therapy is to improve the dosimetric outcome in treating prostate 

cancer. Acta Oncol (Madr). 2018. doi:10.1080/0284186X.2017.1358463 

63.  Ding X, Li X, Zhang JM, Kabolizadeh P, Stevens C, Yan D. Spot-Scanning Proton Arc 

(SPArc) Therapy: The First Robust and Delivery-Efficient Spot-Scanning Proton Arc 

Therapy. Int J Radiat Oncol Biol Phys. 2016. doi:10.1016/j.ijrobp.2016.08.049 

64.  Rah JE, Kim GY, Oh DH, et al. A treatment planning study of proton arc therapy for 



 

141 

para-aortic lymph node tumors: Dosimetric evaluation of conventional proton 

therapy, proton arc therapy, and intensity modulated radiotherapy. Radiat Oncol. 

2016. doi:10.1186/s13014-016-0717-4 

65.  Dink D, Langer MP, Rardin RL, Pekny JF, Reklaitis G V., Saka B. Intensity modulated 

radiation therapy with field rotation-a time-varying fractionation study. Health Care 

Manag Sci. 2012. doi:10.1007/s10729-012-9190-2 

66.  O’Connor D, Yu V, Nguyen D, Ruan D, Sheng K. Fraction-variant beam orientation 

optimization for non-coplanar IMRT. Phys Med Biol. 2018. doi:10.1088/1361-

6560/aaa94f 

67.  Girdhani S, Abel E, Katsis A, et al. Abstract LB-280: FLASH: A novel paradigm 

changing tumor irradiation platform that enhances therapeutic ratio by reducing 

normal tissue toxicity and activating immune pathways. In: ; 2019. 

doi:10.1158/1538-7445.sabcs18-lb-280 

68.  Favaudon V, Caplier L, Monceau V, et al. Ultrahigh dose-rate FLASH irradiation 

increases the differential response between normal and tumor tissue in mice. Sci 

Transl Med. 2014. doi:10.1126/scitranslmed.3008973 

69.  Montay-Gruel P, Petersson K, Jaccard M, et al. Irradiation in a flash: Unique sparing of 

memory in mice after whole brain irradiation with dose rates above 100 Gy/s. 

Radiother Oncol. 2017. doi:10.1016/j.radonc.2017.05.003 

70.  Unkelbach J, Zeng C, Engelsman M. Simultaneous optimization of dose distributions 

and fractionation schemes in particle radiotherapy. Med Phys. 2013. 

doi:10.1118/1.4816658 



 

142 

71.  Unkelbach J, Papp D. The emergence of nonuniform spatiotemporal fractionation 

schemes within the standard BED model. Med Phys. 2015. doi:10.1118/1.4916684 

72.  Unkelbach J, Papp D, Gaddy MR, Andratschke N, Hong T, Guckenberger M. 

Spatiotemporal fractionation schemes for liver stereotactic body radiotherapy. 

Radiother Oncol. 2017. doi:10.1016/j.radonc.2017.09.003 

73.  MacKin D, Li Y, Taylor MB, et al. Improving spot-scanning proton therapy patient 

specific quality assurance with HPlusQA, a second-check dose calculation engine. 

Med Phys. 2013. doi:10.1118/1.4828775 

74.  Zhu XR, Li Y, Mackin D, et al. Towards effective and efficient patient-specific quality 

assurance for spot scanning proton therapy. Cancers (Basel). 2015. 

doi:10.3390/cancers7020631 

75.  Meier G, Besson R, Nanz A, Safai S, Lomax AJ. Independent dose calculations for 

commissioning, quality assurance and dose reconstruction of PBS proton therapy. 

Phys Med Biol. 2015. doi:10.1088/0031-9155/60/7/2819 

76.  Li H, Sahoo N, Poenisch F, et al. Use of treatment log files in spot scanning proton 

therapy as part of patient-specific quality assurance. Med Phys. 2013. 

doi:10.1118/1.4773312 

77.  Scandurra D, Albertini F, Van Der Meer R, et al. Assessing the quality of proton PBS 

treatment delivery using machine log files: Comprehensive analysis of clinical 

treatments delivered at PSI Gantry 2. Phys Med Biol. 2016. doi:10.1088/0031-

9155/61/3/1171 

78.  Belosi MF, van der Meer R, Garcia de Acilu Laa P, Bolsi A, Weber DC, Lomax AJ. 



 

143 

Treatment log files as a tool to identify treatment plan sensitivity to inaccuracies in 

scanned proton beam delivery. Radiother Oncol. 2017. 

doi:10.1016/j.radonc.2017.09.037 

79.  McNamara AL, Schuemann J, Paganetti H. A phenomenological relative biological 

effectiveness (RBE) model for proton therapy based on all published in vitro cell 

survival data. Phys Med Biol. 2015;60(21):8399-8416. doi:10.1088/0031-

9155/60/21/8399 

80.  Carabe-Fernandez A, Dale RG, Jones B. The incorporation of the concept of minimum 

RBE (RbEmin) into the linear-quadratic model and the potential for improved 

radiobiological analysis of high-LET treatments. Int J Radiat Biol. 2007;83(1):27-39. 

http://www.ncbi.nlm.nih.gov/pubmed/17357437. 

81.  Wedenberg M, Lind BK, Hårdemark B. A model for the relative biological 

effectiveness of photons is a predictor for the sensitivity to LET changes. Acta Oncol 

(Madr). 2012;52(June 2012):1-9. doi:10.3109/0284186X.2012.705892 

82.  Jones B, McMahon SJ, Prise KM. The Radiobiology of Proton Therapy: Challenges and 

Opportunities Around Relative Biological Effectiveness. Clin Oncol. 2018;30(5):285-

292. doi:10.1016/j.clon.2018.01.010 

83.  Wilkens JJ, Oelfke U. Optimization of radiobiological effects in intensity modulated 

proton therapy. Med Phys. 2005;32(2):455-465. doi:10.1118/1.1851925 

84.  Frese MC, Wilkens JJ, Huber PE, Jensen AD, Oelfke U, Taheri-Kadkhoda Z. Application 

of constant vs. variable relative biological effectiveness in treatment planning of 

intensity-modulated proton therapy. Int J Radiat Oncol Biol Phys. 2011;79(1):80-88. 



 

144 

doi:10.1016/j.ijrobp.2009.10.022 

85.  Guan F, Geng C, Ma D, et al. RBE model-based biological dose optimization for proton 

radiobiology studies. Int J Part Ther. 2019. doi:10.14338/IJPT-18-00007.1 

86.  Takada K, Sato T, Kumada H, et al. Validation of the physical and RBE-weighted dose 

estimator based on PHITS coupled with a microdosimetric kinetic model for proton 

therapy. J Radiat Res. 2018. doi:10.1093/jrr/rrx057 

87.  Grassberger C, Paganetti H. Elevated LET components in clinical proton beams. Phys 

Med Biol. 2011;56(20):6677-6691. doi:10.1088/0031-9155/56/20/011 

88.  Wilkens JJ, Oelfke U. Analytical linear energy transfer calculations for proton therapy. 

Med Phys. 2003;30(5):806-815. doi:10.1118/1.1567852 

89.  Wilkens JJ, Oelfke U. Three-dimensional LET calculations for treatment planning of 

proton therapy. Z Med Phys. 2004. doi:10.1078/0939-3889-00191 

90.  Sanchez-Parcerisa D, Cortés-Giraldo MA, Dolney D, Kondrla M, Fager M, Carabe A. 

Analytical calculation of proton linear energy transfer in voxelized geometries 

including secondary protons. Phys Med Biol. 2016;61(4):1705-1721. 

doi:10.1088/0031-9155/61/4/1705 

91.  Hirayama S, Matsuura T, Ueda H, et al. An analytical dose-averaged LET calculation 

algorithm considering the off-axis LET enhancement by secondary protons for spot-

scanning proton therapy. Med Phys. 2018. doi:10.1002/mp.12991 

92.  Cortés-Giraldo MA, Carabe A. A critical study of different Monte Carlo scoring 

methods of dose average linear-energy-transfer maps calculated in voxelized 



 

145 

geometries irradiated with clinical proton beams. Phys Med Biol. 2015. 

doi:10.1088/0031-9155/60/7/2645 

93.  Perl J, Shin J, Faddegon B, Paganetti H. TOPAS : An innovative proton Monte Carlo 

platform for research. Med Phys. 2012;39(11):6818-6837. 

http://dx.doi.org/10.1118/1.4758060. 

94.  Grzanka L, Ardenfors O, Bassler N. Monte carlo simulations of spatial let distributions 

in clinical proton beams. Radiat Prot Dosimetry. 2018. doi:10.1093/RPD/NCX272 

95.  Qin N, Botas P, Giantsoudi D, et al. Recent developments and comprehensive 

evaluations of a GPU-based Monte Carlo package for proton therapy. Phys Med Biol. 

2016. doi:10.1088/0031-9155/61/20/7347 

96.  Grassberger C, Trofimov A, Lomax A, Paganetti H. Variations in linear energy transfer 

within clinical proton therapy fields and the potential for biological treatment 

planning. Int J Radiat Oncol Biol Phys. 2011;80(5):1559-1566. 

doi:10.1016/j.ijrobp.2010.10.027 

97.  Wan Chan Tseung HS, Ma J, Kreofsky CR, Ma DJ, Beltran C. Clinically Applicable Monte 

Carlo–based Biological Dose Optimization for the Treatment of Head and Neck 

Cancers With Spot-Scanning Proton Therapy. Int J Radiat Oncol Biol Phys. 

2016;95(5):1535-1543. doi:10.1016/j.ijrobp.2016.03.041 

98.  Fager M, Toma-Dasu I, Kirk M, et al. Linear energy transfer painting with proton 

therapy: A means of reducing radiation doses with equivalent clinical effectiveness. 

Int J Radiat Oncol Biol Phys. 2015;91(5):1057-1064. 

doi:10.1016/j.ijrobp.2014.12.049 



 

146 

99.  Bassler N, Jäkel O, Søndergaard CS, Petersen JB. Dose- and LET-painting with particle 

therapy. Acta Oncol (Madr). 2010;49(7):1170-1176. 

doi:10.3109/0284186X.2010.510640 

100.  Giantsoudi D, Grassberger C, Craft D, Niemierko A, Trofimov A, Paganetti H. Linear 

energy transfer-guided optimization in intensity modulated proton therapy: 

Feasibility study and clinical potential. Int J Radiat Oncol Biol Phys. 2013;87(1):216-

222. doi:10.1016/j.ijrobp.2013.05.013 

101.  Cao W, Khabazian A, Yepes PP, et al. Linear energy transfer incorporated intensity 

modulated proton therapy optimization. Phys Med Biol. 2018. doi:10.1088/1361-

6560/aa9a2e 

102.  Bai X, Lim G, Grosshans D, Mohan R, Cao W. Robust optimization to reduce the impact 

of biological effect variation from physical uncertainties in intensity-modulated 

proton therapy. Phys Med Biol. 2019. doi:10.1088/1361-6560/aaf5e9 

103.  Inaniwa T, Kanematsu N, Noda K, Kamada T. Treatment planning of intensity 

modulated composite particle therapy with dose and linear energy transfer 

optimization. Phys Med Biol. 2017. doi:10.1088/1361-6560/aa68d7 

104.  Deasy J, Mackie T, DeLuca P. Method and apparatus for proton therapy. 1997. 

105.  Sandison GA, Papiez E, Block C, Morphis J. Phantom assessment of lung dose from 

proton arc therapy. Int J Radiat Oncol Biol Phys. 1997. doi:10.1016/S0360-

3016(97)00059-X 

106.  Schreuder AN, Shamblin J. Proton therapy delivery: what is needed in the next ten 

years? Br J Radiol. 2019. doi:10.1259/bjr.20190359 



 

147 

107.  Pedroni E, Bacher R, Blattmann H, et al. The 200-Mev proton therapy project at the 

Paul Scherrer Institute: Conceptual design and practical realization. Med Phys. 1995. 

doi:10.1118/1.597522 

108.  Pedroni E, Scheib S, Böhringer T, et al. Experimental characterization and physical 

modelling of the dose distribution of scanned proton pencil beams. Phys Med Biol. 

2005. doi:10.1088/0031-9155/50/3/011 

109.  Smith A, Gillin M, Bues M, et al. The M. D. Anderson proton therapy system. Med Phys. 

2009. doi:10.1118/1.3187229 

110.  Gillin MT, Sahoo N, Bues M, et al. Commissioning of the discrete spot scanning proton 

beam delivery system at the University of Texas M.D. Anderson Cancer Center, 

Proton Therapy Center, Houston. Med Phys. 2010. doi:10.1118/1.3259742 

111.  Zhu XR, Sahoo N, Zhang X, et al. Intensity modulated proton therapy treatment 

planning using single-field optimization: The impact of monitor unit constraints on 

plan quality. Med Phys. 2010. doi:10.1118/1.3314073 

112.  Cao W, Lim G, Liao L, et al. Proton energy optimization and reduction for intensity-

modulated proton therapy. Phys Med Biol. 2014. doi:10.1088/0031-

9155/59/21/6341 

113.  Van De Water S, Kooy HM, Heijmen BJM, Hoogeman MS. Shortening delivery times of 

intensity modulated proton therapy by reducing proton energy layers during 

treatment plan optimization. Int J Radiat Oncol Biol Phys. 2015. 

doi:10.1016/j.ijrobp.2015.01.031 

114.  Seco J, Gu G, Marcelos T, Kooy H, Willers H. Proton arc reduces range uncertainty 



 

148 

effects and improves conformality compared with photon volumetric modulated arc 

therapy in stereotactic body radiation therapy for non-small cell lung cancer. Int J 

Radiat Oncol Biol Phys. 2013. doi:10.1016/j.ijrobp.2013.04.048 

115.  Rechner LA, Howell RM, Zhang R, Etzel C, Lee AK, Newhauser WD. Risk of radiogenic 

second cancers following volumetric modulated arc therapy and proton arc therapy 

for prostate cancer. Phys Med Biol. 2012. doi:10.1088/0031-9155/57/21/7117 

116.  Flynn RT, Barbee DL, Mackie TR, Jeraj R. Comparison of intensity modulated x-ray 

therapy and intensity modulated proton therapy for selective subvolume boosting: A 

phantom study. Phys Med Biol. 2007. doi:10.1088/0031-9155/52/20/001 

117.  Oelfke U, Bortfeld T. Intensity modulated radiotherapy with charged particle beams: 

Studies of inverse treatment planning for rotation therapy. Med Phys. 2000. 

doi:10.1118/1.599002 

118.  Sanchez-Parcerisa D, Kirk M, Fager M, et al. Range optimization for mono- and bi-

energetic proton modulated arc therapy with pencil beam scanning. Phys Med Biol. 

2016. doi:10.1088/0031-9155/61/21/N565 

119.  Blanco Kiely JP, White BM. Dosimetric feasibility of single-energy proton modulated 

arc therapy for treatment of chordoma at the skull base. Acta Oncol (Madr). 2016. 

doi:10.3109/0284186X.2016.1170199 

120.  Langner UW, Eley JG, Guerrero M, et al. A method to deliver energy modulated planar 

proton Arc therapy (EMPPAT). J Prot Ther. 2017;3(312). 

121.  Otto K. Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys. 

2008. doi:10.1118/1.2818738 



 

149 

122.  Ding X, Li X, Liu G, Stevens C, Yan D, Kabolizadeh P. PO-0916 Energy layer switching 

sequence optimization algorithm for an efficiency proton arc therapy delivery. 

Radiother Oncol. 2019. doi:10.1016/s0167-8140(19)31336-2 

123.  Park PC, Zhu XR, Lee AK, et al. A beam-specific planning target volume (PTV) design 

for proton therapy to account for setup and range uncertainties. Int J Radiat Oncol 

Biol Phys. 2012;82(2). doi:10.1016/j.ijrobp.2011.05.011 

124.  Bangert M, Hennig P, Oelfke U. Analytical probabilistic modeling for radiation 

therapy treatment planning. Phys Med Biol. 2013. doi:10.1088/0031-

9155/58/16/5401 

125.  Wahl N, Hennig P, Wieser HP, Bangert M. Efficiency of analytical and sampling-based 

uncertainty propagation in intensity-modulated proton therapy. Phys Med Biol. 2017. 

doi:10.1088/1361-6560/aa6ec5 

126.  Gordon JJ, Sayah N, Weiss E, Siebers J V. Coverage optimized planning: Probabilistic 

treatment planning based on dose coverage histogram criteria. Med Phys. 2010. 

doi:10.1118/1.3273063 

127.  Pflugfelder D, Wilkens JJ, Szymanowski H, Oelfke U. Quantifying lateral tissue 

heterogeneities in hadron therapy. Med Phys. 2007;34(4):1506-1513. 

doi:10.1118/1.2710329 

128.  Bueno M, Paganetti H, Duch MA, Schuemann J. An algorithm to assess the need for 

clinical Monte Carlo dose calculation for small proton therapy fields based on 

quantification of tissue heterogeneity. Med Phys. 2013;40(8). doi:10.1118/1.4812682 

129.  Toramatsu C, Inaniwa T. Beam angle selection incorporation of anatomical 



 

150 

heterogeneities for pencil beam scanning charged-particle therapy. Phys Med Biol. 

2016;61(24):8664-8675. doi:10.1088/1361-6560/61/24/8664 

130.  Liu W, Mohan R, Park P, et al. Dosimetric benefits of robust treatment planning for 

intensity modulated proton therapy for base-of-skull cancers. Pract Radiat Oncol. 

2014. doi:10.1016/j.prro.2013.12.001 

131.  Liu W, Frank SJ, Li X, Li Y, Zhu RX, Mohan R. PTV-based IMPT optimization 

incorporating planning risk volumes vs robust optimization. Med Phys. 2013. 

doi:10.1118/1.4774363 

132.  Pflugfelder D, Wilkens JJ, Oelfke U. Worst case optimization: A method to account for 

uncertainties in the optimization of intensity modulated proton therapy. Phys Med 

Biol. 2008;53(6):1689-1700. doi:10.1088/0031-9155/53/6/013 

133.  Fredriksson A, Forsgren A, Hårdemark B. Minimax optimization for handling range 

and setup uncertainties in proton therapy. Med Phys. 2011;38(3):1672-1684. 

doi:10.1118/1.3556559 

134.  Fredriksson A, Bokrantz R. A critical evaluation of worst case optimization methods 

for robust intensity-modulated proton therapy planning. Med Phys. 2014;41(8). 

doi:10.1118/1.4883837 

135.  Chen W, Unkelbach J, Trofimov A, et al. Including robustness in multi-criteria 

optimization for intensity-modulated proton therapy. Phys Med Biol. 

2012;57(3):591-608. doi:10.1088/0031-9155/57/3/591 

136.  Stuschke M, Kaiser A, Pöttgen C, Lübcke W, Farr J. Potentials of robust intensity 

modulated scanning proton plans for locally advanced lung cancer in comparison to 



 

151 

intensity modulated photon plans. Radiother Oncol. 2012;104(1):45-51. 

doi:10.1016/j.radonc.2012.03.017 

137.  Casiraghi M, Albertini F, Lomax AJ. Advantages and limitations of the “worst case 

scenario” approach in IMPT treatment planning. Phys Med Biol. 2013. 

doi:10.1088/0031-9155/58/5/1323 

138.  Li Y, Niemela P, Liao L, et al. Selective robust optimization: A new intensity-

modulated proton therapy optimization strategy. Med Phys. 2015. 

doi:10.1118/1.4923171 

139.  Unkelbach J, Alber M, Bangert M, et al. Robust radiotherapy planning. Phys Med Biol. 

2018. doi:10.1088/1361-6560/aae659 

140.  Xing L, Boyd S. Real-Time Radiation Treatment Planning with Optimality Guarantees 

via Cluster and Bound Methods Problem description. 2017:1-24. 

141.  Chambolle A, Pock T. A first-order primal-dual algorithm for convex problems with 

applications to imaging. J Math Imaging Vis. 2011. doi:10.1007/s10851-010-0251-1 

142.  van de Water S, van Dam I, Schaart DR, Al-Mamgani A, Heijmen BJM, Hoogeman MS. 

The price of robustness; impact of worst-case optimization on organ-at-risk dose and 

complication probability in intensity-modulated proton therapy for oropharyngeal 

cancer patients. Radiother Oncol. 2016;120(1):56-62. 

doi:10.1016/j.radonc.2016.04.038 

143.  Shan J, Sio TT, Liu C, Schild SE, Bues M, Liu W. A novel and individualized robust 

optimization method using normalized dose interval volume constraints (NDIVC) for 

intensity-modulated proton radiotherapy. Med Phys. 2018;0(0). 



 

152 

doi:10.1002/mp.13276 

144.  Liu W, Li Y, Li X, Cao W, Zhang X. Influence of robust optimization in intensity-

modulated proton therapy with different dose delivery techniques. Med Phys. 2012. 

doi:10.1118/1.4711909 

145.  Cao W, Lim GJ, Li Y, Zhu XR, Zhang X. Improved beam angle arrangement in intensity 

modulated proton therapy treatment planning for localized prostate cancer. Cancers 

(Basel). 2015. doi:10.3390/cancers7020574 

146.  Lim GJ, Kardar L, Cao W. A hybrid framework for optimizing beam angles in radiation 

therapy planning. Ann Oper Res. 2014. doi:10.1007/s10479-014-1564-z 

147.  Liao L, Lim GJ, Li Y, et al. Robust Optimization for Intensity Modulated Proton 

Therapy Plans with Multi-Isocenter Large Fields. Int J Part Ther. 2016. 

doi:10.14338/ijpt-16-00012.1 

148.  Liu W, Frank SJ, Li X, et al. Effectiveness of robust optimization in intensity-

modulated proton therapy planning for head and neck cancers. Med Phys. 2013. 

doi:10.1118/1.4801899 

149.  Liu W, Liao Z, Schild SE, et al. Impact of respiratory motion on worst-case scenario 

optimized intensity modulated proton therapy for lung cancers. Pract Radiat Oncol. 

2015. doi:10.1016/j.prro.2014.08.002 

150.  Li H, Zhang X, Park P, et al. Robust optimization in intensity-modulated proton 

therapy to account for anatomy changes in lung cancer patients. Radiother Oncol. 

2015. doi:10.1016/j.radonc.2015.01.017 



 

153 

151.  Van Der Voort S, Van De Water S, Perkó Z, Heijmen B, Lathouwers D, Hoogeman M. 

Robustness Recipes for Minimax Robust Optimization in Intensity Modulated Proton 

Therapy for Oropharyngeal Cancer Patients. Int J Radiat Oncol Biol Phys. 2016. 

doi:10.1016/j.ijrobp.2016.02.035 

152.  Van Dijk L V., Steenbakkers RJHM, Ten Haken B, et al. Robust Intensity Modulated 

Proton Therapy (IMPT) increases estimated clinical benefit in head and neck cancer 

patients. PLoS One. 2016. doi:10.1371/journal.pone.0152477 

153.  Safai S, Bula C, Meer D, Pedroni E. Improving the precision and performance of 

proton pencil beam scanning. Transl Cancer Res. 2012;1(3). 

http://tcr.amegroups.com/article/view/599. 

154.  Gottschalk B, Koehler AM, Schneider RJ, Sisterson JM, Wagner MS. Multiple Coulomb 

scattering of 160 MeV protons. Nucl Inst Methods Phys Res B. 1993. 

doi:10.1016/0168-583X(93)95944-Z 

155.  Moellenhoff T, Strekalovskiy E, Möller M, Cremers D. Low Rank Priors for Color 

Image Regularization. Submitted. 2014:1-14. doi:10.1007/978-3-319-14612-6_10 

 




