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Abstract 

 

The genomic revolution of the last twenty years has launched the biosciences into a new 

frontier. For scientists working on many organisms, the availability of a genome 

sequence has dramatically accelerated research. The effects have been profound: 

Genetic engineering is now standard laboratory practice; evolutionary biologists can 

trace entire genomes; and genetic risk factors have been defined for many human 

conditions. However, our rapidly accelerating ability to collect and assemble DNA 

sequence information has greatly outpaced our ability to assign biological meaning to it. 

This imbalance creates a need for high-throughput methods aimed at developing leads 

to gene function: phenomic technologies. Phenomic technologies seek to associate DNA 

sequences with phenotypes in a high-throughput manner to gain a functional 

understanding of genetic code. 

 

Bacteria are ideal candidates for phenomic analyses because of their amenability to 

genetic manipulation and ease at which they can be grown and analyzed under varying 

parameters in-vitro.  In addition, even the best-studied prokaryotes like E. coli lack 

functional annotation for a large fraction of their genes.  Therefore, bacteria present 

excellent experimental systems to establish the power of phenomic approaches to 

generate testable hypotheses of gene function en masse. 

 

Using E. coli as proof-of-principle, we show that combining large-scale phenomics with 

quantitative fitness measurements provides a high quality dataset, rich in discovery. The 

identification of >10,000 growth phenotypes allowed us to study gene essentiality, 

discover leads for gene function and drug action, and understand higher-order 

organization of the bacterial chromosome. We highlight insights concerning a gene 
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involved in multiple antibiotic resistance and provide information about synergy of a 

broadly used combinatory antibiotic therapy, trimethoprim and sulfonamides. This 

dataset, publicly available at http://ecoliwiki.net/tools/chemgen/, is a valuable resource 

for both the microbiological and bioinformatic communities as it provides high confidence 

associations between hundreds of annotated and uncharacterized genes as well as 

inferences about the mode-of-action of several poorly understood drugs. This approach 

can be used for all culturable microbes with available ordered mutant libraries. 
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Chapter 1: Introduction to Phenomics 
 
 

I have researched and written this chapter independently.  All figures are my original 
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Introduction 

The genomic revolution of the last twenty years has launched the biosciences into a new 

frontier. For scientists working on many organisms, the availability of a genome 

sequence has dramatically accelerated research. The effects have been profound: 

Genetic engineering is now standard laboratory practice; evolutionary biologists can 

trace entire genomes; and genetic risk factors have been defined for many human 

conditions. However, our rapidly accelerating ability to collect and assemble DNA 

sequence information has greatly outpaced our ability to assign biological meaning to it. 

This imbalance creates a need for high-throughput methods aimed at developing leads 

to gene function: phenomic technologies. Phenomic technologies seek to associate DNA 

sequences with phenotypes in a high-throughput manner to gain a functional 

understanding of genetic code. In general, phenomic technologies require: 1.) a method 

to create genomic variation; 2.) an ability to adjust the experimental environment, and 3.) 

a technique for observing and recording the phenotypes of interest (Fig. 1).  

 

Figure 1. The cornerstones of Phenomic Analyses.  All phenomic approaches require a.)  a 
method to create a genomically-variable strain collection.  Here, five isogenic mutants are 
depicted as m1-m5.  b.) a means to vary the experimental environment., and c.) a technology to 
capture and record condition-gene interactions (phenotypes), depicted here as red dotted lines. 
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Bacteria are obvious candidates for phenomics because there are easy ways to meet 

each phenomics requirement. Researchers have been manipulating bacterial genomes 

for more than 50 years using chemical and transposon mutagenesis, and, in some 

species, targeted chromosomal engineering. In addition to the relative ease of genetic 

engineering, bacteria do not present dosage or zygosity issues, as they are haploid 

organisms. Thus, the interpretation of genotype-phenotype relationships is relatively 

straightforward. Manipulating the environment of culturable bacteria is also quite simple. 

Chemical and drug stresses can be mixed directly into rich media, metabolic conditions 

can be tuned within defined media, and environmental factors like temperature, gas, and 

humidity can also be easily adjusted in incubators. In-vivo analyses benefit from tools 

like germ-free and disease model mice. Techniques for capturing phenotypes resulting 

from genome-environment interactions have developed quickly over the last ten years. 

Bacterial phenomic studies have now been published using a variety of readouts: colony 

size, growth rate, cellular respiration, strain abundance, survival, host colonization, and 

host clearance are at the beginning of a growing list. In all, a variety of options exist to 

manipulate bacterial genomes, control growth environments, and read out phenotypes in 

a high-throughput manner. The suite of available tools, and the unique biological 

qualities of bacteria, position them as ideal subjects for developing new phenomic 

technologies. 

 

This chapter will begin with a review of experimental technologies utilized in each of the 

three cornerstones of phenomics: creating genomic variation, adjusting growth 

environment, and capturing phenotypes. We briefly discuss the computational strategies 

used to analyze phenomic data, and then turn to a series of case studies that represent 

both the breadth and power of phenomic analyses in bacteria. We conclude with a look 

at the future and the coming advances in bacterial phenomics. 
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Experimental Technologies 

 

Creating Genomic Variation 

Bacterial phenomic approaches generally begin with the assembly of a genetically 

variable strain library, which is then screened or selected under a variety of growth 

conditions to search for specific condition-gene interactions, or phenotypes. Key to these 

strategies is that the genetic variability between strains is known or easily quantifiable, 

and as limited as possible. Thus, engineered libraries based on the techniques reviewed 

below should be constructed in a consistent strain background. Approaches based on 

natural genetic variation should put a premium on describing as much of the variation 

between strains as possible. This way, when phenotypes are detected, they can be 

traced to the known genetic variant(s) with high confidence. If significant genetic 

variability exists between strains in the same library (i.e. if mutant strains were 

constructed in varying strain backgrounds), it can be nearly impossible to detect 

meaningful condition-gene interactions. 

 

There are several ways to establish genetic diversity for the screen, but all engineered 

genetic modifications can be classified as either loss-of-function (LOF) or gain-of-

function (GOF). Simply put, LOF genetic approaches reduce the expression or activity of 

genomic DNA sequences, while GOF approaches either increase the function of native 

genes through overexpression or previously characterized GOF alleles, or add function 

by introducing non-native (heterologous) sequences into the cell. LOF mutant libraries 

are the most common means to establish genetic diversity for phenomic screens in 

bacteria, as LOF genetic analyses have a long history of revealing phenotypes that 

ultimately point toward gene function. GOF approaches based on overexpression have 

been widely used to search for drug-target relationships, while those based on 
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heterologous expression have been employed in functional metagenomic applications. 

In this section, we first review each of the seven methodologies currently used to 

establish genomic variation in phenomics and then explore whether the resulting 

mutants are archived or pooled, whether they are used for screens or selections, and the 

relative merits of each strategy. 

 

1.) Transposon Mutagenesis 

Transposon mutagenesis is widely employed to generate mutant libraries. Here, a 

transposon sequence containing a selectable marker is randomly inserted into the 

genome by a transposase enzyme. For competent bacteria, the selectable marker can 

be transposed into the host genome in-vitro, followed by a transformation and selection 

procedure. For less competent bacteria, the transposon and transposase are encoded 

on a plasmid transformed into host cells, where translation of the transposase enzyme, 

and subsequent insertion of the transposon DNA into the host genome occur in-vivo. 

selection is then carried out to purify cells that have received a transposon insertion. 

Transposon mutagenesis technologies are reviewed in (Mazurkiewicz et al., 2006).  

 

Most random transposon insertions occur in a coding region because of the high density 

of ORFs in bacterial genomes. Occasionally, transposon insertions occur in intergenic 

and promoter regions. Insertions of this type may have interesting genetic effects 

beyond the complete loss-of-function phenotype offered by engineered deletion mutants 

and may also reveal previously unannotated functional elements. However, the 

randomness of transposon mutagenesis also presents challenges: the genomic insertion 

sites must be identified; follow-up experiments are necessary to determine whether 

insertions yield LOF or GOF proteins; and the “ average” phenotype of independent 

insertions within a single gene must be determined. The issue of polarity is discussed in 
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targeted chromosomal engineering, and the strategies for mapping insertion sites are 

discussed in the pooled screening technology section.  

 

2.) Targeted Chromosomal Engineering 

Genetic engineering of the chromosome via natural competence or induced 

recombineering is possible in some bacterial species. For these, many options exist for 

building LOF libraries. The most straightforward is to build a single-gene knockout library 

(Baba et al., 2006; de Berardinis et al., 2008; Santiviago et al., 2009b). In these libraries, 

a single gene is deleted in each strain, covering all nonessential genes of the genome.  

The gene is replaced with an antibiotic resistance cassette for selection, and this 

cassette can also contain a DNA barcode for use in pooled approaches (discussed 

below). While comprehensive single-gene knockout libraries have proven to be 

extremely powerful tools in many organisms (Nichols et al., 2011; Roguev et al., 2008; 

Santiviago et al., 2009a; Schuldiner et al., 2006), they are inherently limited by the 

annotation of the target genome. More specifically, functional DNA sequences yet to be 

annotated, like those coding for small proteins or small RNAs, will not be interrogated by 

most targeted engineering approaches. Herein lies a central tradeoff in targeted vs. 

random mutagenesis: targeted knockouts are clean (complete or controlled LOF), while 

random mutagenesis can reveal previously undetected functional sequences. Both 

random mutagenesis strategies and targeted knockouts may have unanticipated 

transcriptional and/or translational polar effects due to operon structure, potentially 

clouding interpretation of phenotypes. Follow-up studies are essential to verify the 

suspected genotype-phenotype relationship. 

 

Chromosomal engineering is also used to modulate gene expression. In trackable 

multiplex recombineering (TRMR) (Warner et al., 2010), a synthetic promoter and 
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ribosome-binding site (RBS) is recombined into the chromosome to replace the native 

promoter of a gene. These constructs may encode strong promoter/RBS sequences 

conferring gain-of-function (GOF), or weak ones resulting in LOF. In addition, it is 

possible to knock in tunable promoter sequences, allowing for analysis of mutant strains 

under various promoter activities on a genome-wide scale.  

 

It is also possible to establish genetic variability in the strain library through collection 

and manipulation of previously constructed alleles: point mutations, small deletions, 

insertions, truncations, etc. Such alleles can be either LOF or GOF, and need not be 

previously functionally characterized. Regardless, it is essential that the alleles be 

transferred into a common strain background by either phage transduction or targeted 

chromosomal engineering to maintain an isogenic library (Nichols et al., 2011). 

 

3.) Antisense RNA 

In recent years, antisense RNA (asRNA) has been an effective tool to knockdown gene 

expression in some Gram-positive bacteria (Donald et al., 2009; Huber et al., 2009; 

Phillips et al., 2011). Very recently, the first asRNA-based screen in Gram-negative 

bacteria has been reported (Meng et al., 2012). Thus far, all approaches are plasmid-

based, with expression of the targeted asRNA induced by an exogenous small molecule. 

Presumably, the asRNA transcribed from the plasmid base pairs with its complementary 

message, and either causes transcript degradation or interferes directly with ribosome 

binding. Because a variety of asRNA mechanisms exist (and many asRNAs are 

ineffective), asRNAs must be screened and validated before being used in a phenomic 

screen or selection. Because asRNA mechanisms and effectiveness are poorly 

understood in bacteria, there is an “off target” caveat to all phenotypes. The effects of a 

single asRNA may reach beyond reduction of its target mRNA levels and impact the 
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transcription/translation of other genes in the cellular network. Therefore, phenotypes 

detected using asRNA approaches must be verified through careful follow-up studies. In 

addition, all asRNA strains should be analyzed for response to the inducer molecule. 

Differential sensitivity across strains can complicate strain fitness measurements, 

especially in pooled approaches. One effective strategy to normalize for this effect is to 

pool only those strains sharing the same response kinetics to the inducer molecule 

(Donald et al., 2009). 

 

4.) Chemical Mutagenesis 

Many bacterial species are culturable yet lack genetic tools. For these, chemical 

mutagenesis can be the only laboratory means to generate genomic diversity. Chemical 

mutagenesis has not previously been useful for phenomics, because of the lack of a 

high throughput methodology to identify base changes. However, the increased 

efficiency and cost effectiveness of whole-genome sequencing (WGS) methodologies 

coupled with the small genome size of bacteria now allow chemically-induced mutations 

to be identified through WGS. The first report of this approach is a study of the virulence 

determinants of the obligate intracellular bacterium Chlamydia trachomatis (Nguyen and 

Valdivia, 2012).  

 

5.) Overexpression 

Overexpression of genes has been used in phenomic approaches known as high-copy 

suppressor screens. Such screens have generally been used to search for genes whose 

overexpression increases resistance to a drug or stress of interest. These phenotypes 

can suggest drug-target relationships, and have proven quite powerful in drug discovery 

efforts. Overexpression is usually achieved through plasmid-based systems, but 
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chromosomal alleles that increase the expression and/or stability of the mRNA and/or 

protein, or increase protein activity could also be used. 

 

For plasmid-based systems, the plasmid bearing the ORF of interest is transformed into 

host cells and maintained with the appropriate selective agent. Overexpression of the 

ORF can be either constitutive or inducible. In the latter case, a small molecule added to 

the culture activates promoter expression. Overexpression screens must be optimized to 

find a level of overexpression that is effective, but not toxic to the cell. High levels of 

overexpression provide a potent selection for spontaneous mutations within the 

expression plasmid or elsewhere in the genome (suppressors) that can compromise the 

controlled genetic variability necessary to execute an effective phenomic screen. Though 

less common than LOF libraries, a GOF library based on overexpression has been 

constructed in E. coli (Kitagawa et al., 2005), and has been utilized for phenomic studies 

(Couce et al., 2012; Pathania et al., 2009).  

 

6.) Heterologous expression 

Metagenomic sequencing projects have been a major component of the bacterial 

sequencing boom in recent years. Using environmental samples with many species, 

these projects sequence all DNA to generate vast collections of ORF sequences, many 

of which have no known function or genomic source. However, many researchers have 

begun to recognize that such sequences may code for medically (antibiotic-resistance) 

or commercially (metabolic, remediation) valuable genes. Therefore, phenomic 

approaches aimed at deciphering the function of such genes are being developed. 

Functional metagenomic approaches rely on heterologous expression of the sequenced 

genes of interest in a controlled system (like E. coli). In these approaches, the genome 
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of the host strain is held constant, and expression of the unknown ORF creates genetic 

diversity in the strain library (McGarvey et al., 2012; Sommer et al., 2010). 

 

7.) Natural variation 

Natural variation between strains can also create genetic diversity of the strain library. In 

some settings, it may be desirable to understand the genetic basis of a trait possessed 

by only certain strains of a given organism (i.e. host colonization or metal reduction). In 

such cases, harnessing the natural variation between strains can be a powerful route to 

functional discovery. Here, isogenicity between strains becomes impossible, but 

screening closely related strains can allow meaningful conclusions to be drawn. 

 

Evolved strains can also be utilized for studying the functional impact of natural variation. 

Bacterial strains can be evolved in the lab (Tenaillon et al., 2012) or in a host (Fabich et 

al., 2011). Evolved strain approaches can be particularly powerful, as a high degree of 

isogenicity can be maintained between the evolved and parent strains, keeping 

phenotypic analyses relatively controlled. However, such strategies demand either 

whole-genome sequencing or polymorphic analyses (i.e. SNP) of all strains. 

 

Adjusting the Experimental Environment 

Phenotypes are classically defined as the output of interaction between genome and 

environment. By systematically varying the genome and the environment, phenotypes 

detected in high-throughput phenomic approaches represent functional interactions 

between genes and environments. A variety of approaches for modulating the genome 

are described above. Here, we review techniques for varying the environment. 
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The probability of phenotypic discovery scales with the degree of both genetic and 

environmental variability screened. Thus, the more unique environments under which 

the genetically-diverse strain library is evaluated, the greater the likelihood of detecting 

an interaction between a given gene and environment. Therefore, it is desirable to 

screen as many environments as possible. However, careful selection of those 

environments may also increase the odds for discovery. The establishment of genetic 

diversity in the strain library gives the researcher power to query the function of nearly all 

parts of the genome. The selection of environments allows the researcher to test what 

each of those parts may have evolved to do.  

 

Phenomic studies can apply various types of stresses to the strain library. Chemical 

stresses including antibiotics and other drugs, mutagens, detergents, etc. can be applied 

(Couce et al., 2012; Donald et al., 2009; Flores et al., 2005; Gallagher et al., 2010; Girgis 

et al., 2009; Gomez and Neyfakh, 2006; Kohanski et al., 2008; Liu et al., 2010; Nichols 

et al., 2011; Pathania et al., 2009; Tamae et al., 2008), as can existing natural product 

libraries (Phillips et al., 2011). On the other hand, environmental stresses like 

temperature, pH, UV light exposure, and metabolic conditions can be effective in 

revealing phenotypes (Deutschbauer et al., 2011; Ishii et al., 2007). The screening 

environment may also be perturbed by the addition of another organism, such as the 

infection of bacteria with phage (Maynard et al., 2010), or the infection of an animal host 

(Bianconi et al., 2011; Gawronski et al., 2009; Goodman et al., 2009; Hensel et al., 1995; 

Hisert et al., 2004; Lawley et al., 2006; Potvin et al., 2003b; Santiviago et al., 2009a), or 

cell line (Camacho et al., 1999; Nguyen and Valdivia, 2012) with bacteria. 

 

Importantly, not all stresses can be applied in all experimental systems. For example, 

solubility and/or volatility properties may dictate whether a chemical stress can be 
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assayed in solid and/or liquid-based setups. Chemicals and certain environmental 

conditions assayed in-vitro may not be tolerated by an animal host, and thus be 

incompatible with in-vivo analyses. Therefore, selection of stresses for a given phenomic 

study must take into account the capacity and potential limitations of the experimental 

system. For all types of stress, the dose or concentration used in the assay can have 

major effects on the results. High stress load can increase the likelihood of spontaneous 

suppressor mutations, complicating the interpretation of phenotypes, while low stress 

load may fail to separate less or more fit mutants from the population. Therefore, pre-

screens aimed at quantifying and optimizing the stress load for each unique stress can 

be extremely beneficial for downstream phenotypic discovery. 

 

 

Finding the Phenotype: Screens/Selections, Readouts, and Scoring 

A multitude of readouts can be used to monitor diverse processes and states for 

phenomic analysis. High-throughput microscopy can be used to monitor morphological 

phenotypes or protein localization. Fluorescent or other colorimetric reporters can be 

used to monitor diverse processes including transcriptional activity, metabolic capacity, 

developmental processes and metal reduction. Additional phenotypes related to 

developmental cycles can be monitored by specialized readouts (i.e. sporulation by 

reistance to toxic chemicals). However, the most inclusive, and by far most-utilized 

readout to this point has been fitness, which itself has been quantified in a variety of 

ways.  

 

The typical objective of phenomic analyses is to identify specific condition-gene 

interactions. By normalizing out the mutation-specific effect, it is possible to identify 

environments where a distinct mutation causes a more (or less) severe phenotype than 
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is normally observed for the same mutation under baseline conditions. Currently, there 

are two main ways to screen for these events. The first, called an arrayed approach, 

evaluates each strain in isolation under a battery of growth environments. The second, 

called a pooled approach, evaluates the ability of each strain in the library to compete 

with all other strains under the set of growth environments. In addition, it is possible to 

identify condition-gene interactions through a variety of selection techniques. 

 

Just as a number of options exist for establishing genomic and environmental diversity, 

many experimental setups have been used successfully in bacterial phenomics, all of 

which can be divided roughly into forward and reverse genetic approaches. Forward 

genetic approaches begin with a phenotype of interest and search for genomic regions 

contributing to that phenotype, using technological advances that simplify identification 

of the genomic region(s) of interest. In general, these analyses use deletion or 

transposon libraries that are pooled and then subject to screens or selections. Reverse 

genetic approaches begin with a discrete set of genetically variant strains, and seek to 

associate phenotypes with each one. These analyses typically utilize arrayed screening 

approaches. 

 

Arrayed Screens 

In an arrayed approach, individual strains are grown in isolation, and evaluated relative 

to their baseline behavior. Phenotypes are defined as deviations from that baseline. The 

power of arrayed approaches, which can be conducted in liquid culture or on solid 

surfaces, comes in the control of the screen and potential robotic integration for high-

throughput screening. Because the strains are grown and evaluated against themselves, 

the deviation of a given strain from its baseline behavior is clear: the interaction of a 

specific mutation and a specific environment produces the observed phenotype. While 
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some strain competition does exist in solid surface arrayed approaches, it is tightly 

controlled relative to pooled approaches, as each strain competes only mildly with the 

strains that surround it. The surrounding strains are normally held constant throughout 

the entire screen, allowing low-level “neighborhood” competition to be normalized away. 

Strain competition is completely absent from liquid arrayed approaches. Liquid handling 

(for liquid culture setups) or colony pinning (for solid surfaces) robots automate the 

screening process and provide technical accuracy and reproducibility (Fig. 2). 

 

Figure 2. Arrayed approaches generally require colony-pinning or liquid-handling robotics.  
These platforms deliver high-throughput scaling and technical accuracy through highly-
reproducible aliquoting of cells to control and test conditions. 
 

In liquid culture applications, growth is usually read by calculating the rate of exponential 

growth (Nakahigashi et al., 2009), endpoint culture density (Kohanski et al., 2008), or 

cellular respiration (Bochner, 2009; Fabich et al., 2011). For solid surface approaches, 

fitness is normally read out as colony size. This non-traditional indicator of fitness is 

quite powerful as it reports on duration of lag phase, the rate of log phase growth, and 

the time of onset of stationary phase (Nichols et al., 2011). 

 

Arrayed Screen Scoring 

control test 1 test 1

growth
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Arrayed approaches are based on distributing a collection of strains onto a solid surface 

or into microtiter plates for liquid culture. In both cases, the media is infused with a 

condition/stress of interest, and growth is allowed to proceed for a pre-determined 

incubation period. For arrayed approaches utilizing a quantitative readout (colony size, 

culture density, growth rate), a global scaling normalization must be employed to 

account for differences in stress load and absolute growth. This normalization centers 

the distribution of all readouts observed for each condition on a common value, making 

cross-condition comparisons feasible. 

 

It is important to accurately estimate the control, or baseline behavior of each strain in 

order to detect specific condition-gene interactions. Two techniques exist for estimating 

control behavior in the context of arrayed approaches: median-centering and control 

conditions. A central assumption of median-centering is that condition-gene interactions 

(phenotypes) are rare. Therefore, if enough unique conditions are screened, it is 

possible to estimate the control behavior of a strain by simply identifying the median of 

all quantitative readouts for that strain. This approach has been effective in large-scale 

phenomic and genetic interaction studies of bacteria and yeast, demonstrating that the 

median of a large number of experiments is a robust indicator of control behavior 

(Collins et al., 2007; Nichols et al., 2011; Roguev et al., 2008; Schuldiner et al., 2006; 

Typas et al., 2008). 

 

When a smaller number of conditions are screened, the median of all readings is not a 

reliable estimate of control. In these cases, an appropriate control condition must be 

identified and screened in parallel with the stress conditions of interest. Here, the 

behavior of each strain under control conditions establishes its control behavior. One 

disadvantage of this method compared to median centering is the control estimate is 
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based on a comparably low number of readings (low “n”). Therefore, it is essential that 

the control condition is screened a sufficient number of times for each strain to establish 

a statistically robust number of readings (high “n”), as estimates of control behavior 

should always be accompanied by corresponding measures of variance. 

 

After control behavior and variance have been estimated for each strain, fitness scores 

may be calculated for each condition screened relative to the control measures. 

Recently, this has been done using a modified t-statistic known as the “S score” (Nichols 

et al., 2011) or other statistical metrics based on the normal distribution (Kohanski et al., 

2008). The S score procedure calculates fitness scores for a given strain by comparing 

the average growth of that strain across a replicate series of a given condition to the 

control growth of that strain. Variance estimates associated with the replicate series and 

control growth are used to modify the confidence associated with the estimated score 

(high variance functions as a penalty). Replicate experiments come in two forms: strain 

replicates and screen replicates. Strain replicates require construction and isolation of 

independent clones of the same mutant strain. These replicates help control for the 

possibility that additional mutations may arise either during strain construction or during 

the screening process as the cell evolves to compensate for the primary mutation. The 

more strain replicates screened, the lower the likelihood that the same secondary 

mutation(s) will arise and cloud the results. Screen replicates are technical replicates of 

the same screen to control for day-to-day variation of potentially variable components of 

the screening process (e.g. stress concentration, colony pinning accuracy, media quality, 

imaging parameters, human error).  

 

Pooled Screens 
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Pooled screens evaluate the ability of one strain to compete with all other strains in the 

library in batch culture under a given growth environment. Pooled approaches work very 

well with forward genetic approaches like transposon mutagenesis, and thus are 

available for use in a wide range of bacterial organisms. However, arrayed libraries can 

also be used for pooled analyses, and offer the dual benefits of increased control over 

starting cell inoculum for individual mutants and availability of individual mutants for 

follow-up study after the screen. 

 

Pooled approaches are best positioned to evaluate strain fitness, or growth, but have 

also been used to evaluate cellular processes like motility (Girgis et al., 2007) and 

biofilm formation (Amini et al., 2009). Fitness evaluation is based on reading out the 

relative abundance of every mutant strain in the batch culture at the start and endpoint of 

each competition (Fig. 3). Just as described for arrayed approaches, phenotypes are 

defined as deviations from the baseline behavior of each strain. In pooled approaches 

based on growth, baseline behavior is estimated from the typical frequency of a given 

strain in the pool. 

 

Pooled approaches are powerful for several reasons. First, they scale incredibly well 

without the need for fancy robotics. Since each condition screened requires a single 

batch culture, a single person can evaluate hundreds of conditions rather easily. 

Second, pooled approaches can evaluate thousands of strains simultaneously in the 

same culture. Therefore, a tremendous amount of genomic diversity can be assayed 

under many conditions. Pooled approaches therefore represent the most efficient way to 

screen the largest amount of condition-gene interactions for potential phenotypes. 
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Figure 3.  Workflow of Pooled Growth Approaches.  A.) The starting strain library is sampled 
and quantified via one of the techniques discussed in the Pooled Screen section.  B.) Aliquots of 
the strain library are distributed to test and control condition cultures.  C.)  Competitive cultures 
are grown for a set time, and then sampled and quantified according to the procedure established 
for the input library. 
 

The major challenge of such approaches is teasing apart the confounding factor of strain 

competition on phenotypic evaluation. Because pooled approaches often compete 

thousands of strains against each other, the ability to quantitatively estimate changes in 

a given strain’s fitness is influenced by the potential fitness changes of every other strain 

in the pool.  For dramatic fitness changes, this is unlikely to prevent detection. But for 

more moderate effects, especially for fitness loss, competition within the pool has been 

reported as a potential confounding factor (Girgis et al., 2009). An additional caveat to 

pooled analyses is that certain mutations may exhibit phenotypes only in the context of 
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the complex community. For example, a LOF mutation that disables production of an 

essential metabolite may be tolerated, and even beneficial, if that mutant can scavenge 

the metabolite from other members of the community. While this scenario can 

complicate interpretation of pooled results, it also represents an advantage of pooled 

approaches. They report a physiologically relevant analysis of bacteria within a 

genetically-diverse community. 

 

All pooled approaches based on transposon mutant libraries require a readout 

technology capable of quantifying the abundance of each unique strain in the pool. 

Different transposon systems have been used for phenomic studies in bacteria, and 

have typically been paired with complementary readout technologies. Initial transposon 

studies were based on Signature-Tagged Mutagenesis (STM) systems. In these 

systems, each insertion mutant carries a unique DNA barcode, so that a given barcode 

sequence can be assigned to a specific genomic insertion site. Therefore, when 

quantifying strains after a screen or selection, one need only to quantify the abundance 

of each barcode. STM approaches were the first to break through in phenomic 

applications, because these barcodes allowed a high-throughput readout based on DNA 

blotting (Hensel et al., 1995), multiplex PCR (Potvin et al., 2003a), or microarray 

hybridizations (Deutschbauer et al., 2011).  However, the need for a large amount of 

unique DNA barcodes requires a great deal of transposon template synthesis, making 

library creation a laborious task.  

 

Second generation transposon-based strategies focus on eliminating the need for a 

unique transposon sequence for each mutant. These technologies need only one 

transposon sequence, and rely on the genomic DNA flanking the insertion site to serve 

as a barcode. Three methods exist for the detection of transposon-flanking genomic 
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DNA signal in insertion sequencing-based approaches: 1.) type-IIS restriction enzyme 

(mariner Tn), 2.) selective PCR using a Tn-specific primer, and 3.) the circle method. For 

all three, the resulting transposon-flanking genomic DNA fragments can be analyzed via 

hybridization to a full-genome tiling array or short-read sequencing with transposon 

and/or adapter-specific primers. 

 

Some engineered Mariner transposons have MmeI restriction sites in their inverted 

repeat sequences of the transposon ends (van Opijnen et al., 2009). MmeI is a type-IIS 

restriction enzyme, and cuts 20 base pairs downstream of its recognition site in the 

genomic DNA just outside the transposon-genome junction. Adapters can then be 

ligated to the cut ends, and the genomic DNA amplified with one primer specific to the 

transposon and the other specific to the adapter. This approach has been widely used. 

 

Selective PCR can also be run without specific cutting by MmeI. Genomic DNA can be 

sheared, adapters ligated onto blunt ends, and selective PCR used to enrich 

transposon-genome junction fragments as described above for Mariner approaches. 

However, the absence the MmeI digestion means that far more DNA fragments are 

ligated to adapters, and non-specific PCR can be problematic. Therefore, some studies 

have added an additional purification step by biotinylation of the transposon-specific 

primer and affinity purification following PCR (Gawronski et al., 2009). 

 

More recently, the Tn-seq circle method has been developed (Gallagher et al., 2010). In 

this method, genomic DNA is sheared, and a single adapter is ligated to all free ends. 

After adapter ligation, fragments are digested with a restriction enzyme that cuts inside 

the transposon sequence (near one end), and circularized via templated ligation. Then, 

all circularized fragments contain part of the transposon sequence ligated to the generic 
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adapter, and surrounded by the genomic DNA of the transposon-genome junction. PCR 

is then used to amplify those fragments.  

 

Pooled Screen Scoring 

In pooled competitions, the baseline behavior of a given strain reflects the fitness 

associated with that mutation as indicated by the ability of the mutant to compete with all 

other mutants in the pool. To estimate these controls, one may simply examine the 

frequency of each mutant in the pool before selection, as these values reflect the relative 

ability of each mutant to compete during selection and outgrowth of the library 

(Deutschbauer et al., 2011). A second strategy is to base control estimates on the 

endpoint strain abundance measures in competitive cultures without stress (Langridge et 

al., 2009). These “control cultures” can be run in parallel to competitions under stress. It 

is also possible to estimate control behavior based on both time-zero and control 

competition results (Girgis et al., 2009). 

 

Pooled competitions normally utilize strain libraries generated via transposon 

mutagenesis, though such libraries can also be arrayed (Cameron et al., 2008; 

Deutschbauer et al., 2011; Gallagher et al., 2007; Liberati et al., 2006). As is the case 

with arrayed approaches, strain and screen replicates are necessary to accurately 

estimate phenotypes. Transposon libraries have an advantage over arrayed engineered 

libraries in that saturating mutagenesis can allow for hundreds of mutants per gene to be 

constructed and analyzed. Therefore each experiment has many “biological replicates”, 

providing a very high “n” for strain replicate readings in such approaches, and thus 

increased confidence in the effects of mutating a given gene. However, it is still 

important to perform “technical” replicate screens to control for day-to-day variation, 

innoculum effects, and human error. 
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Conditional strain fitness in pooled competition experiments is usually represented with a 

calculated Z score. Z scores have been calculated using different metrics, but all attempt 

to quantify the deviation of the conditional behavior of a strain from its control behavior 

by calculating the mean and standard deviation of all conditional and control frequency 

measures for that strain (Deutschbauer et al., 2011; Girgis et al., 2009). Thus, the Z 

score, S score (reviewed in arrayed approaches), and T-statistic are extremely similar. 

 

Selections – In-vivo Transposons and Functional Metagenomics 

In-vivo phenomic approaches based on transposon mutant libraries often use positive or 

negative selections to identify insertion mutants of interest. The techniques used to 

identify the selected insertion mutants are discussed above in the pooled screen section. 

Negative selections can be used to identify genes necessary to establish infection or 

maintain host colonization, as the host organism can select against LOF insertion 

mutants in such genes (i.e. following infection/colonization particular transposon mutants 

are depleted in the population). Positive selections can identify genes detrimental to 

such processes and suggest host-adaptive strategies used by the bacteria. 

 

Positive selections are ideally suited for functional metagenomic approaches. 

Metgenomic ORFs of interest may be cloned into expression vectors, and then 

transformed into a host strain unable to grow under the selective condition. Then, the 

transformed strains can be pooled and plated under the given condition to select for 

clones that have survived. The expression vectors in the surviving clones can then be 

sequenced to identify the gene conferring survival. 

 

Data Analysis - Benchmarking and Exploration 
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Quantitative phenomic datasets can be large and complex, and require computational 

strategies to: demonstrate data quality through benchmarking analyses, and then search 

for functional insights in the data via exploratory techniques. 

 

Benchmarking 

Upon completion of a phenomic screen and assembly of a compendium of phenotypic 

scores, benchmarking analyses are performed to assess data quality and potential 

functional predictive power. One commonly used metric to evaluate data quality is the 

correlation between replicate measurements. This can be calculated either as the 

correlation of all strain measurements across any pair of screen replicates 

(Deutschbauer et al., 2011; Nichols et al., 2011), or the correlation of any pair of strain 

replicates across all screens. Such correlations can demonstrate both the reproducibility 

of the data and the strength of phenotypic signal (high correlations can generally not be 

achieved without signal). 

 

Receiver operating characteristic (ROC) plots are extremely powerful for determining the 

functional predictive power of the dataset. These plots show the relationship between 

the true positive rate and the false positive rate at regularly-spaced intervals along a 

continuous scale (in this case, the correlation coefficient scale). Therefore, the 

calculation of such plots requires a “gold standard” index classifying pairs of genes as 

true positive (functionally-related) or true negative (unrelated). For bacteria, a variety of 

classifiers may be used to define the gold standard index: shared operon membership 

can suggest a functional link between pairs of genes; protein-protein interaction datasets 

report on pairs of genes known to code for physically-interacting proteins; 

transcriptomics datasets can indicate pairs of co-expressed genes; functional annotation 

classifiers (Gene Ontology, TIGR, COG) can be used to identify genes in a common 
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class. For all of these classifiers, the precision and accuracy of prediction of true positive 

pairs by measures of similarity in phenomic datasets is solid evidence for potential of 

functional discovery. 

 

Data Exploration 

Complete phenomic datasets are large and require a strategy to systematically explore 

and extract testable hypotheses of gene function. Fortunately, the data itself shares 

many similarities with microarray data (many genes, many conditions, a null expectation 

of zero change) and therefore many tools have already been developed. We present a 

brief overview of basic techniques; see (Gentleman, 2005) for a comprehensive review. 

 a) Specific condition-gene interactions 

 The baseline level of phenomic data analysis attempts to tie genes to cellular 

processes manually by extrapolating from specific phenotypes of the mutant. For 

example, the study by Donald et. al (Donald et al., 2009) discussed below in the in-vitro 

competitive assay section generated a hypothesis that an essential gene of unknown 

function is a peptidoglycan flippase, based on the hypersensitivity of its knockdown 

strain to a set of cell wall-targeting drugs. The association of the gene with a broad 

process (cell wall biosynthesis) was the starting point for further exploration. 

 b) Unsupervised methods 

 The second tier of phenomic exploration approaches used unsupervised 

computational methods to group mutant and condition profiles by similarity. 

“Unsupervised” refers to the fact that no prior knowledge about the functional 

relatedness of genes in the dataset is fed into the algorithm. Therefore, all relationships 

predicted by the clustering algorithm are based only on the phenomic data. The most 

commonly used unsupervised method is two-dimensional (2D) hierarchical clustering 

and heat map visualization. In 2D hierarchical clustering, rows and columns of an input 
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data matrix are iteratively joined based on the similarity of their profiles. Relationships 

are represented by the spatial grouping and bootstrapping of rows and columns in the 

output matrix. 

 c) Machine learning 

 A higher level of phenomic data exploration can be achieved through machine 

learning, or supervised methods. Contrary to unsupervised methods, supervised 

methods predict relationships in the data based on prior knowledge. For example, 

functional annotation of genomes (Gene Ontology, TIGR, COG) can be used to “train” 

algorithms on functionally-related genes. Then, patterns in the data that connect these 

known groups can be used to predict novel members. 

 

Phenomic Applications in Bacteria 

Phenomic technologies have been implemented to understand gene function in several 

different bacterial applications, ranging from cellular modeling of E. coli to identifying 

novel antibiotic resistance genes in complex environmental samples. Researchers have 

utilized forward and reverse genetics, selections and screens, and in-vitro and in-vivo 

approaches. Five major areas have been developed to date, and they are reviewed 

below. 

 

In-vitro Competitive Assays 

In-vitro competitive assays are generally based on growth, but can also be used to 

select for differences in traits of interest (i.e. motility). Most published studies are based 

on transposon mutant libraries, but other genetic techniques like asRNA have also been 

integrated. Regardless of genetic technique or readout, competition is used to reveal 

conditional phenotypic differences amongst a collection of strains. These condition-
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specific phenotypes have presented powerful leads for understanding gene function in 

model, pathogenic, and applied species. 

 

Girgis et. al conducted a series of forward genetic positive selections on an E. coli 

transposon mutant library to identify genes involved in motility (Girgis et al., 2007). By 

plating a pre-selected pool of mutants in the center of a soft agar plate and allowing 

motile mutants to chemotax away from the resource-depleted center, the authors 

enriched for non-motile mutants. Serial passages and selections of this non-motile pool 

led to further enrichment, and eventually the identification of a suite of genes implicated 

in motility via a microarray-based readout of the insertion-flanking genomic DNAs. 

Importantly, this suite contained >95% of all previously known motility genes, as well as 

>30 genes not previously associated with the process. By searching for suppressors of 

the motility-impaired phenotype of the novel candidates, the authors were able to make 

important biological insights regarding the involvement of the second-messenger c-di-

GMP system in chemotaxis signaling. In all, this study represents an elegant fusion of 

classic mutagenesis and selection techniques with a high-throughput readout, and 

demonstrates that phenomic approaches can reveal new insights into even the most-

studied processes in the best-studied organisms. 

 

Gallagher et. al executed a transposon-based forward genetic screen of P. aeruginosa 

to identify genes involved in the intrinsic resistance of this opportunistic pathogen to the 

aminoglycoside antibiotic tobramycin (Gallagher et al., 2010). The authors competed 

nearly 100,000 mutants in batch culture both with and without a low concentration of 

tobramycin, and quantified the abundance of all mutants in the pool with a high-

throughput sequencing-based readout. Because P. aeruginosa is normally resistant to 

the drug, most mutants were expected to be unaffected. Those strains harboring 
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mutations in genes necessary for resistance were expected to decrease in abundance, 

or disappear from the population under tobramycin stress. This strategy proved effective, 

as many previously-described tobramycin resistance genes, as well as a group of novel 

candidates were captured. These new candidate genes collectively suggested important 

roles for both cell envelope and intracellular potassium homeostasis in regulating 

tobramycin resistance. This study illustrates the power of pooled growth assays and 

high-throughput sequencing to reveal important biology in clinically-relevant species. 

 

Deutschbauer et. al conducted a signature-tagged mutagenesis (STM) based screen 

evaluating mutant fitness in a large battery of growth conditions (Deutschbauer et al., 

2011). Almost 25,000 transposon insertion mutants of S. oneidensis, covering ~3500 

genes, were assayed for fitness under 121 growth conditions. Quantifying strain 

abundance with a microarray-based readout, the authors built a matrix of fitness scores 

for each gene under each condition. Using this matrix to identify specific mutant 

phenotypes and genes whose mutants behaved similarly throughout the study, the 

authors generated new evidence-based predictions of function for 40 genes, including 

many involved in metabolism and three involved in motility. Further, characterization and 

archiving of the transposon mutant strains created a reverse genetic resource, allowing 

specific mutant phenotypes to be pursued via targeted experiments at a later time. This 

allowed several of the 40 predictions to be validated experimentally. As S. oneidensis is 

of potential use in the bioremediation of heavy metals and energy generation, this study 

demonstrates the potential of transposon-based phenomic analyses to generate 

functional insights into important processes of applied organisms. 

 

To this point, asRNA screens in bacteria have focused on defining drug mode-of-action 

(MOA), and therefore have not yet been exploited for phenomic screens. However, 
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Donald et. al conducted a drug MOA study by screening a library of asRNA essential 

gene knockdown strains in S. aureus for sensitivity to a variety of known and unknown 

compounds (Donald et al., 2009). While most findings emphasized using the asRNA 

strain response patterns to predict drug MOA, a knockdown strain of an essential gene 

of unknown function (SAV1754) was found to be highly sensitive to a variety of cell-wall-

targeting compounds. After additional experimentation, the authors suggest that 

SAV1754 may function as a peptidoglycan flippase, demonstrating the potential of 

asRNA-based screens to inform discovery of gene function. 

 

In-vitro Arrayed Approaches 

Bacterial species for which individual mutants can be isolated are amenable to arrayed 

phenomic analyses. To this point, the limited availability of arrayed libraries and 

advanced robotics have made arrayed approaches much less common than pooled 

ones discussed above. However, exciting biology has been revealed by arrayed 

approaches using deletion libraries, overexpression libraries, and evolved strains. These 

tools have been used for large-scale screens for gene function, smaller-scale, targeted 

screens, and drug discovery efforts. 

 

Nichols et. al executed a large-scale reverse genetic screen of the E. coli Keio 

Collection, a comprehensive single-gene knockout library (Nichols et al., 2011). Using 

the endpoint colony size as a readout, almost 4000 mutants were screened under 324 

growth conditions. The large number of conditions screened and the sensitivity of the 

reverse genetic approach allowed many uncharacterized genes to be associated with 

well-studied functional modules through pairwise correlation analysis of knockout strains. 

In all, high-confidence functional predictions were generated for more than 300 

previously uncharacterized genes. As a follow-up case, one uncharacterized gene that 
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correlated very highly to a gene involved in peptidoglycan synthesis was characterized 

to be essential for peptidoglycan synthase activity in-vivo using a series of genetic and 

biochemical experiments (Typas et al., 2010). In addition, the phenotypes identified in 

this study were used to generate insights into drug action and the evolution and genomic 

organization of E. coli. 

 

Arrayed approaches have also been used for targeted questions. A study by Kohanski 

et. al used a liquid culture array of the Keio Collection. The authors used endpoint optical 

density as a readout of the growth of each mutant under gentamicin stress relative to 

control to identify gene mutants that sensitize the cell to the drug (Kohanski et al., 2008). 

Integration of the phenotypic data with gene expression data collected under the same 

conditions, enabled the authors to make new insights into the mechanism by which 

aminoglycoside antibiotics trigger cell death.  

 

Arrayed approaches can also be useful for analyzing a small number of genetically 

distinct strains. Biolog technology involves arraying of a single strain into microplate 

format, with subsequent analysis of the ability of that strain to grow under a variety of 

metabolic conditions. Using a colorimetric readout of cellular respiration, the Biolog 

system enables rapid analysis of a small number of strains under a large number of 

growth conditions. A recent study by Fabich et. al examined the relative ability of a host-

adapted strain of E. coli to catabolize a variety of carbon sources relative to its parent 

strain (Fabich et al., 2011). By screening the adapted strain, which contained a loss-of-

function mutation in the flhDC locus, a key master regulator of motility in E. coli, the 

authors were able to correlate this mutation with increased capacity to proliferate under 

a variety of carbon-source conditions. After constructing an flhDC mutant in an isogenic 

background to the wild-type parent strain, the authors concluded that loss of flhDC 
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actually results in increased cellular metabolic capacity, and therefore inhibition of 

motility may represent an adaptive response for E. coli host colonization. These findings 

demonstrate the utility of Biolog technology for rapidly evaluating cellular fitness under 

varying metabolic conditions, and further show the ease with which the technology can 

be applied to naturally-occurring or evolved bacterial strains. 

 

Overexpression libraries can also be arrayed for phenomic analyses. Pathania and 

colleagues assembled a set of E. coli strains (Kitagawa et al., 2005), each 

overexpressing one of the ~300 essential genes of E. coli K12 (Pathania et al., 2009). 

The strains were arrayed into microtiter plates, grown in liquid rich media, and 

challenged with 49 compounds that had been selected from a library of > 8,000 small 

molecules for growth inhibitory effects against the wild-type parent strain. Suppressors of 

the drug-induced growth inhibition were identified for 33 of the 49 compounds, pointing 

immediately to cellular targets of those compounds (growth-inhibitory compounds 

generally target essential gene products). In one case, a small molecule was identified 

that targeted LolA, a key protein in lipoprotein trafficking in gram-negative bacteria. 

Importantly, no other inhibitors of this protein or process were previously known, and 

therefore the chemical-genetic interaction between the compound and LolA represented 

a new phenotype for the lolA gene. Although this screen was designed for drug 

discovery, such chemical-genetic interactions can generate new functional information 

about the gene, even when its function is already known. Overexpression, or high-copy 

suppressor screens are quite powerful for drug discovery, but can also identify chemical-

genetic relationships that open new avenues of experimentation regarding both drug 

action and gene function. 

 

Natural Strain Approaches 
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Phenomic analyses have also been conducted on naturally-occurring bacterial isolates. 

While it is more difficult to associate observed phenotypes with specific genetic changes 

using such isolates, the increasing efficiency of genome sequencing has made the 

identification of genetic differences between isolates much more routine. As long as 

these differences are known, phenomic analyses can be extremely powerful. 

 

A recent study by Franz et. al examined the relative ability of 18 strains of E. coli 0157 to 

proliferate in manure-infused soil (Franz et al., 2011). The authors were interested in the 

genetic basis of this phenotype, as survival in that environment is thought to be critical 

for strains ultimately found to contaminate agricultural crops. Amongst the 18 isolates, 

the authors observed a large variance in soil proliferation capacity. In parallel to the soil 

screen, Biolog technology was utilized to assess the metabolic capacity of the strains, 

and genotyping of known virulence genes was carried out. No correlation was found 

between the presence/absence of the virulence genes and the ability to proliferate in the 

soil. However, the authors observed that strains able to grow on several different acid 

substrates were likely to survive longer in the manure-infused soil than strains unable to 

grow in the acids. Therefore, it is possible that genes involved in metabolism underlie the 

soil survival phenotype, and sequencing of candidate loci (or of the entire genomes) may 

demonstrate this conclusively. 

 

Another recent study by Kadali et. al utilized a selection followed by Biolog analysis to 

examine the ability of species able to grow on crude oil to remediate specific 

hydrocarbons (Kadali et al., 2012). First, a complex environmental sample from a former 

oil refinery site was harvested, and a selection was carried out on this sample using 

crude oil as a complex carbon source. A collection of strains were selected based on 

their ability to survive the selection, and then Biolog analysis was used to characterize 
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the ability of each selected strain to proliferate on specific hydrocarbons. The results 

represent significant progress in characterizing strains useful for the bioremediation of 

hydrocarbons, and mark the first step in drawing phenotypic connections between genes 

within the selected strains and the survival phenotype. 

 

In-vivo Approaches 

In-vivo phenomic approaches based on transposon mutagenesis have been extremely 

powerful in studies of infection biology and the human microbiome. Both negative and 

positive selections have been utilized to identify genes involved in infection, virulence, 

and colonization. In a signature-tagged mutagenesis study of S. typhimurium, Hensel et. 

al used a negative selection to identify a pathogenicity island coding for a novel type 

three secretion system (T3SS) essential for intracellular replication (Hensel et al., 1995). 

To identify virulence genes, the authors created a library of transposon mutants, with 

each mutant carrying a unique DNA barcode in the transposon. Mutants were arranged 

into 96-well plates, and a single pool was created from each plate. Each pool was 

sampled at the start point and then used to infect two BALB/c mice. After three days of 

infection, the mice were sacrificed, and spleens were homogenized and plated onto 

selective media to isolate the transposon mutants. Colonies from this plating were then 

scraped into a pool, which represented the “selected” population. A DNA-blotting method 

was used to identify the presence or absence of each DNA barcode in both the starting 

and selected pools. Mutants lost from the selected pool represented candidate virulence 

genes. Genomic DNA flanking the insertion sites in these mutants was cloned into a 

pUC vector and sequenced to identify the mutated genes. This study represented a 

major advance in in-vivo genetic selections, and has inspired an entire field of study over 

the last fifteen years (as indicated by nearly 1000 citations in PubMed). Over time, 

technological advances have made such approaches even more powerful by allowing 
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quantitative measurement of individual mutants within a pool. Rather than simply 

examining loss of a mutant from the pool, these more sensitive methods can assess 

decreased mutant abundance in the pool.  

 

Conversely, it is also possible to employ positive selections to identify mutants that 

expand in frequency in the host, which could point to adaptive strategies used by the 

bacteria to establish and maintain infection/colonization. A recent study by Bianconi et. 

al utilized this approach to identify “patho-adaptive” mutations that promote chronic 

infection by P. aeruginosa in a mouse model of cystic fibrosis (Bianconi et al., 2011). 

The authors used a previously-characterized P. aeruginosa STM mutant library, and 

pooled individual mutants to infect the mice. A total of 24 DNA barcode sequences from 

three unique vector backbones (24*3=72 unique transposon sequences) were present in 

each pool. Following infection, mice were observed and scored for establishment of a 

chronic infection. Those animals in which a chronic infection was established were 

classified as positives, sacrificed, and lungs were homogenized and plated on selective 

media to count the CFU and screen for STM mutants. In this study, a previously-

developed multiplex PCR strategy (Potvin et al., 2003a) was used to track the 

abundance of each unique mutant within the pools. Mutants that expanded in the 

population were flagged as candidates, and re-screened in subsequent rounds. 

Eventually, 16 mutants were identified that significantly increased chronic infection 

relative to wild-type. These mutants impacted a variety of processes, suggesting that 

“patho-adaptive” mutations promoting chronic infection may decrease motility, alter 

biofilm formation, or decrease secretion of virulence factors. To extend their analysis of 

patho-adaptive mutations, the authors sequenced ORFs of the 16 candidate genes in a 

cohort of early and late CF patient samples. Interestingly, an independent clinical study 

found mutations in 7/16 of the candidate genes. The convergence of STM and clinical 
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sequence results are strong evidence that the authors have indeed identified “patho-

adaptive” strategies used by P. aeruginosa to establish and maintain chronic infection in 

CF airways. 

 

In-vivo screens of transposon mutant populations can also focus on understanding the 

molecular determinants of establishing the symbiotic relationships between the host and 

its microbiome. A study by Goodman et. al utilized a library of B. thetaiotaomicron 

transposon mutant strains and germ-free mice to search for candidate genes involved in 

colonization of the mouse gut (Goodman et al., 2009). Importantly, the authors utilized 

short-read sequencing technology and an engineered Mariner transposon to establish 

an insertion sequencing approach. Such approaches are based on a single transposon 

without STM. Instead, the genomic DNA flanking the insertion site is used to map and 

quantify the relative abundance of transposon mutants. This approach allowed the 

authors to carry out a forward genetic screen by assigning a quantitative measure of 

abundance to each unique insertion strain in the pool before and after various 

selections. To search for loci specifically required for in-vivo colonization, the authors 

compared all in-vivo strain fitness measures with a set of in-vitro fitness measurements 

calculated from the results of a competition experiment conducted in rich media. More 

clearly, they used an in-vitro competition to identify loci that affect growth generally, and 

therefore were able to filter for strains exhibiting fitness defects specifically in-vivo. After 

conducting a series of in-vivo screens in varying bacterial community contexts, the 

authors discovered a genomic locus containing several genes involved in vitamin B12 

utilization that, when mutated, led to a significant fitness defect only when vitamin B12 

was presumed to be of limited availability in the mouse gut. As vitamin B12 is essential 

for the mouse and is synthesized exclusively by members of the microbiome, these 

genes are likely to be necessary for normal colonization in-vivo. This finding 
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demonstrates the enormous potential of in-vivo phenomic approaches to understand 

symbiotic relationships between bacteria and their hosts; a topic of broad appeal that 

has been relatively inaccessible to investigation until now. 

 

Functional Metagenomics 

A critical and emerging area of microbiology is the study of complex microbial 

communities via metagenomic sequencing. Initial studies in this area have focused on 

surveying the species composition of varying environmental communities. To date, such 

projects have deposited enormous amounts of genome sequences into databases, 

many of which code for ORFs of both unknown function and unknown species origin. 

Such sequences are of extremely limited utility, and therefore approaches aimed at 

assigning function to them are in high demand. 

 

A recent study by McGarvey et. al utilized a heterologous expression system to select 

for metagenomic sequences conferring antibiotic resistance to E. coli (McGarvey et al., 

2012). Briefly, the authors cloned a metagenomic DNA library into a pUC18 vector, 

yielding 1.4 million clones covering 2.8x109 bases of DNA. By transforming the plasmid 

library into E. coli and simply plating on a variety of antibiotics, the authors were able to 

search for metagenomic sequences that conferred antibiotic resistance phenotypes on 

the E. coli host. In all, the authors identified 39 antibiotic-resistance genes, of which all 

but one coded for members of previously-defined drug-resistance protein families. 

However, interestingly, many of the newly-discovered members shared little nucleotide 

sequence homology to the previously-described family members. For example, the 

authors discovered one type II DHFR (conferring resistance to trimethoprim) having a 

maximum of 24% amino acid sequence identity to other known type II DHFR’s. 

Evolutionary analysis of normally-conserved amino acid residues indicates that the 



	
   36	
  

newly discovered DHFR is evolutionarily distant. These types of discoveries are 

incredibly valuable for further defining the bacterial resistome, allowing for a better 

understanding of drug-protein structure-function relationships, and potentially informing 

future drug design efforts. 

 

An earlier study by Sommer et. al utilized a slightly different strategy to screen four 

different soil microbiomes for genetic elements that conferred resistance to growth-

inhibitory compounds in E. coli (Sommer et al., 2010). Similar to the McGarvey study, 

heterologous expression of the metagenomic DNA was carried out in E. coli, and 

selective pressure consisted of high doses of industrially-relevant chemicals (organic 

acids, alcohols, and aldehydes). This study cloned metagenomic DNA into fosmid 

libraries, containing 40-50kb of DNA rather than the 1-3kb inserts in the pUC18-based 

approach of McGarvey. Advantages of this approach are that fewer clones need to be 

screened, and phenotypes based on >1 neighboring genes can be identified. Of course, 

in this approach followup is necessary to determine which gene(s) are responsible for a 

phenotype of interest. In the Sommer study, identification of candidate genes was 

obtained by a second transposon mutagenesis on the resistant fosmid clones, followed 

by re-screenng for loss of the phenotype. This approach resulted in discovery of novel 

genes conferring tolerance to biomass-conversion-related growth inhibitory compounds. 

Importantly, it offers another example of a phenomic strategy to identify meaningful 

functional genetic elements from complex (and perhaps unculturable) microbial sources.  
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Chapter 2: Phenotypic Landscape of a Bacterial Cell 

 

 

This chapter is a reproduction of a Resource Article originally published in Cell in the 

January 7, 2011 issue.  I contributed to conceiving the study, designing the research, 

and performing the screen.  I performed all data processing independently.  I also 

contributed to analyzing the processed data, and performed several of the follow-up 

experiments.  I was the primary author of the manuscript, and the main creator of all 

figures.  The relative contributions of all authors are indicated on the following page, 

which is the original title page of the Cell manuscript. 
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Summary 

The explosion of sequence information on bacteria makes developing high-throughput, 

cost-effective phenotyping approaches imperative. Using E. coli as proof-of-principle, we 

show that combining large-scale chemical-genomics with quantitative fitness 

measurements provides a high quality dataset, rich in discovery. The identification of 

>10,000 growth phenotypes allowed us to study gene essentiality, discover leads for 

gene function and drug action, and understand higher-order organization of the bacterial 

chromosome. We highlight insights concerning a gene involved in multiple antibiotic 

resistance and provide information about synergy of a broadly used combinatory 

antibiotic therapy, trimethoprim and sulfonamides. This dataset, publicly available at 

http://ecoliwiki.net/tools/chemgen/, is a valuable resource for both the microbiological 

and bioinformatic communities as it provides high confidence associations between 

hundreds of annotated and uncharacterized genes as well as inferences about the 

mode-of-action of several poorly understood drugs. This approach can be used for all 

culturable microbes with available ordered mutant libraries. 
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Introduction 

Before the physical basis of genes was understood, associating phenotypes with a 

heritable unit laid the foundation of modern genetics. Following discovery of the genetic 

code, linking a phenotype to the responsible gene remained the most expeditious way to 

unravel gene function. With the explosion of sequence information, the balance has 

shifted. We now have many genes of unknown function. To capitalize on the burgeoning 

sequence bank, it is imperative to develop high-throughput technologies that link genes 

to phenotypes and expedite discovery of gene function. This is particularly true for 

prokaryotes, which represent a major fraction of the sequenced genomes and are in the 

forefront of metagenomic efforts (Qin et al., 2010).  

 

Chemical and environmental perturbations have traditionally linked phenotypes to 

genotypes through forward genetic screens, but reverse genetic approaches are being 

increasingly utilized (Barker et al., 2010). Phenotype microarrays utilize a high-resolution 

readout of cellular respiration to evaluate fitness of a strain in hundreds of conditions 

(Bochner, 2009). This approach is appropriate for studying a few strains, but is difficult to 

expand to genome-scale screens. In pooled growth competitions, thousands of strains 

are assayed in a single culture environment. Fitness values are derived from measuring 

strain abundance in a test relative to control condition (Giaever et al., 2004; Girgis et al., 

2009; Hillenmeyer et al., 2008; Hoon et al., 2008; Lee et al., 2005; Pan et al., 2004; 

Parsons et al., 2006; Warner et al., 2010; Xu et al., 2007). These approaches are very 

efficient, but competition between strains in each condition makes it difficult to determine 

relative strain growth across conditions (Girgis et al., 2009), especially for strains that 

grow slowly even in the absence of perturbation (Lee et al., 2005). Arraying mutant 

strains on solid media allows independent evaluation of strain fitness, but has been used 

only for low-resolution measurements of entire libraries (Liu et al., 2010; Tamae et al., 
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2008) or for essential genes (Pathania et al., 2009). High-throughput genetic interaction 

studies, pioneered in yeast (Schuldiner et al., 2005; Tong et al., 2001), are 

complementary to chemical genomics approaches. Such analyses quantitatively 

measure colony growth of double mutants in high-density format on agar surfaces, and 

have led to numerous successes in identifying gene function and network organization 

(Beltrao et al., 2010). Similar methodology has been developed for E. coli (Butland et al., 

2008; Typas et al., 2008).     

 

We use E. coli to illustrate the power of applying the high-resolution quantitative fitness 

measurements of genetic interaction analysis to high-throughput phenotypic analysis of 

culturable microbes. “Phenomic profiling” provides a quantitative description of the 

response of all single gene deletions to physiologically relevant stresses and drug 

challenges. By profiling ~4000 genes in >300 perturbations, we identified thousands of 

phenotypes and a diverse suite of conditionally essential genes. This approach provides 

new insights into the chromosome organization, functional landscape and evolutionary 

trajectory of E. coli. It facilitates high confidence association of genes of unknown 

function to those of known function, as highlighted by discovery of the role of a gene 

involved in multiple antibiotic resistance in this manuscript and identification of two novel 

lipoproteins essential for peptidoglycan synthesis (Typas et al. Cell, accepted). Finally, 

the degree to which various gene deletions alter toxic drug effects has lead to powerful 

insights regarding drug mode-of-action (Kohanski et al., 2008) and we demonstrate that 

our analysis generates numerous leads concerning drug function. 
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Results and Discussion 

Phenomic Profiling of E. coli K12 yields a robust, high-quality dataset 

We determined quantitative growth scores for the Keio single-gene deletion library (Baba 

et al., 2006); essential gene hypomorphs [C-terminally tandem-affinity tagged (Butland et 

al., 2005) or specific alleles]; and a small RNA/small protein knockout library (Hobbs et 

al., 2010) in conditions representing the range of stresses E. coli encounters. Mutant 

strains arrayed in high-density on agar plates (1536 colonies/plate) were grown in 324 

conditions covering 114 unique stresses (Figs. 1A & S1A, Table S1). Colony sizes were 

analyzed and converted to a drug-gene score using an approach developed for 

quantifying genetic interactions (see Experimental Procedures). More than half of the 

conditions were antibiotic/antimicrobial treatments (Fig. 1A). By using a sub-inhibitory 

concentration series that maximally inhibited growth of the wildtype (wt) strain ≤50%, we 

were able to search for specific drug-gene interactions (Fig. S1A), and reduce the ability 

of spontaneous suppressor mutations to overtake the colony. Two independently derived 

clones of each mutant strain were analyzed (for sRNA mutants, a single isolate was 

arrayed twice) and screens were performed at least twice, enabling scores to be based 

on 4-6 independent measurements. Correlation between replicate colony size 

measurements was very high (r=0.77, Fig. 1B). The final dataset (Table S2) was 

comprised of scores for the 3979 mutant strains passing quality control (e.g. proper 

normalized colony size distribution and replicate reproducibility; see Experimental 

Procedures). The entire dataset is available in an interactive, searchable format and as a 

flat file on the E. coli wiki website (at http://ecoliwiki.net/tools/chemgen/). 

 

The entire matrix (3979 mutants X 324 conditions) was subjected to 2-D hierarchical 

clustering (Fig. 1C). Drugs with similar effects cluster on the X-axis; mutants that 
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behaved similarly cluster on the Y-axis. Notably, concentrations of the same drug, drugs 

of the same family and/or similar conditions clustered together as did mutants of genes 

known to be part of the same operon, biological pathway and/or protein complex.  

 

Figure 1. Phenomic Profiling of the enhanced Keio Collection yields a robust and rich 
dataset. (A) Classification of the 324 stresses screened (left), and cellular targets of the 
antibiotic/antimicrobial/drug classes (right). (B) Heat map representation of scatter plot comparing 
normalized colony sizes in pixels of plate replicates 1 and 2 across the entire dataset. Bins 
indicate the square root of the number of replicate pairs within a 10 x 10 pixel window as depicted 
by color scale. Note that the vast majority of the replicates have highly correlated colony sizes. 
(C) Clustergram of fitness scores for 3979 mutant strains in response to all 324 conditions. 
Zoomed insets demonstrate co-clustering of conditions (x-axis) and genes (y-axis) for a common 
pathway (rfa cluster), and protein complexes encoded in the same operon (nuo) or in different 
operons (dsbA and dsbB). Gray boxes indicate missing data. (D) High correlation between a pair 
of phenotypic signatures is predictive of shared protein interaction and/or operon membership. 
 

Zoomed insets of our clustergram illustrate examples. Genes in the rfa operon (rfaG, 

rfaP, rfaQ, rfaB and rfaI), which encodes enzymes that synthesize the inner and outer 

lipopolysaccharide (LPS) core strongly cluster together with 3/4 genes responsible for 

the synthesis of one of the sugar building blocks, ADP-L glycero-β-D-manno heptose 
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(rfaD, rfaE, lpcA). Importantly, clustering reflects their shared sensitivities to a 

concentration series of compounds known to perturb the envelope integrity of the cell, 

consistent with the role of LPS. dsbA and dsbB, encoded in different operons, also 

cluster. The DsbA/DsbB complex generates disulfide bridges in the periplasm.  

 

The response of each mutant strain across all conditions is denoted as its “phenotypic 

signature”. High correlation between two phenotypic signatures is highly predictive of 

known indicators of functional connection between genes. Gene pairs with correlation 

coefficients (r) between 0.6 and 0.8 (p-value <10-34) are more than 100-fold enriched for 

genes sharing common operon membership, and 150-fold enriched for genes with 

known protein interactions determined from low-throughput experiments 

(www.ecocyc.org, Fig. 1D). This benchmarking analysis indicates that our phenomics 

dataset is biologically meaningful. Correlated phenotypic signatures also reproduce 

connections between curated biological pathways (Fig. S1B). For example, electron 

transfer components cluster tightly (e.g. nuo genes encoding NADH dehydrogenase I 

complex; Fig. 1C). Their clustering reflects high sensitivity to membrane-perturbing 

stresses including detergents, dyes and metals, and increased resistance to 

aminoglycosides, in agreement with early studies that illustrate decreased 

aminoglycoside uptake in the absence of a fully functional electron transport chain 

(Girgis et al., 2009; Taber et al., 1987). All three examples described in Fig. 1C are 

consistent with the expectation that highly correlated phenotypic signatures are 

biologically meaningful (r≥ 0.6 -0.8). 

 

Phenomic profiling defines Responsive and Conditionally-Essential Genes 

A central goal of this study was to systematically evaluate the impact of every gene 

deletion on E. coli fitness in diverse environments, as few gene deletions in E. coli have 
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robust reported growth phenotypes and only 8% of the genes are essential in rich media 

(Baba et al., 2006; Yamamoto et al., 2009). We used a statistical method to define a 

reliable phenotype. Briefly, we standardized the interquartile range of the distribution of 

scores for each screen and then determined the probability that each condition-gene 

interaction represented a true phenotype using a normal cumulative distribution function 

(see Experimental Procedures). Using a 5% probability that these phenotypes arose by 

chance as a cut-off (false discovery rate (FDR) ≤5%), 49% of all strains tested 

(1957/3979 strains; Fig. 2A) had one or more phenotypes. We refer to these genes as 

the “responsive genome”. This “responsive genome” is a work in progress, as it is limited 

to genes whose removal causes growth phenotypes in response to the stresses tested. 

Expanding the stresses tested and/or the readout (e.g. motility) will certainly increase 

this number (Girgis et al., 2007). A cumulative plot of the number of individual 

phenotypes per strain shows that very few genes have many phenotypes. Multi-Stress 

Responsive (MSR) strains (≥30 phenotypes; Table S3) participate in many cellular 

processes, suggesting that our stresses encompassed diverse cellular challenges (Fig. 

2B). With a stringent cut-off of 5% FDR, the maximum number of phenotypes from a 

single screen was 173 (~4% strains; Fig. S2A), and the total number of phenotypes 

(13497) represent ~1% of all condition-gene pairs tested. Overall, 80% of the 

phenotypes were negative (gene deletion more sensitive) and 20% positive (gene 

deletion more resistant), consistent with recent genetic interaction analyses in S. 

cerevisiae (Fiedler et al., 2009) and S. pombe (Roguev et al., 2008). This suggests that 

removal of a gene product is more likely to decrease than enhance resistance to stress 

(Fig. S2B). In summary, our analysis captured numerous highly specific condition-gene 

responses. Clearly, this dataset can be used to assign more phenotypes at a lower 

confidence level. Indeed, a recent chemical genomics dataset in S. cerevisiae reported 
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phenotypes for more than 95% of gene deletions tested, many stemming from a handful 

of severe stresses (Hillenmeyer et al., 2008).  

 

 

Figure 2. Identification of responsive and conditionally-essential genes. (A) Using a 5% 
false discovery rate (FDR), 49% of strains tested had at least one phenotype (open circle on the 
red line). As the FDR is relaxed, more phenotypes are identified (red line). At 5% FDR, some 
strains have several phenotypes (black) and very few (0.023%; 94 strains) have 30 or more 
phenotypes (green, Multi-Stress Responsive (MSR) genes). (B) MSR genes participate in a wide 
variety of cellular processes, particularly those related to metabolism and the cell envelope. 
Genes were manually curated to COG-based functions; each gene was allowed to belong only to 
a single function. (C) 196 genes are conditionally-essential (CE) in this study. Of these, roughly 
half have been previously described as CE due to auxotrophy. Note that some auxotrophic genes 
also display a no growth phenotype in at least one rich medium condition and are classified jointly 
as auxotroph and rich media CE. (D) Rich media CE gene products are enriched in the outer cell 
envelope (periplasm and outer membrane) relative to Keio essential genes (p=0.00026), 
highlighting the importance of this compartment in tolerating stress. The cytoplasmic gene 
category is not displayed here, but is not enriched for rich media CE gene products. 
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scores in particular conditions (see Experimental Procedures). We identified 197 CE 

genes, comprised of auxotrophs, which exhibit no growth in minimal media, and rich-

media CE genes, which exhibit no growth in at least one rich media-based stress (Table 

S4). Importantly, our dataset had 70% overlap with a previous study of Keio Collection 

auxotrophs (Fig 2C, (Joyce et al., 2006) despite significant experimental differences (e.g. 

growth in liquid vs. solid media). Many of the remaining 30% were extremely sick, but 

above the stringent threshold we used to define no growth. We also identified 23 

additional auxotrophs specific to alternative carbon/nitrogen sources not tested in the 

Joyce et al. study. 

 

Genes essential for survival in natural environments are likely to extend beyond those 

required for laboratory growth, and could be targets for new antimicrobials (D'Elia et al., 

2009). The 116 rich-media CE genes we identified (Fig. 2C) result from physiologically 

relevant stresses, and increase the current number of essential genes by roughly 30%. 

Interestingly, many of these gene products are located in the outer cell envelope (Fig 

2D), a selective permeability barrier for gram-negative bacteria that is severely 

underrepresented for known essential genes (Fig. 2D). Many of the stresses generating 

CE phenotypes are part of the natural environment of E. coli, e.g. bile salts (Table S5), 

indicating that these genes are likely indispensable for E. coli to survive in vivo. Similarly, 

using the largest metagenomic dataset to date, Qin et al. reported that envelope-specific 

functions, such as adhesion, were commonly required for life in the gut (Qin et al., 2010).  

 

Phenomic profiling helps assign function to uncharacterized genes 

A key motivation for our study was to provide phenotypes for mutants of genes without 

functional annotation. Using a recently assembled compendium of such “orphan genes” 

in E. coli (Hu et al., 2009), we find that the fraction of mutant orphan genes with 
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phenotypes is close to that of annotated genes (Fig. 3A), but the former tend to have 

fewer phenotypes, indicating the power of phenomic analysis for identifying their 

phenotypes. Importantly, the phenotypic profiles of >25% of all orphan genes correlate 

strongly with those of annotated genes (r ≥ 0.5; Fig. 3B & Table S6), providing high 

confidence leads (p-value <10-22) for discovery of their function. As these orphans are 

tied to a wide variety of cellular processes (Fig. 3C), the dataset will be of broad utility. 

 

 

Figure 3. Phenomic profiling identifies phenotypes for orphan gene mutants. (A) 
Cumulative distribution of phenotypes indicating the fraction of gene mutants in each class having 
at least the number of phenotypes shown on the X-axis. The plot reveals that orphan gene 
mutants have phenotypes, but tend to have fewer phenotypes than annotated gene mutants. The 
insert quantifies phenotype deficit of orphan mutants. (B) Cumulative distribution of highly 
correlated pairs identifies many orphan genes that correlate highly to an annotated gene, 
providing high confidence clues to the function of the orphan gene. Values shown above each 
pair of bars are the p-values associated with pairwise correlation of any two strains at the 
indicated correlation coefficients. (C) High confidence correlations between orphans and 
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annotated genes (r≥ 0.5) provide leads related to many different cellular functions. Procedure for 
functional assignment is described in Fig. 2. Note that several “annotated genes” were classified 
as genes of “unknown function” or “general function prediction only” after manual curation. (D) 
Annotated genes responsible for many phenotypes tend to be broadly conserved, while the most 
responsive orphan genes tend to be restricted to γ-proteobacteria. 
 

A small fraction of orphan gene knockouts have many phenotypes. Whereas annotated 

genes responsible for many phenotypes are broadly distributed among bacteria, the 

most responsive orphans tend to be narrowly distributed (Fig. 3D). This result suggests 

that evolutionary conservation is not a reliable indicator of the importance of an orphan 

gene to the organism, and that annotating them solely by homology has limitations. Such 

orphans may have evolved to fulfill an important but specialized function required by the 

niche of the organism. In support of this idea, a multi-responsive orphan identified in this 

study (lpoB) is restricted to enterobacteria and regulates peptidoglycan synthesis, a 

conserved process ubiquitous among bacteria (Typas et al.; Cell, accepted). 

 

Using phenotypic signatures to identify gene function   

Both correlated phenotypic signatures (Fig. 1C&D; Typas et al.; Cell, accepted) and 

anticorrelated phenotypic signatures have functional significance. For example, the 

phenotypic signatures of deletions of a transcriptional repressor and important target 

genes are likely to be anticorrelated. We find that marR- and marB- were highly 

anticorrelated with acrB-, whereas marR- and marB- were highly correlated (Fig. 4A). 

marB is a gene of unknown function in the multiple antibiotic resistance operon 

(marRAB), which also includes the operon repressor, marR, and its activator, marA. 

MarA also activates genes involved in antibiotic resistance, most importantly acrAB, 

encoding the major antibiotic efflux pump in E. coli (Fig. 4B; (Martin and Rosner, 2002). 

We explored whether MarB, like MarR, repressed MarA. Because of the inherent 

problems of high-throughput collections (suppressors, gene duplications, cross-
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contamination), we always apply stringent quality control procedures to any follow-up 

investigations including PCR-validation of Keio isolates, and verification that 

retransduced strains maintain their phenotype. As mar is a hotspot for adaptive 

mutations, we also sequenced the entire operon and promoter region of single deletions 

and the double mutants we constructed. 

 

 

 

Figure 4. A function for marB. (A) marR- and marB- phenotypic signatures are highly correlated 
with each other, and are highly anticorrelated with that of acrB- (top). The bottom graph positions 
these correlations in a histogram showing all pair-wise correlation coefficients between the 3979 
mutants. (B) Schematic of the E. coli multiple antibiotic resistance (mar) operon. marB is a gene 

marR

MarR

MarR

marA marB

MarBMarA

 a
cr

A 

 a
cr

B 

 m
ar

A 

 m
ar

B 

 m
ar

R
 

 acrA 

 acrB 

 marA 

 marB 

 marR 
 -1.00

 

 -0.67
 -0.33
 0.00
 0.33
 0.67
 1.00

Correlation
Coefficient

-0.46 0.64

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

50,000

100,000

150,000

200,000

250,000

300,000

Correlation Coefficient

St
ra

in
s 

pe
r B

in

-0.50

A.

0

1

2

3

4

5

6

WT marB:kan marR- marR-/
marB:kan

lo
g2

(re
la

tiv
e 

m
ar

A 
tra

ns
cr

ip
t l

ev
el

)

C.

B.



	
   54	
  

of unknown function, but our results suggest it encodes a protein that inhibits MarA. (C) RT-PCR 
analysis shows that marA transcription is derepressed in marB- cells. Derepression is 
independent of and additive with that of marR-.  
 

 

Deletion of either marB or marR resulted in higher MarA levels, and the double marRB 

mutant showed additive effects on MarA transcript level (Fig. 4C) and protein level (data 

not shown). These effects were observed in both Kan-marked and clean deletions (Kan 

cassette excised, leaving an 82nt scar). The ΔmarR strain exhibits ~2X more increase in 

MarA transcript levels than marR::kan (data not shown), arguing for a small polar effect 

of the cassette. Both marB::kan and ∆marB exhibit the same 2-fold increase in MarA 

levels (data not shown). These data suggest that MarB represses MarA independently of 

MarR. MarB does not have the signature of a DNA-binding protein, suggesting it acts 

post-transcriptionally. MarA level is controlled by the Lon protease (Griffith et al., 2004), 

but lon- and marB- effects are additive, indicating that MarB does not function through 

Lon (data not shown). MarA has been proposed to scan for activation sites while bound 

to RNA polymerase; by direct binding to either partner, MarB could disrupt complex 

formation. Aternatively, MarB may function in the periplasm. As MarB has a predicted 

periplasmic signal sequence, it could titrate an activating ligand for mar (e.g. salicylate). 

 

Although mar is highly studied (∼200 primary publications; Pubmed), our screen 

provided the first lead for MarB function. MarA targets approximately 40 genes, many of 

which are also co-regulated by the SoxS and Rob activators, with similar DNA-binding 

motifs as MarA (Martin et al., 2008; Martin and Rosner, 2002). The rules of engagement 

are poorly understood, but each activator responds to different environmental cues and 

overexpression of each leads to distinct phenotypes (Warner and Levy, 2010). It is likely 

that tight control of each activator impacts on the final gene expression output, which is 
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crucial for cellular proliferation. MarB may be an important player in fine-tuning the 

expression of MarA, especially since it is a conserved member of the mar operon, which 

has only recently emerged in selected pathogenic enterobacteria. Strong evidence for 

the importance of mar operon regulation in these organisms is that mar is a hotspot for 

mutations conferring higher drug resistance in E. coli (Nicoloff et al., 2007; Nicoloff et al., 

2006). 

 

Phenomic profiling reveals metabolic network behaviors under anti-folate drug 

stress 

Tetrahydrofolate (THF) and its methyl/formylated derivatives are key molecules in all 

kingdoms of life for one-carbon metabolism. THF is used to synthesize glycine, 

methionine, purines and dTTP, in a process that leads to recycling of the THF species 

back to THF or dihydrofolate (DHF) (Fig. 5A). The bacterial THF biosynthesis pathway is 

targeted by two drugs: Sulfonamides (Sulfa) target FolP, and Trimethoprim (TMP) 

targets FolA (Fig. 5A). Dual inhibition by Sulfa and TMP is strongly synergistic, and 

therefore these drugs are almost exclusively administered in combination for treatment 

of ear, urinary tract and bronchial infections. Despite extensive clinical use and years of 

laboratory investigation, we lack a complete mechanistic understanding of why these 

drugs are strongly synergistic. A network feature identified by phenomic profiling could 

contribute to synergy. 

 

We find that the two drug classes have major phenotypic differences. Sulfa and TMP 

treatments are highly correlated within their class (r=0.57 for Sulfa; 0.67 for TMP), but 

poorly correlated with each other (r=0.15 +/- 0.04), just slightly more than the correlation 

observed between all screens (r=0.025 +/- 0.12). Thus, subinhibitory TMP and Sulfa 

treatments have fundamentally different effects on the cell, even though both partially 
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block THF biosynthesis. Importantly, removing enzymes acting directly downstream of 

THF production resulted in opposite drug sensitivities: the serine 

hydroxymethyltransferase mutant (glyA::kan) was sensitive only to TMP; conversely, 

glycine cleavage (GCV) mutants (gcvP::kan, gcvH::kan, gcvT::kan) were sensitive only 

to Sulfa (Fig 5B). The mutant results were reproduced in liquid culture (Fig. 5D), where 

glyA- TMP sensitivity is manifested as a growth rate phenotype (left panel), and gcvP- 

sulfamethizole (SMT) sensitivity is registered as a low stationary phase density (right 

panel).  

 

GlyA and GCV lie on opposite sides of a branched pathway that converts THF to 5,10-

methylene THF (5,10-mTHF; Fig 5A). As glyA and gcv mutants exhibit synthetic lethality, 

they are the only routes to production of this essential metabolite (Fig. 5C). A simple 

explanation for the differential responses of glyA- and gcvP- is that 5,10-mTHF is 

predominantly produced via different branches under each drug treatment. A corollary is 

that combination drug treatment inhibits both branches, resulting in synergistic limitation 

for 5,10-mTHF, before the pools of THF are depleted. In support of this idea, despite the 

increased sensitivity of glyA- and gcvP- to single drugs, these strains grew no more 

poorly than wt under the drug combination (Fig. 5D). Thus, genetically eliminating either 

branch of the pathway reduced but did not eliminate synergy. The downstream 

biosynthetic reactions are also differentially affected by TMP and Sulfa (Fig. S3A), and 

we are currently testing whether they partially account for the residual synergy. 

Streptococcus pneumoniae lacks the GCV system and exhibits significantly less drug 

synergy than E. coli across different growth conditions (Fig. 5E & data not shown). We 

performed our comparison using concentrations of TMP and SMT that caused the same 

relative growth defect in each species (Fig. 5E). These data together support the 
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hypothesis that simultaneous inhibition of the branched pathway for production of 5,10-

mTHF contributes to the observed anti-folate synergy in E. coli.  

 

 

Figure 5. A new network feature contributing to anti-folate drug synergy. (A) Schematic of 
the E. coli tetrahydrofolate (THF) biosynthesis pathway and the enzymatic steps inhibited by 
Sulfa and TMP. (B) Clustergram of genes that respond to Sulfa, TMP, or the combination. 
Zoomed image indicates that gcv mutants are sensitive to Sulfa, glyA- is sensitive to TMP, and 
that these four mutants exhibit essentially wildtype growth in response to the drug combination. 
(C) glyA- and gcvP- are a synthetic lethal pair. Image of a plate mating between the donor Hfr 
gcvP::cat and 24 kanR recipients (arrayed in boxes of 8x8 colonies), grown on 
kanamycin/chloramphenicol medium to select for double mutant strains; position of the glyA::kan 
and gcvP::kan recipients is highlighted. (D) Liquid culture experiments verify growth phenotypes 
on agar plates shown in Fig.5B. The TMP/SMT combination has less synergy than wildtype in 
glyA- and gcvP- cells. Concentrations shown for TMP and SMT are in µg/mL. (E) Quantification of 
synergy in E. coli and S. pneumoniae, which lacks the branched pathway for generating 5,10-
mTHF present in E. coli. Comparisons were performed using single drug concentrations giving 
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equivalent inhibition of both organisms. S. pneumoniae has reduced synergy compared to E. coli. 
 

Our data do not indicate whether differential effects of TMP and Sulfa on GlyA and GCV 

result from differential inhibition of expression or activity, or the intrinsic properties of 

each enzyme. We favor the idea that differential metabolite accumulation and 

subsequent feed-forward enzymatic regulation make a contribution to the distinct cellular 

responses to these two drugs. Recent metabolomic flux analyses indicate that high 

doses of TMP lead to accumulation and depletion of select metabolites, as well as to 

protein-level regulation of portions of the network (Kwon et al., 2010; Kwon et al., 2008). 

Although a comparable analysis has not been performed for Sulfa drugs, deletion of the 

predicted 5-formyl-THF cycloligase, ygfA, which likely degrades 5-formyl-THF 

(Jeanguenin et al., 2010), clusters tightly with the gcv mutants, and exhibits sensitivity 

only to Sulfa drugs (Fig. S3A). That 5-formyl-THF degradation is critical only under Sulfa 

stress suggests differential accumulation (or requirement) of THF species under Sulfa 

and TMP treatments. 5-formyl-THF is a known inhibitor of several enzymes in the THF 

network of other organisms (Field et al., 2006; Stover and Schirch, 1993), and could act 

as an effective protein-level regulator. Similarly, a strain lacking a predicted alanine 

racemase, yggS, is sensitive only to Sulfa; D-alanine is known to inactivate GlyA 

(Schirch et al., 1985), and yggS- and glyA- form a synthetic lethal pair (Fig. S3B). Thus, 

the different cellular responses to these two drugs may be due in part to metabolite-

based enzymatic regulation. An extension is that the synergy of combination therapy 

could rest primarily on complementary inhibition of different one-carbon biosynthesis 

reactions, and therefore recycling of THFs. This model would allow for synergy even with 

the expected additive limitation of THF production. 
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In summary, our results illustrate the power of phenomic profiling to yield insights into 

drug action and the ability of a networks view to provide new paradigms for analysis of 

drug interaction mechanisms, which can facilitate hypothesis-driven research on drug 

interactions (Bollenbach et al., 2009). This type of analysis may be generally useful in 

predicting drug synergies, and in explaining variable drug-drug interactions across 

species. 

 

Phenomic profiling gives insights into genomic organization 

The E. coli genome is encoded on a single, circular chromosome, with a single origin of 

replication, oriC. Essential genes are biased to the plus (+) strand, where transcription 

proceeds in the same direction as DNA replication. This may avert head-on collisions 

between RNA and DNA polymerases that would result in aborted transcripts, truncated, 

or frame-shifted proteins (Rocha and Danchin, 2003). Here we show that responsive and 

CE genes, which are important for optimal growth of the organism, also show + strand 

bias (Fig. 6A). Indeed, the weighted responsive genome (responsive genes weighted by 

number of phenotypes identified) is heavily biased to the + strand, indicating great 

selective pressure to place genes important for rapid growth on the + strand. 

Conversely, the non-responsive genome is biased to the minus (-) strand. As our 

approaches expand to incorporate additional phenotypic readouts more important for 

cells with reduced division and DNA replication (e.g. biofilm formation), the + strand bias 

of responsive genes will presumably be reduced.  

 

The chromosome is massively compacted in the cell to create the nucleoid, which is 

thought to contribute significantly to the organization of gene expression (Travers and 

Muskhelishvili, 2005; Vora et al., 2009). Chromosomal loci have spatial addresses in the 

cell, corresponding closely to their chromosomal position (Toro and Shapiro, 2010). 
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Additionally, highly expressed genes associated with transcription and translation are 

located near the origin of replication (oriC), presumably to benefit from the “gene 

 

 

Figure 6. Phenomic profiling generates insights into genome organization. (A) Essential 
and responsive genes are biased to the plus strand of DNA (transcription direction coincident with 
replication) and the non-responsive genes are biased to the minus strand of DNA. (B-C) For each 
panel, circular plots depict gene position, adjusting coordinates so that the chromosome starts at 
the origin of replication (oriC = 0 bp); the terminus region (ter) is opposite the oriC. Each trace 
represents spatial enrichment for the variable plotted based on a 100kb sliding window. Three 
dashed lines of the same color accompany each trace indicating the minimum permutation 
threshold, the baseline representing zero enrichment, and the maximum permutation threshold 
(inside to outside). Permutation thresholds are the result of 1000 randomizations of gene class 
assignments (see Experimental Procedures), and indicate significant negative and positive spatial 
enrichment at a p-value of 0.05. (B) Responsive and CE genes are concentrated around the oriC, 
and scarce around the terminus. (C) The terminus is positively enriched for genes restricted to 
the γ-proteobacteria, and negatively enriched for broadly conserved genes.  
 

dosage” effect created when rapidly growing cells initiate multiple rounds of DNA 

replication per division (Couturier and Rocha, 2006). Projecting the spatial distribution of 

the responsive genes onto the circular chromosome (Fig. 6B, black trace) provides us 

with a snapshot of the E. coli genome from a functional perspective. This projection is 
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based on a 100kb sliding window and therefore captures organization above the operon 

level (Fig. S4A; Experimental Procedures). A pattern of alternating peaks and valleys is 

clearly evident, indicating that responsive genes cluster spatially into large chromosomal 

regions separated by regions generally devoid of responsive genes. “Valleys” are 

comprised of spatially separated operons often transcribed from different strands, 

indicating that low responsiveness is a regional characteristic rather than an artifact due 

to large non-responsive operons. Our finding of clustering above the operon level is in 

accord with other studies showing that gene expression is broadly correlated across 

certain regions of the chromosome (Carpentier et al., 2005; Jeong et al., 2004). 

 

The responsive genome is most enriched around oriC, which has the highest 

concentration of responsive genes (Fig. 6B, black trace). This area is also enriched for 

the most responsive genes (Fig. S4B), and for conditionally essential (CE) genes (Fig. 

6B, red trace), providing strong support for the idea that the E. coli chromosome tends to 

store genes of high functional importance near the oriC. In contrast, the terminus region 

is relatively devoid of responsive genes (Fig 6B, black trace), has a paucity of broadly 

conserved genes (Fig 6C, red trace) and a corresponding enrichment for genes 

restricted to γ-proteobacteria (Fig 6C, blue trace). We postulate that the terminus region 

contains newly acquired genes that have yet to fully integrate into the cellular network, 

and tend to lack phenotypes. This could enable cells to avoid unnecessarily high 

expression of such genes as a consequence of the gene-dosage effect. Should this 

result prove true across bacterial species, it could point to a general organizing principle 

of circular chromosomes. 

 

Phenomic Profiling Describes Drug Action 

“Drug-centric” analyses are more complex than “gene-centric” analyses. Whereas genes 
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mostly participate in a single biological process, many parameters are required to 

describe drug action: uptake, primary/secondary targets, efflux. Therefore, pairwise 

relationships between drugs are more complex than those between genes. For example, 

two drugs may cluster based on drug uptake, even though their primary targets differ. In 

addition, drug signatures are an order of magnitude larger than gene signatures (3979 

vs. 324). To reduce the complexity of drug signatures, we calculated Drug-Gene 

Ontology (GO) scores, which represent the probability that a given GO group specifically 

interacts with a given drug (i.e. number of phenotypes associated with genes in the GO 

group vs. across the entire dataset). We used these Drug-GO scores to explore drug 

mode-of-action through a network-based clustering strategy (see Experimental 

Procedures). The position of drugs in the network (Fig. 7A) is based both on the 

magnitude of their Drug-Gene Ontology (GO) scores (gray) and on Drug-Drug 

correlations (yellow). Of the 719 significant Drug-GO interactions (p-value ≤ 10-3), which 

include 64 drugs and 218 GO groups, 657 were negative and only 62 were positive. 

Thus, disrupting a linked biological process was very likely to increase drug sensitivity 

(Table S7). Drug-Drug correlations increased the resolution of the network and captured 

drug similarities that escaped the Drug-GO analysis.  

 

We found that drugs with the same cellular target tend to cluster. For example, drugs 

targeting DNA (orange) fall in the lower right, those targeting THF-biosynthesis (light 

green) fall on the bottom edge and those targeting peptidoglycan (PG; purple) 

predominantly cluster in the upper left. Interestingly, β-lactams cover the center of the 

PG cluster, whereas drugs targeting other steps of PG synthesis are located at the 

periphery. The correlation coefficients between β-lactams reveal that the similarity of 

their phenotypic signatures is related to their respective primary target Penicillin Binding 
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Proteins (Fig. S5A). Interestingly, known synergistic double drug combinations 

(TMP/sulfonamides and mecillinam/cefsulodin) occupy spaces distinct from either 

individual drug, arguing that the combination elicits a different cellular response from the 

individual drugs. It will be interesting to determine whether this holds true for antagonistic 

or neutral interactions or whether these combinations elicit responses closer to one or 

both drugs. 

 

 

Figure 7. Network view reveals new insights into drug action. (A) Colored nodes represent 
all drugs profiled in this study found to have significant interactions with Gene Ontology (GO) 
biological process groups (gray nodes). Connections between nodes represent significant Drug-
GO interactions (p-value ≤10-3, gray) or high Drug-Drug correlation (r≥0.32, p-value ≤10-97, 
yellow). Drug node size is based on the number of connections associated with that node, i.e. 
larger nodes have more Drug-GO interactions. Spatial clustering is driven by the p-values of 
Drug-GO interactions and Drug-Drug correlations, resulting in drugs with similar cellular action 
lying near each other in the network. Drugs with multiple, unknown, or poorly defined targets are 
shown in dark blue. (B) Zoomed view of subnetwork shadowed by light blue box in (A). All four 
quinolones screened (orange) interact negatively with xseAB (exonuclease VII) and are the only 
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drugs that require the exonuclease, p-value=10-6. NTF is found to activate the SOS response, 
and create lesions requiring nucleotide-excision repair (Fig S5B). 
 

 

Importantly, specific Drug-GO interactions suggest hypotheses for mechanism of action 

even for well-studied drugs. Quinolones inhibit DNA gyrase by trapping it as a quinolone 

adduct, whose mechanism of resolution is poorly understood (Drlica et al., 2008). One 

GO category, “cellular DNA catabolic process” (xseAB) selectively and specifically (p-

value=10-6) interacted negatively with all four quinolones screened (Fig 7B & S5B), 

expanding on a previous report of xseAB mutant sensitivity to fluoroquinolones (Tamae 

et al., 2008). We suggest that XseAB (exonuclease VII) is the enzyme that cleaves 

quinolone-bound DNA gyrase from the DNA to allow repair to proceed, a possibility we 

are currently exploring.  

 

Our drug network also provides clues for the mode of action of poorly described drugs, 

and, conversely suggests that additional factors are required to explain the action of 

other drugs. Nitrofurantoin (NTF; Fig. 7B) is reported to have a multi-faceted impact on 

cells (McOsker and Fitzpatrick, 1994; Tu and McCalla, 1975), but our data suggests its 

cytotoxic effects reflect DNA damage, as it causes lesions requiring nucleotide-excision 

repair (NER) and activates the SOS response. NTF is the only DNA-targeting drug 

requiring NER, but not double-strand break repair, suggesting that its primary toxic 

lesion is associated with the replication fork (Fig. S5B). Additionally, our network 

analysis validates the idea that indolicidin, a neutrophil antimicrobial peptide, mediates 

its effects by compromising the inner membrane permeability of E. coli in a manner 

similar to the proton motive force uncoupler, CCCP (Falla et al., 1996). Finally, 

phleomycin and bleomycin do not cluster with DNA response drugs, suggesting they 

have broader cellular impact (Hecht, 2000; Yeh et al., 2006), from inducing DNA 
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scissions (Giloni et al., 1981). These insights suggest that this phenomic dataset is a rich 

source for discovery of drug function and interrelationships. 

 

Perspectives 

To keep pace with exploding sequence information, cost-effective, high-throughput 

phenotyping technologies must be developed. Here we show that phenomic profiling in 

E. coli fulfills this goal. Our dataset is of great utility in identifying the function of orphan 

genes. Three cases (marB, lpoA, lpoB) were investigated here or in a study based on 

this dataset (Typas et al., Cell, accepted), and we are actively pursuing functional 

discovery of numerous (>20) orphan genes, as well as annotated genes with previously 

unsuspected roles in collaboration with others. Since >25% of the orphan genes are 

highly correlated to an annotated gene (r≥ 0.5), this dataset provides a rapid method for 

function discovery.  

 

An important finding is that the most responsive orphan genes tend to be narrowly 

distributed among bacteria. Interestingly, our results mirror initial observations from 

human microbiome studies. These studies found that: a) roughly half of the functions 

encoded in the minimal gut metagenome (ubiquitously present in all 124 individuals 

screened) are both unknown and of limited evolutionary conservation (Qin et al., 2010); 

b) across 4 pan-genome species analyzed, the vast majority of non-common genes 

were of either unknown function (~70%) or unique family members of functions that were 

part of the core gene set (Nelson et al., 2010). The latter are probably species-specific 

additions to conserved biological processes of the pan-genome. Together these studies 

argue that when computational methods based on gene conservation fail, large-scale 

phenomic analyses can be a second tier for assigning function. To make this approach a 

reality, low cost methods for developing deletion libraries must be developed (Goodman 
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et al., 2009). Single-gene deletion ordered libraries are currently available for only a 

handful of organisms [(Cameron et al., 2008; de Berardinis et al., 2008; Gallagher et al., 

2007; Goodman et al., 2009; Kim et al., 2010; Liu et al., 2008; Noble et al., 2010) and 

references in (Barker et al., 2010)], but advances in transposon mutagenesis make it 

feasible to create ordered mutant libraries in most organisms. In E. coli, expansion of 

this work will rest on the ability to assess additional phenotypes through deeper 

exploration of phenotypic space. The greatest potential resides at the intersection of 

screening more diverse stresses and incorporating additional cellular readouts. 

Colorimetric readouts would enable measurement of transcriptional activity or biofilm 

formation on solid agar surfaces, and represent an immediate potential advance for 

phenomic profiling. High-throughput microscopy would provide a new avenue for such 

approaches (Werner et al., 2009).   

 

Our dataset provides information on a substantial collection of antibiotics/antimicrobial 

compounds that cover a broad spectrum of drug targets, structural classes and drug 

generations, providing a platform for future studies focused on natural products or 

antimicrobials with unknown targets. Our dataset can also provide a platform for 

studying the mechanism behind drug interactions (Yeh et al., 2009), as shown here for 

the case of sulfonamides and TMP. Understanding the mechanism underlying known 

drug interactions may help to predict novel interactions and manipulate existing drug 

combinations to increase their effectiveness in the clinic. 

 

In summary, we have generated a valuable resource for microbiologists studying a wide 

range of biology, and demonstrated the numerous and diverse applications of this 

dataset to infer information both on gene and drug function. As the most comprehensive 

prokaryotic chemical genomic study to date (3979 strains x 324 conditions), our dataset 
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will serve as a base for future studies that aim to increase information and/or resolution 

on both the gene and drug fronts. We hope that the usefulness of this resource will 

trigger analogous studies in other organisms, bringing us a step nearer to closing the 

gene sequence-function gap. 

 

Experimental procedures 

Experimental procedures are partially elaborated in the text and figure legends, and are 

fully explicated in supplementary material. 
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Phenotypic Landscape of a Bacterial Cell 

Robert J. Nichols et al. 
 
SUPPLEMENTAL INFORMATION 
 

i. Supplemental Data     
Fig. S1 Colony plates illustrate high-density arrayed screening and 
phenotypic signatures reproduce known connections between biological 
pathways; related to Fig. 1 
Fig. S2 Phenotypes reported here are highly specific and the majority 
reflect a conditional loss of fitness; related to Fig. 2 
Fig. S3 Responses of mutants involved in tetrahydrofolate and one-
carbon biosynthesis indicate differential cellular effects of trimethoprim 
and sulfa drugs; related to Fig. 5 
Fig. S4 100kb window size is optimal for avoiding operon effects and 
weighted responsive genome exhibits highly similar spatial enrichment to 
the responsive genome; related to Fig. 6 
Fig. S5 Drug-Drug correlations overlap with primary target specificity for 
ß-lactams and Drug-GO interactions describe cellular responses to DNA 
damaging agents; related to Fig. 7 
Table S1 List of the 324 screens conducted in this study; related to Fig. 1 
(separate Excel file) 
Table S2 Complete dataset of fitness scores for 3979 mutants in response 
to 324 conditions; related to Fig. 1 (separate Excel file) 
Table S3 Multi-Stress Responsive genes; related to Fig. 2 (separate Excel 
file) 
Table S4 Conditionally-Essential genes; related to Fig. 2 (separate Excel 
file) 
Table S5 Rich-media Conditionally-essential gene lethal interactions, 
related to figure 2. (separate Excel file) 
Table S6 High Correlation Orphan-Annotated gene pairs; related to Fig. 3 
(separate Excel file) 
Table S7 Drug-GO interactions at p<10-3; related to Fig. 7 (separate Excel 
file) 
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Figure S1. Colony plates illustrate high-density arrayed screening and phenotypic 

signatures reproduce known connections between biological pathways. (A) 

Representative plates show the high-density array format used in our screens (1536 

colonies/plate), and demonstrate the high-resolution condition-gene interactions 

(condition-gene interactions may be detected only under specific concentrations) 

identified by screening a range of drug concentrations (Vancomycin). (B) Phenotypic 

signatures reproduce known connections between biological pathways. Pathway 

signatures are generated by averaging the phenotypic signatures of all strains whose 

mutated gene is assigned to the given pathway in Ecocyc (www.ecocyc.org). Correlation 

coefficients are plotted for all pairs between 299 pathways. Clusters of known related 

pathways are highlighted. High off-axis correlation is observed between nucleotide and 

amino acid biosynthesis pathways, reflecting their shared essentiality under minimal 

media stresses screened in this study. 
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Figure S2. Phenotypes reported here are highly specific and the majority reflect a 

conditional loss of fitness. (A) Histogram of the number of phenotypes identified at 5% 

FDR per screen. Bin size = 10 phenotypes. The number of phenotypes identified for any 

screen ranged from 0-4% of all strains tested. (B) Histogram of all fitness scores 

contained in the full clustergram in Fig. 1C (3979 strains x 324 conditions). The negative 

tail is larger than the positive tail, reflecting the ~ 4:1 ratio of negative to positive 

phenotypes identified in this study. 
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Figure S3. THF and 1C mutant responses suggest differential network effects of 

Sulfa and TMP. (A) Clustergram of select mutants associated with THF and one-carbon 

biosynthesis with multiple responses to sulfonamides (Sulfa), trimethoprim (TMP), or the 

combination. Profiles reveal that in addition to gcv and glyA mutants, knockouts of 

several other known and predicted network components exhibit differential responses to 

Sulfa or TMP. Mutants of folM and folX exhibit increased resistance to Sulfa, TMP 

(slightly), and the combination, in agreement with a previously published report (Girgis et 

al., 2009). Removal of nudB, which encodes the enzyme catalyzing the committed step 

in folate biosynthesis, renders the cell hypersensitive to all folate stresses tested, as 

expected. A deletion of ygfA, like the gcv mutants, is sensitive only to Sulfa stress. 

Interestingly, a recent study demonstrates that 5-formyl-THF accumulates in a ygfA- 

background only in conditions of excess glycine (Jeanguenin et al., 2010), conditions in 

which the GCV system is presumably active. (B) glyA- and yggS- are a synthetic lethal 

pair. Image of a plate mating between the donor Hfr yggS::cat and 24 kan recipients 

(arrayed in boxes of 8x8 colonies), grown on kanamycin/chloramphenicol to select for 

double mutant strains; position of the glyA::kan and yggS::kan recipients is highlighted. 
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Figure S4. 100kb window size is optimal for avoiding operon effects and weighted 

responsive genome exhibits highly similar spatial enrichment to the responsive 

genome. Weighted Responsive Genome reflects Responsive Genome. Circular plots 

represent spatial enrichment for the variable plotted. Each trace (color) is accompanied 

by three dashed lines of the same color indicating the 5th percentile of all minimum 

negative enrichment values stored from 1000 permutations of the data, baseline 

representing zero enrichment, 95th percentile of all maximum positive enrichment values 

stored from 1000 permutations of the data (inside to outside). (A) Three plots of the 

responsive genome illustrate the operon effects associated with smaller window sizes, 

especially the 20kb window (red trace). (B) Black shows spatial enrichment for 

responsive genes, while red shows spatial enrichment for the weighted responsive 

genes. Here, responsive genes are weighted according to how many phenotypes were 

identified for each. 
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Figure S5. Drug-Drug correlations overlap with primary target specificity for B-

lactams and Drug-GO interactions describe cellular responses to DNA damaging 

agents. (A) Correlation of drug signatures roughly overlaps with PBP target affinity for 

the β-lactams.  Connections between nodes represent positive correlation of drug 

signatures (r >0.16, or 1 SD). Line width is based on the magnitude of positive 

correlation.  Color shading corresponds to the highest affinity PBP target for each drug, 

based on IC50 data (W. Vollmer, personal communication). (B) Drug-GO clustergram 

shows interactions between DNA damaging stresses and DNA-related GO biological 

processes. 
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Table S1 - 
Screen List 

     

Antibiotic/Condi
tion 

Supplie
r 

Item No Target Concentrations 
Screened 

Scre
ens 

A22 Calbioc
hem 

475951 morphogenesis; 
MreB 

0.5,2,5,15 µg/ml 4 

Acetate (M9) Fisher 
Scientifi
c 

S210-
500 

alternative carbon 
source 

0.60% 1 

acidic pH 
(MES-

HOMOPIPES) 

Sigma M2933, 
53588 

- 4,4.5,5,6 (100mM 
buffer)  

4 

Acriflavine Sigma A8126-
25G 

- 2,10 µg/ml 2 

Actinomycin D  MP 104658
-25MG 

DNA damage-
transcription 

2.5,5,10,15 µg/ml 4 

Amikacin Sigma A2324-
5G 

protein synthesis-
30S 

0.05,0.1,0.2 µg/ml 3 

Amoxicillin  Sigma A8523-
1G 

PG 
(transpeptidases) 

0.25,0.5,1,1.5 µg/ml 4 

Ampicillin Sigma  PG 
(transpeptidases) 

1,2,4,8 µg/ml 4 

Anaerobic - - - - 1 
Azidothymidine MP 154807

-25MG 
DNA damage (strand 

breakage) 
0.5,1,2.5 ng/ml 3 

Azithromycin Sigma 75199-
25MG 

protein synthesis-
50S 

0.02,0.1,1 µg/ml 3 

Aztreonam MP 150415
-1G 

PG 
(transpeptidases) 

0.02,0.04 µg/ml 2 

Bacitracin MP 190301
-250KU 

inhibits sythesis of 
undecaprenyl 

phosphate- targets 
C55 PP 

pyrophosphatases: 
BacA, YbjG, PgpB 

and YeiU 

100,200,300 µg/ml 3 

basic pH 
(TAPS) 

Sigma  - 8,9,9.5,10 (100mM 
buffer)  

4 

Benzalkonium Sigma B6295-
100G 

Membrane 1,10,25 µg/ml 3 

Bicyclomycin gift M. 
Gottes
man 

 1,10 µg/ml 2 

Bile salts Sigma B8756-
50g 

Membrane 0.1,0.5,1,2 % 4 

Bleomycin Sigma 15361-
1MG 

multiple (DNA/RNA 
degradation) 

0.1,0.5,1,2 µg/ml 4 

Calcofluor 
(F3543     

Fluorescent 
Brightener 28)  

Sigma F3543-
1G 

Biofilm-cellulose 
production 

50 µg/ml 1 
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Carbenicillin Sigma C1389-
250MG 

PG 
(transpeptidases) 

0.5,1,1.5 µg/ml 3 

CCCP 
(Carbonyl 

cyanide 3-
chlorophenylhy

drazone) 

Sigma C2759-
100MG 

pmf (proton motive 
force) 

0.1,0.5,2 µg/ml 3 

Cecropin B GenWa
y 

06-271-
83151-
1MG 

membrane 0.1,0.3 µg/ml 2 

Cefaclor MP 198943
-
100MG 

PG 
(transpeptidases) 

1,2,3 µg/ml 3 

Cefoxitin Sigma C4786-
250MG    

PG 
(transpeptidases) 

0.25,0.5,0.75,1 µg/ml 4 

Cefsulodin Sigma C8145-
250MG 

PG elong. & 
septation; PBP1a&b  

6,12,18,24 µg/ml 4 

Cefsulodin + 
Mecillinam 

as 
single 
compou
nds 

as 
single 
compo
unds 

as single compounds 6 + 0.03 µg/ml 1 

Ceftazidime Sigma 63809-
1G 

PG 
(transpeptidases) 

0.025,0.05,0.075 µg/ml 3 

Cerulenin MP 195098
-10MG 

Fatty acid 
biosynthesis 

1,2,4,6  µg/ml  4 

CHIR-090 C 
Raetz 

- LPS; LpxC 0.02,0.025,0.04,0.05,0.0
75 µg/ml 

5 

Chloramphenic
ol 

Fisher 
Scientifi
c 

BP904-
100 

protein synthesis-
50S 

0.5,1,1.5,2 µg/ml 4 

Chlorpromazine Sigma C8138-
5G 

membrane-Rcs 3,6,12,24 µM 4 

Cholate Sigma 270911
-25G 

Membrane 0.1,0.5,1,2 % 4 

Ciprofloxacin MP 199020
_5G 

DNA gyrase 0.004,0.006,0.008 µg/ml 3 

Cisplatin Sigma 479306
-1G 

DNA 20,50,100 µg/ml 3 

Clarythromycin Sigma C9742-
100MG 

protein synthesis-
50S 

0.1,1,5,10 µg/ml 4 

Cobalt stress-
CoCl2 

Sigma C2644-
100G 

- 0.1,0.5 mM (LB) 2 

Cold shock  - - - 16,18,20 °C 3 
Copper stress-

CuCl2 
Mallinc
krodt 

4824 - 1,2,4 mM (LB) 3 

Cycloserine D Sigma C6880-
1G 

PG racemase + 
ligase (Alr, DadX, 

DdlA/B) 

16 µg/ml 1 

Deoxycholate Sigma D6750-
100G 

Membrane 0.1,0.5,2 % 3 

Dibucaine Sigma D0513- membrane-pmf 0.4,0.8,1.2 mM 3 
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5G 
Doxorubicin Sigma D1515-

10MG 
binds ArcB in-vitro  1,10 µg/ml 2 

Doxycycline  Sigma D9891-
1G 

protein synthesis-
16S 

0.25,0.5,0.75,1 µg/ml 4 

EDTA Sigma E5134-
500G 

Membrane-OM 0.1, 0.5, 1 mM 3 

EGTA Sigma E4378-
500G 

Membrane-OM 0.1, 0.5, 1, 2 mM 4 

Epigallocatechi
n gallate 
(EGCG) 

Sigma E4143-
50MG 

Fatty acid     
biosynthesis 

5,20,50 µM 3 

Epinephrine Sigma E4250-
1G 

QseC 50,250,1000 µM  3 

Erythromycin Sigma E5389-
1G 

protein synthesis-
50S 

0.1,1,5,10 µg/ml 4 

Ethidium 
Bromide 

Sigma lab 
stock 

DNA 2,10,50 µg/ml 3 

EtOH Rossvill
e 

200 
proof 

protein folding 2,4,6 % 3 

Fosfomycin Sigma P5396-
1G 

PG; MurA 1 µg/ml 1 

Fosfomycin 
+Glucose 6P 

as 
single 
compou
nds 

as 
single 
compo
unds 

as single compounds 0.05,0.2 µg/ml (in 50 
mg/ml G6P)  

2 

Fusidic acid Sigma F0881-
1G 

protein synthesis-G 
factor 

1,5,20,50 µg/ml 4 

Gentamicin Sigma G3632 protein synthesis-
30S 

0.05,0.1 µg/ml 2 

Glucosamine 
(M9) 

Sigma G4875 alternative carbon 
source 

0.20% 1 

Glucose (M9) Fisher 
Scientifi
c 

D16-1 alternative carbon 
source 

0.20% 1 

Glycerol (M9) Fisher 
Scientifi
c 

BP229-
4 

alternative carbon 
source 

0.40% 1 

Heat shock  - - - 40,42,43.5,45 °C 4 
Hydrogen 
peroxide 

Sigma  oxidative stress 0.1,0.5,1,2 mM 4 

Hydroxyurea Sigma H8627-
5G 

DNA damage 1,5,10 mM 3 

Indolicidin US 
Biologic
al 

I7552-
1MG 

LPS; memrbanes 0.1 µg/ml 1 

Iron excess-
FeSO4 

Mallinc
krodt 

5572 - 1mM (MOPS; normal 
100µM) 

1 

Iron starvation-
FeSO4 

Mallinc
krodt 

5572 - 2µM (MOPS; normal 
100µM) 

1 

Isoniazid Sigma I3377- IhnA-mycolic acid 0.2,1,1.5 mM 3 
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5G biosynthesis in TB 
Levofloxacin Sigma 28266-

1G-F 
DNA gyrase 0.002 µg/ml 1 

Maltose  (M9) Fisher 
Scientifi
c 

BP684-
500 

alternative carbon 
source 

0.10% 1 

Mecillinam Sigma 33447-
100MG 

PG elongation; 
PBP2 

0.03,0.06,0.09,0.12 
µg/ml 

4 

Methotrexate Sigma M9929-
25MG 

folic acid 
biosynthesis (DHFR) 

1,25 µg/ml 2 

Minocycline Sigma M9511-
100MG 

protein synthesis-
16S; binds ArcB in-

vitro  

0.2,0.5,1 µg/ml 3 

Mitomycin C Sigma M0440-
5MG 

RNApolymerase/DN
Areplication 

0.1 µg/ml 1 

MMS Sigma 129925 DNA damage 
(methylation) 

0.05% 1 

N-acetyl 
Glucosamine 

Sigma A8625 alternative carbon 
source 

0.15% 1 

NaCl Sigma S7653 - 150,300,450,600 mM 4 
Nalidixic acid Sigma N4382 DNA gyrase 0.5,1,1.5,2 µg/ml 4 

NH4Cl (MOPS) Sigma A0171-
100g 

alternative nitrogen 
source 

9.5mm 1 

Nickel stress-
NiCl2 

Sigma N5756-
100g 

- 0.1,1 mM (LB) 2 

Nigericin Sigma N7143-
5MG 

pmf (proton motive 
force) 

0.1,1,5 µM 3 

Nitrofurnatoin Sigma N7878-
10G 

multiple (DNA, Krebs 
cycle) 

0.1,0.5,1,1.5,2 µg/ml 5 

Norepinephrine Sigma A7257-
500MG 

QseC 100,1000 µM 2 

Norfloxacin Sigma N9890-
1G 

DNA gyrase 0.01,0.02,0.04 µg/ml 3 

Novobiocin Sigma N1628-
1G 

DNA gyrase 4,6,8,10,12,30 µg/ml  6 

Oxacillin Sigma 28221-
1G 

PG 
(transpeptidases) 

0.5,5,40 µg/ml 3 

Paraquat 
dichloride 

Sigma 36541-
100MG 

oxidative stress 0.2,1,5,10,18 µM 5 

Phenazine 
methosulfate 

(PMS) 

Sigma P9625-
1G 

DNA synthesis-
membrane 

0.02,0.05,0.1 mM 3 

Phleomycin Sigma P9564-
5MG    

DNA damage 0.2,0.5,1 µg/ml 3 

Polymyxin B Sigma P1004 LPS 1,2,4,6 µg/ml 4 
Procaine Sigma  P9879 membrane-

EnvZ/OmpR 
1,5,10,30 mM 4 

Propidium 
iodide 

Sigma P4170-
100MG 

DNA/RNA 1,20,50 µg/ml 3 

Puromycin Sigma P7255-
100MG 

protein synthesis  
inhibitor 

1,5,25 µg/ml 3 
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Pyocyanin Cayma
n 
Chemic
als 

100095
94-
50MG 

SoxR? Superoxide 
stress 

0.2,1,10 µg/ml 3 

Radicicol A&G 
Scientifi
c 

R-1130 HtpG, PhoQ 1,5,10 µM 3 

Rifampicin Sigma R3501-
5G 

RNA polymerase 1,2 µg/ml  2 

SDS MP 
Biomed
icals 

811030 Membrane 0.5,1,2,3,4 % 5 

SDS+EDTA as 
single 
compou
nds 

as 
single 
compo
unds 

memrbane 0.5%/0.1mM,0.5%/0.5m
M,1%/0.5mM 

3 

Spectinomycin Sigma S9007-
25G 

protein synthesis-
30S 

4,6 µg/ml  2 

Spiramycin Sigma S9132-
1G 

protein synthesis-
50S 

1,5,20 µg/ml 3 

Streptomycin Sigma S6501 protein synthesis-
30S 

0.05 µg/ml 1 

Streptonigrin Sigma S1014-
5MG 

DNA metabolism- 
respiration 

0.1,0.2,0.5 µg/ml 3 

Succinate (M9) Fisher 
Scientifi
c 

A294-
500 

alternative carbon 
source 

0.30% 1 

Sulfamethizole Sigma S5632-
10G 

folic acid 
biosynthesis  

100,200,300 µg/ml 3 

Sulfamonometh
oxine 

Sigma S0508-
250MG 

folic acid 
biosynthesis  

50,100 µg/ml 2 

Taurocholate Sigma 861960
-5G 

Membrane 0.1,0.5,1 % 3 

Tetracycline Sigma T3383-
25G 

protein synthesis-
30S 

0.25,0.5,0.75,1 µg/ml 4 

Theophylline Sigma T1633-
50G 

- 10,100 µg/ml 2 

Thiolactomycin Sigma T9567-
10MG    

Fatty acid 
biosynthesis 

1,5,50 µM 3 

Tobramycin Sigma T4014-
100MG 

protein synthesis-
30S 

0.05,0.1,0.2,0.4 µg/ml 4 

Triclosan/Irgas
an 

Sigma 72779-
5G-F    

Fatty acid 
biosynthesis 

0.05 µg/ml 1 

Trimethoprim Sigma T7883-
25G 

folic acid 
biosynthesis (DHFR) 

0.1,0.2,0.3,0.4 µg/ml 4 

Trimethoprim + 
Sulfamethizole 

as 
single 
compou
nds 

as 
single 
compo
unds 

as single compounds 0.1 + 50 µg/ml 1 

Triton X-100 Fisher 
Scientifi

BP151-
500 

Membrane 0.01,0.03,0.2 % 3 
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c 
Tunicamycin Sigma T7765-

5MG 
PG; MraY 1,3,7.5 µg/ml 3 

UV - - DNA damage 6,12,18,24 sec 4 
Vancomycin Sigma 861987

-1G 
PG elongation 10,20,50 µg/ml 3 

Verapamil MP 195545
-1G 

cell division-pmf 0.1,0.5,1 mM 3 

      
    Total Screens 324 
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DUE TO THE LARGE DIMENSIONS OF TABLE S2 (324 X 3979), IT WILL NOT 
APPEAR IN THIS VOLUME.  HOWEVER, IT CAN BE ACCESSED VIA THE 
ORIGINAL CELL PUBLICATION (NICHOLS ET. AL, CELL 2011), OR ONLINE AT 
http://ecoliwiki.net/tools/chemgen/.  
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Table S3 - Multi-Stress Responsive 

Genes 
ECK0095-B-FTSA(R286W)-KAN 

ECK2042-CPSG 
ECK0726-TOLQ 
ECK0727-TOLR 
ECK0729-TOLB 

ECK0730-PAL 
ECK0055-D-IMP4213 

ECK0097-B-LPXC(G210S)-KAN 
ECK0180-LPXA 
ECK0223-LPCA 
ECK2058-ASMA 
ECK3042-RFAE 
ECK3609-RFAD 
ECK3610-RFAF 
ECK3611-RFAC 
ECK3620-RFAP 
ECK3621-RFAG 
ECK3622-RFAQ 
ECK0054-SURA 

ECK0176-B-YAET(218-9DUPL)-KAN 
ECK0176-C-YAET(R64DEL)-KAN 

ECK2508-BAMB 
ECK2613-SMPA 
ECK1091-YCFM 
ECK0148-MRCB 
ECK3603-ENVC 
ECK3722-GLMS 

ECK3374-DAM 
ECK0215-DNAQ 
ECK3725-ATPD 
ECK3727-ATPA 
ECK3729-ATPF 
ECK3730-ATPE 
ECK3731-ATPB 
ECK0721-CYDA 
ECK1080-ACPP 
ECK3597-CYSE 
ECK4133-ASPA 
ECK2323-AROC 
ECK3048-FOLB 

ECK4227-FBP 
ECK0114-ACEF 
ECK0621-LIPA 
ECK0623-LIPB 
ECK2758-CYSI 
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ECK0654-UBIF 
ECK0053-PDXA 
ECK0898-SERC 
ECK1634-PDXH 
ECK0515-PURK 
ECK0516-PURE 
ECK2495-PURM 
ECK2555-PURL 
ECK3997-PURD 
ECK3998-PURH 
ECK4173-PURA 
ECK2503-GUAA 
ECK2504-GUAB 
ECK0034-CARB 
ECK0936-PYRD 
ECK1047-PYRC 
ECK3632-PYRE 
ECK3356-CYSG 
ECK3247-DUSB 
ECK0015-DNAJ 
ECK3852-DSBA 

ECK0433-LON 
ECK3904-CPXA 

ECK4168-HFQ 
ECK0671-FUR 

ECK1523-MARR 
ECK3248-FIS 

ECK3953-OXYR 
ECK1269-CYSB 
ECK3218-SSPA 
ECK3975-RPLA 
ECK3156-RBFA 
ECK0581-FEPC 
ECK0583-FEPD 
ECK0456-ACRB 
ECK0457-ACRA 
ECK3026-TOLC 
ECK3831-TATB 
ECK3832-TATC 
ECK0539-NINE 

ECK4401-YBHU 
ECK0723-YBGT 
ECK1228-YCHJ 
ECK1274-YCIS 

ECK2490-YFGC 
ECK2614-YFJF 

ECK3222-YHCB 
ECK0542-YLCG 
ECK3033-YQIC 
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Table S4 - 
Conditionally-

Essential Genes 

 

Rich-Media CE Auxotrophs 
ECK0034-CARB ECK0002-THRA 
ECK0050-APAH ECK0003-THRB 
ECK0054-SURA ECK0004-THRC 
ECK0093-DDLB ECK0033-CARA 
ECK0122-CUEO ECK0034-CARB 
ECK0144-DKSA ECK0053-PDXA 
ECK0148-MRCB ECK0073-LEUD 
ECK0160-DEGP ECK0074-LEUC 
ECK0223-LPCA ECK0075-LEUB 
ECK0456-ACRB ECK0076-LEUA 
ECK0457-ACRA ECK0108-NADC 
ECK0458-ACRR ECK0215-DNAQ 
ECK0478-COPA ECK0243-PROB 
ECK0515-PURK ECK0244-PROA 
ECK0516-PURE ECK0381-PROC 
ECK0581-FEPC ECK0515-PURK 
ECK0582-FEPG ECK0516-PURE 
ECK0583-FEPD ECK0581-FEPC 
ECK0585-FEPB ECK0665-NAGA 
ECK0621-LIPA ECK0666-NAGB 
ECK0654-UBIF ECK0709-GLTA 

ECK0665-NAGA ECK0710-SDHC 
ECK0722-CYDB ECK0716-SUCC 
ECK0726-TOLQ ECK0717-SUCD 
ECK0727-TOLR ECK0739-NADA 
ECK0729-TOLB ECK0898-SERC 

ECK0730-PAL ECK0899-AROA 
ECK0832-CMR ECK0903-IHFB 
ECK0903-IHFB ECK0936-PYRD 

ECK0936-PYRD ECK1047-PYRC 
ECK1047-PYRC ECK1048-YCEB 
ECK1077-FABH ECK1254-TRPA 
ECK1091-YCFM ECK1255-TRPB 

ECK1243-CLS ECK1269-CYSB 
ECK1248-YCIB ECK1634-PDXH 
ECK1260-YCIV ECK1710-IHFA 

ECK1269-CYSB ECK2014-HISG 
ECK1275-YCIM ECK2015-HISD 

ECK1403-YNBC ECK2016-HISC 
ECK1544-GNSB ECK2017-HISB 

ECK1673-LPP ECK2018-HISH 
ECK1780-MIPA ECK2019-HISA 

ECK1862-RUVA ECK2020-HISF 
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ECK1864-RUVC ECK2021-HISI 
ECK2228-YFAE ECK2306-PURF 
ECK2262-RBN ECK2323-AROC 

ECK2271-NUOM ECK2411-PTSI 
ECK2273-NUOK ECK2472-PURC 
ECK2274-NUOJ ECK2495-PURM 
ECK2276-NUOH ECK2503-GUAA 
ECK2279-NUOE ECK2504-GUAB 
ECK2282-NUOA ECK2548-GLYA 

ECK2305-UBIX ECK2555-PURL 
ECK2314-PDXB ECK2562-PDXJ 
ECK2321-YFCA ECK2572-NADB 
ECK2323-AROC ECK2596-PHEA 
ECK2340-VACJ ECK2597-TYRA 

ECK2472-PURC ECK2745-CYSC 
ECK2490-YFGC ECK2747-CYSD 
ECK2495-PURM ECK2758-CYSI 
ECK2503-GUAA ECK2759-CYSJ 
ECK2504-GUAB ECK2814-ARGA 
ECK2508-BAMB ECK2836-LYSA 
ECK2555-PURL ECK2837-LYSR 
ECK2613-SMPA ECK2909-SERA 
ECK2694-RECA ECK3000-METC 
ECK2737-NLPD ECK3048-FOLB 
ECK2818-RECC ECK3161-ARGG 
ECK2901-VISC ECK3268-AROE 

ECK2903-PEPP ECK3356-CYSG 
ECK2998-EXBD ECK3376-AROB 
ECK3026-TOLC ECK3403-MALQ 
ECK3033-YQIC ECK3405-MALT 
ECK3042-RFAE ECK3412-GLPD 
ECK3048-FOLB ECK3597-CYSE 
ECK3138-YRAP ECK3632-PYRE 
ECK3156-RBFA ECK3762-ILVE 
ECK3164-SECG ECK3763-ILVD 
ECK3222-YHCB ECK3764-ILVA 
ECK3234-YHDP ECK3766-ILVC 

ECK3248-FIS ECK3822-METR 
ECK3409-GLPR ECK3823-METE 
ECK3597-CYSE ECK3863-GLNA 

ECK3602-GPMM ECK3918-GLPK 
ECK3603-ENVC ECK3931-METB 
ECK3609-RFAD ECK3933-METF 
ECK3610-RFAF ECK3947-PPC 
ECK3611-RFAC ECK3948-ARGE 
ECK3618-RFAB ECK3949-ARGC 
ECK3620-RFAP ECK3950-ARGB 
ECK3621-RFAG ECK3951-ARGH 
ECK3622-RFAQ ECK3997-PURD 



	
   94	
  

ECK3632-PYRE ECK3998-PURH 
ECK3699-MNME ECK4005-META 
ECK3713-BGLH ECK4007-ACEA 
ECK3725-ATPD ECK4025-MALF 
ECK3729-ATPF ECK4027-MALK 
ECK3730-ATPE ECK4173-PURA 
ECK3731-ATPB ECK4210-CYSQ 

ECK3734-MNMG ECK4227-FBP 
ECK3756-HDFR ECK4240-PYRB 
ECK3831-TATB ECK4380-SERB 
ECK3832-TATC  

ECK3836-FRE  
ECK3904-CPXA  

ECK3916-FPR  
ECK3997-PURD  
ECK3998-PURH  
ECK4054-SOXS  
ECK4055-SOXR  

ECK4168-HFQ  
ECK4173-PURA  

ECK4227-FBP  
ECK4393-ARCA  
ECK4419-YGDT  

ECK5005-TP2  
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Table S5. Rich-media CE Lethal Events  
Strain Lethal Condition 

ECK2503-GUAA A22-0.5 
ECK2504-GUAB A22-0.5 
ECK2504-GUAB A22-15.0 
ECK0148-MRCB A22-2.0 
ECK2504-GUAB A22-2.0 
ECK0148-MRCB A22-5.0 
ECK1047-PYRC A22-5.0 
ECK2504-GUAB A22-5.0 
ECK3632-PYRE A22-5.0 
ECK0034-CARB ACETATE 
ECK0515-PURK ACETATE 
ECK0516-PURE ACETATE 
ECK0581-FEPC ACETATE 
ECK0903-IHFB ACETATE 

ECK1269-CYSB ACETATE 
ECK2323-AROC ACETATE 
ECK2472-PURC ACETATE 
ECK2495-PURM ACETATE 
ECK2503-GUAA ACETATE 
ECK2504-GUAB ACETATE 
ECK2555-PURL ACETATE 
ECK3632-PYRE ACETATE 
ECK3997-PURD ACETATE 
ECK3998-PURH ACETATE 

ECK4227-FBP ACETATE 
ECK0456-ACRB ACRIFLAVINE-10 

ECK2271-NUOM ACRIFLAVINE-10 
ECK2274-NUOJ ACRIFLAVINE-10 
ECK2276-NUOH ACRIFLAVINE-10 
ECK2279-NUOE ACRIFLAVINE-10 
ECK3026-TOLC ACRIFLAVINE-10 

ECK4168-HFQ ACRIFLAVINE-10 
ECK0621-LIPA ACRIFLAVINE-2 

ECK0729-TOLB ACTINOMYCIND-10.0 
ECK2504-GUAB ACTINOMYCIND-10.0 
ECK0729-TOLB ACTINOMYCIND-15.0 
ECK2504-GUAB ACTINOMYCIND-15.0 
ECK3609-RFAD ACTINOMYCIND-15.0 
ECK2504-GUAB ACTINOMYCIND-2.5 
ECK2504-GUAB ACTINOMYCIND-5.0 
ECK3597-CYSE AMOXICILLIN-0.25 
ECK3597-CYSE AMOXICILLIN-1.0 

ECK0730-PAL AMPICILLIN-8.0 
ECK2818-RECC AZIDOTHYMIDINE-0.5 

ECK0621-LIPA AZITHROMYCIN-0.1 
ECK0223-LPCA AZITHROMYCIN-1.0 
ECK2490-YFGC AZITHROMYCIN-1.0 
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ECK3042-RFAE AZITHROMYCIN-1.0 
ECK3609-RFAD AZITHROMYCIN-1.0 
ECK3621-RFAG AZITHROMYCIN-1.0 
ECK0054-SURA BACITRACIN-300 
ECK0726-TOLQ BACITRACIN-300 
ECK0729-TOLB BACITRACIN-300 

ECK0730-PAL BACITRACIN-300 
ECK1077-FABH BACITRACIN-300 
ECK2508-BAMB BACITRACIN-300 
ECK0223-LPCA BENZALKONIUM-10 
ECK0456-ACRB BENZALKONIUM-10 
ECK0457-ACRA BENZALKONIUM-10 
ECK3026-TOLC BENZALKONIUM-10 
ECK3042-RFAE BENZALKONIUM-10 
ECK3610-RFAF BENZALKONIUM-10 
ECK3620-RFAP BENZALKONIUM-10 

ECK4168-HFQ BENZALKONIUM-10 
ECK0054-SURA BENZALKONIUM-25 
ECK0223-LPCA BENZALKONIUM-25 
ECK0456-ACRB BENZALKONIUM-25 
ECK0457-ACRA BENZALKONIUM-25 
ECK0832-CMR BENZALKONIUM-25 

ECK1077-FABH BENZALKONIUM-25 
ECK1243-CLS BENZALKONIUM-25 

ECK2901-VISC BENZALKONIUM-25 
ECK3026-TOLC BENZALKONIUM-25 
ECK3033-YQIC BENZALKONIUM-25 
ECK3042-RFAE BENZALKONIUM-25 
ECK3222-YHCB BENZALKONIUM-25 
ECK3610-RFAF BENZALKONIUM-25 
ECK3620-RFAP BENZALKONIUM-25 
ECK3621-RFAG BENZALKONIUM-25 

ECK4168-HFQ BENZALKONIUM-25 
ECK2504-GUAB BILE-0.1% 
ECK3026-TOLC BILE-0.1% 
ECK0223-LPCA BILE-0.5% 
ECK0727-TOLR BILE-0.5% 
ECK0729-TOLB BILE-0.5% 

ECK0730-PAL BILE-0.5% 
ECK3026-TOLC BILE-0.5% 
ECK3042-RFAE BILE-0.5% 
ECK0223-LPCA BILE-1.0% 
ECK0726-TOLQ BILE-1.0% 
ECK0727-TOLR BILE-1.0% 
ECK0729-TOLB BILE-1.0% 

ECK0730-PAL BILE-1.0% 
ECK3026-TOLC BILE-1.0% 
ECK3042-RFAE BILE-1.0% 
ECK0223-LPCA BILE-2.0% 
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ECK0457-ACRA BILE-2.0% 
ECK0729-TOLB BILE-2.0% 

ECK0730-PAL BILE-2.0% 
ECK2504-GUAB BILE-2.0% 
ECK3026-TOLC BILE-2.0% 
ECK3042-RFAE BILE-2.0% 
ECK3609-RFAD BILE-2.0% 
ECK3610-RFAF BILE-2.0% 
ECK3042-RFAE BLEOMYCIN-1.0 

ECK4168-HFQ BLEOMYCIN-1.0 
ECK4168-HFQ BLEOMYCIN-2.0 

ECK0729-TOLB CARBENICILLIN-0.5 
ECK2321-YFCA CARBENICILLIN-0.5 
ECK2504-GUAB CARBENICILLIN-0.5 
ECK3632-PYRE CARBENICILLIN-0.5 
ECK0148-MRCB CARBENICILLIN-1.0 
ECK0726-TOLQ CARBENICILLIN-1.0 
ECK0729-TOLB CARBENICILLIN-1.0 
ECK1091-YCFM CARBENICILLIN-1.0 
ECK2504-GUAB CARBENICILLIN-1.0 
ECK0729-TOLB CARBENICILLIN-1.5 
ECK1047-PYRC CARBENICILLIN-1.5 
ECK2495-PURM CARBENICILLIN-1.5 
ECK2504-GUAB CARBENICILLIN-1.5 
ECK3632-PYRE CARBENICILLIN-1.5 
ECK3026-TOLC CCCP-2.0 

ECK0148-MRCB CEFOXITIN-0.25 
ECK0516-PURE CEFOXITIN-0.25 
ECK1047-PYRC CEFOXITIN-0.25 
ECK1091-YCFM CEFOXITIN-0.25 
ECK2495-PURM CEFOXITIN-0.25 
ECK2504-GUAB CEFOXITIN-0.25 
ECK3632-PYRE CEFOXITIN-0.25 
ECK3997-PURD CEFOXITIN-0.25 
ECK0148-MRCB CEFOXITIN-0.5 
ECK1091-YCFM CEFOXITIN-0.5 
ECK2504-GUAB CEFOXITIN-0.5 
ECK0148-MRCB CEFOXITIN-0.75 
ECK1091-YCFM CEFOXITIN-0.75 
ECK2504-GUAB CEFOXITIN-0.75 
ECK0148-MRCB CEFOXITIN-1.0 
ECK1091-YCFM CEFOXITIN-1.0 
ECK2504-GUAB CEFOXITIN-1.0 
ECK0148-MRCB CEFSULODIN-12.0 
ECK1091-YCFM CEFSULODIN-12.0 
ECK2504-GUAB CEFSULODIN-12.0 
ECK0148-MRCB CEFSULODIN-18.0 
ECK0726-TOLQ CEFSULODIN-18.0 
ECK0729-TOLB CEFSULODIN-18.0 
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ECK1091-YCFM CEFSULODIN-18.0 
ECK2504-GUAB CEFSULODIN-18.0 
ECK3156-RBFA CEFSULODIN-18.0 
ECK3603-ENVC CEFSULODIN-18.0 
ECK3632-PYRE CEFSULODIN-18.0 
ECK0148-MRCB CEFSULODIN-24.0 
ECK0729-TOLB CEFSULODIN-24.0 

ECK0730-PAL CEFSULODIN-24.0 
ECK1091-YCFM CEFSULODIN-24.0 
ECK3603-ENVC CEFSULODIN-24.0 
ECK3620-RFAP CEFSULODIN-24.0 

ECK0148-MRCB CEFSULODIN-6.0 
ECK1091-YCFM CEFSULODIN-6.0 
ECK2504-GUAB CEFSULODIN-6.0 
ECK0726-TOLQ CEFSULODIN-6.0,MECILLINAM-0.03 
ECK0727-TOLR CEFSULODIN-6.0,MECILLINAM-0.03 
ECK1091-YCFM CEFSULODIN-6.0,MECILLINAM-0.03 
ECK0148-MRCB CEFTAZIDIME-0.05 
ECK1269-CYSB CEFTAZIDIME-0.05 
ECK0148-MRCB CEFTAZIDIME-0.075 

ECK4168-HFQ CERULENIN-6.0 
ECK3026-TOLC CHIR090-0.02 
ECK2504-GUAB CHIR090-0.025 
ECK0054-SURA CHIR090-0.04 
ECK0456-ACRB CHIR090-0.04 
ECK3026-TOLC CHIR090-0.04 
ECK3042-RFAE CHIR090-0.04 
ECK3156-RBFA CHIR090-0.04 
ECK0223-LPCA CHIR090-0.05 
ECK3026-TOLC CHIR090-0.05 
ECK3156-RBFA CHIR090-0.05 
ECK0223-LPCA CHIR090-0.075 
ECK2321-YFCA CHIR090-0.075 
ECK3610-RFAF CHIR090-0.075 
ECK2504-GUAB CHLORAMPHENICOL-1.0 
ECK0456-ACRB CHLORAMPHENICOL-1.5 
ECK0457-ACRA CHLORAMPHENICOL-1.5 
ECK3026-TOLC CHLORAMPHENICOL-1.5 
ECK0456-ACRB CHLORAMPHENICOL-2.0 
ECK0457-ACRA CHLORAMPHENICOL-2.0 
ECK3026-TOLC CHLORAMPHENICOL-2.0 
ECK0457-ACRA CHLOROPROMAZINE-24 
ECK1544-GNSB CHLOROPROMAZINE-24 
ECK2340-VACJ CHLOROPROMAZINE-24 

ECK2613-SMPA CHLOROPROMAZINE-24 
ECK3156-RBFA CHLOROPROMAZINE-24 
ECK0582-FEPG CHOLATE-0.1% 
ECK2472-PURC CHOLATE-0.1% 
ECK2503-GUAA CHOLATE-0.1% 
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ECK2504-GUAB CHOLATE-0.1% 
ECK0034-CARB CHOLATE-0.5% 
ECK0054-SURA CHOLATE-0.5% 
ECK0936-PYRD CHOLATE-0.5% 
ECK1047-PYRC CHOLATE-0.5% 
ECK2504-GUAB CHOLATE-0.5% 
ECK2555-PURL CHOLATE-0.5% 
ECK3026-TOLC CHOLATE-0.5% 
ECK3632-PYRE CHOLATE-0.5% 
ECK3997-PURD CHOLATE-0.5% 
ECK0457-ACRA CHOLATE-1.0% 
ECK0729-TOLB CHOLATE-1.0% 

ECK0730-PAL CHOLATE-1.0% 
ECK2495-PURM CHOLATE-1.0% 
ECK2504-GUAB CHOLATE-1.0% 
ECK2555-PURL CHOLATE-1.0% 
ECK3026-TOLC CHOLATE-1.0% 
ECK3997-PURD CHOLATE-1.0% 
ECK0034-CARB CHOLATE-2.0% 
ECK0457-ACRA CHOLATE-2.0% 
ECK0729-TOLB CHOLATE-2.0% 

ECK0730-PAL CHOLATE-2.0% 
ECK1673-LPP CHOLATE-2.0% 

ECK2504-GUAB CHOLATE-2.0% 
ECK3026-TOLC CHOLATE-2.0% 
ECK3042-RFAE CHOLATE-2.0% 
ECK3620-RFAP CHOLATE-2.0% 
ECK3997-PURD CHOLATE-2.0% 
ECK2818-RECC CIPROFLOXACIN-0.004 
ECK1403-YNBC CIPROFLOXACIN-0.006 
ECK2694-RECA CIPROFLOXACIN-0.006 

ECK3248-FIS CIPROFLOXACIN-0.008 
ECK1269-CYSB CISPLATIN-100 
ECK1269-CYSB CISPLATIN-20 
ECK3597-CYSE CISPLATIN-20 
ECK1269-CYSB CISPLATIN-50 
ECK3597-CYSE CISPLATIN-50 
ECK0223-LPCA CLARYTHROMYCIN-10.0 
ECK3026-TOLC CLARYTHROMYCIN-10.0 
ECK3042-RFAE CLARYTHROMYCIN-10.0 
ECK3026-TOLC CLARYTHROMYCIN-5.0 
ECK3042-RFAE CLARYTHROMYCIN-5.0 
ECK0223-LPCA DEOXYCHOLATE-0.1% 
ECK0729-TOLB DEOXYCHOLATE-0.1% 

ECK0730-PAL DEOXYCHOLATE-0.1% 
ECK3026-TOLC DEOXYCHOLATE-0.1% 
ECK3042-RFAE DEOXYCHOLATE-0.1% 
ECK0223-LPCA DEOXYCHOLATE-0.5% 
ECK0726-TOLQ DEOXYCHOLATE-0.5% 
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ECK0727-TOLR DEOXYCHOLATE-0.5% 
ECK0729-TOLB DEOXYCHOLATE-0.5% 

ECK0730-PAL DEOXYCHOLATE-0.5% 
ECK3026-TOLC DEOXYCHOLATE-0.5% 
ECK3042-RFAE DEOXYCHOLATE-0.5% 
ECK0223-LPCA DEOXYCHOLATE-2.0% 
ECK0457-ACRA DEOXYCHOLATE-2.0% 
ECK0726-TOLQ DEOXYCHOLATE-2.0% 
ECK0727-TOLR DEOXYCHOLATE-2.0% 
ECK0729-TOLB DEOXYCHOLATE-2.0% 

ECK0730-PAL DEOXYCHOLATE-2.0% 
ECK1275-YCIM DEOXYCHOLATE-2.0% 

ECK1673-LPP DEOXYCHOLATE-2.0% 
ECK3026-TOLC DEOXYCHOLATE-2.0% 
ECK0223-LPCA DIBUCAINE-0.4 
ECK0456-ACRB DIBUCAINE-0.4 
ECK0457-ACRA DIBUCAINE-0.4 
ECK3026-TOLC DIBUCAINE-0.4 
ECK3042-RFAE DIBUCAINE-0.4 
ECK3621-RFAG DIBUCAINE-0.4 
ECK0054-SURA DIBUCAINE-0.8 
ECK0223-LPCA DIBUCAINE-0.8 
ECK0456-ACRB DIBUCAINE-0.8 

ECK0730-PAL DIBUCAINE-0.8 
ECK2503-GUAA DIBUCAINE-0.8 
ECK3026-TOLC DIBUCAINE-0.8 
ECK3042-RFAE DIBUCAINE-0.8 
ECK3610-RFAF DIBUCAINE-0.8 
ECK3620-RFAP DIBUCAINE-0.8 
ECK3621-RFAG DIBUCAINE-0.8 
ECK0054-SURA DIBUCAINE-1.2 
ECK0223-LPCA DIBUCAINE-1.2 
ECK0456-ACRB DIBUCAINE-1.2 
ECK0457-ACRA DIBUCAINE-1.2 
ECK0726-TOLQ DIBUCAINE-1.2 
ECK0727-TOLR DIBUCAINE-1.2 
ECK0729-TOLB DIBUCAINE-1.2 

ECK0730-PAL DIBUCAINE-1.2 
ECK3026-TOLC DIBUCAINE-1.2 
ECK3042-RFAE DIBUCAINE-1.2 
ECK3610-RFAF DIBUCAINE-1.2 
ECK3618-RFAB DIBUCAINE-1.2 
ECK3620-RFAP DIBUCAINE-1.2 
ECK3621-RFAG DIBUCAINE-1.2 
ECK3622-RFAQ DIBUCAINE-1.2 
ECK3026-TOLC DOXORUBICIN-10.0 
ECK2504-GUAB DOXYCYCLINE-0.25 
ECK3048-FOLB DOXYCYCLINE-0.25 
ECK2504-GUAB DOXYCYCLINE-0.5 
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ECK0456-ACRB DOXYCYCLINE-0.75 
ECK2504-GUAB DOXYCYCLINE-0.75 
ECK3026-TOLC DOXYCYCLINE-0.75 
ECK3621-RFAG DOXYCYCLINE-0.75 
ECK0457-ACRA DOXYCYCLINE-1.0 
ECK2504-GUAB DOXYCYCLINE-1.0 
ECK3026-TOLC DOXYCYCLINE-1.0 
ECK0582-FEPG EDTA-1.0 
ECK0729-TOLB EDTA-1.0 
ECK2321-YFCA EGCG-20 
ECK0516-PURE EGCG-5 
ECK1047-PYRC EGCG-5 
ECK2321-YFCA EGCG-5 

ECK2495-PURM EGCG-5 
ECK3632-PYRE EGCG-5 
ECK3997-PURD EGCG-5 

ECK2262-RBN EGCG-50 
ECK2321-YFCA EGCG-50 
ECK2504-GUAB EGCG-50 
ECK2998-EXBD EGCG-50 
ECK2503-GUAA ERYTHROMYCIN-0.1 
ECK2504-GUAB ERYTHROMYCIN-0.1 
ECK3632-PYRE ERYTHROMYCIN-0.1 
ECK2504-GUAB ERYTHROMYCIN-1.0 
ECK3632-PYRE ERYTHROMYCIN-1.0 
ECK0457-ACRA ERYTHROMYCIN-10.0 
ECK2504-GUAB ERYTHROMYCIN-10.0 
ECK3026-TOLC ERYTHROMYCIN-10.0 
ECK3611-RFAC ERYTHROMYCIN-10.0 
ECK2504-GUAB ERYTHROMYCIN-5.0 
ECK3026-TOLC ERYTHROMYCIN-5.0 
ECK3611-RFAC ERYTHROMYCIN-5.0 
ECK3597-CYSE ETHANOL-2.0 
ECK0160-DEGP ETHANOL-6.0 
ECK0223-LPCA ETHANOL-6.0 
ECK3042-RFAE ETHANOL-6.0 
ECK0456-ACRB ETHIDIUMBROMIDE-10 
ECK0457-ACRA ETHIDIUMBROMIDE-10 

ECK0621-LIPA ETHIDIUMBROMIDE-10 
ECK3026-TOLC ETHIDIUMBROMIDE-10 
ECK3725-ATPD ETHIDIUMBROMIDE-10 
ECK0456-ACRB ETHIDIUMBROMIDE-2 
ECK0457-ACRA ETHIDIUMBROMIDE-2 

ECK0621-LIPA ETHIDIUMBROMIDE-2 
ECK3026-TOLC ETHIDIUMBROMIDE-2 
ECK3725-ATPD ETHIDIUMBROMIDE-2 
ECK3729-ATPF ETHIDIUMBROMIDE-2 
ECK3730-ATPE ETHIDIUMBROMIDE-2 
ECK4168-HFQ ETHIDIUMBROMIDE-2 
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ECK0456-ACRB ETHIDIUMBROMIDE-50 
ECK0457-ACRA ETHIDIUMBROMIDE-50 

ECK2271-NUOM ETHIDIUMBROMIDE-50 
ECK2273-NUOK ETHIDIUMBROMIDE-50 
ECK2276-NUOH ETHIDIUMBROMIDE-50 
ECK2279-NUOE ETHIDIUMBROMIDE-50 
ECK2282-NUOA ETHIDIUMBROMIDE-50 
ECK2818-RECC ETHIDIUMBROMIDE-50 
ECK3026-TOLC ETHIDIUMBROMIDE-50 
ECK3725-ATPD ETHIDIUMBROMIDE-50 

ECK4168-HFQ ETHIDIUMBROMIDE-50 
ECK3409-GLPR FOSFOMYCIN-1.0 
ECK0223-LPCA FUSIDICACID-20 
ECK3026-TOLC FUSIDICACID-20 
ECK3042-RFAE FUSIDICACID-20 
ECK0223-LPCA FUSIDICACID-50 
ECK3026-TOLC FUSIDICACID-50 
ECK3042-RFAE FUSIDICACID-50 
ECK0034-CARB GLUCOSAMINE 
ECK0515-PURK GLUCOSAMINE 
ECK0516-PURE GLUCOSAMINE 
ECK1269-CYSB GLUCOSAMINE 
ECK2323-AROC GLUCOSAMINE 
ECK2472-PURC GLUCOSAMINE 
ECK2495-PURM GLUCOSAMINE 
ECK2503-GUAA GLUCOSAMINE 
ECK2555-PURL GLUCOSAMINE 
ECK3632-PYRE GLUCOSAMINE 
ECK3997-PURD GLUCOSAMINE 
ECK3998-PURH GLUCOSAMINE 
ECK4173-PURA GLUCOSAMINE 
ECK0034-CARB GLUCOSE 
ECK0515-PURK GLUCOSE 
ECK0516-PURE GLUCOSE 
ECK0936-PYRD GLUCOSE 
ECK1047-PYRC GLUCOSE 
ECK1269-CYSB GLUCOSE 
ECK2323-AROC GLUCOSE 
ECK2472-PURC GLUCOSE 
ECK2495-PURM GLUCOSE 
ECK2503-GUAA GLUCOSE 
ECK2504-GUAB GLUCOSE 
ECK2555-PURL GLUCOSE 
ECK3632-PYRE GLUCOSE 
ECK3997-PURD GLUCOSE 
ECK3998-PURH GLUCOSE 
ECK0034-CARB GLYCEROL 
ECK0515-PURK GLYCEROL 
ECK0516-PURE GLYCEROL 
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ECK1269-CYSB GLYCEROL 
ECK2323-AROC GLYCEROL 
ECK2472-PURC GLYCEROL 
ECK2495-PURM GLYCEROL 
ECK2504-GUAB GLYCEROL 
ECK2555-PURL GLYCEROL 
ECK3632-PYRE GLYCEROL 
ECK3997-PURD GLYCEROL 
ECK3998-PURH GLYCEROL 
ECK4173-PURA GLYCEROL 

ECK4227-FBP GLYCEROL 
ECK4227-FBP HIGHCOPPER-1.0 

ECK0122-CUEO HIGHCOPPER-4.0 
ECK0478-COPA HIGHCOPPER-4.0 
ECK0726-TOLQ HIGHCOPPER-4.0 
ECK0727-TOLR HIGHCOPPER-4.0 
ECK1248-YCIB HIGHCOPPER-4.0 
ECK3831-TATB HIGHCOPPER-4.0 
ECK3832-TATC HIGHCOPPER-4.0 
ECK0034-CARB HIGHFE 
ECK0515-PURK HIGHFE 
ECK0516-PURE HIGHFE 
ECK0936-PYRD HIGHFE 
ECK1047-PYRC HIGHFE 
ECK1269-CYSB HIGHFE 
ECK2323-AROC HIGHFE 
ECK2472-PURC HIGHFE 
ECK2495-PURM HIGHFE 
ECK2503-GUAA HIGHFE 
ECK2504-GUAB HIGHFE 
ECK2555-PURL HIGHFE 
ECK3597-CYSE HIGHFE 
ECK3632-PYRE HIGHFE 
ECK3997-PURD HIGHFE 
ECK3998-PURH HIGHFE 
ECK4173-PURA HIGHFE 
ECK1269-CYSB HIGHNICKEL-0.1 
ECK0144-DKSA HIGHNICKEL-1.0 
ECK2228-YFAE HYDROXYUREA-10.0 
ECK2228-YFAE HYDROXYUREA-5.0 
ECK0034-CARB LOWFE 
ECK0515-PURK LOWFE 
ECK0516-PURE LOWFE 
ECK0936-PYRD LOWFE 
ECK1269-CYSB LOWFE 
ECK2323-AROC LOWFE 
ECK2472-PURC LOWFE 
ECK2495-PURM LOWFE 
ECK2504-GUAB LOWFE 
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ECK2555-PURL LOWFE 
ECK3597-CYSE LOWFE 
ECK3632-PYRE LOWFE 
ECK3997-PURD LOWFE 
ECK3998-PURH LOWFE 
ECK0034-CARB MALTOSE 
ECK0515-PURK MALTOSE 
ECK0516-PURE MALTOSE 
ECK1269-CYSB MALTOSE 
ECK2323-AROC MALTOSE 
ECK2472-PURC MALTOSE 
ECK2495-PURM MALTOSE 
ECK2503-GUAA MALTOSE 
ECK2504-GUAB MALTOSE 
ECK2555-PURL MALTOSE 
ECK3632-PYRE MALTOSE 
ECK3997-PURD MALTOSE 
ECK3998-PURH MALTOSE 
ECK2504-GUAB MECILLINAM-0.03 
ECK0729-TOLB MECILLINAM-0.06 
ECK2504-GUAB MECILLINAM-0.06 
ECK0729-TOLB MECILLINAM-0.09 
ECK1047-PYRC MECILLINAM-0.09 
ECK2504-GUAB MECILLINAM-0.09 
ECK2504-GUAB MECILLINAM-0.12 
ECK3026-TOLC MINOCYCLINE-0.5 
ECK0456-ACRB MINOCYCLINE-1.0 
ECK0457-ACRA MINOCYCLINE-1.0 
ECK3026-TOLC MINOCYCLINE-1.0 
ECK3042-RFAE MINOCYCLINE-1.0 
ECK0054-SURA MITOMYCINC-0.1 
ECK0456-ACRB MITOMYCINC-0.1 
ECK2694-RECA MITOMYCINC-0.1 
ECK1862-RUVA MMS-0.05% 
ECK2694-RECA MMS-0.05% 
ECK0034-CARB N-ACETYLGLUCOSAMINE 
ECK0515-PURK N-ACETYLGLUCOSAMINE 
ECK0516-PURE N-ACETYLGLUCOSAMINE 
ECK0665-NAGA N-ACETYLGLUCOSAMINE 
ECK1269-CYSB N-ACETYLGLUCOSAMINE 
ECK2323-AROC N-ACETYLGLUCOSAMINE 
ECK2472-PURC N-ACETYLGLUCOSAMINE 
ECK2495-PURM N-ACETYLGLUCOSAMINE 
ECK2503-GUAA N-ACETYLGLUCOSAMINE 
ECK2504-GUAB N-ACETYLGLUCOSAMINE 
ECK2555-PURL N-ACETYLGLUCOSAMINE 
ECK3632-PYRE N-ACETYLGLUCOSAMINE 
ECK3997-PURD N-ACETYLGLUCOSAMINE 
ECK3998-PURH N-ACETYLGLUCOSAMINE 
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ECK1091-YCFM NACL-600 
ECK2321-YFCA NACL-600 
ECK3597-CYSE NALIDIXICACID-0.5 
ECK0223-LPCA NALIDIXICACID-2.0 
ECK3042-RFAE NALIDIXICACID-2.0 
ECK3597-CYSE NALIDIXICACID-2.0 
ECK0034-CARB NH4CL 
ECK0515-PURK NH4CL 
ECK0516-PURE NH4CL 
ECK0936-PYRD NH4CL 
ECK1047-PYRC NH4CL 
ECK1269-CYSB NH4CL 
ECK2323-AROC NH4CL 
ECK2472-PURC NH4CL 
ECK2495-PURM NH4CL 
ECK2503-GUAA NH4CL 
ECK2504-GUAB NH4CL 
ECK2555-PURL NH4CL 
ECK3048-FOLB NH4CL 
ECK3597-CYSE NH4CL 
ECK3632-PYRE NH4CL 
ECK3997-PURD NH4CL 
ECK3998-PURH NH4CL 
ECK4173-PURA NH4CL 

ECK0621-LIPA NITROFURANTOIN-0.1 
ECK2694-RECA NITROFURANTOIN-2.0 
ECK2694-RECA NORFLOXACIN-0.01 
ECK2818-RECC NORFLOXACIN-0.01 
ECK3731-ATPB NORFLOXACIN-0.01 
ECK2694-RECA NORFLOXACIN-0.02 
ECK2818-RECC NORFLOXACIN-0.02 
ECK1269-CYSB NOVOBIOCIN-10 
ECK3026-TOLC NOVOBIOCIN-10 
ECK3611-RFAC NOVOBIOCIN-10 
ECK0034-CARB NOVOBIOCIN-12 
ECK0515-PURK NOVOBIOCIN-12 
ECK0516-PURE NOVOBIOCIN-12 
ECK0936-PYRD NOVOBIOCIN-12 
ECK1047-PYRC NOVOBIOCIN-12 
ECK2495-PURM NOVOBIOCIN-12 
ECK3026-TOLC NOVOBIOCIN-12 
ECK3042-RFAE NOVOBIOCIN-12 
ECK3611-RFAC NOVOBIOCIN-12 
ECK3632-PYRE NOVOBIOCIN-12 
ECK3997-PURD NOVOBIOCIN-12 
ECK4173-PURA NOVOBIOCIN-12 
ECK3026-TOLC NOVOBIOCIN-30 
ECK1269-CYSB NOVOBIOCIN-4 
ECK2504-GUAB NOVOBIOCIN-4 
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ECK3632-PYRE NOVOBIOCIN-4 
ECK1269-CYSB NOVOBIOCIN-6 
ECK2504-GUAB NOVOBIOCIN-6 
ECK3026-TOLC NOVOBIOCIN-6 
ECK3632-PYRE NOVOBIOCIN-6 
ECK0516-PURE NOVOBIOCIN-8 
ECK0936-PYRD NOVOBIOCIN-8 
ECK1047-PYRC NOVOBIOCIN-8 
ECK1269-CYSB NOVOBIOCIN-8 
ECK2495-PURM NOVOBIOCIN-8 
ECK2555-PURL NOVOBIOCIN-8 
ECK3026-TOLC NOVOBIOCIN-8 
ECK3632-PYRE NOVOBIOCIN-8 
ECK3997-PURD NOVOBIOCIN-8 
ECK4173-PURA NOVOBIOCIN-8 
ECK0457-ACRA OXACILLIN-40.0 
ECK3026-TOLC OXACILLIN-40.0 
ECK2504-GUAB PARAQUAT-10.0 
ECK2504-GUAB PARAQUAT-18.0 
ECK0722-CYDB PH10 

ECK5005-TP2 PH10 
ECK0050-APAH PH4 
ECK0054-SURA PH4 
ECK0223-LPCA PH4 
ECK0726-TOLQ PH4 
ECK0727-TOLR PH4 
ECK0729-TOLB PH4 

ECK0730-PAL PH4 
ECK1091-YCFM PH4 
ECK1269-CYSB PH4 
ECK3026-TOLC PH4 
ECK3164-SECG PH4 
ECK3597-CYSE PH4 

ECK3699-MNME PH4 
ECK3734-MNMG PH4 
ECK3904-CPXA PH4 
ECK0050-APAH PH4.5 
ECK0726-TOLQ PH4.5 
ECK0729-TOLB PH4.5 
ECK1269-CYSB PH4.5 
ECK3026-TOLC PH4.5 
ECK3597-CYSE PH4.5 
ECK3904-CPXA PH4.5 
ECK1269-CYSB PH5 
ECK3597-CYSE PH5 
ECK1269-CYSB PH9.5 
ECK3026-TOLC PMS-0.05 
ECK3026-TOLC PMS-0.1 
ECK3042-RFAE PMS-0.1 
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ECK3836-FRE PMS-0.1 
ECK4054-SOXS PMS-0.1 
ECK2504-GUAB PROCAINE-1 
ECK2504-GUAB PROCAINE-10 
ECK3620-RFAP PROCAINE-10 
ECK2504-GUAB PROCAINE-30 
ECK2504-GUAB PROCAINE-5 
ECK3597-CYSE PROPIDIUMIODIDE-1 
ECK0456-ACRB PROPIDIUMIODIDE-20 
ECK0457-ACRA PROPIDIUMIODIDE-20 
ECK3026-TOLC PROPIDIUMIODIDE-20 
ECK0456-ACRB PROPIDIUMIODIDE-50 
ECK0457-ACRA PROPIDIUMIODIDE-50 
ECK3026-TOLC PROPIDIUMIODIDE-50 
ECK0457-ACRA PUROMYCIN-25 
ECK3026-TOLC PUROMYCIN-25 
ECK0456-ACRB PUROMYCIN-5 
ECK0457-ACRA PUROMYCIN-5 
ECK3026-TOLC PUROMYCIN-5 
ECK2305-UBIX PYOCYANIN-1.0 

ECK3048-FOLB PYOCYANIN-1.0 
ECK0144-DKSA PYOCYANIN-10.0 
ECK0456-ACRB PYOCYANIN-10.0 
ECK0457-ACRA PYOCYANIN-10.0 
ECK0458-ACRR PYOCYANIN-10.0 
ECK0665-NAGA PYOCYANIN-10.0 
ECK1260-YCIV PYOCYANIN-10.0 

ECK1864-RUVC PYOCYANIN-10.0 
ECK2271-NUOM PYOCYANIN-10.0 
ECK2314-PDXB PYOCYANIN-10.0 
ECK2901-VISC PYOCYANIN-10.0 

ECK2903-PEPP PYOCYANIN-10.0 
ECK3026-TOLC PYOCYANIN-10.0 
ECK3033-YQIC PYOCYANIN-10.0 

ECK3621-RFAG PYOCYANIN-10.0 
ECK3756-HDFR PYOCYANIN-10.0 

ECK3836-FRE PYOCYANIN-10.0 
ECK3916-FPR PYOCYANIN-10.0 

ECK4054-SOXS PYOCYANIN-10.0 
ECK4055-SOXR PYOCYANIN-10.0 

ECK4168-HFQ PYOCYANIN-10.0 
ECK4393-ARCA PYOCYANIN-10.0 
ECK0054-SURA SDS-0.5% 
ECK0223-LPCA SDS-0.5% 
ECK0457-ACRA SDS-0.5% 
ECK0726-TOLQ SDS-0.5% 
ECK0727-TOLR SDS-0.5% 
ECK0729-TOLB SDS-0.5% 

ECK0730-PAL SDS-0.5% 
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ECK1673-LPP SDS-0.5% 
ECK3026-TOLC SDS-0.5% 
ECK3042-RFAE SDS-0.5% 
ECK3138-YRAP SDS-0.5% 
ECK3609-RFAD SDS-0.5% 
ECK3610-RFAF SDS-0.5% 
ECK3620-RFAP SDS-0.5% 
ECK3621-RFAG SDS-0.5% 

ECK4168-HFQ SDS-0.5% 
ECK0223-LPCA SDS-1.0% 
ECK0457-ACRA SDS-1.0% 
ECK0726-TOLQ SDS-1.0% 
ECK0727-TOLR SDS-1.0% 
ECK0729-TOLB SDS-1.0% 

ECK0730-PAL SDS-1.0% 
ECK0903-IHFB SDS-1.0% 

ECK3042-RFAE SDS-1.0% 
ECK3610-RFAF SDS-1.0% 
ECK3620-RFAP SDS-1.0% 
ECK3621-RFAG SDS-1.0% 
ECK0223-LPCA SDS-2.0% 
ECK0457-ACRA SDS-2.0% 
ECK0726-TOLQ SDS-2.0% 
ECK0727-TOLR SDS-2.0% 
ECK0729-TOLB SDS-2.0% 

ECK0730-PAL SDS-2.0% 
ECK1673-LPP SDS-2.0% 

ECK3026-TOLC SDS-2.0% 
ECK3042-RFAE SDS-2.0% 
ECK3610-RFAF SDS-2.0% 
ECK3621-RFAG SDS-2.0% 
ECK0223-LPCA SDS-3.0% 
ECK0726-TOLQ SDS-3.0% 
ECK0727-TOLR SDS-3.0% 
ECK0729-TOLB SDS-3.0% 

ECK0730-PAL SDS-3.0% 
ECK1673-LPP SDS-3.0% 

ECK3026-TOLC SDS-3.0% 
ECK3042-RFAE SDS-3.0% 
ECK3609-RFAD SDS-3.0% 
ECK3610-RFAF SDS-3.0% 
ECK3620-RFAP SDS-3.0% 
ECK3621-RFAG SDS-3.0% 
ECK3998-PURH SDS-3.0% 
ECK0223-LPCA SDS-4.0% 
ECK0456-ACRB SDS-4.0% 
ECK0457-ACRA SDS-4.0% 
ECK0726-TOLQ SDS-4.0% 
ECK0727-TOLR SDS-4.0% 
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ECK0729-TOLB SDS-4.0% 
ECK1673-LPP SDS-4.0% 

ECK3026-TOLC SDS-4.0% 
ECK3042-RFAE SDS-4.0% 
ECK3609-RFAD SDS-4.0% 
ECK3610-RFAF SDS-4.0% 
ECK3620-RFAP SDS-4.0% 
ECK3621-RFAG SDS-4.0% 
ECK3831-TATB SDS-4.0% 
ECK3832-TATC SDS-4.0% 
ECK4168-HFQ SDS-4.0% 

ECK0457-ACRA SDS0.5%/EDTA0.1 
ECK0726-TOLQ SDS0.5%/EDTA0.1 
ECK0729-TOLB SDS0.5%/EDTA0.1 

ECK1673-LPP SDS0.5%/EDTA0.1 
ECK3026-TOLC SDS0.5%/EDTA0.1 
ECK3042-RFAE SDS0.5%/EDTA0.1 
ECK3138-YRAP SDS0.5%/EDTA0.1 
ECK3610-RFAF SDS0.5%/EDTA0.1 
ECK3621-RFAG SDS0.5%/EDTA0.1 
ECK0054-SURA SDS0.5%/EDTA0.5 
ECK0223-LPCA SDS0.5%/EDTA0.5 
ECK0457-ACRA SDS0.5%/EDTA0.5 
ECK0583-FEPD SDS0.5%/EDTA0.5 
ECK0585-FEPB SDS0.5%/EDTA0.5 
ECK0654-UBIF SDS0.5%/EDTA0.5 

ECK0665-NAGA SDS0.5%/EDTA0.5 
ECK0726-TOLQ SDS0.5%/EDTA0.5 
ECK0727-TOLR SDS0.5%/EDTA0.5 
ECK0729-TOLB SDS0.5%/EDTA0.5 

ECK0730-PAL SDS0.5%/EDTA0.5 
ECK1673-LPP SDS0.5%/EDTA0.5 

ECK2273-NUOK SDS0.5%/EDTA0.5 
ECK2274-NUOJ SDS0.5%/EDTA0.5 
ECK2276-NUOH SDS0.5%/EDTA0.5 
ECK2282-NUOA SDS0.5%/EDTA0.5 
ECK2323-AROC SDS0.5%/EDTA0.5 
ECK2737-NLPD SDS0.5%/EDTA0.5 
ECK3026-TOLC SDS0.5%/EDTA0.5 
ECK3042-RFAE SDS0.5%/EDTA0.5 
ECK3234-YHDP SDS0.5%/EDTA0.5 
ECK3603-ENVC SDS0.5%/EDTA0.5 
ECK3610-RFAF SDS0.5%/EDTA0.5 
ECK3831-TATB SDS0.5%/EDTA0.5 
ECK4168-HFQ SDS0.5%/EDTA0.5 

ECK0054-SURA SDS1.0%/EDTA0.5 
ECK0223-LPCA SDS1.0%/EDTA0.5 
ECK0581-FEPC SDS1.0%/EDTA0.5 
ECK0583-FEPD SDS1.0%/EDTA0.5 
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ECK0585-FEPB SDS1.0%/EDTA0.5 
ECK0665-NAGA SDS1.0%/EDTA0.5 
ECK0726-TOLQ SDS1.0%/EDTA0.5 
ECK0727-TOLR SDS1.0%/EDTA0.5 
ECK0729-TOLB SDS1.0%/EDTA0.5 

ECK0730-PAL SDS1.0%/EDTA0.5 
ECK1673-LPP SDS1.0%/EDTA0.5 

ECK1780-MIPA SDS1.0%/EDTA0.5 
ECK3026-TOLC SDS1.0%/EDTA0.5 
ECK3042-RFAE SDS1.0%/EDTA0.5 
ECK3234-YHDP SDS1.0%/EDTA0.5 

ECK3602-GPMM SDS1.0%/EDTA0.5 
ECK3610-RFAF SDS1.0%/EDTA0.5 
ECK3620-RFAP SDS1.0%/EDTA0.5 
ECK3621-RFAG SDS1.0%/EDTA0.5 
ECK3831-TATB SDS1.0%/EDTA0.5 
ECK3832-TATC SDS1.0%/EDTA0.5 
ECK4168-HFQ SDS1.0%/EDTA0.5 

ECK0093-DDLB SPECTINOMYCIN-6.0 
ECK2504-GUAB SPECTINOMYCIN-6.0 
ECK3156-RBFA SPECTINOMYCIN-6.0 
ECK3713-BGLH SPECTINOMYCIN-6.0 
ECK4419-YGDT SPECTINOMYCIN-6.0 
ECK0223-LPCA SPIRAMYCIN-20 
ECK0457-ACRA SPIRAMYCIN-20 
ECK2490-YFGC SPIRAMYCIN-20 
ECK2508-BAMB SPIRAMYCIN-20 
ECK3026-TOLC SPIRAMYCIN-20 
ECK3042-RFAE SPIRAMYCIN-20 
ECK3609-RFAD SPIRAMYCIN-20 
ECK0223-LPCA STREPTONIGRIN-0.5 
ECK0456-ACRB STREPTONIGRIN-0.5 
ECK0034-CARB SUCCINATE 
ECK0515-PURK SUCCINATE 
ECK0581-FEPC SUCCINATE 
ECK1269-CYSB SUCCINATE 
ECK2472-PURC SUCCINATE 
ECK2504-GUAB SUCCINATE 
ECK2555-PURL SUCCINATE 
ECK3997-PURD SUCCINATE 
ECK3998-PURH SUCCINATE 

ECK4227-FBP SUCCINATE 
ECK2504-GUAB TAUROCHOLATE-0.1% 
ECK0034-CARB TAUROCHOLATE-0.5% 
ECK0516-PURE TAUROCHOLATE-0.5% 
ECK0936-PYRD TAUROCHOLATE-0.5% 
ECK1047-PYRC TAUROCHOLATE-0.5% 
ECK2495-PURM TAUROCHOLATE-0.5% 
ECK2504-GUAB TAUROCHOLATE-0.5% 
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ECK2555-PURL TAUROCHOLATE-0.5% 
ECK3026-TOLC TAUROCHOLATE-0.5% 
ECK3632-PYRE TAUROCHOLATE-0.5% 
ECK3997-PURD TAUROCHOLATE-0.5% 
ECK0457-ACRA TAUROCHOLATE-1.0% 
ECK2504-GUAB TAUROCHOLATE-1.0% 
ECK3026-TOLC TAUROCHOLATE-1.0% 
ECK2504-GUAB TOBRAMYCIN-0.05 
ECK2504-GUAB TOBRAMYCIN-0.1 
ECK2504-GUAB TOBRAMYCIN-0.2 
ECK2504-GUAB TOBRAMYCIN-0.4 
ECK0223-LPCA TRICLOSAN-0.05 
ECK0456-ACRB TRICLOSAN-0.05 
ECK0457-ACRA TRICLOSAN-0.05 
ECK3026-TOLC TRICLOSAN-0.05 
ECK3042-RFAE TRICLOSAN-0.05 
ECK3610-RFAF TRICLOSAN-0.05 
ECK2504-GUAB TRITONX-0.01% 
ECK3597-CYSE TRITONX-0.01% 
ECK2504-GUAB TRITONX-0.03% 
ECK2613-SMPA TRITONX-0.03% 
ECK3026-TOLC TRITONX-0.03% 
ECK3042-RFAE TRITONX-0.03% 
ECK0223-LPCA TRITONX-0.2% 
ECK2504-GUAB TRITONX-0.2% 
ECK3026-TOLC TRITONX-0.2% 
ECK3042-RFAE TRITONX-0.2% 
ECK3156-RBFA TRITONX-0.2% 
ECK2321-YFCA TUNICAMYCIN-7.5 
ECK3725-ATPD TUNICAMYCIN-7.5 
ECK2508-BAMB VANCOMYCIN-10 
ECK0729-TOLB VANCOMYCIN-20 

ECK0730-PAL VANCOMYCIN-20 
ECK1269-CYSB VANCOMYCIN-20 
ECK2508-BAMB VANCOMYCIN-20 
ECK3597-CYSE VANCOMYCIN-20 
ECK0726-TOLQ VANCOMYCIN-50 
ECK0727-TOLR VANCOMYCIN-50 
ECK0729-TOLB VANCOMYCIN-50 

ECK0730-PAL VANCOMYCIN-50 
ECK1077-FABH VANCOMYCIN-50 
ECK2490-YFGC VANCOMYCIN-50 
ECK3597-CYSE VANCOMYCIN-50 
ECK2504-GUAB VERAPAMIL-0.1 
ECK3597-CYSE VERAPAMIL-0.1 
ECK2504-GUAB VERAPAMIL-0.5 
ECK3597-CYSE VERAPAMIL-0.5 
ECK2504-GUAB VERAPAMIL-1.0 
ECK3597-CYSE VERAPAMIL-1.0 
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Table S6 - Highly Correlated Orphan-Annotated Gene 
Pairs (r ≥ 0.5) 

  

Orphan 
Gene 

Annotate
d Gene 

Correlation 
Coefficient 

Annotated Gene 
Function 

Annotated 
Gene Function 

- more detail 

 

ECK3654-
YICN 

ECK3631
-SLMA 

0.5106 cell division/cell cycle   

ECK3647-
YICJ 

ECK0881
-FTSK 

0.6015 cell division/cell cycle   

ECK4135-
YJEH 

ECK3550
-WECH 

0.5308 Cell envelope 
biogenesis/outer 

memrbane 

Antigen 
biosynthesis 

 

ECK3874-
YIHT 

ECK3780
-RFFG 

0.501 Cell envelope 
biogenesis/outer 

memrbane 

Antigen 
biosynthesis 

 

ECK3993-
YJAH 

ECK3780
-RFFG 

0.5076 Cell envelope 
biogenesis/outer 

memrbane 

Antigen 
biosynthesis 

 

ECK1600-
YDGI 

ECK1231
-GALU 

0.6289 Cell envelope 
biogenesis/outer 

memrbane 

Antigen/LPS 
biosynthesis 

 

ECK2333-
YFCV 

ECK2047
-GMD 

0.5171 Cell envelope 
biogenesis/outer 

memrbane 

Antigen/LPS 
biosynthesis 

 

ECK2684-
YQAA 

ECK2047
-GMD 

0.5461 Cell envelope 
biogenesis/outer 

memrbane 

Antigen/LPS 
biosynthesis 

 

ECK0835-
YBJJ 

ECK1028
-CSGA 

0.5116 Cell envelope 
biogenesis/outer 

memrbane 

curli  

ECK1400-
YDBD 

ECK1028
-CSGA 

0.5007 Cell envelope 
biogenesis/outer 

memrbane 

curli  

ECK1428-
YDCN 

ECK1028
-CSGA 

0.5293 Cell envelope 
biogenesis/outer 

memrbane 

curli  

ECK0983-
YCCM 

ECK0523
-SFMA 

0.5269 Cell envelope 
biogenesis/outer 

memrbane 

fimbriae  

ECK1428-
YDCN 

ECK0523
-SFMA 

0.528 Cell envelope 
biogenesis/outer 

memrbane 

fimbriae  

ECK1748-
YDJX 

ECK0523
-SFMA 

0.5051 Cell envelope 
biogenesis/outer 

memrbane 

fimbriae  

ECK1275-
YCIM 

ECK2058
-ASMA 

0.5044 Cell envelope 
biogenesis/outer 

memrbane 

LPS 
biosynthesis/as

sembly/transpor
t/decoration 

 



	
   113	
  

ECK2490-
YFGC 

ECK2058
-ASMA 

0.615 Cell envelope 
biogenesis/outer 

memrbane 

LPS 
biosynthesis/as

sembly/transpor
t/decoration 

 

ECK1274-
YCIS 

ECK3620
-RFAP 

0.5373 Cell envelope 
biogenesis/outer 

memrbane 

LPS 
biosynthesis/as

sembly/transpor
t/decoration 

 

ECK3914-
YIIS 

ECK3609
-RFAD 

0.6445 Cell envelope 
biogenesis/outer 

memrbane 

LPS 
biosynthesis/as

sembly/transpor
t/decoration 

 

ECK1274-
YCIS 

ECK3622
-RFAQ 

0.5635 Cell envelope 
biogenesis/outer 

memrbane 

LPS 
biosynthesis/as

sembly/transpor
t/decoration 

 

ECK3181-
YRBC 

ECK3622
-RFAQ 

0.5982 Cell envelope 
biogenesis/outer 

memrbane 

LPS 
biosynthesis/as

sembly/transpor
t/decoration 

 

ECK3182-
YRBD 

ECK3622
-RFAQ 

0.5778 Cell envelope 
biogenesis/outer 

memrbane 

LPS 
biosynthesis/as

sembly/transpor
t/decoration 

 

ECK2490-
YFGC 

ECK1856
-LPXM 

0.515 Cell envelope 
biogenesis/outer 

memrbane 

LPS 
biosynthesis/as

sembly/transpor
t/decoration 

 

ECK3181-
YRBC 

ECK3617
-RFAI 

0.5862 Cell envelope 
biogenesis/outer 

memrbane 

LPS 
biosynthesis/as

sembly/transpor
t/decoration 

 

ECK3182-
YRBD 

ECK3617
-RFAI 

0.5928 Cell envelope 
biogenesis/outer 

memrbane 

LPS 
biosynthesis/as

sembly/transpor
t/decoration 

 

ECK3914-
YIIS 

ECK3042
-RFAE 

0.5281 Cell envelope 
biogenesis/outer 

memrbane 

LPS 
biosynthesis/as

sembly/transpor
t/decoration 

 

ECK4370-
YJJV 

ECK2374
-LPXP 

0.5156 Cell envelope 
biogenesis/outer 

memrbane 

LPS 
biosynthesis/as

sembly/transpor
t/decoration 

 

ECK3147-
YHBV 

ECK0517
-LPXH 

0.5145 Cell envelope 
biogenesis/outer 

memrbane 

LPS 
biosynthesis/as

sembly/transpor
t/decoration 

 

ECK2490-
YFGC 

ECK0180
-LPXA 

0.5683 Cell envelope 
biogenesis/outer 

memrbane 

LPS 
biosynthesis/as

sembly/transpor
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t/decoration 
ECK2490-

YFGC 
ECK0097

-B-
LPXC(G2

10S)-
KAN 

0.5593 Cell envelope 
biogenesis/outer 

memrbane 

LPS 
biosynthesis/as

sembly/transpor
t/decoration 

 

ECK1419-
YDCH 

ECK0055
-C-IMP-

DAS-
KAN 

0.5826 Cell envelope 
biogenesis/outer 

memrbane 

LPS 
biosynthesis/as

sembly/transpor
t/decoration 

 

ECK2153-
YEII 

ECK2250
-ARNT 

0.5328 Cell envelope 
biogenesis/outer 

memrbane 

LPS 
biosynthesis/as

sembly/transpor
t/decoration 

 

ECK0780-
YBHQ 

ECK2028
-WBBI 

0.5232 Cell envelope 
biogenesis/outer 

memrbane 

LPS 
biosynthesis/as

sembly/transpor
t/decoration 

 

ECK2064-
YEGI 

ECK2028
-WBBI 

0.5978 Cell envelope 
biogenesis/outer 

memrbane 

LPS 
biosynthesis/as

sembly/transpor
t/decoration 

 

ECK3914-
YIIS 

ECK0223
-LPCA 

0.5304 Cell envelope 
biogenesis/outer 

memrbane 

LPS 
biosynthesis/as

sembly/transpor
t/decoration 

 

ECK3875-
YIHU 

ECK2036
-GALF 

0.5306 Cell envelope 
biogenesis/outer 

memrbane 

LPS 
biosynthesis/as

sembly/transpor
t/decoration 

 

ECK0420-
YAJQ 

ECK2703
-GUTQ 

0.5747 Cell envelope 
biogenesis/outer 

memrbane 

LPS 
biosynthesis/as

sembly/transpor
t/decoration 

 

ECK2490-
YFGC 

ECK2508
-BAMB 

0.5752 Cell envelope 
biogenesis/outer 

memrbane 

OMP 
assembly/trans

port 

 

ECK2490-
YFGC 

ECK0176
-B-

YAET(21
8-

9DUPL)-
KAN 

0.678 Cell envelope 
biogenesis/outer 

memrbane 

OMP 
assembly/trans

port 

 

ECK1091-
YCFM 

(LPOB) 

ECK0148
-MRCB 

0.8984 Cell envelope 
biogenesis/outer 

memrbane 

Peptidoglycan 
Biosythesis-

turnover 

 

ECK0252-
YKFB 

ECK2696
-MLTB 

0.5476 Cell envelope 
biogenesis/outer 

memrbane 

Peptidoglycan 
Biosythesis-

turnover 

 

ECK1040-
YCEA 

ECK1180
-LDCA 

0.618 Cell envelope 
biogenesis/outer 

Peptidoglycan 
Biosythesis-
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memrbane turnover 
ECK1090-

YCFL 
ECK1180

-LDCA 
0.5507 Cell envelope 

biogenesis/outer 
memrbane 

Peptidoglycan 
Biosythesis-

turnover 

 

ECK1228-
YCHJ 

ECK1180
-LDCA 

0.6602 Cell envelope 
biogenesis/outer 

memrbane 

Peptidoglycan 
Biosythesis-

turnover 

 

ECK3562-
YSAA 

ECK1180
-LDCA 

0.5752 Cell envelope 
biogenesis/outer 

memrbane 

Peptidoglycan 
Biosythesis-

turnover 

 

ECK4243-
YJGI 

ECK1180
-LDCA 

0.5525 Cell envelope 
biogenesis/outer 

memrbane 

Peptidoglycan 
Biosythesis-

turnover 

 

ECK3234-
YHDP 

ECK1780
-MIPA 

0.5807 Cell envelope 
biogenesis/outer 

memrbane 

Peptidoglycan 
Biosythesis-

turnover 

 

ECK1440-
YDCY 

ECK1322
-MPAA 

0.5194 Cell envelope 
biogenesis/outer 

memrbane 

Peptidoglycan 
Biosythesis-

turnover 

 

ECK0868-
YBJX 

ECK1985
-ERFK 

0.5118 Cell envelope 
biogenesis/outer 

memrbane 

Peptidoglycan 
Biosythesis-

turnover 

 

ECK1086-
YCFH 

ECK1985
-ERFK 

0.5002 Cell envelope 
biogenesis/outer 

memrbane 

Peptidoglycan 
Biosythesis-

turnover 

 

ECK0650-
YBEX 

ECK0858
-AMID 

0.5436 Cell envelope 
biogenesis/outer 

memrbane 

Peptidoglycan 
Biosythesis-

turnover 

 

ECK1228-
YCHJ 

ECK0858
-AMID 

0.5175 Cell envelope 
biogenesis/outer 

memrbane 

Peptidoglycan 
Biosythesis-

turnover 

 

ECK1267-
YCIN 

ECK0858
-AMID 

0.5249 Cell envelope 
biogenesis/outer 

memrbane 

Peptidoglycan 
Biosythesis-

turnover 

 

ECK0480-
YBAT 

ECK1706
-NLPC 

0.5007 Cell envelope 
biogenesis/outer 

memrbane 

Peptidoglycan 
Biosythesis-

turnover 

 

ECK1099-
YCFS 

ECK1181
-EMTA 

0.518 Cell envelope 
biogenesis/outer 

memrbane 

Peptidoglycan 
Biosythesis-

turnover 

 

ECK3181-
YRBC 

ECK3184
-YRBF 

0.6799 Cell envelope 
biogenesis/outer 

memrbane 

phospholipid 
biosynthesis/tra

nsport 

 

ECK3182-
YRBD 

ECK3184
-YRBF 

0.6797 Cell envelope 
biogenesis/outer 

memrbane 

phospholipid 
biosynthesis/tra

nsport 

 

ECK3181-
YRBC 

ECK3183
-YRBE 

0.7059 Cell envelope 
biogenesis/outer 

memrbane 

phospholipid 
biosynthesis/tra

nsport 

 

ECK3182-
YRBD 

ECK3183
-YRBE 

0.7116 Cell envelope 
biogenesis/outer 

phospholipid 
biosynthesis/tra

 



	
   116	
  

memrbane nsport 
ECK3181-

YRBC 
ECK2340

-VACJ 
0.5596 Cell envelope 

biogenesis/outer 
memrbane 

phospholipid 
biosynthesis/tra

nsport 

 

ECK3182-
YRBD 

ECK2340
-VACJ 

0.5394 Cell envelope 
biogenesis/outer 

memrbane 

phospholipid 
biosynthesis/tra

nsport 

 

ECK0793-
YBIX 

ECK1076
-PLSX 

0.5122 Cell envelope 
biogenesis/outer 

memrbane 

phospholipid 
biosynthesis/tra

nsport 

 

ECK3234-
YHDP 

ECK1673
-LPP 

0.5452 Cell envelope 
biogenesis/outer 

memrbane 

  

ECK3138-
YRAP 

ECK1673
-LPP 

0.6451 Cell envelope 
biogenesis/outer 

memrbane 

  

ECK0996-
YMDF 

ECK2045
-GMM 

0.5003 Cell envelope 
biogenesis/outer 

memrbane 

Antigen/LPS 
biosynthesis 

 

ECK0725-
YBGC 

ECK0730
-PAL 

0.7772 Cell envelope 
biogenesis/outer 

memrbane-cell 
division 

  

ECK3138-
YRAP 

ECK0730
-PAL 

0.5433 Cell envelope 
biogenesis/outer 

memrbane-cell 
division 

  

ECK0725-
YBGC 

ECK0726
-TOLQ 

0.623 Cell envelope 
biogenesis/outer 

memrbane-cell 
division 

  

ECK0725-
YBGC 

ECK0727
-TOLR 

0.6438 Cell envelope 
biogenesis/outer 

memrbane-cell 
division 

  

ECK3138-
YRAP 

ECK0727
-TOLR 

0.5513 Cell envelope 
biogenesis/outer 

memrbane-cell 
division 

  

ECK0725-
YBGC 

ECK0729
-TOLB 

0.6978 Cell envelope 
biogenesis/outer 

memrbane-cell 
division 

  

ECK3138-
YRAP 

ECK0729
-TOLB 

0.5099 Cell envelope 
biogenesis/outer 

memrbane-cell 
division 

  

ECK1040-
YCEA 

ECK1061
-FLGE 

0.5418 Cell motility & 
chemotaxis 

  

ECK1228-
YCHJ 

ECK1061
-FLGE 

0.5372 Cell motility & 
chemotaxis 
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ECK1439-
YDCX 

ECK1061
-FLGE 

0.5386 Cell motility & 
chemotaxis 

  

ECK0046-
YAAU 

ECK1939
-FLII 

0.5358 Cell motility & 
chemotaxis 

  

ECK2684-
YQAA 

ECK1939
-FLII 

0.5126 Cell motility & 
chemotaxis 

  

ECK1491-
YDEM 

ECK1415
-TRG 

0.5274 Cell motility & 
chemotaxis 

  

ECK1664-
YDHS 

ECK1415
-TRG 

0.5243 Cell motility & 
chemotaxis 

  

ECK1036-
YCEK 

ECK1890
-MOTB 

0.5102 Cell motility & 
chemotaxis 

  

ECK1664-
YDHS 

ECK1890
-MOTB 

0.5594 Cell motility & 
chemotaxis 

  

ECK0996-
YMDF 

ECK1890
-MOTB 

0.5414 Cell motility & 
chemotaxis 

  

ECK2911-
YQFE 

ECK1890
-MOTB 

0.562 Cell motility & 
chemotaxis 

  

ECK1440-
YDCY 

ECK1063
-FLGG 

0.5614 Cell motility & 
chemotaxis 

  

ECK3591-
YIBT 

ECK1063
-FLGG 

0.6949 Cell motility & 
chemotaxis 

  

ECK1513-
YNEE 

ECK1063
-FLGG 

0.5045 Cell motility & 
chemotaxis 

  

ECK2911-
YQFE 

ECK1063
-FLGG 

0.5177 Cell motility & 
chemotaxis 

  

ECK2925-
YGGD 

ECK1944
-FLIN 

0.5323 Cell motility & 
chemotaxis 

  

ECK1245-
YCII 

ECK1067
-FLGK 

0.5531 Cell motility & 
chemotaxis 

  

ECK1440-
YDCY 

ECK1067
-FLGK 

0.5522 Cell motility & 
chemotaxis 

  

ECK2850-
YGEH 

ECK1067
-FLGK 

0.5014 Cell motility & 
chemotaxis 

  

ECK3028-
YGIB 

ECK1067
-FLGK 

0.5047 Cell motility & 
chemotaxis 

  

ECK2925-
YGGD 

ECK1946
-FLIP 

0.5011 Cell motility & 
chemotaxis 

  

ECK2926-
YGGF 

ECK1946
-FLIP 

0.5314 Cell motility & 
chemotaxis 

  

ECK2684-
YQAA 

ECK1946
-FLIP 

0.5334 Cell motility & 
chemotaxis 

  

ECK1933 ECK1880
-FLHA 

0.5339 Cell motility & 
chemotaxis 

  

ECK3670-
YIDK 

ECK1880
-FLHA 

0.5065 Cell motility & 
chemotaxis 

  

ECK1491-
YDEM 

ECK1938
-FLIH 

0.561 Cell motility & 
chemotaxis 

  

ECK1664-
YDHS 

ECK1938
-FLIH 

0.5149 Cell motility & 
chemotaxis 

  

ECK4152- ECK1945 0.6588 Cell motility &   
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YJEM -FLIO chemotaxis 
ECK0307-

YKGG 
ECK1945

-FLIO 
0.644 Cell motility & 

chemotaxis 
  

ECK1453 ECK1945
-FLIO 

0.6548 Cell motility & 
chemotaxis 

  

ECK1253-
YCIG 

ECK1940
-FLIJ 

0.5194 Cell motility & 
chemotaxis 

  

ECK1245-
YCII 

ECK1940
-FLIJ 

0.504 Cell motility & 
chemotaxis 

  

ECK3022-
YQIA 

ECK2995
-YGHZ 

0.5317 defense mechanisms detoxification of 
methylglyoxal 

 

ECK2660-
YQAE 

ECK2295
-YFCF 

0.5288 defense mechanisms glutathione 
transferase 

 

ECK1245-
YCII 

ECK1331
-OGT 

0.5403 DNA 
replication/recombina

tion/repair 

DNA 
methylation 

 

ECK1428-
YDCN 

ECK1331
-OGT 

0.5617 DNA 
replication/recombina

tion/repair 

DNA 
methylation 

 

ECK1553-
QUUQ 

ECK1331
-OGT 

0.5818 DNA 
replication/recombina

tion/repair 

DNA 
methylation 

 

ECK1689-
YDIN 

ECK1331
-OGT 

0.5577 DNA 
replication/recombina

tion/repair 

DNA 
methylation 

 

ECK2850-
YGEH 

ECK1331
-OGT 

0.5956 DNA 
replication/recombina

tion/repair 

DNA 
methylation 

 

ECK1130-
YMFJ 

ECK1331
-OGT 

0.5059 DNA 
replication/recombina

tion/repair 

DNA 
methylation 

 

ECK1370-
YNAE 

ECK1331
-OGT 

0.532 DNA 
replication/recombina

tion/repair 

DNA 
methylation 

 

ECK1443-
YNCB 

ECK1331
-OGT 

0.5305 DNA 
replication/recombina

tion/repair 

DNA 
methylation 

 

ECK0465-
YBAB 

ECK4050
-UVRA 

0.505 DNA 
replication/recombina

tion/repair 

DNA repair  

ECK1978-
YEEN 

ECK1346
-RECT 

0.5371 DNA 
replication/recombina

tion/repair 

recombination 
& repair 

 

ECK2333-
YFCV 

ECK1346
-RECT 

0.541 DNA 
replication/recombina

tion/repair 

recombination 
& repair 

 

ECK2992-
YGHW 

ECK1346
-RECT 

0.5675 DNA 
replication/recombina

tion/repair 

recombination 
& repair 

 

ECK2750-
YGBT 

ECK4253
-PEPA 

0.5304 DNA 
replication/recombina
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tion/repair 
ECK0465-

YBAB 
ECK3808

-UVRD 
0.5069 DNA 

replication/recombina
tion/repair 

  

ECK0465-
YBAB 

ECK1862
-RUVA 

0.5441 DNA 
replication/recombina

tion/repair 

  

ECK0465-
YBAB 

ECK1864
-RUVC 

0.5694 DNA 
replication/recombina

tion/repair 

  

ECK0465-
YBAB 

ECK0466
-RECR 

0.7298 DNA 
replication/recombina

tion/repair 

  

ECK0465-
YBAB 

ECK0768
-UVRB 

0.62 DNA 
replication/recombina

tion/repair 

  

ECK0542-
YLCG 

ECK0541
-RUSA 

0.6758 DNA 
replication/recombina

tion/repair 

  

ECK1040-
YCEA 

ECK1144
-PINE 

0.5183 DNA 
replication/recombina

tion/repair 

  

ECK1090-
YCFL 

ECK1144
-PINE 

0.5094 DNA 
replication/recombina

tion/repair 

  

ECK0465-
YBAB 

ECK1912
-UVRC 

0.5801 DNA 
replication/recombina

tion/repair 

  

ECK3110-
YHAC 

ECK3637
-LIGB 

0.5032 DNA 
replication/recombina

tion/repair 

  

ECK3803-
YIFL 

ECK3990
-NFI 

0.5122 DNA 
replication/recombina

tion/repair 

  

ECK0465-
YBAB 

ECK2563
-RECO 

0.7379 DNA 
replication/recombina

tion/repair 

  

ECK1426-
YDCM 

ECK2578
-UNG 

0.5737 DNA 
replication/recombina

tion/repair 

  

ECK1827-
YEBQ 

ECK2578
-UNG 

0.5916 DNA 
replication/recombina

tion/repair 

  

ECK1878-
YECT 

ECK1739
-CHO 

0.5025 DNA 
replication/recombina

tion/repair 

  

ECK2614-
YFJF 

ECK2728
-MUTS 

0.5293 DNA 
replication/recombina

tion/repair 

  

ECK2373-
YFDY 

ECK2956
-MUTY 

0.6296 DNA 
replication/recombina

  



	
   120	
  

tion/repair 
ECK3671-

YIDL 
ECK0100

-MUTT 
0.5899 DNA 

replication/recombina
tion/repair 

  

ECK0465-
YBAB 

ECK3692
-RECF 

0.5632 DNA 
replication/recombina

tion/repair 

  

ECK1228-
YCHJ 

ECK1468
-FDNG 

0.5881 energy production 
and conversion 

anaerobic 
respiration 

 

ECK1318-
YCJF 

ECK1468
-FDNG 

0.5494 energy production 
and conversion 

anaerobic 
respiration 

 

ECK2684-
YQAA 

ECK2478
-HYFB 

0.5264 energy production 
and conversion 

anaerobic 
respiration 

 

ECK2735-
YGBN 

ECK1472
-ADHP 

0.6138 energy production 
and conversion 

anaerobic 
respiration 

 

ECK0814-
YBIY 

ECK0887
-DMSC 

0.5083 energy production 
and conversion 

anaerobic 
respiration 

 

ECK1169-
YCGN 

ECK0887
-DMSC 

0.5268 energy production 
and conversion 

anaerobic 
respiration 

 

ECK0679 ECK0885
-DMSA 

0.5226 energy production 
and conversion 

anaerobic 
respiration 

 

ECK0958-
YCCW 

ECK0885
-DMSA 

0.5006 energy production 
and conversion 

anaerobic 
respiration 

 

ECK1036-
YCEK 

ECK0885
-DMSA 

0.6281 energy production 
and conversion 

anaerobic 
respiration 

 

ECK0996-
YMDF 

ECK0885
-DMSA 

0.5395 energy production 
and conversion 

anaerobic 
respiration 

 

ECK3671-
YIDL 

ECK3886
-FDOH 

0.502 energy production 
and conversion 

anaerobic 
respiration 

 

ECK3266-
YRDA 

ECK3886
-FDOH 

0.506 energy production 
and conversion 

anaerobic 
respiration 

 

ECK4250-
YJGN 

ECK3732
-ATPI 

0.521 energy production 
and conversion 

ATP synthesis  

ECK1400-
YDBD 

ECK1744
-ASTD 

0.5112 energy production 
and conversion 

dehydrogenase  

ECK4213-
YTFK 

ECK1518
-SAD 

0.5063 energy production 
and conversion 

dehydrogenase  

ECK0934-
YCBV 

ECK2485
-HYFI 

0.501 energy production 
and conversion 

hydrogenase  

ECK2763-
YGCP 

ECK0842
-NFSA 

0.5339 energy production 
and conversion 

nitroreductase  

ECK2892-
YGFY 

ECK2278
-NUOF 

0.561 energy production 
and conversion 

oxidoreducatas
e activity 

 

ECK0857-
YBJQ 

ECK2706
-NORW 

0.5414 energy production 
and conversion 

oxidoreducatas
e activity 

 

ECK3033-
YQIC 

ECK3836
-FRE 

0.5844 energy production 
and conversion 

oxidoreducatas
e activity 

 

ECK3654-
YICN 

ECK3682
-CBRA 

0.5298 energy production 
and conversion 

oxidoreductase  

ECK4269-
YJHB 

ECK3682
-CBRA 

0.5104 energy production 
and conversion 

oxidoreductase  
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ECK1036-
YCEK 

ECK0863
-HCR 

0.6613 energy production 
and conversion 

oxidoreductase  

ECK1664-
YDHS 

ECK0863
-HCR 

0.5112 energy production 
and conversion 

oxidoreductase  

ECK0793-
YBIX 

ECK0864
-HCP 

0.5263 energy production 
and conversion 

oxidoreductase  

ECK1022-
YCDZ 

ECK0864
-HCP 

0.5325 energy production 
and conversion 

oxidoreductase  

ECK3266-
YRDA 

ECK1095
-NDH 

0.53 energy production 
and conversion 

oxidoreductase  

ECK0690-
YBFB 

ECK0423
-CYOD 

0.5379 energy production 
and conversion 

  

ECK0669-
YBFM 

ECK0423
-CYOD 

0.5518 energy production 
and conversion 

  

ECK0868-
YBJX 

ECK0423
-CYOD 

0.5622 energy production 
and conversion 

  

ECK1086-
YCFH 

ECK0423
-CYOD 

0.5938 energy production 
and conversion 

  

ECK0690-
YBFB 

ECK0424
-CYOC 

0.5187 energy production 
and conversion 

  

ECK0669-
YBFM 

ECK0424
-CYOC 

0.536 energy production 
and conversion 

  

ECK0868-
YBJX 

ECK0424
-CYOC 

0.559 energy production 
and conversion 

  

ECK1086-
YCFH 

ECK0424
-CYOC 

0.5947 energy production 
and conversion 

  

ECK0669-
YBFM 

ECK0425
-CYOB 

0.5258 energy production 
and conversion 

  

ECK0868-
YBJX 

ECK0425
-CYOB 

0.5503 energy production 
and conversion 

  

ECK1086-
YCFH 

ECK0425
-CYOB 

0.5496 energy production 
and conversion 

  

ECK0983-
YCCM 

ECK0970
-APPB 

0.5508 energy production 
and conversion 

  

ECK1214-
YCHO 

ECK0970
-APPB 

0.5151 energy production 
and conversion 

  

ECK1253-
YCIG 

ECK0970
-APPB 

0.5137 energy production 
and conversion 

  

ECK1245-
YCII 

ECK0970
-APPB 

0.5391 energy production 
and conversion 

  

ECK1466-
YDDL 

ECK0970
-APPB 

0.5687 energy production 
and conversion 

  

ECK1443-
YNCB 

ECK0970
-APPB 

0.5332 energy production 
and conversion 

  

ECK1578-
YNFB 

ECK0970
-APPB 

0.5005 energy production 
and conversion 

  

ECK0868-
YBJX 

ECK0426
-CYOA 

0.5792 energy production 
and conversion 

  

ECK1086-
YCFH 

ECK0426
-CYOA 

0.5724 energy production 
and conversion 

  

ECK1688- ECK0426 0.5533 energy production   
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YDIM -CYOA and conversion 
ECK1253-

YCIG 
ECK0722

-CYDB 
0.5272 energy production 

and conversion 
  

ECK2892-
YGFY 

ECK2271
-NUOM 

0.5027 energy production 
and conversion 

  

ECK2892-
YGFY 

ECK2279
-NUOE 

0.516 energy production 
and conversion 

  

ECK3592-
YIBL 

ECK4072
-FDHF 

0.6952 energy production 
and conversion 

  

ECK1040-
YCEA 

ECK0964
-HYAB 

0.5315 energy production 
and conversion 

  

ECK1090-
YCFL 

ECK0964
-HYAB 

0.5035 energy production 
and conversion 

  

ECK1228-
YCHJ 

ECK0964
-HYAB 

0.6249 energy production 
and conversion 

  

ECK1318-
YCJF 

ECK0964
-HYAB 

0.5233 energy production 
and conversion 

  

ECK3562-
YSAA 

ECK0964
-HYAB 

0.6035 energy production 
and conversion 

  

ECK2965-
YGHF 

ECK3519
-YHJQ 

0.5081 energy production 
and conversion 

  

ECK3865-
YIHL 

ECK3519
-YHJQ 

0.5027 energy production 
and conversion 

  

ECK2333-
YFCV 

ECK2050
-WCAD 

0.5025 Extrarcellular 
structures/proteins 

colanic acid 
biosythesis 

 

ECK1090-
YCFL 

ECK1011
-PGAD 

0.5597 Extrarcellular 
structures/proteins 

exopolysachhar
ide production 

 

ECK1228-
YCHJ 

ECK1011
-PGAD 

0.5896 Extrarcellular 
structures/proteins 

exopolysachhar
ide production 

 

ECK1267-
YCIN 

ECK1011
-PGAD 

0.588 Extrarcellular 
structures/proteins 

exopolysachhar
ide production 

 

ECK1931-
YEDL 

ECK2044
-WCAI 

0.5411 Extrarcellular 
structures/proteins 

exopolysachhar
ide production 

 

ECK0705-
YBGO 

ECK1012
-PGAC 

0.5186 Extrarcellular 
structures/proteins 

exopolysachhar
ide production 

 

ECK1040-
YCEA 

ECK1012
-PGAC 

0.5554 Extrarcellular 
structures/proteins 

exopolysachhar
ide production 

 

ECK1090-
YCFL 

ECK1012
-PGAC 

0.5144 Extrarcellular 
structures/proteins 

exopolysachhar
ide production 

 

ECK1228-
YCHJ 

ECK1012
-PGAC 

0.572 Extrarcellular 
structures/proteins 

exopolysachhar
ide production 

 

ECK1312-
YCJU 

ECK1012
-PGAC 

0.5362 Extrarcellular 
structures/proteins 

exopolysachhar
ide production 

 

ECK0691-
YBFO 

ECK1013
-PGAB 

0.5579 Extrarcellular 
structures/proteins 

exopolysachhar
ide production 

 

ECK1169-
YCGN 

ECK1013
-PGAB 

0.5817 Extrarcellular 
structures/proteins 

exopolysachhar
ide production 

 

ECK1032-
YMDC 

ECK1013
-PGAB 

0.5546 Extrarcellular 
structures/proteins 

exopolysachhar
ide production 

 

ECK0679 ECK1170
-HLYE 

0.5321 Extrarcellular 
structures/proteins 

secreted factor  
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ECK2684-
YQAA 

ECK1170
-HLYE 

0.506 Extrarcellular 
structures/proteins 

secreted factor  

ECK2002-
YEEA 

ECK2456
-EUTP 

0.6084 general function 
prediction only 

  

ECK1090-
YCFL 

ECK0291
-MATC 

0.5223 general function 
prediction only 

  

ECK1136-
YMFR 

ECK0291
-MATC 

0.5595 general function 
prediction only 

  

ECK0769-
YBHK 

ECK1266
-SOHB 

0.5199 general function 
prediction only 

  

ECK1074-
YCED 

ECK1266
-SOHB 

0.51 general function 
prediction only 

  

ECK1042-
YCEJ 

ECK1266
-SOHB 

0.5209 general function 
prediction only 

  

ECK2319-
YFCL 

ECK2446
-EUTA 

0.5133 general function 
prediction only 

  

ECK1451-
YDCD 

ECK2454
-EUTT 

0.6286 general function 
prediction only 

  

ECK0373-
YAIW 

ECK2455
-EUTQ 

0.508 general function 
prediction only 

  

ECK0857-
YBJQ 

ECK2455
-EUTQ 

0.5092 general function 
prediction only 

  

ECK4004-
YJAB 

ECK2455
-EUTQ 

0.5025 general function 
prediction only 

  

ECK3472-
YHII 

ECK0533
-REND 

0.5999 general function 
prediction only 

  

ECK1167-
YCGL 

ECK0617
-CRCB 

0.5008 general function 
prediction only 

  

ECK0809-
YBIS 

ECK0812
-YBIV 

0.5241 general function 
prediction only 

  

ECK1374-
YDBK 

ECK0888
-YCAC 

0.5304 general function 
prediction only 

  

ECK1428-
YDCN 

ECK0888
-YCAC 

0.5475 general function 
prediction only 

  

ECK1689-
YDIN 

ECK0888
-YCAC 

0.5297 general function 
prediction only 

  

ECK0943-
YMBA 

ECK0888
-YCAC 

0.5408 general function 
prediction only 

  

ECK3033-
YQIC 

ECK0888
-YCAC 

0.554 general function 
prediction only 

  

ECK0284-
YAGS 

ECK1900
-FTNB 

0.5266 general function 
prediction only 

  

ECK3131-
YRAI 

ECK3871
-YIHQ 

0.5055 general function 
prediction only 

  

ECK3520-
YHJR 

ECK3559
-BAX 

0.6057 general function 
prediction only 

  

ECK3563-
YIAJ 

ECK3559
-BAX 

0.5864 general function 
prediction only 

  

ECK3563-
YIAJ 

ECK4085
-PHNP 

0.6065 general function 
prediction only 

  

ECK3503- ECK0138 0.5646 general function   
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YHJA -HTRE prediction only 
ECK4181-

YJFM 
ECK3313

-GSPE 
0.5854 general function 

prediction only 
  

ECK0958-
YCCW 

ECK2186
-CCMH 

0.521 general function 
prediction only 

  

ECK1467-
YDDG 

ECK2186
-CCMH 

0.559 general function 
prediction only 

  

ECK1549-
YDFR 

ECK2186
-CCMH 

0.5054 general function 
prediction only 

  

ECK2684-
YQAA 

ECK2186
-CCMH 

0.527 general function 
prediction only 

  

ECK3551-
YIAA 

ECK3740
-RAVA 

0.6044 general function 
prediction only 

  

ECK3677-
YIDE 

ECK3740
-RAVA 

0.5436 general function 
prediction only 

  

ECK3654-
YICN 

ECK3571
-YIAR 

0.5083 general function 
prediction only 

  

ECK1784-
YEAJ 

ECK4295
-SGCX 

0.5602 general function 
prediction only 

  

ECK1836-
YEBW 

ECK4295
-SGCX 

0.5288 general function 
prediction only 

  

ECK1792-
YEAP 

ECK0012 0.5124 general function 
prediction only 

  

ECK0983-
YCCM 

ECK2901
-VISC 

0.6153 general function 
prediction only 

  

ECK1495-
YDEQ 

ECK2901
-VISC 

0.5015 general function 
prediction only 

  

ECK3028-
YGIB 

ECK2901
-VISC 

0.5491 general function 
prediction only 

  

ECK0943-
YMBA 

ECK2901
-VISC 

0.502 general function 
prediction only 

  

ECK3033-
YQIC 

ECK2901
-VISC 

0.7757 general function 
prediction only 

  

ECK2764-
YGCQ 

ECK1610
-UIDC 

0.5666 general function 
prediction only 

  

ECK2762-
YGCO 

ECK1830
-PROQ 

0.5057 general function 
prediction only 

  

ECK0220-
YAFV 

ECK1575
-RSPB 

0.5273 general function 
prediction only 

  

ECK2320-
YFCM 

ECK1575
-RSPB 

0.513 general function 
prediction only 

  

ECK1036-
YCEK 

ECK0544
-NMPC 

0.5723 general function 
prediction only 

  

ECK1789-
YEAN 

ECK0544
-NMPC 

0.5514 general function 
prediction only 

  

ECK0929-
YCBQ 

ECK1143
-STFE 

0.5691 general function 
prediction only 

  

ECK1245-
YCII 

ECK1143
-STFE 

0.5141 general function 
prediction only 

  

ECK1343-
YDAQ 

ECK1143
-STFE 

0.5406 general function 
prediction only 
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ECK0302-
YKGI 

ECK4264
-INTB 

0.5096 general function 
prediction only 

  

ECK3134-
YRAL 

ECK3869
-YIHO 

0.5444 general function 
prediction only 

  

ECK3824-
YSGA 

ECK3869
-YIHO 

0.583 general function 
prediction only 

  

ECK3671-
YIDL 

ECK3399
-BIOH 

0.5785 general function 
prediction only 

  

ECK2081-
YEGR 

ECK4086
-PHNO 

0.5092 general function 
prediction only 

  

ECK2766-
YGCS 

ECK4086
-PHNO 

0.5275 general function 
prediction only 

  

ECK2356-
YFDS 

ECK1991
-YEEP 

0.6666 general function 
prediction only 

  

ECK1419-
YDCH 

ECK4047
-APHA 

0.5272 general function 
prediction only 

  

ECK1954-
YEDQ 

ECK4047
-APHA 

0.5372 general function 
prediction only 

  

ECK3430-
YRHB 

ECK2884
-IDI 

0.5611 lipid metabolism   

ECK2893-
YGFZ 

ECK2310
-ACCD 

0.5487 lipid metabolism   

ECK0447-
YBAY 

ECK0479
-YBAS 

0.5947 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK2018
-HISH 

0.7174 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK3949
-ARGC 

0.6894 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK3161
-ARGG 

0.6665 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK4380
-SERB 

0.5895 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK1255
-TRPB 

0.7306 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK3931
-METB 

0.634 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK2759
-CYSJ 

0.6841 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK3526-
YHJV 

ECK2952
-ANSB 

0.5056 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK3757-
YIFE 

ECK2952
-ANSB 

0.5555 metabolism amino acid 
biosynthesis & 
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utilization 
ECK1048-

YCEB 
ECK0243

-PROB 
0.7279 metabolism amino acid 

biosynthesis & 
utilization 

 

ECK0404-
YAJD 

ECK1257
-TRPD 

0.5587 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1428-
YDCN 

ECK1257
-TRPD 

0.5225 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1840-
YEBY 

ECK1257
-TRPD 

0.5098 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1370-
YNAE 

ECK1257
-TRPD 

0.5005 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1443-
YNCB 

ECK1257
-TRPD 

0.5419 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK2909
-SERA 

0.6777 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK3948
-ARGE 

0.6823 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK0003
-THRB 

0.7479 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK0244
-PROA 

0.7134 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK0898
-SERC 

0.5589 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK3000
-METC 

0.529 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK3951
-ARGH 

0.6915 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK3933
-METF 

0.657 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK0899
-AROA 

0.6133 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK2014
-HISG 

0.6777 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK2596
-PHEA 

0.6275 metabolism amino acid 
biosynthesis & 
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utilization 
ECK1048-

YCEB 
ECK4005

-META 
0.6545 metabolism amino acid 

biosynthesis & 
utilization 

 

ECK1048-
YCEB 

ECK0073
-LEUD 

0.6773 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK3208-
YHCF 

ECK0274
-ARGF 

0.5809 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK3241-
YHDH 

ECK0274
-ARGF 

0.6005 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK2892-
YGFY 

ECK0919
-ASPC 

0.508 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1021-
YCDY 

ECK2015
-HISD 

0.5429 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK2015
-HISD 

0.6427 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK2323
-AROC 

0.6038 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK2597
-TYRA 

0.7072 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK3268
-AROE 

0.6056 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK3762
-ILVE 

0.6924 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK0074
-LEUC 

0.7421 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK0381
-PROC 

0.7158 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK2016
-HISC 

0.7057 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK3764
-ILVA 

0.6682 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK0076
-LEUA 

0.6446 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK2895-
YQFB 

ECK0383
-AROL 

0.529 metabolism amino acid 
biosynthesis & 
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utilization 
ECK1048-

YCEB 
ECK2020

-HISF 
0.7296 metabolism amino acid 

biosynthesis & 
utilization 

 

ECK1048-
YCEB 

ECK2814
-ARGA 

0.7092 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1021-
YCDY 

ECK3823
-METE 

0.5134 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK3823
-METE 

0.6576 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK1254
-TRPA 

0.6647 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK2021
-HISI 

0.7064 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK2836
-LYSA 

0.6948 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK3645-
YICH 

ECK4046
-TYRB 

0.6246 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK4182-
YJFC 

ECK4046
-TYRB 

0.5076 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK3551-
YIAA 

ECK0079
-ILVI 

0.5732 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK3677-
YIDE 

ECK0079
-ILVI 

0.5054 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK2017
-HISB 

0.673 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK3376
-AROB 

0.6446 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK2019
-HISA 

0.6948 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1316-
YCJW 

ECK1256
-TRPC 

0.5919 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK0004
-THRC 

0.6778 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK2764-
YGCQ 

ECK0662
-ASNB 

0.5168 metabolism amino acid 
biosynthesis & 
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utilization 
ECK1048-

YCEB 
ECK3763

-ILVD 
0.6885 metabolism amino acid 

biosynthesis & 
utilization 

 

ECK1048-
YCEB 

ECK3766
-ILVC 

0.6641 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK3950
-ARGB 

0.6801 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK0002
-THRA 

0.5775 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK2066-
YEGK 

ECK2656
-GABT 

0.6187 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1021-
YCDY 

ECK0075
-LEUB 

0.5126 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1048-
YCEB 

ECK0075
-LEUB 

0.7047 metabolism amino acid 
biosynthesis & 

utilization 

 

ECK1022-
YCDZ 

ECK1392
-PAAH 

0.5021 metabolism aromatic 
compound 

metabolism 

 

ECK1228-
YCHJ 

ECK1392
-PAAH 

0.6331 metabolism aromatic 
compound 

metabolism 

 

ECK2066-
YEGK 

ECK0345
-MHPB 

0.7922 metabolism aromatic 
compound 

metabolism 

 

ECK0404-
YAJD 

ECK1853
-ZWF 

0.5524 metabolism carbohydrate 
metabolism 

glycolysis 
+ Entner-

Doudorrof 
pathway, 
penthose 

phospahte 
pathway 

ECK1723-
YNIA 

ECK1853
-ZWF 

0.512 metabolism carbohydrate 
metabolism 

glycolysis 
+ Entner-

Doudorrof 
pathway, 
penthose 

phospahte 
pathway 

ECK3472-
YHII 

ECK3917
-GLPX 

0.5061 metabolism carbohydrate 
metabolism 

glycolysis, 
gluconeog

enesis 
ECK0462-

YBAN 
ECK0113

-ACEE 
0.5417 metabolism carbohydrate 

metabolism 
 

ECK0835- ECK0113 0.6238 metabolism carbohydrate  
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YBJJ -ACEE metabolism 
ECK0983-

YCCM 
ECK0113

-ACEE 
0.6773 metabolism carbohydrate 

metabolism 
 

ECK1748-
YDJX 

ECK0113
-ACEE 

0.5672 metabolism carbohydrate 
metabolism 

 

ECK2614-
YFJF 

ECK0113
-ACEE 

0.5146 metabolism carbohydrate 
metabolism 

 

ECK1031-
YMDB 

ECK0113
-ACEE 

0.5399 metabolism carbohydrate 
metabolism 

 

ECK1451-
YDCD 

ECK0745
-GALM 

0.5929 metabolism carbohydrate 
metabolism 

 

ECK1903-
YECR 

ECK0745
-GALM 

0.5712 metabolism carbohydrate 
metabolism 

 

ECK0943-
YMBA 

ECK2382
-FRYC 

0.5024 metabolism carbohydrate 
metabolism 

 

ECK1402-
YNBB 

ECK2382
-FRYC 

0.5473 metabolism carbohydrate 
metabolism 

 

ECK3033-
YQIC 

ECK2382
-FRYC 

0.5584 metabolism carbohydrate 
metabolism 

 

ECK3173-
YHBE 

ECK3689
-YIDA 

0.5503 metabolism carbohydrate 
metabolism 

 

ECK4186-
YJFP 

ECK3689
-YIDA 

0.5784 metabolism carbohydrate 
metabolism 

 

ECK4216-
YTFM 

ECK3689
-YIDA 

0.552 metabolism carbohydrate 
metabolism 

 

ECK2925-
YGGD 

ECK0185
-LDCC 

0.5495 metabolism carbohydrate 
metabolism 

 

ECK1773-
YDJK 

ECK3560
-MALS 

0.6148 metabolism carbohydrate 
metabolism 

 

ECK3677-
YIDE 

ECK3066
-EBGA 

0.6005 metabolism carbohydrate 
metabolism 

 

ECK3179-
YRBA 

ECK3417
-GLGX 

0.5135 metabolism carbohydrate 
metabolism 

 

ECK3551-
YIAA 

ECK3418
-GLGB 

0.5385 metabolism carbohydrate 
metabolism 

 

ECK3677-
YIDE 

ECK3418
-GLGB 

0.5052 metabolism carbohydrate 
metabolism 

 

ECK1036-
YCEK 

ECK1408
-ALDA 

0.5061 metabolism carbohydrate 
metabolism 

 

ECK2735-
YGBN 

ECK2928
-CMTA 

0.5179 metabolism carbohydrate 
metabolism 

 

ECK3757-
YIFE 

ECK4190
-ULAB 

0.5116 metabolism carbohydrate 
metabolism 

 

ECK4267-
YJGZ 

ECK4193
-ULAE 

0.5551 metabolism carbohydrate 
metabolism 

 

ECK4152-
YJEM 

ECK4194
-ULAF 

0.504 metabolism carbohydrate 
metabolism 

 

ECK3091-
YQJK 

ECK4189
-ULAA 

0.5371 metabolism carbohydrate 
metabolism 

 

ECK4202-
YTFB 

ECK4189
-ULAA 

0.5898 metabolism carbohydrate 
metabolism 
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ECK0290-
YAGX 

ECK0329
-PRPB 

0.5086 metabolism carbohydrate 
metabolism 

 

ECK0793-
YBIX 

ECK1388
-PAAD 

0.5763 metabolism carbohydrate 
metabolism 

 

ECK1022-
YCDZ 

ECK1388
-PAAD 

0.5536 metabolism carbohydrate 
metabolism 

 

ECK0521-
YBCJ 

ECK1187
-DHAL 

0.5722 metabolism carbohydrate 
metabolism 

 

ECK3369-
YHFY 

ECK1187
-DHAL 

0.5097 metabolism carbohydrate 
metabolism 

 

ECK4284-
YJHU 

ECK1187
-DHAL 

0.5528 metabolism carbohydrate 
metabolism 

 

ECK2872-
YQEC 

ECK3511
-KDGK 

0.5394 metabolism carbohydrate 
metabolism 

 

ECK4103-
YJCZ 

ECK3939
-PTSA 

0.535 metabolism carbohydrate 
metabolism 

 

ECK3671-
YIDL 

ECK3646
-YICI 

0.5072 metabolism carbohydrate 
metabolism 

 

ECK3671-
YIDL 

ECK3404
-MALP 

0.5414 metabolism carbohydrate 
metabolism 

 

ECK3671-
YIDL 

ECK3361
-FRLD 

0.5781 metabolism carbohydrate 
metabolism 

 

ECK3645-
YICH 

ECK4259
-IDNO 

0.5436 metabolism carbohydrate 
metabolism 

 

ECK1140-
YCFK 

ECK4260
-IDND 

0.5058 metabolism carbohydrate 
metabolism 

 

ECK3645-
YICH 

ECK4260
-IDND 

0.5062 metabolism carbohydrate 
metabolism 

 

ECK1933 ECK4261
-IDNK 

0.5052 metabolism carbohydrate 
metabolism 

 

ECK1048-
YCEB 

ECK2458
-MAEB 

0.5444 metabolism central 
metabolism 

gluconeog
enesis 

ECK2541-
YPHB 

ECK2090
-FBAB 

0.6603 metabolism central 
metabolism 

glycolysis, 
gluconeog

enesis 
ECK0404-

YAJD 
ECK1271

-ACNA 
0.5086 metabolism central 

metabolism 
TCA 

ECK1466-
YDDL 

ECK1271
-ACNA 

0.6352 metabolism central 
metabolism 

TCA 

ECK2615-
YFJG 

ECK1271
-ACNA 

0.5338 metabolism central 
metabolism 

TCA 

ECK1048-
YCEB 

ECK0709
-GLTA 

0.6581 metabolism central 
metabolism 

TCA 

ECK1503-
YDEK 

ECK0711
-SDHD 

0.5455 metabolism central 
metabolism 

TCA 

ECK2892-
YGFY 

ECK0713
-SDHB 

0.5378 metabolism central 
metabolism 

TCA 

ECK1048-
YCEB 

ECK3947
-PPC 

0.5917 metabolism central 
metabolism 

TCA, 
gluconeog

enesis 
ECK0814- ECK1606 0.5843 metabolism central  
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YBIY -FUMC metabolism 
ECK0857-

YBJQ 
ECK1606

-FUMC 
0.5507 metabolism central 

metabolism 
 

ECK1169-
YCGN 

ECK1606
-FUMC 

0.5944 metabolism central 
metabolism 

 

ECK4179-
YJFK 

ECK1606
-FUMC 

0.5829 metabolism central 
metabolism 

 

ECK1503-
YDEK 

ECK0716
-SUCC 

0.5169 metabolism central 
metabolism 

 

ECK2614-
YFJF 

ECK0716
-SUCC 

0.5619 metabolism central 
metabolism 

 

ECK2615-
YFJG 

ECK0716
-SUCC 

0.5381 metabolism central 
metabolism 

 

ECK2892-
YGFY 

ECK0716
-SUCC 

0.5332 metabolism central 
metabolism 

 

ECK1317-
YCJX 

ECK2577
-YFID 

0.6625 metabolism central 
metabolism 

 

ECK1960-
YEDJ 

ECK2577
-YFID 

0.6349 metabolism central 
metabolism 

 

ECK3033-
YQIC 

ECK0954
-MGSA 

0.532 metabolism central 
metabolism 

 

ECK1048-
YCEB 

ECK0764
-BIOB 

0.5341 metabolism cofactor 
biosynthesis 

biotin 

ECK2925-
YGGD 

ECK0631
-COBC 

0.5643 metabolism cofactor 
biosynthesis 

cobalinim 

ECK1096-
YCFJ 

ECK1082
-PABC 

0.5894 metabolism cofactor 
biosynthesis 

folate 

ECK2768-
YGCW 

ECK1082
-PABC 

0.5478 metabolism cofactor 
biosynthesis 

folate 

ECK1048-
YCEB 

ECK2548
-GLYA 

0.6479 metabolism cofactor 
biosynthesis 

folate 

ECK2892-
YGFY 

ECK0621
-LIPA 

0.5902 metabolism cofactor 
biosynthesis 

liptoate 
biosynthes

is 
ECK2614-

YFJF 
ECK0654

-UBIF 
0.5874 metabolism cofactor 

biosynthesis 
menaquin

one 
ECK2892-

YGFY 
ECK0654

-UBIF 
0.5482 metabolism cofactor 

biosynthesis 
menaquin

one 
ECK4394-

YJJY 
ECK0654

-UBIF 
0.5528 metabolism cofactor 

biosynthesis 
menaquin

one 
ECK3428-

YHHZ 
ECK2255

-MENC 
0.5046 metabolism cofactor 

biosynthesis 
menaquin

one 
ECK2892-

YGFY 
ECK3827

-UBIE 
0.559 metabolism cofactor 

biosynthesis 
menaquin

one 
ECK4394-

YJJY 
ECK3827

-UBIE 
0.5474 metabolism cofactor 

biosynthesis 
menaquin

one 
ECK4076-

YJCS 
ECK2258

-MEND 
0.5089 metabolism cofactor 

biosynthesis 
menaquin

one 
ECK0835-

YBJJ 
ECK4031

-UBIC 
0.5682 metabolism cofactor 

biosynthesis 
menaquin

one 
ECK0983- ECK4031 0.5557 metabolism cofactor menaquin
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YCCM -UBIC biosynthesis one 
ECK1253-

YCIG 
ECK4031

-UBIC 
0.5063 metabolism cofactor 

biosynthesis 
menaquin

one 
ECK1245-

YCII 
ECK4031

-UBIC 
0.5143 metabolism cofactor 

biosynthesis 
menaquin

one 
ECK2614-

YFJF 
ECK4031

-UBIC 
0.5215 metabolism cofactor 

biosynthesis 
menaquin

one 
ECK3028-

YGIB 
ECK4031

-UBIC 
0.5498 metabolism cofactor 

biosynthesis 
menaquin

one 
ECK3159-

RIMP 
ECK4031

-UBIC 
0.5449 metabolism cofactor 

biosynthesis 
menaquin

one 
ECK1099-

YCFS 
ECK0415

-ISPA 
0.5625 metabolism cofactor 

biosynthesis 
menaquin

one 
ECK2218-

YFAP 
ECK1632

-PDXY 
0.5125 metabolism cofactor 

biosynthesis 
pyridoxine 

ECK1048-
YCEB 

ECK2562
-PDXJ 

0.533 metabolism cofactor 
biosynthesis 

pyridoxine 

ECK0890-
YCAM 

ECK0440
-COF 

0.5103 metabolism cofactor 
biosynthesis 

thiamin 

ECK1148-
YCGX 

ECK0440
-COF 

0.5227 metabolism cofactor 
biosynthesis 

thiamin 

ECK1310-
YCJS 

ECK0440
-COF 

0.5207 metabolism cofactor 
biosynthesis 

thiamin 

ECK1440-
YDCY 

ECK0440
-COF 

0.5084 metabolism cofactor 
biosynthesis 

thiamin 

ECK1665-
YDHT 

ECK0440
-COF 

0.5712 metabolism cofactor 
biosynthesis 

thiamin 

ECK2551-
YFHA 

ECK0440
-COF 

0.5067 metabolism cofactor 
biosynthesis 

thiamin 

ECK2911-
YQFE 

ECK0440
-COF 

0.519 metabolism cofactor 
biosynthesis 

thiamin 

ECK1040-
YCEA 

ECK1120
-NUDJ 

0.5488 metabolism cofactor 
biosynthesis 

thiamin 

ECK0428-
YAJG 

ECK1092
-THIK 

0.5526 metabolism cofactor 
biosynthesis 

thiamin 

ECK1048-
YCEB 

ECK3984
-THIF 

0.5861 metabolism cofactor 
biosynthesis 

thiamine 

ECK1048-
YCEB 

ECK2096
-THID 

0.5971 metabolism cofactor 
biosynthesis 

thiamine 

ECK0281-
YAGP 

ECK1766
-PNCA 

0.5381 metabolism cofactor 
biosynthesis 

 

ECK1048-
YCEB 

ECK3356
-CYSG 

0.5482 metabolism cofactor 
biosynthesis 

 

ECK0228-
YAFL 

ECK0068
-THIP 

0.5545 metabolism cofactor 
biosynthesis 

 

ECK1960-
YEDJ 

ECK0009
-MOG 

0.5068 metabolism cofactor 
biosynthesis 

 

ECK1048-
YCEB 

ECK2572
-NADB 

0.6389 metabolism cofactor 
biosynthesis 

 

ECK1048-
YCEB 

ECK0053
-PDXA 

0.5131 metabolism cofactor 
biosynthesis 
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ECK1048-
YCEB 

ECK0108
-NADC 

0.6093 metabolism cofactor 
biosynthesis 

 

ECK1048-
YCEB 

ECK0739
-NADA 

0.6431 metabolism cofactor 
biosynthesis 

 

ECK2402-
YFEN 

ECK0408
-RIBD 

0.6197 metabolism cofactor 
biosynthesis 

 

ECK3147-
YHBV 

ECK0049
-FOLA 

0.5018 metabolism cofactor 
biosynthesis 

 

ECK2109-
YEHI 

ECK2713
-HYCH 

0.514 metabolism fermentation  

ECK2619-
YFJH 

ECK2713
-HYCH 

0.5808 metabolism fermentation  

ECK0236-
YKFJ 

ECK0240
-FRSA 

0.5239 metabolism fermentation  

ECK1728-
YDJO 

ECK0510
-ALLD 

0.5161 metabolism inorganic ion 
metabolism 

allantoin 
assimilatio

n 
ECK2897-

YGFF 
ECK0337

-CYNS 
0.57 metabolism inorganic ion 

metabolism 
cyanate 

metabolis
m 

ECK3210-
YHCH 

ECK0337
-CYNS 

0.5012 metabolism inorganic ion 
metabolism 

cyanate 
metabolis

m 
ECK1048-

YCEB 
ECK2747

-CYSD 
0.5192 metabolism inorganic ion 

metabolism 
sulfur 

metabolis
m 

ECK1048-
YCEB 

ECK2745
-CYSC 

0.5083 metabolism inorganic ion 
metabolism 

sulfur 
metabolis

m 
ECK2349-

YFDL 
ECK2517

-SSEA 
0.5195 metabolism inorganic ion 

metabolism 
sulfur 

metabolis
m 

ECK2627-
YFJO 

ECK2519
-SSEB 

0.5256 metabolism inorganic ion 
metabolism 

sulfur 
metabolis

m 
ECK1048-

YCEB 
ECK2758

-CYSI 
0.5862 metabolism inorganic ion 

metabolism 
sulphur 

metabolis
m 

ECK3587-
YIBI 

ECK4087
-PHNN 

0.5072 metabolism inorganic ion 
metabolism 

 

ECK3666-
YIDG 

ECK3656
-ADE 

0.5794 metabolism nucleotide 
biosynthesis 

 

ECK4021-
YJBH 

ECK3988
-NUDC 

0.5304 metabolism nucleotide 
biosynthesis 

 

ECK1048-
YCEB 

ECK0515
-PURK 

0.5569 metabolism nucleotide 
biosynthesis 

 

ECK0677-
YBFP 

ECK1977
-AMN 

0.5009 metabolism nucleotide 
biosynthesis 

 

ECK0758-
YBHH 

ECK1977
-AMN 

0.5859 metabolism nucleotide 
biosynthesis 

 

ECK1428- ECK1977 0.5036 metabolism nucleotide  
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YDCN -AMN biosynthesis 
ECK2850-

YGEH 
ECK1977

-AMN 
0.5088 metabolism nucleotide 

biosynthesis 
 

ECK1443-
YNCB 

ECK1977
-AMN 

0.5158 metabolism nucleotide 
biosynthesis 

 

ECK1723-
YNIA 

ECK1977
-AMN 

0.5458 metabolism nucleotide 
biosynthesis 

 

ECK3671-
YIDL 

ECK3825
-UDP 

0.5034 metabolism nucleotide 
biosynthesis 

 

ECK1048-
YCEB 

ECK0033
-CARA 

0.7248 metabolism nucleotide 
biosynthesis 

 

ECK1048-
YCEB 

ECK3998
-PURH 

0.6266 metabolism nucleotide 
biosynthesis 

 

ECK2341-
YFDC 

ECK2879
-GUAD 

0.5462 metabolism nucleotide 
biosynthesis 

 

ECK1048-
YCEB 

ECK2472
-PURC 

0.6074 metabolism nucleotide 
biosynthesis 

 

ECK0868-
YBJX 

ECK1001
-RUTC 

0.5176 metabolism nucleotide 
catabolism 

 

ECK0983-
YCCM 

ECK1001
-RUTC 

0.6107 metabolism nucleotide 
catabolism 

 

ECK0955-
YCCT 

ECK1001
-RUTC 

0.5217 metabolism nucleotide 
catabolism 

 

ECK0705-
YBGO 

ECK1002
-RUTB 

0.5632 metabolism nucleotide 
catabolism 

 

ECK0679 ECK1292
-PUUA 

0.515 metabolism polyamine 
catabolism 

 

ECK1036-
YCEK 

ECK1292
-PUUA 

0.513 metabolism polyamine 
catabolism 

 

ECK2853-
YGEK 

ECK1292
-PUUA 

0.513 metabolism polyamine 
catabolism 

 

ECK3476-
YHIM 

ECK3382
-HOFM 

0.5026 metabolism DNA 
catabolism 

 

ECK3266-
YRDA 

ECK3382
-HOFM 

0.5938 metabolism DNA 
catabolism 

 

ECK1931-
YEDL 

ECK1106
-COBB 

0.5281 post-translational 
modification/enzyme 

inhibitor 

deacetylation  

ECK2755-
YGCL 

ECK1504
-LSRK 

0.5639 post-translational 
modification/enzyme 

inhibitor 

kinase  

ECK2092-
YEGU 

ECK4008
-ACEK 

0.514 post-translational 
modification/enzyme 

inhibitor 

kinase/phospha
tase 

 

ECK1545-
YNFN 

ECK1500
-HIPA 

0.5841 post-translational 
modification/enzyme 

inhibitor 

serine/threonin
e kinase 

 

ECK2661-
YGAV 

ECK1837
-PPHA 

0.531 post-translational 
modification/enzyme 

inhibitor 

serine/threonin
e phosphatase 

 

ECK2134- ECK2054 0.5623 post-translational tyrosine kinase  
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YOHJ -WZC modification/enzyme 
inhibitor 

ECK1466-
YDDL 

ECK0893
-PFLA 

0.5053 post-translational 
modification/enzyme 

inhibitor 

  

ECK0286-
YAGU 

ECK0990
-CBPM 

0.5964 post-translational 
modification/enzyme 

inhibitor 

  

ECK2337-
YFCZ 

ECK1627
-RSXG 

0.5475 post-translational 
modification/enzyme 

inhibitor 

  

ECK0437-
YBAW 

ECK0600
-AHPF 

0.5622 post-translational 
modification/enzyme 

inhibitor 

  

ECK0572-
YBDJ 

ECK0600
-AHPF 

0.5152 post-translational 
modification/enzyme 

inhibitor 

  

ECK2684-
YQAA 

ECK0600
-AHPF 

0.5821 post-translational 
modification/enzyme 

inhibitor 

  

ECK1497-
YDES 

ECK1631
-GST 

0.5065 post-translational 
modification/enzyme 

inhibitor 

  

ECK2614-
YFJF 

ECK1624
-RSXB 

0.5071 post-translational 
modification/enzyme 

inhibitor 

  

ECK3266-
YRDA 

ECK3324
-BFD 

0.5127 post-translational 
modification/enzyme 

inhibitor 

  

ECK2871-
YQEB 

ECK3192
-HPF 

0.5312 post-translational 
modification/enzyme 

inhibitor 

  

ECK3805-
YIGA 

ECK4248
-RRAB 

0.506 post-translational 
modification/enzyme 

inhibitor 

  

ECK0813-
YBIW 

ECK1963
-HCHA 

0.5505 protein quality control chaperone  

ECK1960-
YEDJ 

ECK1963
-HCHA 

0.5197 protein quality control chaperone  

ECK2101-
YEHA 

ECK1963
-HCHA 

0.5323 protein quality control chaperone  

ECK3586-
YIBH 

ECK4069
-NRFG 

0.5224 protein quality control chaperone  

ECK3551-
YIAA 

ECK3678
-IBPB 

0.5104 protein quality control chaperone  

ECK3458-
YHHT 

ECK3493
-HDEB 

0.5323 protein quality control chaperone  

ECK1571-
YDFE 

ECK2984
-HYBG 

0.5175 protein quality control chaperone  

ECK3945-
YIJO 

ECK4067
-NRFE 

0.5231 protein quality control chaperonin  
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ECK1664-
YDHS 

ECK2187
-CCMG 

0.5546 protein quality control disuphide 
reductase 

 

ECK0319-
YAHG 

ECK2967
-PPPA 

0.5075 protein quality control endopeptidase  

ECK1534-
YDFZ 

ECK2712
-HYCI 

0.5598 protein quality control endopeptidase  

ECK2614-
YFJF 

ECK2903
-PEPP 

0.5982 protein quality control exopeptidase  

ECK2892-
YGFY 

ECK2903
-PEPP 

0.5451 protein quality control exopeptidase  

ECK3159-
RIMP 

ECK2903
-PEPP 

0.5228 protein quality control exopeptidase  

ECK3033-
YQIC 

ECK2903
-PEPP 

0.5477 protein quality control exopeptidase  

ECK1253-
YCIG 

ECK1924
-FLIS 

0.5039 protein quality control flagella  

ECK1245-
YCII 

ECK1924
-FLIS 

0.5464 protein quality control flagella  

ECK1400-
YDBD 

ECK1924
-FLIS 

0.5589 protein quality control flagella  

ECK1428-
YDCN 

ECK1924
-FLIS 

0.527 protein quality control flagella  

ECK1495-
YDEQ 

ECK1924
-FLIS 

0.5053 protein quality control flagella  

ECK2614-
YFJF 

ECK1924
-FLIS 

0.5396 protein quality control flagella  

ECK2892-
YGFY 

ECK1924
-FLIS 

0.5363 protein quality control flagella  

ECK1443-
YNCB 

ECK1924
-FLIS 

0.5783 protein quality control flagella  

ECK2614-
YFJF 

ECK3401
-NFUA 

0.5761 protein quality control maturation  

ECK1031-
YMDB 

ECK3401
-NFUA 

0.5178 protein quality control maturation  

ECK4163-
YJEF 

ECK1125
-LIT 

0.5416 protein quality control peptidase  

ECK2639-
YFJX 

ECK3924
-HSLV 

0.5473 protein quality control protease  

ECK1905-
YECH 

ECK1113
-PEPT 

0.5999 protein quality control protease  

ECK2333-
YFCV 

ECK2788
-SYD 

0.5639 protein quality control   

ECK0814-
YBIY 

ECK3247
-DUSB 

0.6544 RNA/tRNA/rRNA 
processing-
modification 

tRNA 
modification 

 

ECK0857-
YBJQ 

ECK3247
-DUSB 

0.6405 RNA/tRNA/rRNA 
processing-
modification 

tRNA 
modification 

 

ECK1169-
YCGN 

ECK3247
-DUSB 

0.5443 RNA/tRNA/rRNA 
processing-
modification 

tRNA 
modification 
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ECK4179-
YJFK 

ECK3247
-DUSB 

0.5789 RNA/tRNA/rRNA 
processing-
modification 

tRNA 
modification 

 

ECK3367-
YHFW 

ECK0399
-QUEA 

0.5006 RNA/tRNA/rRNA 
processing-
modification 

  

ECK3757-
YIFE 

ECK0399
-QUEA 

0.5774 RNA/tRNA/rRNA 
processing-
modification 

  

ECK3159-
RIMP 

ECK3633
-RPH 

0.5786 RNA/tRNA/rRNA 
processing-
modification 

  

ECK2373-
YFDY 

ECK3733
-GIDB 

0.727 RNA/tRNA/rRNA 
processing-
modification 

  

ECK1176-
YCGB 

ECK2740
-TRUD 

0.5224 RNA/tRNA/rRNA 
processing-
modification 

  

ECK0705-
YBGO 

ECK0939
-RLML 

0.5169 RNA/tRNA/rRNA 
processing-
modification 

  

ECK1040-
YCEA 

ECK0939
-RLML 

0.547 RNA/tRNA/rRNA 
processing-
modification 

  

ECK1228-
YCHJ 

ECK0939
-RLML 

0.736 RNA/tRNA/rRNA 
processing-
modification 

  

ECK1267-
YCIN 

ECK0939
-RLML 

0.5987 RNA/tRNA/rRNA 
processing-
modification 

  

ECK3562-
YSAA 

ECK0939
-RLML 

0.5304 RNA/tRNA/rRNA 
processing-
modification 

  

ECK0630-
YBEB 

ECK0620
-TATE 

0.5073 secretion   

ECK0314-
YAHB 

ECK0313
-YAHA 

0.5208 signal transduction c-di-GMP 
phosphodiester

ase 

 

ECK2634-
YFJU 

ECK0313
-YAHA 

0.6608 signal transduction c-di-GMP 
phosphodiester

ase 

 

ECK1140-
YCFK 

ECK2212
-ATOS 

0.5595 signal transduction sensor kinase  

ECK2002-
YEEA 

ECK2780
-BARA 

0.5693 signal transduction sensor kinase  

ECK1404-
YNBD 

ECK1889
-CHEA 

0.6046 signal transduction sensor kinase  

ECK0814-
YBIY 

ECK4118
-DCUS 

0.5349 signal transduction sensor kinase  

ECK0404-
YAJD 

ECK1216
-NARX 

0.5522 signal transduction sensor kinase  
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ECK0462-
YBAN 

ECK1216
-NARX 

0.6288 signal transduction sensor kinase  

ECK0835-
YBJJ 

ECK1216
-NARX 

0.629 signal transduction sensor kinase  

ECK0983-
YCCM 

ECK1216
-NARX 

0.6629 signal transduction sensor kinase  

ECK1253-
YCIG 

ECK1216
-NARX 

0.5918 signal transduction sensor kinase  

ECK1400-
YDBD 

ECK1216
-NARX 

0.5006 signal transduction sensor kinase  

ECK1495-
YDEQ 

ECK1216
-NARX 

0.5488 signal transduction sensor kinase  

ECK1748-
YDJX 

ECK1216
-NARX 

0.6401 signal transduction sensor kinase  

ECK2614-
YFJF 

ECK1216
-NARX 

0.6538 signal transduction sensor kinase  

ECK2615-
YFJG 

ECK1216
-NARX 

0.5708 signal transduction sensor kinase  

ECK2868-
YGEY 

ECK1216
-NARX 

0.5046 signal transduction sensor kinase  

ECK2892-
YGFY 

ECK1216
-NARX 

0.5109 signal transduction sensor kinase  

ECK0943-
YMBA 

ECK1216
-NARX 

0.5206 signal transduction sensor kinase  

ECK1031-
YMDB 

ECK1216
-NARX 

0.5482 signal transduction sensor kinase  

ECK1363-
YNAK 

ECK1216
-NARX 

0.5138 signal transduction sensor kinase  

ECK1443-
YNCB 

ECK1216
-NARX 

0.5429 signal transduction sensor kinase  

ECK3033-
YQIC 

ECK1216
-NARX 

0.5727 signal transduction sensor kinase  

ECK2931-
YGGG 

ECK4391
-CREC 

0.5092 signal transduction sensor kinase  

ECK1467-
YDDG 

ECK1604
-RSTB 

0.514 signal transduction sensor kinase  

ECK1549-
YDFR 

ECK1604
-RSTB 

0.5589 signal transduction sensor kinase  

ECK2329-
YFCR 

ECK1604
-RSTB 

0.6011 signal transduction sensor kinase  

ECK2101-
YEHA 

ECK3659
-UHPB 

0.5292 signal transduction sensor kinase  

ECK3874-
YIHT 

ECK4105
-BASS 

0.5078 signal transduction sensor kinase  

ECK0705-
YBGO 

ECK0562
-CUSS 

0.6783 signal transduction sensor kinase  

ECK1169-
YCGN 

ECK0562
-CUSS 

0.5617 signal transduction sensor kinase  

ECK1228-
YCHJ 

ECK0562
-CUSS 

0.5098 signal transduction sensor kinase  

ECK3562- ECK0562 0.5226 signal transduction sensor kinase  
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YSAA -CUSS 
ECK0896-

YCAO 
ECK0601

-USPG 
0.5169 signal transduction stress response  

ECK0134-
YADC 

ECK2681
-LUXS 

0.5494 signal transduction   

ECK0190-
YAEQ 

ECK0246
-YKFI 

0.5256 toxin-antitoxin   

ECK3757-
YIFE 

ECK4143
-ECNB 

0.5148 toxin-antitoxin   

ECK1499-
YNEL 

ECK1412
-HOKB 

0.5724 toxin-antitoxin   

ECK2064-
YEGI 

ECK1998
-YEEV 

0.566 toxin-antitoxin   

ECK2752-
YGCI 

ECK1998
-YEEV 

0.6293 toxin-antitoxin   

ECK3883-
YIIF 

ECK2642
-YFJZ 

0.5114 toxin-antitoxin   

ECK0236-
YKFJ 

ECK0188
-ROF 

0.5051 transcription antitermination  

ECK1267-
YCIN 

ECK3660
-UHPA 

0.5356 transcription transcriptional 
activator 

 

ECK3367-
YHFW 

ECK4109
-ADIY 

0.5078 transcription transcriptional 
activator 

 

ECK1440-
YDCY 

ECK1982
-CBL 

0.5616 transcription transcriptional 
activator 

 

ECK1466-
YDDL 

ECK1982
-CBL 

0.5315 transcription transcriptional 
activator 

 

ECK1840-
YEBY 

ECK1982
-CBL 

0.5975 transcription transcriptional 
activator 

 

ECK1443-
YNCB 

ECK1982
-CBL 

0.5127 transcription transcriptional 
activator 

 

ECK1363-
YNAK 

ECK3279
-ZNTR 

0.5015 transcription transcriptional 
activator 

 

ECK1228-
YCHJ 

ECK3861
-GLNG 

0.5094 transcription transcriptional 
dual regulator 

 

ECK1267-
YCIN 

ECK3861
-GLNG 

0.5416 transcription transcriptional 
dual regulator 

 

ECK0404-
YAJD 

ECK1215
-NARL 

0.5522 transcription transcriptional 
dual regulator 

 

ECK0462-
YBAN 

ECK1215
-NARL 

0.6147 transcription transcriptional 
dual regulator 

 

ECK0835-
YBJJ 

ECK1215
-NARL 

0.5617 transcription transcriptional 
dual regulator 

 

ECK0983-
YCCM 

ECK1215
-NARL 

0.5952 transcription transcriptional 
dual regulator 

 

ECK1400-
YDBD 

ECK1215
-NARL 

0.5205 transcription transcriptional 
dual regulator 

 

ECK1495-
YDEQ 

ECK1215
-NARL 

0.5087 transcription transcriptional 
dual regulator 

 

ECK1748-
YDJX 

ECK1215
-NARL 

0.6084 transcription transcriptional 
dual regulator 
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ECK2175-
YEJG 

ECK1215
-NARL 

0.532 transcription transcriptional 
dual regulator 

 

ECK2614-
YFJF 

ECK1215
-NARL 

0.5927 transcription transcriptional 
dual regulator 

 

ECK2615-
YFJG 

ECK1215
-NARL 

0.5532 transcription transcriptional 
dual regulator 

 

ECK2868-
YGEY 

ECK1215
-NARL 

0.5276 transcription transcriptional 
dual regulator 

 

ECK2892-
YGFY 

ECK1215
-NARL 

0.5175 transcription transcriptional 
dual regulator 

 

ECK1031-
YMDB 

ECK1215
-NARL 

0.5581 transcription transcriptional 
dual regulator 

 

ECK3033-
YQIC 

ECK1215
-NARL 

0.55 transcription transcriptional 
dual regulator 

 

ECK1964-
YEDV 

ECK1913
-UVRY 

0.5243 transcription transcriptional 
dual regulator 

 

ECK3874-
YIHT 

ECK0112
-PDHR 

0.5394 transcription transcriptional 
dual regulator 

 

ECK1137-
YMFO 

ECK0112
-PDHR 

0.5071 transcription transcriptional 
dual regulator 

 

ECK1136-
YMFR 

ECK0112
-PDHR 

0.5723 transcription transcriptional 
dual regulator 

 

ECK1048-
YCEB 

ECK3822
-METR 

0.6444 transcription transcriptional 
dual regulator 

 

ECK4394-
YJJY 

ECK4393
-ARCA 

0.6396 transcription transcriptional 
dual regulator 

 

ECK1048-
YCEB 

ECK2837
-LYSR 

0.6663 transcription transcriptional 
dual regulator 

 

ECK1901-
YECJ 

ECK2185
-NARP 

0.5038 transcription transcriptional 
dual regulator 

 

ECK2601-
YFIN 

ECK2185
-NARP 

0.512 transcription transcriptional 
dual regulator 

 

ECK0814-
YBIY 

ECK3248
-FIS 

0.6071 transcription transcriptional 
dual regulator 

 

ECK0857-
YBJQ 

ECK3248
-FIS 

0.7185 transcription transcriptional 
dual regulator 

 

ECK1169-
YCGN 

ECK3248
-FIS 

0.5718 transcription transcriptional 
dual regulator 

 

ECK4004-
YJAB 

ECK3248
-FIS 

0.5282 transcription transcriptional 
dual regulator 

 

ECK4179-
YJFK 

ECK3248
-FIS 

0.5343 transcription transcriptional 
dual regulator 

 

ECK0275-
YAGJ 

ECK0986
-TORR 

0.6118 transcription transcriptional 
dual regulator 

 

ECK1022-
YCDZ 

ECK0986
-TORR 

0.516 transcription transcriptional 
dual regulator 

 

ECK1040-
YCEA 

ECK0986
-TORR 

0.5738 transcription transcriptional 
dual regulator 

 

ECK1090-
YCFL 

ECK0986
-TORR 

0.5992 transcription transcriptional 
dual regulator 

 

ECK1228- ECK0986 0.6683 transcription transcriptional  
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YCHJ -TORR dual regulator 
ECK1267-

YCIN 
ECK0986

-TORR 
0.6339 transcription transcriptional 

dual regulator 
 

ECK3562-
YSAA 

ECK0986
-TORR 

0.5474 transcription transcriptional 
dual regulator 

 

ECK4243-
YJGI 

ECK0986
-TORR 

0.5167 transcription transcriptional 
dual regulator 

 

ECK1158-
YMGD 

ECK0986
-TORR 

0.5087 transcription transcriptional 
dual regulator 

 

ECK0824-
YLIF 

ECK0807
-MNTR 

0.5071 transcription transcriptional 
dual regulator 

 

ECK2802-
YGDD 

ECK0144
-DKSA 

0.5576 transcription transcriptional 
dual regulator 

 

ECK3757-
YIFE 

ECK0144
-DKSA 

0.5513 transcription transcriptional 
dual regulator 

 

ECK1748-
YDJX 

ECK0380
-ADRA 

0.5299 transcription transcriptional 
dual regulator 

 

ECK1031-
YMDB 

ECK0380
-ADRA 

0.5234 transcription transcriptional 
dual regulator 

 

ECK1930-
YEDK 

ECK1335
-ABGR 

0.5618 transcription transcriptional 
dual regulator 

 

ECK0775-
YBHL 

ECK1381
-FEAR 

0.5275 transcription transcriptional 
dual regulator 

 

ECK1169-
YCGN 

ECK1381
-FEAR 

0.5088 transcription transcriptional 
dual regulator 

 

ECK0679 ECK0682
-KDPE 

0.5001 transcription transcriptional 
dual regulator 

 

ECK0795-
MCBA 

ECK3953
-OXYR 

0.5148 transcription transcriptional 
dual regulator 

 

ECK2996-
YQHA 

ECK3496
-GADE 

0.5202 transcription transcriptional 
dual regulator 

 

ECK1571-
YDFE 

ECK1004
-RUTR 

0.5132 transcription transcriptional 
dual regulator 

 

ECK1842-
YOBA 

ECK1004
-RUTR 

0.5189 transcription transcriptional 
dual regulator 

 

ECK0762-
YBHB 

ECK0830
-DEOR 

0.5068 transcription transcriptional 
repressor 

 

ECK1228-
YCHJ 

ECK0830
-DEOR 

0.6604 transcription transcriptional 
repressor 

 

ECK3424-
YHHW 

ECK0354
-FRMR 

0.5544 transcription transcriptional 
repressor 

 

ECK3757-
YIFE 

ECK0354
-FRMR 

0.5529 transcription transcriptional 
repressor 

 

ECK1774-
YDJL 

ECK4187
-ULAR 

0.5389 transcription transcriptional 
repressor 

 

ECK1228-
YCHJ 

ECK3594
-LLDR 

0.5052 transcription transcriptional 
repressor 

 

ECK3551-
YIAA 

ECK4082
-RPIR 

0.5254 transcription transcriptional 
repressor 

 

ECK1773-
YDJK 

ECK3955
-FABR 

0.5745 transcription transcriptional 
repressor 
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ECK0630-
YBEB 

ECK1523
-MARR 

0.5263 transcription transcriptional 
repressor 

 

ECK1160 ECK1501
-HIPB 

0.5386 transcription transcriptional 
repressor 

 

ECK3092-
YQJF 

ECK2709
-ASCG 

0.5318 transcription transcriptional 
repressor 

 

ECK3757-
YIFE 

ECK3756
-HDFR 

0.5076 transcription transcriptional 
repressor 

 

ECK2102-
YEHB 

ECK1621
-CNU 

0.5418 transcription   

ECK2634-
YFJU 

ECK0070
-SGRR 

0.5728 transcription   

ECK3757-
YIFE 

ECK3491
-DCTR 

0.5269 transcription   

ECK0322-
YAHJ 

ECK3232
-AAER 

0.5722 transcription   

ECK2489-
YFGO 

ECK4289
-SGCR 

0.5702 transcription   

ECK1048-
YCEB 

ECK2475
-GCVR 

0.5212 transcription   

ECK0193-
YAEF 

ECK0161
-CDAR 

0.5253 transcription   

ECK0209-
YAFD 

ECK0161
-CDAR 

0.5393 transcription   

ECK2389-
YFEA 

ECK0161
-CDAR 

0.5926 transcription   

ECK0536-
YBCL 

ECK3397
-FEOC 

0.5295 transcription   

ECK1778-
YEAD 

ECK3397
-FEOC 

0.5164 transcription   

ECK1448-
YNCG 

ECK3397
-FEOC 

0.5323 transcription   

ECK3671-
YIDL 

ECK0718
-MNGR 

0.5101 transcription   

ECK1036-
YCEK 

ECK1617
-MALY 

0.5259 transcription + 
metabolism 

amino acid 
transport & 

biosynthesis 

 

ECK1664-
YDHS 

ECK1617
-MALY 

0.5001 transcription + 
metabolism 

amino acid 
transport & 

biosynthesis 

 

ECK3367-
YHFW 

ECK4169
-HFLX 

0.5188 translation GTPase  

ECK3092-
YQJF 

ECK3290
-RPSE 

0.6456 translation ribosome 
protein 

 

ECK4053-
YJCC 

ECK1506
-LSRA 

0.5137 transport AI2  

ECK3677-
YIDE 

ECK2671
-PROV 

0.5987 transport amino acid 
transport 

 

ECK3551-
YIAA 

ECK3439
-LIVG 

0.5121 transport amino acid 
transport 

 

ECK0691- ECK1479 0.5025 transport amino acid  
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YBFO -DDPC transport 
ECK0775-

YBHL 
ECK1479

-DDPC 
0.536 transport amino acid 

transport 
 

ECK1228-
YCHJ 

ECK1479
-DDPC 

0.5025 transport amino acid 
transport 

 

ECK0775-
YBHL 

ECK0798
-GLNQ 

0.5436 transport amino acid 
transport 

 

ECK1265-
YCIK 

ECK0852
-ARTM 

0.5244 transport amino acid 
transport 

 

ECK0775-
YBHL 

ECK1006
-PUTP 

0.5536 transport amino acid 
transport 

 

ECK0785-
YBIH 

ECK1006
-PUTP 

0.5058 transport amino acid 
transport 

 

ECK0282-
YAGQ 

ECK3441
-LIVH 

0.5019 transport amino acid 
transport 

 

ECK1265-
YCIK 

ECK0853
-ARTQ 

0.5307 transport amino acid 
transport 

 

ECK3551-
YIAA 

ECK1486
-GADC 

0.5288 transport amino acid 
transport 

 

ECK3562-
YSAA 

ECK0645
-GLTL 

0.5876 transport amino acid 
transport  

 

ECK1427-
YDCO 

ECK4132
-DCUA 

0.5082 transport C4-
dicaroboxylate 

 

ECK0420-
YAJQ 

ECK3813
-RARD 

0.5241 transport drug  

ECK3650-
YICL 

ECK3813
-RARD 

0.5925 transport drug  

ECK1443-
YNCB 

ECK0372
-SBMA 

0.5173 transport drug transporter  

ECK0493-
YLBH 

ECK2232
-GLPT 

0.646 transport G3P  

ECK2609-
YFJD 

ECK2193
-CCMA 

0.5454 transport heme  

ECK3671-
YIDL 

ECK3461
-NIKB 

0.5247 transport inorganic ion 
transport 

nickel 

ECK0251-
YKFF 

ECK1463
-NARU 

0.5277 transport inorganic ion 
transport 

nitrite/nitra
te 

ECK2376-
YPDA 

ECK1463
-NARU 

0.5307 transport inorganic ion 
transport 

nitrite/nitra
te 

ECK2546-
YPHG 

ECK1463
-NARU 

0.575 transport inorganic ion 
transport 

nitrite/nitra
te 

ECK4246-
YJGL 

ECK3741
-KUP 

0.5077 transport inorganic ion 
transport 

potassium 

ECK0252-
YKFB 

ECK0149
-FHUA 

0.5076 transport inorganic ion 
transport 

 

ECK1040-
YCEA 

ECK1008
-EFEO 

0.5706 transport inorganic ion 
transport 

 

ECK1228-
YCHJ 

ECK1008
-EFEO 

0.5583 transport inorganic ion 
transport 

 

ECK0314-
YAHB 

ECK0150
-FHUC 

0.5151 transport inorganic ion 
transport 

 



	
   145	
  

ECK2925-
YGGD 

ECK0150
-FHUC 

0.5324 transport inorganic ion 
transport 

 

ECK2926-
YGGF 

ECK0150
-FHUC 

0.5204 transport inorganic ion 
transport 

 

ECK3267-
YRDB 

ECK0048
-KEFC 

0.5007 transport inorganic ion 
transport 

 

ECK3576-
YIAW 

ECK0152
-FHUB 

0.5057 transport inorganic ion 
transport 

 

ECK2954-
YGGL 

ECK3323
-BFR 

0.5614 transport inorganic ion 
transport 

 

ECK3677-
YIDE 

ECK3395
-FEOA 

0.5084 transport inorganic ion 
transport 

 

ECK3367-
YHFW 

ECK3396
-FEOB 

0.5108 transport inorganic ion 
transport 

 

ECK3757-
YIFE 

ECK3396
-FEOB 

0.5071 transport inorganic ion 
transport 

 

ECK1400-
YDBD 

ECK0925
-SSUC 

0.5037 transport inorganic ion 
transport 

 

ECK2614-
YFJF 

ECK0925
-SSUC 

0.5113 transport inorganic ion 
transport 

 

ECK4186-
YJFP 

ECK0580
-FEPE 

0.5588 transport iron  

ECK2105-
YEHE 

ECK2148
-CIRA 

0.5365 transport iron transport  

ECK1419-
YDCH 

ECK3593
-LLDP 

0.5308 transport lactate  

ECK3244-
YHDT 

ECK3352
-TSGA 

0.5009 transport MFS  

ECK3865-
YIHL 

ECK3352
-TSGA 

0.5893 transport MFS  

ECK4377-
YJJJ 

ECK4328
-MDTM 

0.5088 transport MFS  

ECK4186-
YJFP 

ECK3649
-SETC 

0.5502 transport MFS 
transporter 

 

ECK0951-
YCCS 

ECK0443
-MDLB 

0.614 transport multi-drug   

ECK1036-
YCEK 

ECK0443
-MDLB 

0.5314 transport multi-drug   

ECK1262-
YCIQ 

ECK0443
-MDLB 

0.5069 transport multi-drug   

ECK1343-
YDAQ 

ECK0443
-MDLB 

0.5133 transport multi-drug   

ECK2893-
YGFZ 

ECK0443
-MDLB 

0.5057 transport multi-drug   

ECK3654-
YICN 

ECK3664
-EMRD 

0.5094 transport multi-drug   

ECK4246-
YJGL 

ECK3664
-EMRD 

0.531 transport multi-drug   

ECK4284-
YJHU 

ECK3664
-EMRD 

0.5019 transport multi-drug   

ECK3876- ECK4144 0.6271 transport multi-drug   
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YIHV -SUGE 
ECK1158-

YMGD 
ECK4144

-SUGE 
0.5174 transport multi-drug   

ECK3586-
YIBH 

ECK0333
-CODB 

0.5082 transport nucleotide 
transporter 
(cytocine) 

 

ECK0814-
YBIY 

ECK1239
-OPPC 

0.5767 transport oligopeptide  

ECK1169-
YCGN 

ECK1239
-OPPC 

0.6143 transport oligopeptide  

ECK1752-
YNJB 

ECK1239
-OPPC 

0.5362 transport oligopeptide  

ECK0705-
YBGO 

ECK4302
-NANC 

0.5264 transport oligosaccharide  

ECK4344-
YJIY 

ECK4302
-NANC 

0.5019 transport oligosaccharide  

ECK1090-
YCFL 

ECK1289
-SAPA 

0.512 transport peptide  

ECK3562-
YSAA 

ECK1289
-SAPA 

0.527 transport peptide  

ECK1040-
YCEA 

ECK0847
-POTH 

0.5583 transport polyamine   

ECK1228-
YCHJ 

ECK0847
-POTH 

0.5055 transport polyamine   

ECK1267-
YCIN 

ECK0847
-POTH 

0.5113 transport polyamine   

ECK0679 ECK1112
-POTA 

0.5406 transport polyamine 
transport 

 

ECK0758-
YBHH 

ECK0845
-POTF 

0.5665 transport polyamine 
transport 

 

ECK2513-
RLMN 

ECK0848
-POTI 

0.5054 transport polyamine 
transport 

 

ECK1040-
YCEA 

ECK1109
-POTD 

0.53 transport polyamine 
transport 

 

ECK0368-
YAIT 

ECK0846
-POTG 

0.545 transport polyamine 
transport 

 

ECK1494-
YDEP 

ECK0846
-POTG 

0.5134 transport polyamine 
transport 

 

ECK1496-
YDER 

ECK0846
-POTG 

0.532 transport polyamine 
transport 

 

ECK1965-
YEDW 

ECK0846
-POTG 

0.5142 transport polyamine 
transport 

 

ECK2064-
YEGI 

ECK0846
-POTG 

0.513 transport polyamine 
transport 

 

ECK2367-
YFDE 

ECK0846
-POTG 

0.5049 transport polyamine 
transport 

 

ECK2404-
YFEH 

ECK0846
-POTG 

0.5234 transport polyamine 
transport 

 

ECK2768-
YGCW 

ECK0846
-POTG 

0.521 transport polyamine 
transport 

 

ECK1449- ECK0846 0.6088 transport polyamine  
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YNCH -POTG transport 
ECK3173-

YHBE 
ECK3315

-GSPG 
0.6514 transport secretion  

ECK4186-
YJFP 

ECK3315
-GSPG 

0.6796 transport secretion  

ECK2373-
YFDY 

ECK1594
-MDTI 

0.6041 transport spermidine  

ECK1150-
YCGF 

ECK2171
-YEJA 

0.5375 transport   

ECK2082-
YEGS 

ECK2171
-YEJA 

0.512 transport   

ECK2101-
YEHA 

ECK0870
-MACB 

0.5693 transport   

ECK2790-
YGDH 

ECK1507
-LSRC 

0.5584 transport   

ECK1495-
YDEQ 

ECK0445
-AMTB 

0.5016 transport   

ECK1933 ECK0445
-AMTB 

0.5705 transport   

ECK4186-
YJFP 

ECK0445
-AMTB 

0.5346 transport   

ECK0252-
YKFB 

ECK0126
-YADG 

0.5139 transport   

ECK4243-
YJGI 

ECK3568
-YIAO 

0.5057 transport   

ECK3179-
YRBA 

ECK1437
-YDCV 

0.5336 transport   

ECK1090-
YCFL 

ECK1307
-YCJP 

0.5404 transport   

ECK1267-
YCIN 

ECK1307
-YCJP 

0.5136 transport   

ECK3562-
YSAA 

ECK1307
-YCJP 

0.535 transport   

ECK3654-
YICN 

ECK3567
-YIAN 

0.5644 transport   

ECK1245-
YCII 

ECK2237
-YPAA 

0.518 unknown function pseudogene  

ECK1086-
YCFH 

ECK1252
-YCIF 

0.5082 unknown function   

ECK1411-
YDCA 

ECK1731
-CHBG 

0.5487 unknown function   

ECK0542-
YLCG 

ECK0539
-NINE 

0.673 unknown function   

ECK1689-
YDIN 

ECK1153
-ARIR 

0.5267 unknown function   

ECK0437-
YBAW 

ECK2296
-YFCG 

0.5225 unknown function   

ECK2265-
YFBL 

ECK2296
-YFCG 

0.6203 unknown function   

ECK2684-
YQAA 

ECK2296
-YFCG 

0.5213 unknown function   



	
   148	
  

ECK0361-
YAIS 

ECK1367
-STFR 

0.5425 unknown function   

ECK0758-
YBHH 

ECK1367
-STFR 

0.5567 unknown function   

ECK0983-
YCCM 

ECK1367
-STFR 

0.5131 unknown function   

ECK1748-
YDJX 

ECK1367
-STFR 

0.5751 unknown function   

ECK2614-
YFJF 

ECK1367
-STFR 

0.5862 unknown function   

ECK0210-
YAFE 

ECK0356
-YAIX 

0.543 unknown function   

ECK3033-
YQIC 

ECK1260
-YCIV 

0.5754 unknown function   

ECK2268-
YFBO 

ECK1737
-OSME 

0.5756 unknown function   

ECK3757-
YIFE 

ECK3709
-CBRB 

0.5388 unknown function   

ECK3563-
YIAJ 

ECK3335
-SLYX 

0.5018 unknown function   

ECK3956-
YIJD 

ECK3335
-SLYX 

0.5651 unknown function   

ECK2093-
YEGV 

ECK3363
-YHFS 

0.5092 unknown function   

ECK3669-
YIDJ 

ECK3710
-CBRC 

0.5319 unknown function   

ECK4370-
YJJV 

ECK4367
-OSMY 

0.5012 unknown function   

ECK0931-
YCBS 

ECK1875
-CUTC 

0.5084 unknown function   

ECK1491-
YDEM 

ECK1875
-CUTC 

0.6001 unknown function   

ECK2316-
YFCJ 

ECK1875
-CUTC 

0.5173 unknown function   

ECK3677-
YIDE 

ECK0549
-BORD 

0.5311 unknown function   

ECK0630-
YBEB 

ECK1525
-MARB 

0.5097 unknown function   

ECK1545-
YNFN 

ECK1525
-MARB 

0.5044 unknown function   

ECK1148-
YCGX 

ECK0941
-PQIA 

0.5007 unknown function   

ECK1253-
YCIG 

ECK0941
-PQIA 

0.5287 unknown function   

ECK1245-
YCII 

ECK0941
-PQIA 

0.511 unknown function   

ECK1428-
YDCN 

ECK0941
-PQIA 

0.5616 unknown function   

ECK2850-
YGEH 

ECK0941
-PQIA 

0.5356 unknown function   

ECK1443- ECK0941 0.643 unknown function   
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YNCB -PQIA 
ECK1228-

YCHJ 
ECK4392

-CRED 
0.5256 unknown function   

ECK3109-
YHAB 

ECK1342
-INTR 

0.6331 unknown function   

ECK3109-
YHAB 

ECK1546
-CSPI 

0.6224 unknown function   

ECK1304-
YCJM 

ECK1146
-ICDC 

0.5463 unknown function   

ECK3935-
YIJE 

ECK4042
-PSPG 

0.5102 unknown function   

ECK0320 ECK4272
-YJHE 

0.5114 unknown function   

ECK1155-
YCGG 

ECK1361
-RZOR 

0.5471 unknown function   

ECK1036-
YCEK 

ECK1157
-YCGH 

0.5347 unknown function   

ECK1789-
YEAN 

ECK1157
-YCGH 

0.5064 unknown function   

ECK0369 ECK2653
-CSID 

0.5676 unknown function   

ECK0678-
YBFG 

ECK2856 0.5175 unknown function   

ECK2402-
YFEN 

ECK3231
-AAEX 

0.5932 unknown function   

ECK1496-
YDER 

ECK1592
-ASR 

0.5095 unknown function   

ECK2081-
YEGR 

ECK1592
-ASR 

0.5175 unknown function   

ECK1449-
YNCH 

ECK2637 0.594 unknown function   

ECK1674-
YNHG 

ECK2637 0.5413 unknown function   

ECK1685-
YDIK 

ECK0231
-LAFU 

0.6207 unknown function   

ECK4300-
YJHS 

ECK0231
-LAFU 

0.5347 unknown function   

ECK0260-
YKFC 

ECK0231
-LAFU 

0.5773 unknown function   

ECK1096-
YCFJ 

ECK1016
-YMDE 

0.5202 unknown function   

ECK1419-
YDCH 

ECK0553
-TFAD 

0.5081 unknown function   

ECK1954-
YEDQ 

ECK0553
-TFAD 

0.5526 unknown function   

ECK0493-
YLBH 

ECK0553
-TFAD 

0.5688 unknown function   
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Table S7 - Drug-GO Interactions 
at p<= 10-3 

  

GO Biological Process Drug Drug-
GO 

Score 
ribosomal small subunit assembly CISPLATIN -4.2929 
ribosomal small subunit assembly SPECTINOMYCIN -3.542 
ribosomal small subunit assembly THIOLACTOMYCIN -4.5803 

sulfate assimilation AMOXICILLIN -5.6992 
sulfate assimilation CISPLATIN -23.5158 
sulfate assimilation GLUFOSFOMYCIN -3.5682 
sulfate assimilation LEVOFLOXACIN 4.2058 
sulfate assimilation VERAPAMIL -6.8348 
rRNA modification SPECTINOMYCIN -4.2201 

peptidoglycan metabolic process CEFSULODIN6.0MECILLINAM -3.2152 
polysaccharide biosynthetic process A22 -6.7125 
polysaccharide biosynthetic process CYCLOSERINED -3.2906 
polysaccharide biosynthetic process STREPTOMYCIN -6.6375 

enzyme-directed rRNA 
pseudouridine synthesis 

CHLORAMPHENICOL -3.1568 

conjugation DOXYCYCLINE -3.0959 
cell morphogenesis TRIMETHOPRIM0.1SULFAMETHIZOLE -3.5328 

barrier septum formation GENTAMICIN -4.0262 
barrier septum formation MECILLINAM -5.7042 

selection of site for barrier septum 
formation 

FOSFOMYCIN -4.0693 

selenocysteine incorporation SPECTINOMYCIN 5.8646 
pseudouridine synthesis CHLORAMPHENICOL -3.4814 

carbohydrate metabolic process AZITHROMYCIN -3.4065 
carbohydrate metabolic process BLEOMYCIN -3.745 
carbohydrate metabolic process CHIR090 -4.2852 
carbohydrate metabolic process DIBUCAINE -3.3945 
carbohydrate metabolic process MINOCYCLINE -6.2018 
carbohydrate metabolic process SPECTINOMYCIN -3.5648 
carbohydrate metabolic process SPIRAMYCIN -3.9811 
carbohydrate metabolic process TRICLOSAN -4.7106 

fructose catabolic process GENTAMICIN -3.0469 
glucose catabolic process STREPTOMYCIN -4.3828 

D-ribose metabolic process MINOCYCLINE -3.1584 
D-ribose metabolic process MITOMYCINC 3.108 
UDP-N-acetylglucosamine 

metabolic process 
TRICLOSAN -3.8943 

UDP-N-acetylglucosamine 
biosynthetic process 

AMPICILLIN -3.2349 

UDP-N-acetylglucosamine 
biosynthetic process 

CEFACLOR -3.0098 

UDP-N-acetylglucosamine 
biosynthetic process 

CHIR090 -3.1114 

UDP-N-acetylglucosamine 
biosynthetic process 

CLARYTHROMYCIN -3.3866 
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UDP-N-acetylglucosamine 
biosynthetic process 

ERYTHROMYCIN -3.3649 

UDP-N-acetylglucosamine 
biosynthetic process 

MINOCYCLINE -3.3457 

UDP-N-acetylglucosamine 
biosynthetic process 

NIGERICIN 3.1058 

UDP-N-acetylglucosamine 
biosynthetic process 

RIFAMPICIN -4.568 

UDP-N-acetylglucosamine 
biosynthetic process 

SPECTINOMYCIN -3.1516 

UDP-N-acetylglucosamine 
biosynthetic process 

SPIRAMYCIN -3.7257 

UDP-N-acetylglucosamine 
biosynthetic process 

TETRACYCLINE -3.1043 

gluconeogenesis CECROPINB -3.718 
gluconeogenesis LEVOFLOXACIN -3.8071 
gluconeogenesis PROCAINE 3.2121 

glycolysis THEOPHYLLINE -3.2601 
tricarboxylic acid cycle TRICLOSAN -7.4789 

malate metabolic process GLUFOSFOMYCIN -5.6714 
purine nucleotide biosynthetic 

process 
A22 -12.3568 

purine nucleotide biosynthetic 
process 

ACTINOMYCIND -20.5143 

purine nucleotide biosynthetic 
process 

AZIDOTHYMIDINE -4.9978 

purine nucleotide biosynthetic 
process 

AZTREONAM -4.6394 

purine nucleotide biosynthetic 
process 

CARBENICILLIN -15.4486 

purine nucleotide biosynthetic 
process 

CEFOXITIN -22.6225 

purine nucleotide biosynthetic 
process 

CEFSULODIN -12.8416 

purine nucleotide biosynthetic 
process 

CHIR090 -4.8099 

purine nucleotide biosynthetic 
process 

CISPLATIN -3.3132 

purine nucleotide biosynthetic 
process 

DIBUCAINE -3.0769 

purine nucleotide biosynthetic 
process 

DOXYCYCLINE -12.0291 

purine nucleotide biosynthetic 
process 

ERYTHROMYCIN -23.792 

purine nucleotide biosynthetic 
process 

GLUFOSFOMYCIN -4.8789 

purine nucleotide biosynthetic 
process 

INDOLICIDIN 5.4742 

purine nucleotide biosynthetic 
process 

MECILLINAM -10.9059 

purine nucleotide biosynthetic NITROFURANTOIN -4.2747 
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process 
purine nucleotide biosynthetic 

process 
NOVOBIOCIN -17.6638 

purine nucleotide biosynthetic 
process 

PHLEOMYCIN -3.0347 

purine nucleotide biosynthetic 
process 

PROCAINE -18.5108 

purine nucleotide biosynthetic 
process 

THIOLACTOMYCIN 3.4514 

purine nucleotide biosynthetic 
process 

TOBRAMYCIN -22.2549 

purine nucleotide biosynthetic 
process 

VERAPAMIL -30.1201 

GMP biosynthetic process A22 -4.8333 
GMP biosynthetic process ACTINOMYCIND -3.8028 
GMP biosynthetic process AZIDOTHYMIDINE -5.7691 
GMP biosynthetic process CARBENICILLIN -3.7605 
GMP biosynthetic process CEFOXITIN -4.9182 
GMP biosynthetic process CISPLATIN -4.2929 
GMP biosynthetic process DOXYCYCLINE -3.4944 
GMP biosynthetic process ERYTHROMYCIN -8.9017 
GMP biosynthetic process GLUFOSFOMYCIN -9.5513 
GMP biosynthetic process INDOLICIDIN -4.3828 
GMP biosynthetic process MECILLINAM -3.0762 
GMP biosynthetic process PHLEOMYCIN -3.2721 
GMP biosynthetic process PROCAINE -5.091 
GMP biosynthetic process SPECTINOMYCIN -3.9759 
GMP biosynthetic process STREPTOMYCIN -4.3828 
GMP biosynthetic process TOBRAMYCIN -4.5119 
GMP biosynthetic process VERAPAMIL -3.4769 
IMP biosynthetic process VERAPAMIL -3.4769 

de novo IMP biosynthetic process A22 -4.1656 
de novo IMP biosynthetic process ACTINOMYCIND -11.7317 
de novo IMP biosynthetic process CARBENICILLIN -11.9935 
de novo IMP biosynthetic process CEFOXITIN -12.4069 
de novo IMP biosynthetic process CEFSULODIN -7.6039 
de novo IMP biosynthetic process CLARYTHROMYCIN -3.9995 
de novo IMP biosynthetic process DOXYCYCLINE -8.6991 
de novo IMP biosynthetic process ERYTHROMYCIN -9.4043 
de novo IMP biosynthetic process INDOLICIDIN 3.3084 
de novo IMP biosynthetic process MECILLINAM -9.4362 
de novo IMP biosynthetic process NITROFURANTOIN -3.9991 
de novo IMP biosynthetic process NOVOBIOCIN -13.3498 
de novo IMP biosynthetic process PROCAINE -9.4654 
de novo IMP biosynthetic process TOBRAMYCIN -9.976 
de novo IMP biosynthetic process VERAPAMIL -14.1084 

de novo pyrimidine base 
biosynthetic process 

PROCAINE -4.6341 

de novo pyrimidine base 
biosynthetic process 

VERAPAMIL -3.9101 
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pyrimidine nucleoside metabolic 
process 

TRIMETHOPRIM0.1SULFAMETHIZOLE 4.2112 

pyrimidine nucleotide biosynthetic 
process 

A22 -11.5 

pyrimidine nucleotide biosynthetic 
process 

ACTINOMYCIND -8.8097 

pyrimidine nucleotide biosynthetic 
process 

BACITRACIN -3.8124 

pyrimidine nucleotide biosynthetic 
process 

CARBENICILLIN -12.6193 

pyrimidine nucleotide biosynthetic 
process 

CEFOXITIN -10.2715 

pyrimidine nucleotide biosynthetic 
process 

CEFSULODIN -6.8542 

pyrimidine nucleotide biosynthetic 
process 

CLARYTHROMYCIN -4.7679 

pyrimidine nucleotide biosynthetic 
process 

DOXYCYCLINE -8.8838 

pyrimidine nucleotide biosynthetic 
process 

ERYTHROMYCIN -8.6761 

pyrimidine nucleotide biosynthetic 
process 

MECILLINAM -9.1308 

pyrimidine nucleotide biosynthetic 
process 

NOVOBIOCIN -11.9065 

pyrimidine nucleotide biosynthetic 
process 

PROCAINE -9.892 

pyrimidine nucleotide biosynthetic 
process 

SPECTINOMYCIN -5.3937 

pyrimidine nucleotide biosynthetic 
process 

TOBRAMYCIN -9.4265 

pyrimidine nucleotide biosynthetic 
process 

VERAPAMIL -12.7205 

UMP biosynthetic process A22 -3.486 
UMP biosynthetic process ACTINOMYCIND -3.8028 
UMP biosynthetic process CARBENICILLIN -3.7605 
UMP biosynthetic process CEFOXITIN -3.6488 
UMP biosynthetic process DOXYCYCLINE -3.4944 
UMP biosynthetic process ERYTHROMYCIN -3.7587 
UMP biosynthetic process MECILLINAM -3.6706 
UMP biosynthetic process NOVOBIOCIN -3.2935 
UMP biosynthetic process PROCAINE -3.8001 
UMP biosynthetic process TOBRAMYCIN -3.1314 
UMP biosynthetic process VERAPAMIL -3.4769 

dTMP biosynthetic process AZIDOTHYMIDINE -4.1336 
cellular DNA metabolic process CIPROFLOXACIN -3.0309 
cellular DNA metabolic process LEVOFLOXACIN -3.704 
cellular DNA metabolic process MITOMYCINC -5.2244 
cellular DNA metabolic process NITROFURANTOIN -3.6714 

cellular DNA replication AZIDOTHYMIDINE -6.194 
cellular DNA replication CIPROFLOXACIN -7.7875 
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cellular DNA replication MITOMYCINC -5.009 
cellular DNA replication NORFLOXACIN -4.2989 
cellular DNA replication TRIMETHOPRIM -8.7447 

DNA-dependent DNA replication TRIMETHOPRIM -3.3991 
DNA unwinding during replication AZIDOTHYMIDINE -4.0226 

DNA repair AZIDOTHYMIDINE -11.6469 
DNA repair CIPROFLOXACIN -14.2606 
DNA repair LEVOFLOXACIN -11.2348 
DNA repair MITOMYCINC -17.171 
DNA repair NITROFURANTOIN -14.2334 
DNA repair NORFLOXACIN -11.3863 
DNA repair STREPTONIGRIN -10.4412 

nucleotide-excision repair MITOMYCINC -11.1653 
nucleotide-excision repair NITROFURANTOIN -8.5473 
nucleotide-excision repair STREPTONIGRIN -3.3933 

cellular DNA catabolic process CIPROFLOXACIN -5.6337 
cellular DNA catabolic process LEVOFLOXACIN -5.2953 
cellular DNA catabolic process NALIDIXICACID -5.621 
cellular DNA catabolic process NORFLOXACIN -4.2952 

DNA recombination AZIDOTHYMIDINE -5.9495 
DNA recombination CIPROFLOXACIN -4.4406 
DNA recombination FOSFOMYCIN -3.6068 
DNA recombination LEVOFLOXACIN -13.1591 
DNA recombination MITOMYCINC -9.371 
DNA recombination NITROFURANTOIN -8.1066 
DNA recombination NORFLOXACIN -7.3911 
DNA recombination STREPTONIGRIN -6.1956 

transposition, DNA-mediated LEVOFLOXACIN -4.6067 
transposition, DNA-mediated MITOMYCINC -3.108 

cellular transcription FOSFOMYCIN -3.8885 
cellular transcription TRICLOSAN -3.6818 

cellular transcription, DNA-
dependent 

FOSFOMYCIN -3.3931 

transcription initiation CARBENICILLIN -3.091 
transcription termination SPECTINOMYCIN -3.542 

regulation of cellular transcription, 
DNA-dependent 

DOXYCYCLINE -3.4165 

regulation of cellular transcription, 
DNA-dependent 

FOSFOMYCIN -3.54 

regulation of cellular transcription, 
DNA-dependent 

TRICLOSAN -3.3355 

mRNA processing SPECTINOMYCIN -3.1516 
translation SPECTINOMYCIN -6.849 

translational initiation MITOMYCINC -3.3843 
regulation of translation A22 5.7899 
regulation of translation CARBENICILLIN -3.6772 
regulation of translation CEFTAZIDIME -4.356 
regulation of translation SPECTINOMYCIN -4.9839 

phenylalanyl-tRNA aminoacylation FUSIDICACID -3.5429 
phenylalanyl-tRNA aminoacylation NIGERICIN -3.374 
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regulation of translational 
termination 

FOSFOMYCIN -4.0693 

protein folding BACITRACIN -3.06 
protein folding CECROPINB -4.5956 
protein folding CHIR090 -3.8068 
protein folding DIBUCAINE -6.4379 
protein folding TRICLOSAN -4.524 
protein folding VANCOMYCIN -3.5471 

protein amino acid O-linked 
glycosylation 

TRIMETHOPRIM0.1SULFAMETHIZOLE -4.2112 

proteolysis TRICLOSAN -3.7564 
alanine metabolic process CEFSULODIN6.0MECILLINAM -4.1072 
alanine metabolic process CYCLOSERINED -4.7665 
alanine metabolic process TRICLOSAN -3.2215 

aspartate metabolic process METHOTREXATE -3.1047 
aspartate metabolic process MITOMYCINC -4.4601 
aspartate metabolic process SPECTINOMYCIN 4.2201 
aspartate metabolic process SULFAMETHIZOLE 5.8062 

aspartate biosynthetic process STREPTOMYCIN -3.9834 
cysteine biosynthetic process from 

serine 
AMOXICILLIN -3.702 

cysteine biosynthetic process from 
serine 

CARBENICILLIN -3.7714 

cysteine biosynthetic process from 
serine 

CEFSULODIN6.0MECILLINAM -3.7098 

cysteine biosynthetic process from 
serine 

CISPLATIN -4.1459 

cysteine biosynthetic process from 
serine 

VANCOMYCIN -3.5333 

cysteine biosynthetic process from 
serine 

VERAPAMIL -3.0876 

glutamine metabolic process ACTINOMYCIND -3.9463 
glutamine metabolic process CARBENICILLIN -3.5836 
glutamine metabolic process CEFOXITIN -5.9265 
glutamine metabolic process ERYTHROMYCIN -10.2546 
glutamine metabolic process INDOLICIDIN 5.7392 
glutamine metabolic process NOVOBIOCIN -3.4171 
glutamine metabolic process PUROMYCIN 4.8543 
glutamine metabolic process RIFAMPICIN -3.0636 
glutamine metabolic process TOBRAMYCIN -3.1338 
glutamine metabolic process VERAPAMIL -6.6892 

glycine metabolic process SULFAMETHIZOLE -5.1158 
glycine metabolic process SULFAMONOMETHOXINE -4.2408 
glycine metabolic process TRIMETHOPRIM -3.6513 
glycine catabolic process CECROPINB -4.8015 
glycine catabolic process MITOMYCINC -3.3843 
glycine catabolic process SULFAMETHIZOLE -10.6035 
glycine catabolic process SULFAMONOMETHOXINE -8.7972 

L-serine metabolic process TRIMETHOPRIM -4.3306 
L-serine biosynthetic process BACITRACIN -3.6335 
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L-serine biosynthetic process CARBENICILLIN -3.3669 
L-serine biosynthetic process NOVOBIOCIN -3.5315 
tyrosine biosynthetic process STREPTOMYCIN -4.3828 

valine metabolic process CEFSULODIN6.0MECILLINAM -3.4302 
cellular biogenic amine metabolic 

process 
MITOMYCINC 4.4601 

cellular biogenic amine metabolic 
process 

STREPTOMYCIN -5.0699 

polyamine biosynthetic process FOSFOMYCIN -3.0046 
fatty acid biosynthetic process SPECTINOMYCIN 3.8657 
fatty acid biosynthetic process TRICLOSAN -4.5891 

phospholipid metabolic process ERYTHROMYCIN 3.2927 
phospholipid metabolic process SPECTINOMYCIN -4.2201 

ubiquinone biosynthetic process AZTREONAM 5.0691 
ubiquinone biosynthetic process FOSFOMYCIN -4.131 
ubiquinone biosynthetic process GLUFOSFOMYCIN -3.8229 
ubiquinone biosynthetic process MITOMYCINC -4.8637 

glutathione metabolic process THEOPHYLLINE -5.2931 
ATP biosynthetic process A22 -4.1546 
ATP biosynthetic process ACTINOMYCIND -3.658 
ATP biosynthetic process AMOXICILLIN -4.8452 
ATP biosynthetic process AMPICILLIN -3.4268 
ATP biosynthetic process AZIDOTHYMIDINE -4.0332 
ATP biosynthetic process AZTREONAM 7.406 
ATP biosynthetic process BACITRACIN -6.808 
ATP biosynthetic process CEFACLOR -3.6185 
ATP biosynthetic process CEFSULODIN -4.0158 
ATP biosynthetic process CISPLATIN -3.8099 
ATP biosynthetic process GLUFOSFOMYCIN -5.7194 
ATP biosynthetic process NORFLOXACIN -5.0257 
ATP biosynthetic process THIOLACTOMYCIN -4.7851 
ATP biosynthetic process TUNICAMYCIN -3.5482 

folic acid and derivative metabolic 
process 

CEFACLOR -3.2765 

Mo-molybdopterin cofactor 
biosynthetic process 

SPECTINOMYCIN 3.6848 

nitrogen compound metabolic 
process 

TOBRAMYCIN -3.6847 

transport AMOXICILLIN -3.0316 
transport AZIDOTHYMIDINE -4.0647 
transport BACITRACIN -3.0055 
transport CEFSULODIN6.0MECILLINAM -3.3028 
transport ERYTHROMYCIN -3.4257 

ion transport ACTINOMYCIND -3.127 
ion transport AZTREONAM 3.2663 
ion transport BACITRACIN -6.5179 
ion transport GLUFOSFOMYCIN -5.9937 
ion transport NORFLOXACIN -3.0114 
ion transport STREPTOMYCIN -4.0648 
ion transport THIOLACTOMYCIN -3.1419 
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iron ion transport BACITRACIN -3.2826 
iron ion transport FOSFOMYCIN -4.1436 
iron ion transport NOVOBIOCIN -3.3451 
iron ion transport VERAPAMIL -3.1939 
zinc ion transport GLUFOSFOMYCIN -3.0112 

extracellular transport TRIMETHOPRIM0.1SULFAMETHIZOLE -3.5328 
response to stress BLEOMYCIN -3.0396 
response to stress TRICLOSAN -3.7698 
response to stress TUNICAMYCIN -3.213 

response to osmotic stress STREPTOMYCIN -3.9834 
response to DNA damage stimulus AZIDOTHYMIDINE -9.7688 
response to DNA damage stimulus CIPROFLOXACIN -15.4632 
response to DNA damage stimulus LEVOFLOXACIN -11.8224 
response to DNA damage stimulus MITOMYCINC -18.5001 
response to DNA damage stimulus NITROFURANTOIN -15.1025 
response to DNA damage stimulus NORFLOXACIN -11.7494 
response to DNA damage stimulus STREPTONIGRIN -9.424 

cellular cell wall organization AMPICILLIN -3.3323 
cellular cell wall organization CEFACLOR -3.5234 
cellular cell wall organization CEFOXITIN -3.5411 
cellular cell wall organization CEFTAZIDIME -3.1449 
cellular cell wall organization CYCLOSERINED -3.9032 
cellular cell wall organization MECILLINAM -5.8177 

cell cycle GENTAMICIN -4.2469 
cell cycle MECILLINAM -4.654 

chromosome segregation LEVOFLOXACIN -4.2058 
mitotic chromosome condensation CIPROFLOXACIN -3.0603 

sensory perception SULFAMONOMETHOXINE -3.3457 
tRNA processing ACTINOMYCIND 3.5159 
tRNA processing CEFOXITIN 3.7451 
tRNA processing ERYTHROMYCIN 3.6152 
tRNA processing TOBRAMYCIN 3.8929 

metabolic process CEFOXITIN -3.1363 
metabolic process CISPLATIN -3.2052 

regulation of cell shape CARBENICILLIN -3.3063 
regulation of cell shape CEFOXITIN -4.147 
regulation of cell shape CYCLOSERINED -5.1352 
regulation of cell shape MECILLINAM -3.6198 

lipid biosynthetic process ERYTHROMYCIN 3.0899 
lipid biosynthetic process FUSIDICACID -3.7896 
lipid biosynthetic process NIGERICIN -3.1421 
lipid biosynthetic process TRICLOSAN -5.4754 
lipid biosynthetic process TRIMETHOPRIM0.1SULFAMETHIZOLE 3.7436 
lipid biosynthetic process VANCOMYCIN -3.3601 

pyridoxine biosynthetic process A22 -4.4028 
pyridoxine biosynthetic process INDOLICIDIN 3.0329 
pyridoxine biosynthetic process MECILLINAM -3.5507 
pyridoxine biosynthetic process NOVOBIOCIN -5.1682 
pyridoxine biosynthetic process OXACILLIN 3.25 
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cellular amino acid biosynthetic 
process 

CARBENICILLIN -3.7263 

cellular amino acid biosynthetic 
process 

CISPLATIN -4.5203 

cellular amino acid biosynthetic 
process 

NOVOBIOCIN -3.3613 

cellular amino acid biosynthetic 
process 

STREPTOMYCIN -4.204 

cellular amino acid biosynthetic 
process 

VERAPAMIL -3.2784 

biosynthetic process DIBUCAINE -3.7296 
biosynthetic process MINOCYCLINE -3.0862 
biosynthetic process STREPTOMYCIN -3.1562 

aerobic respiration FOSFOMYCIN -5.4937 
anaerobic respiration AMOXICILLIN -3.548 
anaerobic respiration CCCP -5.4282 
anaerobic respiration FOSFOMYCIN -6.1096 
anaerobic respiration NITROFURANTOIN -3.0675 
anaerobic respiration SPECTINOMYCIN 4.145 
anaerobic respiration THEOPHYLLINE -5.4461 
anaerobic respiration TUNICAMYCIN -3.4464 

serine family amino acid metabolic 
process 

TRIMETHOPRIM -4.3306 

aromatic amino acid family 
biosynthetic process 

AMPICILLIN -4.5241 

aromatic amino acid family 
biosynthetic process 

FOSFOMYCIN -5.6397 

aromatic amino acid family 
biosynthetic process 

STREPTOMYCIN -5.1375 

methionine biosynthetic process SULFAMONOMETHOXINE -4.5155 
L-phenylalanine biosynthetic 

process 
STREPTOMYCIN -3.7018 

leucine biosynthetic process STREPTOMYCIN -3.4847 
lipopolysaccharide biosynthetic 

process 
ACTINOMYCIND -3.3389 

lipopolysaccharide biosynthetic 
process 

AZIDOTHYMIDINE -3.9938 

lipopolysaccharide biosynthetic 
process 

AZITHROMYCIN -5.6612 

lipopolysaccharide biosynthetic 
process 

BACITRACIN -7.9785 

lipopolysaccharide biosynthetic 
process 

BLEOMYCIN -5.7182 

lipopolysaccharide biosynthetic 
process 

CEFSULODIN -3.5536 

lipopolysaccharide biosynthetic 
process 

CHIR090 -8.4132 

lipopolysaccharide biosynthetic 
process 

CLARYTHROMYCIN -5.5868 

lipopolysaccharide biosynthetic DIBUCAINE -9.1555 
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process 
lipopolysaccharide biosynthetic 

process 
DOXYCYCLINE -6.3373 

lipopolysaccharide biosynthetic 
process 

ERYTHROMYCIN -3.2948 

lipopolysaccharide biosynthetic 
process 

FUSIDICACID -4.3977 

lipopolysaccharide biosynthetic 
process 

MECILLINAM 4.692 

lipopolysaccharide biosynthetic 
process 

MINOCYCLINE -21.3471 

lipopolysaccharide biosynthetic 
process 

NALIDIXICACID -9.3207 

lipopolysaccharide biosynthetic 
process 

NOVOBIOCIN -10.0812 

lipopolysaccharide biosynthetic 
process 

SPECTINOMYCIN -4.2406 

lipopolysaccharide biosynthetic 
process 

TRICLOSAN -16.8175 

lipopolysaccharide biosynthetic 
process 

TRIMETHOPRIM -6.5428 

lipopolysaccharide biosynthetic 
process 

TRIMETHOPRIM0.1SULFAMETHIZOLE -8.0133 

lipoate biosynthetic process GLUFOSFOMYCIN 4.076 
lipoate biosynthetic process ISONIAZID -3.0475 
lipoate biosynthetic process LEVOFLOXACIN -5.2953 
lipoate biosynthetic process MITOMYCINC -8.942 
lipoate biosynthetic process THIOLACTOMYCIN -4.5803 
lipoate biosynthetic process TRICLOSAN -3.2215 

purine base biosynthetic process A22 -3.0967 
purine base biosynthetic process ACTINOMYCIND -6.7694 
purine base biosynthetic process AZTREONAM -4.5528 
purine base biosynthetic process CARBENICILLIN -3.3669 
purine base biosynthetic process CEFOXITIN -6.5001 
purine base biosynthetic process CEFSULODIN -3.0923 
purine base biosynthetic process DOXYCYCLINE -3.1044 
purine base biosynthetic process ERYTHROMYCIN -6.7336 
purine base biosynthetic process PROCAINE -5.7832 
purine base biosynthetic process TOBRAMYCIN -5.1541 
purine base biosynthetic process VERAPAMIL -7.2416 

nucleoside metabolic process ACTINOMYCIND -4.2037 
nucleoside metabolic process CEFOXITIN -4.7208 
nucleoside metabolic process ERYTHROMYCIN -4.1724 
nucleoside metabolic process PROCAINE -4.1626 
nucleoside metabolic process TOBRAMYCIN -5.1599 
nucleoside metabolic process VERAPAMIL -4.2937 

nucleotide biosynthetic process AZIDOTHYMIDINE -3.0683 
lipopolysaccharide core region 

biosynthetic process 
CLARYTHROMYCIN -3.2173 

lipopolysaccharide core region DIBUCAINE -3.5143 
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biosynthetic process 
lipopolysaccharide core region 

biosynthetic process 
INDOLICIDIN -3.0329 

lipopolysaccharide core region 
biosynthetic process 

MINOCYCLINE -7.9747 

lipopolysaccharide core region 
biosynthetic process 

MITOMYCINC -5.6766 

lipopolysaccharide core region 
biosynthetic process 

NALIDIXICACID -4.592 

lipopolysaccharide core region 
biosynthetic process 

TRICLOSAN -4.5891 

lipopolysaccharide core region 
biosynthetic process 

TRIMETHOPRIM0.1SULFAMETHIZOLE -5.1938 

lipid A biosynthetic process FUSIDICACID -3.685 
lipid A biosynthetic process MINOCYCLINE -4.4148 

enterobacterial common antigen 
biosynthetic process 

CYCLOSERINED -4.7665 

glucan biosynthetic process DOXYCYCLINE 3.4784 
peptidoglycan biosynthetic process AMPICILLIN -4.1112 
peptidoglycan biosynthetic process CARBENICILLIN -3.558 
peptidoglycan biosynthetic process CEFACLOR -4.1885 
peptidoglycan biosynthetic process CEFOXITIN -4.4261 
peptidoglycan biosynthetic process CEFSULODIN -3.4673 
peptidoglycan biosynthetic process CEFSULODIN6.0MECILLINAM -5.9262 
peptidoglycan biosynthetic process CEFTAZIDIME -4.0182 
peptidoglycan biosynthetic process CYCLOSERINED -7.8786 
peptidoglycan biosynthetic process MECILLINAM -4.9988 

10-formyltetrahydrofolate 
biosynthetic process 

TRIMETHOPRIM0.1SULFAMETHIZOLE 3.142 

deoxyribonucleotide catabolic 
process 

TRIMETHOPRIM0.1SULFAMETHIZOLE 7.3552 

peptidoglycan-based cell wall 
biogenesis 

CARBENICILLIN -3.3669 

peptidoglycan-based cell wall 
biogenesis 

CEFACLOR -3.0098 

peptidoglycan-based cell wall 
biogenesis 

CEFOXITIN -3.2564 

peptidoglycan-based cell wall 
biogenesis 

CEFSULODIN -3.0923 

peptidoglycan-based cell wall 
biogenesis 

CEFSULODIN6.0MECILLINAM -3.7098 

flagellum assembly FOSFOMYCIN -4.4805 
protein secretion PROCAINE 3.8624 
protein secretion STREPTOMYCIN -4.3312 
protein secretion TRICLOSAN -6.0661 

phospholipid catabolic process TRICLOSAN -3.2215 
folic acid and derivative biosynthetic 

process 
SULFAMETHIZOLE -4.4282 

folic acid and derivative biosynthetic 
process 

SULFAMONOMETHOXINE -8.1108 
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response to heat AZIDOTHYMIDINE -3.0683 
response to heat CECROPINB -4.8015 
response to heat SPECTINOMYCIN -3.1516 
response to cold INDOLICIDIN -4.3828 
response to cold MITOMYCINC -3.7784 
response to cold TRICLOSAN 3.2215 

SOS response AZIDOTHYMIDINE -3.2487 
SOS response CIPROFLOXACIN -7.9925 
SOS response LEVOFLOXACIN -6.7687 
SOS response MITOMYCINC -12.7685 
SOS response NITROFURANTOIN -13.2018 
SOS response NORFLOXACIN -4.3039 
SOS response STREPTONIGRIN -4.3184 

glyoxylate catabolic process CEFSULODIN6.0MECILLINAM 3.4302 
allantoin assimilation pathway CEFSULODIN6.0MECILLINAM -3.4302 

putrescine biosynthetic process FOSFOMYCIN -3.3931 
putrescine biosynthetic process PROCAINE -3.0179 

RNA modification CECROPINB -5.2044 
RNA modification MITOMYCINC -3.7784 
detection of virus ACTINOMYCIND -3.658 
detection of virus CARBENICILLIN -3.0473 
detection of virus CIPROFLOXACIN -4.7631 

cellular response to iron ion 
starvation 

FOSFOMYCIN -4.0693 

response to organic cyclic 
substance 

BLEOMYCIN -4.7733 

response to organic cyclic 
substance 

CCCP -3.44 

response to organic cyclic 
substance 

CHIR090 -4.1759 

response to organic cyclic 
substance 

CHLORAMPHENICOL -5.0641 

response to organic cyclic 
substance 

CLARYTHROMYCIN -3.2207 

response to organic cyclic 
substance 

DIBUCAINE -3.871 

response to organic cyclic 
substance 

DOXYCYCLINE -4.1721 

response to organic cyclic 
substance 

ERYTHROMYCIN -3.2876 

response to organic cyclic 
substance 

FUSIDICACID -4.1309 

response to organic cyclic 
substance 

MINOCYCLINE -4.4195 

response to organic cyclic 
substance 

MITOMYCINC -4.4601 

response to organic cyclic 
substance 

NOVOBIOCIN -4.6103 

response to organic cyclic 
substance 

OXACILLIN -5.496 
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response to organic cyclic 
substance 

PUROMYCIN -3.3259 

response to organic cyclic 
substance 

SPECTINOMYCIN -4.2201 

response to organic cyclic 
substance 

TRICLOSAN -3.8943 

response to organic cyclic 
substance 

TRIMETHOPRIM -4.3306 

protein transport ACTINOMYCIND -3.1177 
protein transport AMOXICILLIN -3.3099 
protein transport AMPICILLIN -7.477 
protein transport BACITRACIN -5.2845 
protein transport BLEOMYCIN -3.4307 
protein transport CARBENICILLIN -4.8294 
protein transport CEFSULODIN -5.2085 
protein transport CEFSULODIN6.0MECILLINAM -10.3319 
protein transport CEFTAZIDIME -5.5461 
protein transport DIBUCAINE -6.5644 
protein transport MECILLINAM -4.8381 
protein transport STREPTOMYCIN -5.885 
protein transport TRICLOSAN -12.6653 
protein transport TRIMETHOPRIM -3.2069 
protein transport VANCOMYCIN -8.6886 
DNA integration LEVOFLOXACIN -3.4485 
lactate transport FOSFOMYCIN -3.3931 

fumarate transport FOSFOMYCIN -4.0693 
fumarate transport SPECTINOMYCIN 4.2201 

proline transport STREPTOMYCIN -4.3828 
peptidoglycan transport CEFSULODIN6.0MECILLINAM -4.7923 

cobalamin transport SULFAMONOMETHOXINE -3.8424 
lipopolysaccharide export TRICLOSAN -3.8943 

carbon utilization by utilization of 
organic compounds 

FOSFOMYCIN -3.0046 

ATP synthesis coupled proton 
transport 

A22 -6.647 

ATP synthesis coupled proton 
transport 

ACTINOMYCIND -4.1215 

ATP synthesis coupled proton 
transport 

AMOXICILLIN -6.5602 

ATP synthesis coupled proton 
transport 

AMPICILLIN -3.0905 

ATP synthesis coupled proton 
transport 

AZIDOTHYMIDINE -3.3325 

ATP synthesis coupled proton 
transport 

AZTREONAM 8.096 

ATP synthesis coupled proton 
transport 

BACITRACIN -9.4535 

ATP synthesis coupled proton 
transport 

CEFACLOR -5.8133 

ATP synthesis coupled proton CEFSULODIN -5.6048 
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transport 
ATP synthesis coupled proton 

transport 
CEFTAZIDIME -3.2719 

ATP synthesis coupled proton 
transport 

CISPLATIN -7.011 

ATP synthesis coupled proton 
transport 

GLUFOSFOMYCIN -6.3943 

ATP synthesis coupled proton 
transport 

NORFLOXACIN -6.4016 

ATP synthesis coupled proton 
transport 

STREPTOMYCIN -6.883 

ATP synthesis coupled proton 
transport 

THIOLACTOMYCIN -7.0939 

ATP synthesis coupled proton 
transport 

TUNICAMYCIN -5.6105 

electron transport coupled proton 
transport 

AMOXICILLIN -3.9872 

electron transport coupled proton 
transport 

FOSFOMYCIN -3.3931 

proton transport A22 -5.3142 
proton transport ACTINOMYCIND -3.3189 
proton transport AMOXICILLIN -5.2996 
proton transport AZTREONAM 6.8993 
proton transport BACITRACIN -7.9262 
proton transport CEFACLOR -4.8183 
proton transport CEFSULODIN -4.4146 
proton transport CISPLATIN -5.8036 
proton transport GLUFOSFOMYCIN -5.2279 
proton transport NORFLOXACIN -5.4037 
proton transport STREPTOMYCIN -5.7392 
proton transport THIOLACTOMYCIN -5.8966 
proton transport TUNICAMYCIN -4.7288 

carbohydrate biosynthetic process AMPICILLIN -3.2349 
carbohydrate biosynthetic process CEFACLOR -3.0098 
carbohydrate biosynthetic process CHIR090 -3.1114 
carbohydrate biosynthetic process CLARYTHROMYCIN -3.3866 
carbohydrate biosynthetic process ERYTHROMYCIN -3.3649 
carbohydrate biosynthetic process MINOCYCLINE -4.7012 
carbohydrate biosynthetic process NIGERICIN 3.1058 
carbohydrate biosynthetic process RIFAMPICIN -4.568 
carbohydrate biosynthetic process SPECTINOMYCIN -3.1516 
carbohydrate biosynthetic process SPIRAMYCIN -3.7257 
carbohydrate biosynthetic process TETRACYCLINE -3.1043 

carbohydrate catabolic process INDOLICIDIN 3.7018 
antibiotic catabolic process CEFACLOR -3.7333 

cytochrome complex assembly CEFSULODIN6.0MECILLINAM -4.82 
cytochrome complex assembly ISONIAZID -4.7555 

protein import AMPICILLIN -5.2431 
protein import CARBENICILLIN -4.4419 
protein import CEFSULODIN6.0MECILLINAM -4.7923 
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protein import MECILLINAM -3.743 
protein import TRICLOSAN -3.8943 

regulation of fatty acid metabolic 
process 

TRICLOSAN -3.8943 

glycine biosynthetic process from 
serine 

TRIMETHOPRIM -4.3306 

siderophore biosynthetic process FOSFOMYCIN -4.0693 
tyrosine biosynthetic process from 

chorismate via 4-
hydroxyphenylpyruvate 

STREPTOMYCIN -5.0699 

D-ribose catabolic process MITOMYCINC -3.7784 
cysteine biosynthetic process AMOXICILLIN -6.9294 
cysteine biosynthetic process BICYCLOMYCIN -3.4415 
cysteine biosynthetic process CISPLATIN -15.9598 
cysteine biosynthetic process ISONIAZID -3.2392 
cysteine biosynthetic process NALIDIXICACID -3.6513 
cysteine biosynthetic process NORFLOXACIN -3.4145 
cysteine biosynthetic process STREPTOMYCIN -3.0329 
cysteine biosynthetic process THEOPHYLLINE -3.2561 
cysteine biosynthetic process VANCOMYCIN -7.5494 
cysteine biosynthetic process VERAPAMIL -7.4248 

siroheme biosynthetic process CISPLATIN -4.9791 
siroheme biosynthetic process VERAPAMIL -4.1539 

nicotinate nucleotide biosynthetic 
process 

FOSFOMYCIN -4.0693 

sulfate assimilation, 
phosphoadenylyl sulfate reduction 

by phosphoadenylyl-sulfate 
reductase (thioredoxin) 

CISPLATIN -4.9791 

sulfate reduction CISPLATIN -4.9791 
glycine decarboxylation via glycine 

cleavage system 
SULFAMETHIZOLE -17.6887 

glycine decarboxylation via glycine 
cleavage system 

SULFAMONOMETHOXINE -14.8876 

D-gluconate metabolic process AMOXICILLIN -3.0803 
propionate catabolic process INDOLICIDIN 5.0699 

propionate catabolic process, 2-
methylcitrate cycle 

INDOLICIDIN 3.7018 

propionate metabolic process, 
methylcitrate cycle 

INDOLICIDIN 4.3828 

photosynthesis, light reaction AMOXICILLIN -3.2774 
L-ascorbic acid metabolic process DIBUCAINE 3.423 
L-ascorbic acid catabolic process FOSFOMYCIN -3.3931 

pyrimidine base biosynthetic 
process 

A22 -4.1631 

pyrimidine base biosynthetic 
process 

CARBENICILLIN -4.4419 

pyrimidine base biosynthetic 
process 

CEFOXITIN -4.3289 

pyrimidine base biosynthetic CEFSULODIN -4.1556 
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process 
pyrimidine base biosynthetic 

process 
DOXYCYCLINE -3.1357 

pyrimidine base biosynthetic 
process 

ERYTHROMYCIN -4.4401 

pyrimidine base biosynthetic 
process 

MECILLINAM -3.743 

pyrimidine base biosynthetic 
process 

NOVOBIOCIN -3.8651 

pyrimidine base biosynthetic 
process 

VERAPAMIL -4.1539 

dormancy process AZIDOTHYMIDINE -3.1881 
dormancy process SULFAMETHIZOLE -4.7131 
dormancy process SULFAMONOMETHOXINE -3.8424 

lipid modification CEFSULODIN6.0MECILLINAM -4.7923 
lipid modification DIBUCAINE -3.871 

establishment of competence for 
transformation 

AZIDOTHYMIDINE -4.1336 

maturation of SSU-rRNA CEFSULODIN -4.1556 
maturation of SSU-rRNA ISONIAZID -3.5046 
maturation of SSU-rRNA MITOMYCINC -4.4601 
maturation of SSU-rRNA STREPTOMYCIN -5.0699 

organic acid phosphorylation FOSFOMYCIN -3.3931 
transcription antitermination FOSFOMYCIN -3.0046 
transcription antitermination PHLEOMYCIN -3.0068 

negative regulation of nuclease 
activity 

FOSFOMYCIN -4.0693 

transposition LEVOFLOXACIN -3.2476 
GMP salvage SULFAMONOMETHOXINE -4.2408 
IMP salvage SULFAMONOMETHOXINE -4.2408 

ribosome disassembly CEFTAZIDIME -3.3857 
ribosome disassembly MITOMYCINC -4.4601 

L-phenylalanine biosynthetic 
process from chorismate via 

phenylpyruvate 

STREPTOMYCIN -5.0699 

negative regulation of translation, 
ncRNA-mediated 

CHLORAMPHENICOL -3.241 

negative regulation of translation, 
ncRNA-mediated 

CYCLOSERINED 4.7665 

negative regulation of translation, 
ncRNA-mediated 

TRICLOSAN 3.2215 

regulation of cell proliferation FOSFOMYCIN -4.0693 
plasmid recombination ISONIAZID -3.5015 
plasmid recombination LEVOFLOXACIN -5.9862 
plasmid recombination MITOMYCINC -4.4601 

response to drug AMPICILLIN -3.426 
response to drug CARBENICILLIN -3.0349 
response to drug PROCAINE 3.3561 
response to drug TRICLOSAN -3.5311 

hyperosmotic salinity response STREPTOMYCIN -5.0699 
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biofilm formation CECROPINB -3.6233 
plasma membrane ATP synthesis 

coupled proton transport 
AMOXICILLIN -5.6222 

plasma membrane ATP synthesis 
coupled proton transport 

BACITRACIN -3.9245 

plasma membrane ATP synthesis 
coupled proton transport 

GLUFOSFOMYCIN -3.7408 

vitamin B6 metabolic process INDOLICIDIN 5.0699 
vitamin B6 metabolic process OXACILLIN 3.4269 

pyridoxal phosphate biosynthetic 
process 

BACITRACIN -3.3558 

pyridoxal phosphate biosynthetic 
process 

CARBENICILLIN -3.091 

pyridoxal phosphate biosynthetic 
process 

ERYTHROMYCIN -3.0889 

pyridoxal phosphate biosynthetic 
process 

MECILLINAM -3.9121 

pyridoxal phosphate biosynthetic 
process 

NOVOBIOCIN -5.6051 

pyruvate biosynthetic process FOSFOMYCIN -4.0693 
pyruvate biosynthetic process GLUFOSFOMYCIN -4.7607 
pyruvate biosynthetic process INDOLICIDIN -5.0699 
pyruvate biosynthetic process THIOLACTOMYCIN -3.1983 

antibiotic transport TRIMETHOPRIM0.1SULFAMETHIZOLE 4.2112 
enterobactin transport BLEOMYCIN -4.0884 
enterobactin transport CHIR090 -3.4998 
enterobactin transport CHLORAMPHENICOL -4.3774 
enterobactin transport DIBUCAINE -3.2004 
enterobactin transport DOXYCYCLINE -3.4944 
enterobactin transport FUSIDICACID -3.615 
enterobactin transport MINOCYCLINE -3.7388 
enterobactin transport MITOMYCINC -3.7784 
enterobactin transport NOVOBIOCIN -3.9271 
enterobactin transport OXACILLIN -4.8075 
enterobactin transport SPECTINOMYCIN -3.542 
enterobactin transport TRICLOSAN -3.2215 
enterobactin transport TRIMETHOPRIM -3.6513 

dipeptide transport INDOLICIDIN 3.4847 
cellular metabolic compound 

salvage 
TRIMETHOPRIM0.1SULFAMETHIZOLE 3.5328 

Gram-negative-bacterium-type cell 
outer membrane assembly 

BLEOMYCIN -3.0153 

Gram-negative-bacterium-type cell 
outer membrane assembly 

DIBUCAINE -3.2004 

Gram-negative-bacterium-type cell 
outer membrane assembly 

MITOMYCINC -3.7784 

Gram-negative-bacterium-type cell 
outer membrane assembly 

NALIDIXICACID -3.0464 

Gram-negative-bacterium-type cell 
outer membrane assembly 

TRICLOSAN -3.2215 
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Gram-negative-bacterium-type cell 
outer membrane assembly 

TRIMETHOPRIM0.1SULFAMETHIZOLE -3.5328 

bacteriocin transport ACTINOMYCIND -8.527 
bacteriocin transport AMOXICILLIN -6.301 
bacteriocin transport AMPICILLIN -9.6992 
bacteriocin transport BACITRACIN -7.6391 
bacteriocin transport CARBENICILLIN -11.3158 
bacteriocin transport CEFSULODIN -4.496 
bacteriocin transport CEFSULODIN6.0MECILLINAM -10.9443 
bacteriocin transport CEFTAZIDIME -7.6884 
bacteriocin transport DIBUCAINE -5.8324 
bacteriocin transport MECILLINAM -7.037 
bacteriocin transport TRICLOSAN -8.2436 
bacteriocin transport VANCOMYCIN -8.6649 

cellular metabolic process SULFAMONOMETHOXINE -3.8657 
cellular carbohydrate metabolic 

process 
TRICLOSAN -3.2215 

extracellular polysaccharide 
biosynthetic process 

STREPTOMYCIN -3.1603 

negative regulation of fatty acid 
biosynthetic process 

TRIMETHOPRIM0.1SULFAMETHIZOLE 4.2112 

negative regulation of cellular 
transcription, DNA-dependent 

SULFAMONOMETHOXINE -3.2217 

negative regulation of translational 
initiation 

CEFSULODIN -4.1556 

negative regulation of translational 
initiation 

ISONIAZID -3.5046 

negative regulation of translational 
initiation 

STREPTOMYCIN -5.0699 

ATP metabolic process AMOXICILLIN -5.5181 
ATP metabolic process BACITRACIN -4.7329 
ATP metabolic process CEFACLOR -3.3408 
ATP metabolic process CEFSULODIN -3.5823 
ATP metabolic process GLUFOSFOMYCIN -4.6198 
ATP metabolic process NORFLOXACIN -3.0976 

adenosine biosynthetic process AZIDOTHYMIDINE -4.1336 
adenosine biosynthetic process CEFOXITIN -3.2526 
adenosine biosynthetic process NOVOBIOCIN -3.8651 

thymidine metabolic process TRIMETHOPRIM0.1SULFAMETHIZOLE 4.2112 
L-idonate catabolic process DOXYCYCLINE -3.1098 

glyoxylate metabolic process CEFSULODIN6.0MECILLINAM -4.1072 
tetrahydrofolate biosynthetic 

process 
SULFAMETHIZOLE -5.1158 

tetrahydrofolate biosynthetic 
process 

SULFAMONOMETHOXINE -4.2408 

tetrahydrofolate biosynthetic 
process 

TRIMETHOPRIM -3.6513 

folic acid biosynthetic process SULFAMETHIZOLE -5.4729 
folic acid biosynthetic process SULFAMONOMETHOXINE -3.0234 
folic acid biosynthetic process TRIMETHOPRIM -4.9594 
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response to antibiotic CEFACLOR -3.0007 
response to antibiotic CHLORAMPHENICOL -3.9441 
response to antibiotic SPECTINOMYCIN -3.0029 
response to antibiotic TETRACYCLINE -3.4553 

response to arsenic INDOLICIDIN 3.4847 
response to cadmium ion INDOLICIDIN 4.3828 

entry of virus into host cell ACTINOMYCIND -3.658 
entry of virus into host cell CARBENICILLIN -3.0473 
entry of virus into host cell CIPROFLOXACIN -4.7631 

protein stabilization MITOMYCINC -3.3843 
protein stabilization TRIMETHOPRIM0.1SULFAMETHIZOLE -3.142 

detection of stimulus involved in 
sensory perception 

CEFOXITIN 3.2379 

chaperone mediated protein folding 
requiring cofactor 

MITOMYCINC -3.108 

cell division GENTAMICIN -4.1689 
cell division MECILLINAM -4.4753 

regulation of cell cycle FOSFOMYCIN -4.0693 
oxidation reduction CISPLATIN -3.9877 
oxidation reduction THEOPHYLLINE -3.7967 
oxidation reduction TUNICAMYCIN -3.1295 

intracellular protein transmembrane 
transport 

BACITRACIN -3.1752 

intracellular protein transmembrane 
transport 

CEFOXITIN 3.1586 

intracellular protein transmembrane 
transport 

CEFSULODIN -5.7207 

intracellular protein transmembrane 
transport 

CEFSULODIN6.0MECILLINAM -6.9383 

intracellular protein transmembrane 
transport 

CEFTAZIDIME -3.0095 

intracellular protein transmembrane 
transport 

CHIR090 4.3195 

intracellular protein transmembrane 
transport 

STREPTOMYCIN -12.3541 

intracellular protein transmembrane 
transport 

TRICLOSAN -8.7834 

intracellular protein transmembrane 
transport 

VANCOMYCIN -3.8944 

double-strand break repair AZIDOTHYMIDINE -7.2012 
double-strand break repair LEVOFLOXACIN -4.8921 
double-strand break repair MITOMYCINC -3.3843 
double-strand break repair NORFLOXACIN -6.1722 
double-strand break repair STREPTONIGRIN -5.2647 
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Experimental Procedures 
Bacterial strains 

The screened collection includes 4334 deletions of non-essential genes (Keio Collection; 

(Baba et al., 2006), 148 SPA-tagged derivatives of essential genes (Butland et al., 

2005), 9 point-mutant alleles of essential genes (plus corresponding “linked” strains for 

each of the 9 alleles, in which the antibiotic-resistance cassette was linked to the wild-

type allele as a control), 5 DAS-tagged essential genes (McGinness et al., 2006), 2 

truncations of essential genes, and 100 deletions of small RNAs (sRNAs) and small 

proteins (Hobbs et al., 2010). All mutant strains are marked with or linked to kanamycin. 

All linked alleles and controls, DAS-tags, and truncations were constructed in BW25113 

(Keio Collection strain background) using standard recombineering methods. Primers 

are available upon request. SPA-tagged essential genes, originally constructed in 

W3110 (Butland et al., 2005), were transduced into BW25113 using P1 phage. sRNA 

and small protein deletions were constructed in MG1655 (Hobbs et al., 2010) and used 

in that background. For all mutants, except for the sRNA/small protein library, two 

independently derived clones were screened and evaluated for reproducibility of growth. 

For the sRNA/small protein mutants a single isolated clone was arrayed twice. Of the 

4607 strains screened, 628 were eliminated from the study either because of 

consistently discrepant growth between clones or because updated curation of the Keio 

collection reclassified them as incorrect strains, leaving a total of 3979 strains in the final 

dataset (3737 Keio, 117 SPA, 5 DAS, 9 alleles, 9 linked controls, 2 truncations, and 100 

sRNAs). A list of these strains is available online at http://ecoliwiki.net/tools/chemgen/. 

 

All individual mutants used for follow up biology stories were re-transduced to BW25113 

before further experiments. During the entire study, BW25113 is referred to as wildtype. 
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Double mutants used in the experiments dissecting the function of MarB were 

constructed using P1 transduction or recombineering. 

 

Growth conditions for drug synergy experiments 

Wildtype and mutant strains were grown overnight to stationary phase in LB broth, and 

diluted into fresh drug-containing LB broth (0.1µg/ml TMP and/or 50 µg/ml 

Sulfamethizole) at 1:1000 v/v. Cultures were then grown aerobically in 150 mL flasks at 

37˚C and optical densities were recorded at 600nm every 20-30 minutes. Final culture 

density was recorded at a 24-hour endpoint. The Streptococcus pneumoniae 

experiments used S. pneumoniae serotype 2 strain D39 (IU1690; (Lanie et al., 2007), 

which was cultured statically in Brain Heart Infusion broth (Bacto BHI, Becton Dickinson) 

at 37°C in an atmosphere of 5% CO2. Growth was monitored by optical density (OD620). 

Bacterial cultures were started from frozen stocks and propagated overnight in BHI as 

described (Ramos-Montanez et al., 2008). Overnight cultures in exponential phase 

(OD620 = 0.1-0.3) were diluted back to a density of OD620~0.001 to start final cultures. 

Final cultures were grown to a density of OD620~0.1 and divided among 16 mm glass 

tubes containing no antibiotic, 7.8 µg/ml TMP, 1000 µg/ml SMT or both antibiotics. 

 

Screen Conditions and Data Processing 

The collection was arrayed in 1536-format onto six LB-agar plates using a Singer Rotor 

robot. The independently derived or duplicate clones of each strain were arrayed side-

by-side. Glycerol stocks of each plate were kept at -80˚C, and re-arrayed at least once 

every four weeks in effort to reduce the passage and accumulation of spontaneous 

suppressor mutants throughout the study. For the same reasons and to minimize the 

exposure time of a given plate at 4˚C, the collection was passaged to fresh plates at 

least once a week. 
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For each screen, the chemical/stress was mixed into LB agar (except where indicated) 

at the concentrations listed in Table S1. Plates were allowed to dry for two days, and 

then pinned with the collection. For the majority of conditions, plates were removed from 

the incubator following 14-16 hrs growth at 37˚C. At this timepoint, fitness differences 

were apparent but growth had not saturated. Several stresses, e.g. low temperature, 

required longer incubation times. Plates were then imaged using a Canon G10 digital 

camera, and the images processed into colony size data, which was used to generate 

Condition-Gene scores. All image processing, colony size measurements, and score 

generation was carried out as described previously for genetic interactions (Collins et al., 

2006; Typas et al., 2008). 

 

Two key quality control principles utilized in the S-score fitness measurement procedure 

for genetic interaction analysis are not applicable to our chemical profiling analysis. First, 

in genetic interaction analysis, each gene-gene interaction is constructed twice, once 

with each mutation as the donor, and those scores are averaged. Here, condition-gene 

interactions are constructed only one way, (i.e. stress applied to single mutants), so the 

scores generated here are analogous to “unaveraged” S-scores (Collins et al., 2006). 

Second, a key quality control principle underlying the S-score procedure is based on 

genetic linkage, which is not applicable to Condition-Gene interactions. Therefore, two 

alternative quality control measures were implemented: (1) the interquartile range (IQR) 

of the distribution of normalized colony sizes for each screen; and (2) the correlation 

between replicates of the same screen. Screens with high IQR, or with poor correlation 

within a series of technical replicates were eliminated from the dataset to minimize 

noise. High IQR or low correlation of technical replicates was found to be due to a 

variety of factors including high rates of spontaneous suppressor mutants (due to 
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selection under high stress), poor or saturated growth and human error in the generation 

of the data.  

 

The sRNA/protein deletion library was constructed in MG1655, whereas the rest of the 

collection was constructed in BW25113. As these strains were reasonably close, we did 

not transduce the sRNA/small protein deletions into BW25113. Therefore, raw colony 

sizes of all sRNA/small protein mutants (which were arrayed on the same plate of the 

collection) were normalized separately to eliminate the relative comparisons with the 

BW25113-based mutants arrayed on the plate. This approach reduced complications 

from strain background differences, but it should be noted that sRNA/small protein 

clustering patterns are less reliable, unless the particular mutant was found to have 

strong phenotypes.  

 

Phenotype Analysis 

For each screen, we estimated the mean and IQR of Condition-Gene scores and re-

scaled the data to a standard normal distribution (IQR=1.35). We reasoned that if there 

were no phenotypes (outliers) in a given screen, all scores would conform to a standard 

normal distribution. For example, we expect 5% of the scores to be less than the 5th 

normal percentile. More generally, we expect a fraction of scores, p, to be less than the 

pth quantile of the normal distribution. If a fraction of scores, x (x>p), is found to be less 

than the pth quantile, then the false discovery rate (FDR) associated with the pth quantile 

would be p/x (Efron et al., 2001). 

 

Using this approach, we classified all scores with FDR 5% or less as phenotypes. 

Responsive genes were defined as strains for which at least one phenotype was 

identified. It is important to note that the 5% FDR attached to each phenotype was 
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calculated individually for each phenotype. As each phenotype was deemed to be of 

independent interest, we did not apply a multiple testing correction across phenotypes. 

 

Conditionally-essential genes were identified using a combination of the probability 

scores and raw colony sizes. Because cells are always transferred to the screen plate 

during the pinning process, lethal events cannot be scored as colony sizes of zero, 

unless the stress/drug is bactericidal. Therefore, we defined conditionally-essential 

events as those in which the probability score was 1 (definite outlier), and raw colony 

size was less than 60 pixels. These parameters were empirically defined based on 

known lethal interactions, and likely exclude other true conditionally-lethal events.  

 

Gene Annotation 

The COG annotation index (http://www.ncbi.nlm.nih.gov/COG/; (Tatusov et al., 2003) 

was used as the basis for grouping genes according to function. We applied minimal 

changes to the main COG function families, manually curating genes of interest based 

on existing COG annotations, published literature (we sampled Pubmed and Ecocyc) 

and whether evidence was experimental/computational. Genes with purely 

computationally predicted functions were mostly assigned to the "general function 

prediction only" or the "unknown function" families. Additionally, each gene was 

assigned to only a single function.   

 

Protein localization of E. coli K12 genes has been reported previously (Riley et al., 

2006). Conditionally-essential gene enrichment for envelope proteins was calculated 

relative to the Keio Collection essential genes (Baba et al., 2006) using Fisher’s exact 

test. 
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Orphan genes were identified previously, as were ortholog counts across bacterial 

clades for all E. coli K12 genes (Hu et al., 2009). These counts were used to assign all 

strains in our dataset to γ-proteobacteria-only, proteobacteria-only, or broadly-conserved 

categories. Genes assigned to the γ-proteobacteria-only category were those for which 

no orthologs were identified outside the γ−proteobacteria. The proteobacteria-only class 

contains genes with orthologs outside the γ-proteobacteria, but not outside the 

proteobacteria. Broadly conserved genes were defined as those for which orthologs had 

been identified outside the proteobacteria. 

 

RNA isolation, cDNA preparation and Quantitative RT-PCR 

Cultures were grown to OD600 of 0.3. Samples (8 ml) were harvested and added to ice-

cold 5% water-saturated phenol in ethanol solution, centrifuged for 2 min, and the cell 

pellets were flash-frozen in liquid nitrogen before storing at -80 °C. RNA was extracted 

using the hot-phenol technique, with modifications. Briefly, cell pellets were resuspended 

in 500 µl of lysis solution (320 mM Na acetate, pH 4.6, 8% SDS, 16 mM EDTA), and 

mixed with 1 ml of water-buffered phenol. The samples were incubated at 65 °C for 5 

min with intermittent mixing. The samples were then placed on ice for 5 min and 

centrifuged for 10 min at 4 °C. The supernatant was extracted twice with phenol-

chloroform, precipitated with 2.5 volumes of 100% ethanol and washed with 70% 

ethanol. The RNA pellet was air dried and resuspended in 85 µl of RNase free water. 

Genomic DNA was removed from the samples using Turbo DNA-free DNAse Treatment 

according to the manufacturer's directions for rigorous DNase treatment (Applied 

Biosystems, Foster City, CA, USA). cDNA was prepared for qRT-PCR as previously 

described using 5 µg of input RNA (Cummings et al., 2006). 
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Quantitative RT-PCR reactions were carried out using Stratagene Brilliant II Sybrgreen 

master mix according to the manufacturer's directions (Agilent Technologies, La Jolla, 

CA, USA), and 6 pmol of each forward and reverse primer (Integrated DNA 

Technologies). Primer sequences are available upon request. Real-time PCR was 

performed with a Stratagene Mx3000P sequence-detection system (Agilent 

Technologies). Data were analyzed as described (Vandesompele et al., 2002) with recA 

and gyrA as references. 

Genomic Context Analysis 

For all genomic context plots, base pair coordinates for each gene were adjusted to 

center the chromosome around the origin of replication (oriC = 0 base pairs). Each trace 

(solid line) represents relative enrichment for the designated gene class in 100 kb 

windows beginning at the origin of replication and sliding by a 1 kb interval. Enrichment 

values were calculated using the following approach: 

 

Let x be the number of genes in a given class (i.e. responsive genes) in a 100 kb 

window out of m genes in that window; let f be the fraction of genes in that class in the 

whole genome. Our enrichment value is (x/m - f). If we wish to test the hypothesis that 

x/m = f, the chi-squared test statistic would be m*(x/m-f)^2. Thus, we used it as our 

enrichment measure. High (or low) enrichment values would indicate association 

between class membership and genomic position. Note that this is based on a one-

sample test for a proportion. For visual purposes, we plotted the square root of the 

enrichment values. 

 

The significance of the enrichment is not straightforward to establish since there are 

correlations between neighboring enrichment values (because of overlapping windows). 
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To find out how high (or low) enrichment values would be under the null hypothesis of no 

association between genomic position and class membership, we used a permutation 

test. Under the null hypothesis, class membership and genomic position would be 

exchangeable. Therefore, we created 1000 random permutations of the data where 

class membership of genes was permuted. The max (and min) enrichment values from 

each permutation were recorded. These provide us with the distribution of the max (and 

min) enrichment values under the null hypothesis. We used the 95th and 5th percentiles 

of the max and min enrichment values, respectively, to establish our thresholds of 

positive and negative spatial enrichment corresponding to a p-value of 0.05. 

 

Coding strand assignments were reported previously (Baba et al., 2006), and were 

inverted for all genes on the left arc of the oriC-centered chromosome to standardize the 

meaning of the strand designation for all genes. Plus strand indicates the gene is 

transcribed in the same direction as DNA replication, whereas minus strand indicates the 

gene is transcribed in the opposite direction of DNA replication. Strand bias values were 

calculated using the following approach: 

 

Let x be the fraction of genes in a given class (i.e. responsive genes) on the plus strand, 

and y be the fraction of genes in that category on the minus strand. Also let m be the 

number of genes on the plus strand in the whole genome, and n be the number of genes 

on the minus strand in the whole genome. To test for strand bias in a given class, we 

used the formula (x-y) / sqrt((1/m)+(1/n)). This statistic is based on a two-sample test of 

a proportion. 

 

To establish statistical significance of the strand bias value, we used a permutation test 

similar to the one described above for genomic context enrichment values. P-values 
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were calculated directly based on 100,000 permutations of the class designations as 

described above for genomic context enrichment calculations. 

 

Drug Network Analysis 

Gene Ontology Biological Process associations were obtained from the Gene Ontology 

and EcoliWiki collaborative annotation for E. coli K-12 version 1.21 (www.ecocyc.org). 

Drug-GO scores used to build the network in Figure 7 were generated using the 

hypergeometric probability density function in Matlab. Using the binary phenotype/no 

phenotype data produced as described above (Phenotype Analysis section), this 

procedure tested for relative enrichment of phenotypes within a GO biological process 

relative to the entire dataset for each of the 324 screens. Scores were produced by 

calculating the negative natural logarithm of the resulting p-values, and the sign of the 

interaction (positive or negative) was re-attached by calculating the mean of all 

condition-gene scores underlying the phenotypes in a given group. All conditions tested 

in a concentration series were then collapsed into a single value by taking the mean of 

Drug-GO scores for each GO group across the concentration series. All connections 

used to build the network represent Drug-GO interactions with a p-value of 10-3 or lower. 

 

Drug-Drug correlations in the network represent Pearson correlation coefficients of 0.32 

or higher, which corresponds to a threshold of +2 standard deviations in the distribution 

of all pairwise Drug-Drug correlation coefficients. Here, condition-gene scores for drugs 

screened in a concentration series were averaged to generate a composite signature for 

each drug. These composite signatures were used for calculation of the correlation 

coefficients. 
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The network in Figure 7 was generated using Cytoscape version 2.6.3 (Shannon et al., 

2003). Clustering was based on the Edge-weighted Spring-Embedded algorithm, using 

the P-values of Drug-GO interactions and high Drug-Drug correlations to drive the 

positions of nodes in the network. 
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Chapter 3: Future Perspectives 

I have written this chapter independently. Carol Gross assisted with revisions and edits. 
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The tremendous impact of the genomic revolution has inspired the burgeoning field of 

phenomics. Following the traditional model, the gateway technologies for high-

throughput discovery of gene function were developed primarily in the model organisms, 

and recently have expanded into many applied systems. Going forward, the field will 

advance on three major fronts: screening readout technology, monoculture species 

application, and mixed community phenomics. 

 

As more approaches are adapted to sequencing platforms, researchers will have the 

ability to survey increasing swaths of phenotypic space efficiently. Especially for arrayed 

approaches, the addition of diverse phenotypic readouts will push the field beyond its 

current “fitness-centric” state. Transcriptional reporters, indicator dyes for developmental 

processes, and metabolomic integration represent coming advances, but are likely just 

the tip of the iceberg. 

 

Sequencing and genetic technologies will open up a growing list of bacterial genes and 

species for phenomic analyses. The recent demonstrations of phenomic analyses based 

on antisense RNA should allow LOF studies of essential genes in gram-positive and 

gram-negative species. Further engineering of the Mariner transposons will continue to 

expand their utility and allow for cutting edge phenomic studies of many applied and 

environmental species. 

 

Last, and perhaps most excitingly, phenomics will expand into mixed community 

applications. Exciting work has already been done examining the ability of genetically 

variant bacteria to colonize the mouse gut in controlled mixed communities (Goodman et 
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al., 2009). In-vitro coculture models also present exciting opportunities for phenomics 

aimed at deciphering complex interspecies and interkingdom relationships. 

 

Overall, the future is extremely bright for phenomics. As genomics technologies continue 

to inspire and drive the development of functional genomics technologies, phenomic 

science will take center stage, as rapid and efficient techniques to assign meaning to 

sequence will be in greater demand than ever before. 
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