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Summary 
 
T cells engineered to express chimeric antigen receptors (CARs) with tumor specificity have 
shown remarkable success in treating patients with hematologic malignancies and revitalized the 
field of adoptive cell therapy. However, realizing broader therapeutic applications of CAR-T cells 
necessitates engineering approaches on multiple levels to enhance efficacy and safety. 
Particularly, solid tumors present unique challenges due to the biological complexity of the solid-
tumor microenvironment (TME). In this Review, we highlight recent strategies to improve CAR-T 
cell therapy by engineering (1) the CAR protein, (2) T cells, and (3) the interaction between T cells 
and other components in the TME. 
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Introduction 
 
Chimeric antigen receptors (CARs) are synthetic receptors that enable T cells to recognize tumor-
associated antigens (TAAs) in a major histocompatibility complex (MHC)-independent manner. 
CAR-T cells targeting the pan–B-cell marker CD19 have shown unprecedented response rates in 
treating refractory B-cell malignancies (Maude et al., 2014; Neelapu et al., 2017) and became the 
first genetically modified cell-based therapy to receive FDA approval (Bouchkouj et al., 2019; 
O'Leary et al., 2019). However, the development of effective CAR-T cell therapy for non–B-cell 
malignancies has required more sophisticated engineering approaches to overcome tumor-
defense mechanisms such as immunosuppression, antigen escape, and physical barriers to entry 
into solid tumors. In this review, we examine current and prospective strategies to engineer CARs, 
T cells that express CARs or tumor-specific T-cell receptors (TCRs), and the interaction between 
engineered T cells and the tumor microenvironment (TME), with particular focus on improving the 
efficacy and safety of adoptive T-cell therapy for the treatment of solid tumors (Figure 1). 
 
Engineering the CAR protein 
 
Evolution of CAR Designs  
 
Kuwana et al. reported the first proof of principle of combining antibody-type antigen specificity 
with T-cell signaling by fusing the TCR constant region to the variable regions of a bacterial 
antigen-recognizing antibody (Kuwana et al., 1987). Single-chain variable fragments (scFvs), 
comprised of the variable heavy (VH) and light (VL) chains of a monoclonal antibody (mAb) 
separated by a flexible linker, are still commonly used as the extracellular antigen-sensing domain 
of CARs. The first reports of tumor-targeting CARs demonstrated that an scFv recognizing 
antigens like human epidermal growth factor receptor 2 (HER2) fused to the CD3ζ signaling 
domain can elicit tumor-specific cytotoxicity (Eshhar et al., 1993; Moritz et al., 1994; Stancovski 
et al., 1993), but T cells expressing these “first-generation” CARs that included only the CD3ζ 
chain for T-cell signaling generally failed to elicit potent antitumor effects.  
 
In the following years, second- and third-generation CARs emerged that included one or two 
costimulatory domains, respectively, drawing from the biological understanding that the 
endogenous TCR requires association with other costimulatory or accessory molecules for robust 
signaling (Chen and Flies, 2013). Most commonly derived from CD28 or 4-1BB, these 
costimulatory domains conferred more potent antitumor cytotoxicity, increased cytokine 
production, and improved proliferation and persistence of CAR-T cells (Haynes et al., 2002; Imai 
et al., 2004). The choice of costimulatory domain impacts a wide range of properties including 
metabolic pathways (Kawalekar et al., 2016), T-cell memory development (Kalos et al., 2011; 
Kawalekar et al., 2016), and antigen-independent tonic signaling (Long et al., 2015), prompting 
further research into other costimulatory domains. For example, a third-generation CAR with 
OX40 and CD28 costimulatory domains repressed CD28-induced secretion of interleukin (IL)-10, 
an anti-inflammatory cytokine that compromises T-cell activity (Hombach et al., 2012). 
Additionally, the inducible T-cell costimulator (ICOS) costimulatory domain in combination with 
either CD28 or 4-1BB costimulation increased in vivo persistence, and MyD88/CD40 
costimulation improved in vivo proliferation of CAR-T cells (Collinson-Pautz et al., 2019; Guedan 
et al., 2018). 
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More recently, fourth-generation CARs that incorporate additional stimulatory domains, 
commonly referred to as “armored" CARs, have been reported. In one example, Chmielewski et 
al. engineered armored CAR-T cells termed “T cells redirected for universal cytokine-mediated 
killing” (TRUCK) to secrete the proinflammatory cytokine IL-12 to stimulate innate immune cells 
against the tumor and resist inhibitory elements of the TME, including regulatory T (Treg) cells 
and myeloid-derived suppressor cells (MDSCs) (Chmielewski et al., 2014; Pegram et al., 2012). 
The secretion of other soluble factors have been studied, including IL-15 or IL-18 to enhance T-
cell proliferation, as well as the combination of CCL19 and IL-7 to recruit endogenous immune 
cells and establish a memory response against tumors (Adachi et al., 2018; Hoyos et al., 2010; 
Hu et al., 2017).  
 
In addition to the evolution of CAR designs outlined above, the modularity of the four major 
components of a CAR—extracellular antigen-sensing domain, extracellular hinge or spacer 
domain, transmembrane domain, and intracellular signaling domain—has enabled further 
optimization of each of these components to improve the efficacy of CAR-T cell therapy. These 
engineering efforts are well-summarized in other reviews (Labanieh et al., 2018; Rafiq et al., 
2020). Here, we focus our attention on strategies that enable T cells to expand beyond the hard-
wired, single-input, single-output signaling capability programmed by conventional CAR designs 
(Figure 2). 
 
Combinatorial Antigen Sensing for Logic-Gated T-Cell Activation 
 
Boolean logic gates have been utilized for the combinatorial detection of multiple antigens by 
CAR-T cells to improve their safety and antitumor efficacy (Figure 2A). AND-gate logic requires 
the co-presence of two different antigens to activate the CAR-T cell, and this increased 
specification reduces the risk of either off-target recognition or “on-target, off-tumor” toxicities, in 
which healthy tissues that express the same antigen as tumor cells suffer collateral damage. The 
synthetic Notch (synNotch) receptor—which triggers inducible target-gene expression upon 
recognition of a cell surface-bound ligand—was engineered to recognize a TAA and induce the 
expression of a CAR, which can subsequently trigger T-cell activation upon recognizing a second 
TAA (Roybal et al., 2016). This strategy has been shown to reduce systemic toxicity compared to 
constitutive CAR expression, provided that the off-tumor target is not spatially proximal to the 
tumor cells (Srivastava et al., 2019). Since there is a temporal delay between the recognition of 
TAA #1 by synNotch and the recognition of TAA #2 by CAR, a given T cell could have its synNotch 
receptor triggered by TAA #1 from a tumor cell but subsequently attack a healthy cell expressing 
TAA #2. An alternative AND-gate approach separates the CD3ζ chain and costimulatory domain 
into two constitutively expressed receptors each recognizing different antigens, such that the 
CAR-T cell is optimally activated only in the simultaneous presence of both antigens (Kloss et al., 
2013; Wilkie et al., 2012). However, this approach often suffers from “leakiness” due to the fact 
that first-generation CARs containing only the CD3ζ chain are already signaling-competent. Yet 
another strategy programs T cells to deliver a conditionally active cytotoxic protein upon CAR- or 
TCR-mediated detection of TAA #1 on the cell surface; the engineered protein becomes cytotoxic 
if and only if it detects TAA #2 inside the target cell, thus requiring both antigens to be expressed 
by the same target cell to trigger robust killing (Ho et al., 2017). 
 
CAR-T cells programmed to execute AND-NOT logic can also help prevent toxicities against 
healthy cells. This strategy utilizes an inhibitory CAR (iCAR) that targets an antigen found on 
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healthy tissue, and pairs it with an activating CAR that targets a TAA.  In a proof-of-principle study, 
a prostate-specific membrane antigen (PSMA)-targeting iCAR that incorporates the programmed 
cell death protein 1 (PD-1) inhibitory signaling domain was co-expressed with a second-
generation CD19 CAR, and the iCAR inhibited CAR-T cell activation in the presence of PSMA 
(Fedorov et al., 2013).  
 
While AND and AND-NOT logic can improve the safety of CAR-T cells by increasing specificity, 
OR-gate logic has been utilized to increase antitumor efficacy by circumventing antigen escape, 
or loss of the targeted epitope by tumor cells. An OR-gate CAR can recognize two different TAAs, 
and the binding of either antigen induces T-cell activation. One OR-gate strategy utilizes the 
pooled mixture of two populations of CAR-T cells (CARpool), each expressing a monospecific 
CAR. A variation on this theme is to sequentially administer two different CAR-T cell products 
(Shah et al., 2020; Shalabi et al., 2018). Another strategy is the co-expression of two separate 
CARs in each T cell (dual CAR) (Ruella et al., 2016). Yet another approach uses tandem bispecific 
CARs (TanCAR) that comprise two scFv domains separated by a linker on one receptor chain, 
and this strategy was shown to be functionally superior to both the CARpool and dual-CAR 
approaches (Hegde et al., 2016; Zah et al., 2020). In particular, CD19/CD20 and CD19/CD22 
bispecific CARs have been characterized for the treatment of B-cell malignancies (Fry et al., 2018; 
Qin et al., 2018; Zah et al., 2016), and are in clinical trials for lymphoma and ALL, respectively 
(NCT04007029, NCT04215016, NCT03919526, NCT04303520).  
 
ON/OFF Switches for Controllability and Safety 
 
CAR modifications to improve safety and controllability have also taken the form of externally 
inducible or self-regulating ON/OFF switches. Conventional CAR-T cells are “always on,” 
meaning their CARs are constitutively expressed and are always capable of signaling upon 
antigen stimulation. However, this is not always desirable when CAR-derived toxicity is an 
anticipated risk. In addition to the off-target and “on-target, off-tumor” toxicities discussed 
previously, various systemic toxicities have also been observed in patients treated with CAR-T 
cells. Common examples include cytokine release syndrome (CRS) (Fitzgerald et al., 2017; 
Grupp et al., 2013; Schuster et al., 2017), neurotoxicity or “CAR-related encephalopathy 
syndrome” (CRES) (Grupp et al., 2013; Lee et al., 2019a; Schuster et al., 2017), tumor lysis 
syndrome (TLS), and anaphylaxis (Maus et al., 2013). It has been hypothesized that modulation 
of CAR-T cell activity in space and time can prevent or significantly lessen the severity of toxicities 
associated with CAR-T cell therapy while maintaining its antitumor efficacy.  
 
One approach to modulate CAR-T cell activity is to regulate the presence of functional CARs on 
the surface of engineered T cells by adjusting either the stability or the conformation of the CAR 
protein itself (Figure 2B). As examples of the former strategy, CARs have been fused to 
degradation tags that can be inactivated either by small-molecule binding (Weber et al., 2020) or 
under hypoxic conditions (Juillerat et al., 2017). The default state in such systems is “off,” and the 
removal or inactivation of the degradation tag is required to stabilize the CAR protein, thus 
enabling CAR-mediated T-cell activation upon antigen stimulation. An alternative design in which 
the CAR protein is present by default but turned off through the administration of a small-molecule 
drug has also be demonstrated (Juillerat et al., 2019). 
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Instead of modulating protein half-life, controlling the conformation of the CAR protein can also 
regulate the availability of functional CARs, such that the receptor is signaling-competent only 
under specified conditions. For example, the antigen-binding domain of CARs can be “masked” 
by a built-in inhibitory peptide, such that the CAR’s functional conformation is acquired only after 
the inhibitory peptide has been cleaved by proteases commonly active in the TME (Han et al., 
2017).  
 
Adapter-Dependent CARs 
 
Alternatively, T cells can be engineered to express a receptor that must be complemented by an 
additional protein component before the resulting complex is capable of translating antigen 
recognition to T-cell activation (Figure 2C). Urbanska et al. reported a “universal” receptor 
comprising a biotin-binding domain fused to an intracellular T-cell signaling domain. T cells 
expressing this biotin-specific receptor can, in principle, be directed against any target cell that 
has been labeled with a biotinylated antibody (Urbanska et al., 2012). Two advantages of this 
strategy include the abilities to (1) control the ON/OFF state of the T cell through administering or 
withholding the biotinylated antibody and (2) use the same biotin-specific receptor to target a wide 
variety of TAAs by changing the specificity of the biotinylated antibody. The concept of using a 
universal CAR coupled with one or more antigen-targeting adaptor proteins to overcome tumor 
heterogeneity and mitigate toxicity soon opened the floodgates for other adapter-dependent CAR 
designs (Bachmann, 2019; Cartellieri et al., 2016; Herzig et al., 2019; Lee et al., 2019c; Qi et al., 
2020; Raj et al., 2019; Rodgers et al., 2016), including a small molecule adapter, which binds to 
both fluorescein isothiocyanate (FITC) and folate, that alleviated CRS-like toxicity in an NSG 
mouse model (Lee et al., 2019b).  
 
Expanding upon the concept of constitutively expressing a universal receptor on the T-cell surface 
combined with an externally administered adaptor protein to dictate antigen specificity, Cho et al. 
reported a SUPRA CAR system that can program a variety of Boolean logic gates in engineered 
T cells by expressing multiple base receptors, each with multiple potential adaptor protein 
partners reconstituted by leucine-zipper dimerization (Cho et al., 2018). Such a system supports 
the possibility of simultaneously increasing specificity through the use of AND or AND-NOT gates 
while addressing tumor heterogeneity by targeting multiple antigens with different adaptor 
proteins. However, the versatility of multi-component systems comes at the cost of an increased 
number of parameters that must be optimized, including the half-life, biodistribution, and 
interaction dynamics among the adaptor protein, base receptor, and the engineered T cell itself. 
Therefore, it remains to be seen whether the complex signal processing achievable through 
adaptor-dependent CAR designs will translate to robust therapeutic candidates. 
 
 
Engineering the CAR-Expressing Cell 
 
Safety Controls on CAR-T Cell Activity 
 
In addition to engineering the CAR protein itself, engineering approaches applied at a cellular 
level to modulate T-cell activity can also significantly impact therapeutic efficacy and safety. For 
example, transient CAR expression resulting from mRNA electroporation instead of viral 
integration can mitigate toxicities induced by CARs that cross-recognize healthy tissue (Beatty et 
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al., 2014; Tchou et al., 2017; Wiesinger et al., 2019). Another safeguard against severe toxicity is 
the implementation of suicide genes that enable the depletion of engineered T cells by the 
administration of small-molecule drugs (Figure 3A) (Marin et al., 2012). For example, CAR-T cells 
targeting the CD44v6 antigen for the treatment of leukemia and myeloma have been engineered 
to express herpes simplex virus thymidine kinase (HSV-TK), which enabled effective elimination 
of the CAR-T cells upon exposure to ganciclovir in vitro (Casucci et al., 2018). However, 
expression of viral HSV-TK raises concerns of immunogenicity and requires three days of 
ganciclovir exposure to achieve effective T-cell elimination (Marin et al., 2012). An alternative 
approach using the inducible caspase 9 (iCasp9) suicide gene has been shown to eliminate >90% 
of engineered cells within 30 minutes of drug administration in human patients (Di Stasi et al., 
2011). iCasp9 contains the intracellular domain of the pro-apoptotic protein caspase 9 fused to 
FK506-binding protein (FKBP). The small molecule AP1930 facilitates the dimerization of FKBP 
and activation of the fused caspase 9, inducing apoptosis in cells expressing the iCasp9 protein 
(Straathof et al., 2005). Additionally, the expression of transgenes for the surface proteins CD20 
or truncated epidermal growth factor receptor (tEGFR) can also facilitate suicide mechanisms. 
The FDA-approved mAbs rituximab and cetuximab bind to CD20 and tEGFR, respectively, and 
the resulting antibody-dependent cellular cytotoxicity (ADCC) can be used to eliminate T cells 
engineered to express these antigens (Griffioen et al., 2009; Serafini et al., 2004; Wang et al., 
2011).  
 
While suicide genes can efficiently deplete CAR-T cells to counter toxicities, the activation of a 
suicide gene also results in the irreversible termination of the therapy. An alternative reversible 
strategy utilizes dasatinib, a tyrosine kinase inhibitor that interferes with the lymphocyte-specific 
protein kinase (LCK), thus inhibiting CD3ζ phosphorylation and CAR activation. Dasatinib has 
been shown to function as a reversible ON/OFF switch of CAR-T cell activity, where the cessation 
of dasatinib administration rapidly reversed its inhibitory effects, highlighting its potential as an 
emergency drug for potentially lethal toxicities such as CRS and CRES (Mestermann et al., 2019; 
Weber et al., 2019).  
 
Regulated CAR Expression to Improve CAR-T Cell Safety 
 
As an alternative to post-translational regulation of CAR stability and function, transcriptional 
regulation can provide another tunable handle to improve CAR-T cell safety (Figure 3B). For 
example, in the Tet-ON system, the small molecule doxycycline (Dox) acts as an “ON switch,” 
where CAR expression is induced by the reverse tetracycline transactivator (rtTA) protein only in 
the presence of Dox (Sakemura et al., 2016). Conversely, in the Tet-OFF system, Dox acts as an 
“OFF switch” by abolishing the ability of tetracycline transactivator (tTA) to activate CAR 
transcription; this system was used to reversibly inhibit deleterious CAR signaling and T-cell 
fratricide in CD5 CAR-T cells (Mamonkin et al., 2018). Additionally, response to a tumor-
associated environmental cue could be achieved through inducible promoters responsive to 
hypoxia-inducible factor (HIF)-1α, activating CAR expression only in hypoxic environments (Ede 
et al., 2016). Finally, as previously described, the synNotch receptor enables inducible CAR 
transcription upon binding to a membrane-bound ligand (Roybal et al., 2016; Srivastava et al., 
2019). 
 
Site-Specific CAR Transgene Insertion and Allogeneic Compatibility Engineering 
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The examples of regulated gene expression provided above utilize synthetic inducible promoters, 
and the entire gene-expression cassette is typically integrated into the T-cell genome using 
retroviral or lentiviral vectors, leading to variable integration sites and copy numbers. An 
alternative method to achieve dynamic CAR expression profiles is to integrate the transgene into 
specific genetic loci regulated by endogenous transcriptional machinery. A variety of gene-editing 
technologies including clustered regularly interspaced short palindromic repeats (CRISPR) and 
CRISPR-associated protein 9 (Cas9), transcription activator-like effector nucleases (TALENs), 
and zinc-finger nucleases (ZFNs) have made this a feasible approach in T-cell engineering (Chen, 
2015). For example, Eyquem et al. demonstrated that CRISPR/Cas9-mediated insertion of the 
CD19 CAR transgene into the TCRα constant (TRAC) locus results in CAR-T cells with superior 
in vivo function compared to retrovirus-mediated random CAR-transgene insertion (Eyquem et 
al., 2017), although more recent evidence suggests whether site-specific CAR integration into the 
TRAC locus improves T-cell function may depend on the specific CAR construct used (Zah et al., 
2020). A compelling example of the transgene insertion site influencing CAR-T cell function 
comes from the case of a chronic lymphocytic leukemia (CLL) patient, whose disease regression 
was observed to coincide with the clonal expansion of T cells carrying the CD19 CAR transgene 
inserted into the methylcytosine dioxygenase ten-eleven translocation 2 (TET2) locus (Fraietta et 
al., 2018). Combined with a pre-existing hypomorphic mutation in the patient’s other TET2 allele, 
this CAR insertion resulted in the loss of wildtype TET2, a gene that encodes for a regulator of 
DNA methylation and blood cell formation. This fortuitous CAR insertion/TET2 ablation event led 
to an altered epigenetic landscape that conferred profound proliferative capability and a central-
memory phenotype to the engineered T cells (Carty et al., 2018; Fraietta et al., 2018).  
 
Gene-editing technologies have also enabled the elimination of endogenous genes in support of 
allogeneic T-cell therapy (Table 1). T-cell products derived from healthy donors can overcome 
manufacturing challenges associated with autologous cell therapy, such as the difficulty to obtain 
enough high-quality T cells from heavily pre-treated patients with advanced disease. However, 
allogeneic T-cell transfer requires the elimination of the endogenous TCR to prevent graft-versus-
host disease (GvHD), and the removal of class-I major histocompatibility complex (MHC-I) has 
been proposed to minimize allograft rejection (Liu et al., 2017). To this end, Torikai et al. 
demonstrated ZFN-mediated abrogation of TCRαβ or human leukocyte antigen (HLA)-A 
expression in CD19 CAR-T cells (Torikai et al., 2012; Torikai et al., 2013). In addition to preventing 
GvHD, gene editing has been utilized to protect CAR-T cells from lymphodepletion, which is a 
common preconditioning treatment administered prior to CAR-T cell infusion to improve the 
efficacy of the transferred cells. For example, TALEN-mediated simultaneous disruptions of 
TCRαβ/CD52 or TCRαβ/deoxycytidine kinase (dCK) have been shown to confer CD19 CAR-T 
cells with resistance to anti-CD52 or dCK phosphorylation-dependent lymphodepleting regimens, 
respectively (Qasim et al., 2017; Valton et al., 2015).  
 
In the studies referenced above, endogenous gene disruption and CAR transgene integration 
were independently executed, yielding heterogeneous CAR-T cell populations. Georgiadis et al. 
coupled gene-editing to CAR integration by incorporating a single-guide RNA (sgRNA) element 
into the U3 region of the 3’ long terminal repeat (LTR) sequence of the CAR-encoding lentiviral 
vector. After electroporation of Cas9 mRNA, magnetic bead-based selection for edited cells 
resulted in highly enriched CAR+ TCR- populations (Georgiadis et al., 2018). In another strategy, 
Ren et al. used a “one-shot” CRISPR system with multiple sgRNA expression cassettes in one 
CAR-encoding lentiviral vector to simultaneously knock out the endogenous TCR and Beta-2 
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microglobulin (β2M), an essential subunit of the HLA-I molecule, to generate CD19 CAR-T cells 
suitable for allogeneic therapy (Ren et al., 2017b).  
 
Knockout of Negative Regulators  
 
Gene-editing technologies can also be used to abrogate the expression of negative regulators of 
T-cell activity (Table 1). Tumor cells frequently upregulate ligands to immune checkpoint 
receptors, such as cytotoxic T-lymphocyte–associated antigen 4 (CTLA-4) and PD-1 expressed 
on T cells, leading to inhibition of T-cell activity in the TME (Buchbinder and Desai, 2016). 
Immune-checkpoint blockade using antibodies targeting CTLA-4, PD-1, or PD-1 ligand (PD-L1) 
has revolutionized the field of immuno-oncology in recent years (Wei et al., 2018). An alternative 
approach to checkpoint blockade is the ablation of checkpoint-receptor expression on engineered 
T cells. Menger et al. demonstrated that PD-1 knockout through TALEN-mediated editing in 
melanoma-reactive CD8+ T cells and fibrosarcoma-reactive polyclonal T cells enhanced the 
persistence of the modified T cells, augmenting their antitumor activity against syngeneic tumor 
models and establishing long-term antitumor memory (Menger et al., 2016). Additionally, 
CRISPR/Cas9-mediated disruption of PD-1 in CD19 CAR-T cells enhanced CAR-T cell 
cytotoxicity toward PD-L1+ tumor xenografts in vivo (Rupp et al., 2017). The first CRISPR/Cas9-
edited cell therapy trial conducted in the U.S. evaluated the adoptive transfer of autologous T cells 
genetically modified to express a New York esophageal squamous cell carcinoma 1 (NY-ESO-
1)–targeting TCR while eliminating endogenous TCRαβ and PD-1 expression; recent results from 
the trial confirmed the safety and feasibility of CRISPR-edited cell therapy for cancer (Stadtmauer 
et al., 2020). 
 
In addition to PD-1 knockout, elimination of the metabolic regulator REGNASE-1 and CD3-
signaling regulator diacylglycerol kinase (DGK) has also been shown to enhance T-cell function 
in vitro and in vivo (Jung et al., 2018; Riese et al., 2013; Wei et al., 2019). Similar to PD-1, 
lymphocyte-activation gene 3 (LAG3) is known as a T-cell exhaustion marker, and it has been 
found to inhibit the effector function of T cells and enhance the suppressive function of Tregs 
(Zhang et al., 2017). However, CRISPR/Cas9-mediated deletion of LAG3 in CD19 CAR-T cells 
did not result in a discernable phenotype, perhaps due to compensatory effects from PD-1 (Woo 
et al., 2012; Zhang et al., 2017).  
 
Several studies have reported the feasibility of multiple knockouts using CRISPR/Cas9 in CAR-T 
cells to achieve the dual goals of reducing alloreactivity and improving T-cell function. Triple-
targeting of the TRAC, B2M, and PD-1 loci has been demonstrated by electroporation of 
Cas9:sgRNA ribonucleoprotein (RNP) complex (Liu et al., 2017) or by electroporation of mRNA 
encoding Cas9 and sgRNAs into CAR-T cells (Ren et al., 2017a). Furthermore, triple targeting of 
the TRAC, B2M, and FAS loci using a lentiviral vector encoding both the sgRNAs and a CD19-
targeting CAR and electroporation of Cas9 mRNA resulted in reduced alloreactivity and prolonged 
T-cell survival by abrogating pro-apoptotic Fas/FasL signaling (Ren et al., 2017b). Finally, 
CRISPR/Cas9-mediated deletion has been used to improve the safety of CAR-T cells by 
disrupting the expression of CRS-associated cytokines, such as granulocyte-macrophage colony-
stimulating factor (GM-CSF) (Sterner et al., 2019). 
 
Receptors that Rewire an Inhibitory Input to a Stimulatory Output 
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While CAR-T cells have shown promising therapeutic efficacy against hematologic malignancies, 
their targeting of solid tumors has been stymied by a number of challenges. In addition to antigen 
heterogeneity, tumor cells produce tumorigenic and immunosuppressive factors in the TME, and 
this inhibitory environment is further compounded by immunosuppressive cell types such as 
MDSCs and Tregs (Labanieh et al., 2018). Among the immunosuppressive soluble factors 
commonly found in the TME, transforming growth factor beta (TGF-β) is a particularly potent 
cytokine that drives T-cell differentiation into Tregs, as well as macrophage polarization to the 
immunosuppressive M2 phenotype (Tormoen et al., 2018). The engineering of a TGF-β–
responsive CAR demonstrated that CARs can be used to (1) sense a soluble factor and (2) rewire 
T-cells to convert an inhibitory signal to a trigger of antitumor activity (Figure 4) (Chang et al., 
2018; Hou et al., 2018). TGF-β–responsive CAR-T cells were demonstrated to proliferate and 
produce T helper type 1 (Th1)-associated cytokines in the presence of soluble TGF-β, as well as 
protect nearby cells from the inhibitory effects of TGF-β, likely through the combined effects of 
TGF-β sequestration and paracrine Th1 cytokine signaling (Chang et al., 2018; Hou et al., 2018).  
 
Signal rewiring can also be achieved with “switch receptors,” which are chimeras comprising an 
ectodomain that binds a suppressive molecule fused to an endodomain that drives a stimulatory 
pathway (Figure 4). IL-4 is a cytokine with complex roles in the TME, such as inducing M2 
polarization, promoting tumor growth, and suppressing tumor-specific effector T cells (Tormoen 
et al., 2018; Wilkie et al., 2010). IL-4 switch receptors consisting of the IL-4 receptor α (IL-4Rα) 
ectodomain fused to either the IL-7Rα endodomain or the βc receptor subunit common to IL-2 and 
IL-15 signaling have been shown to paradoxically enhance T-cell proliferation in the presence of 
IL-4 (Leen et al., 2014; Wilkie et al., 2010). Consequently, the co-expression of the IL-4Rα:βC 
switch receptor in CAR-T cells augmented their antitumor capacity (Wilkie et al., 2010). More 
recently, Roth et al. used a pooled knock-in screen using CRISPR/Cas9 coupled with single-cell 
RNA sequencing (scRNA-seq) to evaluate a panel of transgenes integrated into the TRAC locus. 
Through this analysis, a novel TGFβR2:4-1BB switch receptor was identified as the lead 
candidate for improved T-cell fitness and solid tumor clearance (Roth et al., 2020).  
 
Switch receptors can also mitigate the suppressive effects of immune checkpoints. For example, 
CTLA-4:CD28 and PD-1:CD28 switch receptors were shown to enhance the activity of tumor-
specific T cells (Liu et al., 2016; Shin et al., 2012). As another checkpoint receptor, T-cell 
immunoreceptor with Ig and ITIM domains (TIGIT) binds to CD155 or CD112 on tumor cells, and 
these interactions hinder cytokine production and effector function of T cells. To blunt these 
effects, Hoogi et al. designed a TIGIT:CD28 switch receptor that enhanced cytokine production 
and activation of T cells, as well as delayed tumor growth in vivo when combined with a 
melanoma-specific TCR (Hoogi et al., 2019). 
 
Yet another set of engineering strategies focuses on addressing tumorigenic factors that are not 
directly expressed on T cells or tumor cells (Figure 4). For example, vascular endothelial growth 
factor-A (VEGF-A) is a tumor-derived soluble factor that promotes tumor growth and metastasis 
by facilitating angiogenesis. Chinnasamy et al. co-transduced T cells with a CAR targeting VEGF 
receptor 2 (VEGFR2) and an inducible transgene encoding IL-12. These CAR-T cells 
demonstrated trafficking to the tumor vasculature, elimination of VEGFR+ MDSC subtypes that 
participate in tumor angiogenesis, and IL-12–mediated solid tumor regression (Chinnasamy et 
al., 2012). Additionally, T cells expressing a CAR that targets fibroblast activation protein (FAP) 
eliminated FAP+ tumor stromal fibroblasts that support tumor growth, augmenting T-cell 
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immunotherapy (Wang et al., 2014). However, it bears noting that strategies targeting non-tumor 
tissues can cause significant toxicity. For example, Tran et al. reported that CAR-T cells cross-
reactive to human and mouse FAP cause off-target bone marrow toxicities and cachexia (Tran et 
al., 2013).  
 
Transgene Expression to Promote T-Cell Function 
 
In addition to abolishing or rewiring inhibitory signals, the overexpression of stimulatory signals 
can also improve the activity of tumor-specific T cells. The constitutive expression of costimulatory 
ligands CD80 and 4-1BBL in PSMA-targeting CAR-T cells showed superior activity against 
prostate tumor cells by engaging costimulatory receptors in cis (autocostimulation) and in trans 
(transcostimulation of bystander cells) (Stephan et al., 2007). Furthermore, Zhao et al. co-
expressed the 4-1BBL costimulatory ligand with a second-generation CD19-targeting CAR with 
CD28 costimulation, and this combined costimulation led to improved antitumor functions driven 
by the continuous activation of the interferon regulatory factor 7 (IRF7)/interferon beta (IFNβ) 
pathway (Zhao et al., 2015). Yet another strategy harnesses the endogenous IL-7 signaling 
mechanism that confers improved persistence in tumor-specific T cells. Shum et al. engineered 
a constitutively active IL-7 receptor and co-expressed it with a GD2-targeting CAR, which resulted 
in enhanced survival under repeated tumor challenges in neuroblastoma and glioblastoma 
xenograft models (Shum et al., 2017).  
 
The aberrant expression of the colony-stimulating factor 1 (CSF-1) in the TME drives 
macrophages to the M2 phenotype and promotes tumor growth. Several clinical trials of small 
molecules and mAbs targeting the CSF-1/CSF-1R axis in combination with other mAbs and/or 
chemotherapy are under way for the treatment of solid tumors (NCT01525602, NCT02777710, 
NCT02323191, NCT02760797, NCT02923739). In the context of CAR-T cells, the co-expression 
of CSF-1R, which T cells do not naturally express, was shown to confer CSF-1 responsiveness 
and activated the RAS/MEK/Erk kinase pathway to enhance T-cell proliferation, cytokine 
production, and CSF-1–driven chemotaxis (Lo et al., 2008). 
 
Metabolic Reprogramming of T Cells 
 
T-cell metabolism, or the manner in which T cells utilize nutrient sources, has consequential 
effects on their differentiation state and effector function. The architecture of the CAR protein can 
impact the metabolic profiles of CAR-T cells. For example, T cells expressing CARs with 4-1BB 
costimulation favor the oxidative breakdown of fatty acids characteristic of the central-memory 
phenotype, accompanied by enhanced proliferation and persistence, while T cells expressing 
CARs with CD28 costimulation favor aerobic glycolysis characteristic of the effector-memory 
phenotype (Kawalekar et al., 2016).  
 
Due to the intimate relationship between T-cell metabolism and function, reprogramming the 
metabolic profile of CAR-T cells can potentially increase their clinical efficacy. The TME of solid 
tumors has an overabundance of potassium (K+) released by necrotic tumor cells, which increases 
the intracellular K+ concentration in infiltrating T cells, downregulating Protein kinase B 
(Akt)/mammalian target of rapamycin (mTOR) signaling and impairing T-cell activation after TCR 
ligation. As a counterstrategy, the overexpression of K+ channels was shown to increase 
Akt/mTOR activity and rescue T-cell effector functions by facilitating K+ efflux and lowering 
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intracellular K+ levels (Eil et al., 2016). Additionally, elevated K+ in the TME and the resulting 
perturbation of the transmembrane electrochemical gradient limit nutrient uptake by T cells. 
Interestingly, ex vivo conditioning and activation of tumor-specific CD8+ T cells in elevated K+ to 
mimic such functional starvation in the TME led to epigenetic and metabolic reprogramming that 
maintained T-cell stemness—evidenced by improved persistence, engraftment, self-renewal, and 
multipotency—thereby enhancing their antitumor function in vivo (Vodnala et al., 2019). Further, 
Geiger et al. showed supplementing L-arginine to balance increased arginine metabolism in 
activated T cells promotes the central-memory phenotype and improves antitumor activity (Geiger 
et al., 2016).  
 
Altering the expression levels of metabolic genes can also promote an advantageous metabolic 
profile. Phosphoenolpyruvate carboxykinase 1 (PKC1) increases the production of 
phosphoenolpyruvate (PEP), which sustains TCR-mediated, Ca2+-induced nuclear factor of 
activated T-cells (NFAT) signaling and effector functions, and the overexpression of PKC1 in T 
cells has been shown to restrict tumor growth in melanoma-bearing mice (Ho et al., 2015). 
Leukemic cells drive T-cell dysfunction by causing suppressed Akt/mTORC1 signaling, 
decreased expression of the glucose transporter Glut1, and reduced glucose uptake. Accordingly, 
the overexpression of Akt or Glut1 was demonstrated to partially rescue T-cell activity (Siska et 
al., 2016). Additionally, Yang et al. knocked out Acetyl-CoA acetyltransferase (ACAT1), a 
cholesterol esterification enzyme, in CD8+ T cells, and the resulting increase in the plasma 
membrane cholesterol concentration enhanced TCR clustering and signaling (Yang et al., 2016). 
Lastly, PPAR-gamma coactivator 1α (PGC1α) is a metabolic regulator downregulated in tumor-
infiltrating T cells. It facilitates mitochondrial biogenesis by transcriptional coactivation, and its 
overexpression in CD8+ T cells rescued their mitochondrial function and protected their metabolic 
and effector activities in the TME (Scharping et al., 2016). 
 
Interplay of T-Cell Phenotypes, Function, and Versatility 
 
The differentiation state of T cells influences their longevity and efficacy, motivating the isolation 
or enrichment of specific T-cell subtypes in CAR-T cell manufacturing. Generally, the selection of 
less differentiated phenotypes—naïve (TN), memory stem (TSCM), and central memory (TCM)—
imparts greater engraftment and efficacy than the more differentiated counterparts—effector (TE) 
and effector memory (TEM) (Sadelain et al., 2017). Different costimulatory domains in the CAR 
protein can affect T-cell subtype distribution: CD28 costimulation tends to promote the short-lived, 
potent TEM phenotype, while 4-1BB results in enrichment of the longer-lived, self-renewing TCM 
phenotype (Kawalekar et al., 2016). It has also been shown that TN, TCM, and TEM CD4+ and CD8+ 
T cells can all be transduced and expanded as CD19 CAR-T cells, but the combination of CD8+ 
TCM and CD4+ TN subsets yields synergistic antitumor activity in vivo (Sommermeyer et al., 2016). 
TSCM cells comprise only 2–3% of peripheral blood mononuclear cells (PBMCs), but this memory 
subset possesses the highest self-renewal capacity and superior persistence, and they are 
suggested to be the primary precursors of T-cell memory establishment (Hurton et al., 2016). IL-
15 is a pro-survival cytokine fundamental to T-cell memory, and it can preserve a TSCM-like 
phenotype by inhibiting mTORC1 activity, reducing glycolysis, and improving mitochondrial 
fitness (Alizadeh et al., 2019). Hurton et al. incorporated IL-15 costimulation in CAR-T cells by co-
expressing a membrane-bound chimeric IL-15, which led to a TSCM-like molecular profile with 
improved T-cell persistence regardless of CAR stimulation (Hurton et al., 2016). In addition, the 
miR-17-92 microRNA cluster was found to be upregulated in IFNγ-producing Th1 cells compared 
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to T helper type 2 (Th2) cells, and it was found to be downregulated in T cells derived from 
glioblastoma patients (Sasaki et al., 2010). To induce Th1-like phenotype in glioblastoma-
targeting CAR-T cells, Ohno et al. co-transduced miR-17-92 with a third-generation EGFRvIII-
specific CAR; in combination with the chemotherapeutic agent temozolomide, this strategy led to 
improved cytolytic activity and protection against tumor re-challenge in vivo (Ohno et al., 2013). 
 
Stem cells are a versatile starting material for adoptively transferred cellular products due to their 
abilities to self-renew and differentiate into various cell types. Schmitt et al. showed that OP9-
DL1, a bone marrow stromal cell line that ectopically expresses the Notch ligand Delta-like-1, can 
induce the differentiation of hematopoietic progenitor cells (HPCs) into T lymphocytes (Schmitt 
and Zúñiga-Pflücker, 2002). In a subsequent study, functional CD8+ T cells were generated from 
human umbilical cord blood hematopoietic stem cells (HSCs), which possess greater self-renewal 
and potency than HPCs, in OP9-DL1 cocultures (Awong et al., 2011). More recently, an artificial 
thymic organoid (ATO) system has been shown to facilitate in vitro differentiation of human 
embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) into mature TN-like cells 
with potent antitumor efficacy and a similar transcriptional profile as primary CD8+ TN cells (Montel-
Hagen et al., 2019).  
 
Expansion of CAR Effectors beyond T cells 
 
Exosomes derived from CAR-T cells, rather than the T cells themselves, have been studied as 
an alternative effector for CAR-mediated antigen specificity and cytotoxicity. Exosomes released 
by CAR-T cells can carry the CAR and a high level of cytotoxic molecules; these tumor-specific 
cytotoxic packages can traffic into solid tumors due to their nanoscale size, while incurring a lower 
risk of CRS-related toxicities and conferring protection against the immune-checkpoint molecule 
PD-L1 due to their lack of PD-1 expression (Fu et al., 2019).  
 
Programming CARs into cell types other than T cells can further expand the versatility of the 
therapy by realizing new functions unachievable by CAR-T cells. Klinchinsky et al. recently 
demonstrated the feasibility of adenoviral transduction of a CAR into primary macrophages. The 
resulting CAR-M cells exhibited tumor-specific phagocytosis, inflammatory cytokine production, 
polarization of bystander macrophages to the immunostimulatory M1 phenotype, and cross-
presentation of the TAA to bystander T cells. Although a comparison between CAR-T and CAR-
M cells was not evaluated, the established role of macrophages as professional antigen 
presenting cells (APCs) warrants the potential of CAR-M cells to more effectively stimulate an 
adaptive antitumor immune response (Klinchinsky et al., 2020).  
 
CAR-natural killer (NK) cells can be generated from cord blood or iPSCs (Li et al., 2018; Liu et 
al., 2020), making them an attractive candidate for allogeneic, off-the-shelf products. Moreover, 
CD19-targeting CAR-NK cells have achieved robust clinical efficacy without inducing CRS, 
neurotoxicity, or GvHD in patients with B-cell lymphoid tumors, highlighting their relative safety 
compared to their T-cell counterparts (Liu et al., 2020). CAR-NK cells have been shown to exert 
potent and specific cytotoxicity toward a variety of tumor models, including leukemia, multiple 
myeloma, ovarian cancer, and glioblastoma (Chu et al., 2014; Genßler et al., 2016; Li et al., 2018; 
Quintarelli et al., 2020); as well as toward immunosuppressive cell types such as MDSCs and 
follicular helper T cells (TFH) (Parihar et al., 2019; Reighard et al., 2020). Lastly, natural killer T 
(NKT) cells possess antitumor and tumor-homing capabilities, and GD2-targeting CAR-NKT cells 
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that harness these inherent advantages exhibited effective localization to and lysis of 
neuroblastoma cells without significant toxicity (Xu et al., 2019). Taken together, these 
developments highlight both the potential for cell-based immunotherapy to expand beyond T cells 
and the applicability of the CAR technology across a variety of immune cell types. 
 
 
Engineering CAR-T Cell Interactions with the Tumor and TME  
 
The immune-evasive and immunosuppressive nature of the TME contributes to the poor 
therapeutic efficacy of CAR-T cells observed in solid tumors. Hallmarks of the TME, which have 
been extensively reviewed elsewhere (Gajewski et al., 2013; Whiteside, 2008), include (1) 
physical barriers to tumor penetration by immune cells, (2) upregulated checkpoint ligands, (3) a 
pro-tumor stromal niche, (4) abundant immunosuppressive and pro-metastatic soluble factors, 
and (5) modulated expression of chemokines to preferentially recruit leukocytes with an 
immunosuppressive phenotype. These factors have in turn driven the design of CAR-T cells that 
respond to TME elements to enhance CAR-T cell efficacy (Figure 5). 
 
Tumor Homing and Penetration 
 
The efficacy of CAR-T cell therapy in solid tumors is significantly hindered by poor immune-cell 
infiltration (Newick et al., 2017). T-cell migration is regulated through chemokine axes. Tumor 
cells can upregulate or downregulate chemokines, as well as modulate chemokine expression by 
tumor-associated cells, contributing to the poor recruitment of CAR-T cells (Oelkrug and Ramage, 
2014). Engineering CAR-T cells to overexpress receptors for chemokines that are overexpressed 
in the TME can turn a tumor’s defense mechanism against itself. For example, GD2- and 
mesothelin-targeting CAR-T cells have been engineered to co-express CCR2b, the dominant 
isoform of the chemokine receptor of CCL2, resulting in enhanced T-cell homing to CCL2-
expressing neuroblastoma and malignant pleural mesothelioma xenografts, respectively 
(Craddock et al., 2010; Moon et al., 2011). Similarly, CAR-T cells that co-express CCR4 showed 
improved migration towards tumors expressing CCL17 and CCL22 in vivo, while those expressing 
CXCR1 or CXCR2 exhibited enhanced homing towards tumor-derived IL-8 (Di Stasi et al., 2009; 
Jin et al., 2019). Once CAR-T cells reach the tumor site, their infiltration is hindered by the high-
density structural extracellular matrix (ECM) associated with solid tumor nodules. Accordingly, 
CAR-T cells engineered to express heparinase, an enzyme that degrades ECM, have been 
shown to improve tumor infiltration and overall survival in multiple xenograft models (Caruana et 
al., 2015).  
 
CAR-T cells that successfully reach solid tumors are next faced with a multitude of suppressive 
and evasive features that induce CAR-T cell dysfunction (Newick et al., 2017). To improve 
therapeutic efficacy in this immunosuppressive environment, CAR-T cells have been engineered 
to produce proteins that (1) improve CAR-T cell function in an autocrine fashion; (2) disrupt 
immunosuppressive elements; and/or (3) induce TME remodeling to enhance the endogenous 
antitumor immune response (Figure 5). Each of these strategies is discussed in detail below. 
 
Autocrine Stimulation of CAR-T Cells in the TME 
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Cytokines are signaling proteins with the ability to drastically augment or abrogate CAR-T cell 
function. Co-expressing the CAR with immunostimulatory cytokines could significantly enhance 
CAR-T cell proliferation, survival, and effector function in the immunosuppressive TME. For 
example, T cells that constitutively co-express a CD19-targeting CAR plus IL-2, IL-7, IL-15, or IL-
21 have been shown to achieve greater in vivo tumor control compared to T cells expressing the 
CAR alone (Markley and Sadelain, 2010). Interestingly, although the receptor complexes of these 
four cytokines contain the common gamma chain (γc), each cytokine differentially impacted the 
proliferation, subtype differentiation, and function of the engineered T cells, underscoring the 
complexity of T-cell biology and variety of potential outcomes achievable through different 
engineering strategies (Markley and Sadelain, 2010). T cells co-expressing IL-12, IL-15, IL-18, 
and/or IL-21 plus a CAR targeting a variety of antigens have also been described, resulting in 
improved efficacy, proliferation, and/or persistence in vivo (Batra et al., 2020; Hoyos et al., 2010; 
Hu et al., 2017; Koneru et al., 2015; Krenciute et al., 2017; Pegram et al., 2012). However, 
constitutive overexpression of immunostimulatory cytokines can also increase toxicity (Zhang et 
al., 2011). Regulatory strategies previously discussed in this review, such as inducible promoters, 
can be implemented to modulate cytokine production and associated toxicity (Liu et al., 2019).  
 
Disruption of Immunosuppressive Axes 
 
The expression of immune-checkpoint receptors and ligands such as PD-1 and PD-L1 are 
prevalent in the TME, and they can potently inhibit CAR-T cell cytotoxicity and induce anergy 
(Drake et al., 2006). Thus, immune-checkpoint blockade has strong synergistic potential with 
CAR-T cell therapy, and several ongoing clinical trials are evaluating combination therapy with 
CAR-T cells and exogenously administered checkpoint inhibitors (Grosser et al., 2019). 
Furthermore, CAR-T cells have been engineered to secrete immune-checkpoint inhibitors, 
including anti–PD-1 scFvs and anti–PD-L1 antibodies, or to express PD-1 dominant-negative 
receptors (DNRs) (Chen et al., 2017; Cherkassky et al., 2016; Li et al., 2017; Rafiq et al., 2018; 
Suarez et al., 2016). In addition to enhancing efficacy, this approach may also avoid toxicities 
associated with systemic immune-checkpoint blockade by restricting checkpoint inhibitor 
distribution to the immediate environment of the producer T cells. For example, it has been shown 
that anti–PD-1 scFvs secreted by intraperitoneally (IP) injected CAR-T cells remained localized 
at the injection site. However, when an equal number of conventional CAR-T cells were 
administered IP with exogenous anti–PD-1 antibody, the antibody was detected systemically 
within three hours (Rafiq et al., 2018). 
 
The solid-tumor milieu also houses a diverse collection of soluble factors that promote 
tumorigenesis and inhibit CAR-T cell function. For example, prostaglandin E2 (PGE2) is a 
bioactive lipid often upregulated in tumors, where it contributes to tumor survival through 
regulation of cell proliferation, migration, apoptosis, and angiogenesis (Ricciotti and FitzGerald, 
2011; Wang and Dubois, 2006). In the context of CAR-T cell therapy, PGE2, along with adenosine, 
inhibits T-cell signaling and activation though the activation of protein kinase A (PKA), thereby 
reducing T-cell proliferation and effector function (Newick et al., 2016). In two solid-tumor models 
that highly express PGE2, CAR-T cells engineered to express a peptide inhibitor of ezrin-mediated 
PKA translocation to the immune synapse exhibited improved tumor infiltration and killing (Newick 
et al., 2016). Similarly, elevated concentrations of bio-reactive chemicals such as reactive oxygen 
species (ROS) in the TME play an important role in tumorigenesis (Weinberg et al., 2019). 
Catalase is an enzyme that facilitates the decomposition of hydrogen peroxide (H2O2), an ROS 
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that impairs T-cell activity in the TME. Increasing intracellular levels of catalase by co-expressing 
the catalase gene in HER2- and carcinoembryonic antigen (CEA)-specific CAR-T cells has been 
shown to enable CAR-T cells to metabolize the suppressive H2O2, improving their tumor cytolytic 
capacity (Ligtenberg et al., 2016).  
 
The aberrant expression of cytokines in the TME plays a critical role in tumor progression and 
resistance to CAR-T cell therapy. In particular, TGF-β plays a multiplexed role in cancer 
progression through interactions with tumor cells, stroma, and both innate and adaptive immune 
cells to induce (1) the secretion of immunosuppressive chemokines, cytokines, and growth 
factors; (2) ECM remodeling and matrix deposition; (3) immunosuppressive reprogramming of 
macrophages, neutrophils, and T cells; and (4) inhibited maturation or proliferation of T cells and 
NK cells (Pickup et al., 2013). To ablate these powerful effects, CAR-T cells have been 
engineered to express a TGF-β DNR that potently inhibits endogenous TGF-β signaling, resulting 
in T cells with enhanced proliferation and antitumor efficacy in a prostate cancer xenograft model 
(Kloss et al., 2018). Based on these results, a phase-I clinical trial has been initiated to assess T 
cells co-expressing a PSMA CAR and the DNR for the treatment of relapsed and refractory 
metastatic prostate cancer (NCT03089203). The DNR is distinct from the TGF-β–targeting CAR 
and TGF-β switch receptor discussed in a previous section in that the DNR does not transduce 
any signals that can stimulate the engineered T cell. It remains to be seen whether the stimulatory 
effects of the CAR and switch receptors will confer additional clinical benefits compared to the 
DNR. 
 
In the tumor microenvironment, IL-6 is often overexpressed by tumor cells, tumor associated 
macrophages (TAMs), and other resident cells (Kumari et al., 2016). IL-6 supports tumorigenesis 
through a number of mechanisms, and plays a central role in the induction of CRS after CAR-T 
cell infusion (Lee et al., 2014). Systemic administration of tocilizumab, an mAb targeting IL-6 
receptor alpha (IL-6Rα), has become standard treatment for CRS after CAR-T cell therapy (Kotch 
et al., 2019). More recently, CD19-targeting CAR-T cells that co-express a non-signaling, 
membrane-bound IL-6 receptor (mbaIL6) were shown to sequester IL-6 while retaining in vivo 
antitumor efficacy (Tan et al., 2020). However, it remains to be seen if CAR-T cells engineered in 
this fashion can prevent CRS. 
 
TME Remodeling to Promote the Endogenous Immune Response 
 
Tumors are adept at selectively attracting or evading subsets of leukocytes, including CAR-T 
cells, to promote immune regulation or suppression (Rabinovich et al., 2007). In addition, tumors 
are often capable of inducing an immunosuppressive or pro-metastatic phenotype on the local 
stroma, as well as an anti-inflammatory or dysfunctional phenotype on resident leukocytes 
(Morgan and Schambach, 2018). Another approach to enhancing the efficacy of CAR-T cell 
therapy is to reverse this immunosuppressive-cell niche through remodeling the tumor-cellular 
composition and phenotype. To realize this, CAR-T cells have been be engineered to secrete 
cytokines or other soluble factors that induce TME remodeling in a paracrine or endocrine fashion.   
 
In germinal-center lymphomas, loss of herpesvirus entry mediator (HVEM) expression induces 
the secretion of non-redundant stroma-activating factors, resulting in acute lymphoid-stroma 
activation. The hyperactivated stroma recruits TFH cells, which support malignant B cells through 
CD40/CD40L interactions and cytokine stimulation. As a counterstrategy, CD19 CAR-T cells 
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engineered to secrete a soluble form of HVEM were shown to enhance tumor control in vivo 
(Boice et al., 2016).  
 
CAR-T cells engineered to secrete IL-12 have been shown to remodel the TME by reprogramming 
TAMs to an M1 phenotype and decreasing the presence of MDSCs and Tregs in syngeneic 
mouse models (Chinnasamy et al., 2012; Liu et al., 2019; Yeku et al., 2017). Similarly, CAR-T 
cells that constitutively secrete IL-18 can alter the TME makeup by increasing intratumoral M1 
macrophage, activated dendritic cell (DC), and activated NK cell numbers, while decreasing M2 
macrophage and Treg levels. A direct comparison of IL-12– to IL-18–expressing CAR-T cells 
indicated that IL-18 is more effective at remodeling the immunosuppressive TME in a syngeneic 
murine pancreatic-cancer model (Chmielewski and Abken, 2017). Furthermore, CD19 CAR-T 
cells expressing IL-18 induced the expansion of endogenous CD8+ T cells, NK cells, NKT cells, 
and DCs in the bone marrow, potentially contributing to the control of tumors with heterogenous 
CD19 expression in a syngeneic mouse model (Avanzi et al., 2018).  
 
Among DCs, conventional type 1 DCs (cDC1s) in particular excel at inducing immunity against 
tumors via their ability to cross-present cellular antigens and prime Th1 cells. Recently, it has 
been shown that T cells engineered to secrete Fms-like tyrosine kinase 3 ligand (Flt3L), a 
hematopoietic cell growth factor, promote intratumoral cDC1 and DC-precursor proliferation (Lai 
et al., 2020). Furthermore, when T cells were co-transduced to express Flt3L and an anti-HER2 
CAR, a combined treatment with these CAR-T cells and adjuvants induced an enhanced 
antitumor response and endogenous T-cell epitope spreading in vivo (Lai et al., 2020).  
 
CAR-T cells have also been engineered to co-express multiple immune-modulatory proteins. In 
one example, CAR-T cells were programmed to co-express CCL19 and IL-7 to induce 
endogenous immune-cell recruitment and stimulate the recruited cells, respectively. In a 
syngeneic hCD20-expressing mastocytoma mouse model, these CAR-T cells induced robust 
recruitment of endogenous T cells and DCs, resulting in enhanced and durable tumor clearance 
(Adachi et al., 2018). 
 
CAR-T cells have also been designed to modulate the TME through the expression of surface-
bound proinflammatory ligands. For example, CD40L is normally transiently expressed on T cells 
after TCR stimulation, and its interaction with the CD40 receptor on different immune cell types 
can lead to activation of APCs, licensing of DCs, as well as apoptosis of CD40+ tumor cells (Cella 
et al., 1996; Eliopoulos et al., 2000; Ridge et al., 1998). Constitutive CD40L expression on CD19 
CAR-T cells resulted in elevated surface expression of costimulatory molecules, adhesion 
molecules, HLA molecules, and the Fas death receptor on CD40+ tumor cells, thus increasing 
their immunogenicity (Curran et al., 2015). These T cells also induced the secretion of 
proinflammatory IL-12 by monocyte-derived DCs in vitro, and showed enhanced antitumor 
efficacy in vitro and in vivo (Curran et al., 2015). It was subsequently demonstrated that CD40L-
expressing CAR-T cells can license APCs in lymphatic tissues in a syngeneic immunocompetent 
mouse model, and this licensing was found to be dependent on the CD40L/CD40 interaction 
(Kuhn et al., 2019). Furthermore, increased recruitment of macrophages, DCs, and endogenous 
CD4+ and CD8+ T cells to lymphatic tissues was observed, along with the recruitment of DCs, 
CD4+ and CD8+ T cells to the tumor. Treg levels were also observed to slightly increase in the 
tumor, but the ratio of CD8+ T cells to Tregs was unchanged. Thus, CD40L-expressing CAR-T 
cells capable of remodeling the TME and lymphatic tissue activated endogenous T cells to 
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suppress antigen-negative tumor re-challenge, strongly suggesting induced epitope spreading 
(Kuhn et al., 2019). Similarly, the surface expression of 4-1BBL on CAR-T cells is proposed to 
remodel the TME through autocrine-induced secretion of type I IFNs, which may improve DC 
cross-priming, Treg inhibition, and angiogenesis suppression (Zhao et al., 2015).   
 
Finally, CAR-T cells can be engineered to facilitate the engagement of tumor cells by 
endogenous, non-engineered T cells through the secretion of bispecific T-cell engagers (BiTEs), 
which are composed of two fused scFvs. Choi et al. engineered BiTEs with one scFv targeting 
EGFR, which are overexpressed in glioblastoma cells, and the other targeting CD3 on T cells. 
EGFRvIII-targeting CAR-T cells engineered to secrete EGFR/CD3 BiTEs have been shown to 
eliminate orthotopic tumor xenografts with heterogenous EGFRvIII expression (Choi et al., 2019).  
 
 
Conclusion 
 
CAR-T cell therapy has shown great promise in treating hematologic malignancies. However, 
solid tumors pose unique challenges that require further engineering and tuning of the technology 
to successfully treat these intractable malignancies. Recent protein- and cell-engineering 
strategies have made great strides in boosting the intrinsic fitness and anti-tumor function of T 
cells, increasing tumor-targeting specificity, preventing tumor escape and relapse, as well as 
modifying the TME to enhance immunotherapeutic outcomes. Although most engineering 
strategies reported to date have focused on delivering individual desirable features, 
advancements in genome-editing methodologies and genetic circuitry design offer the possibility 
of multi-layered approaches that can simultaneously address multiple critical needs in T-cell 
therapeutics development.  
 
At the same time, the biological complexity of and potential crosstalk among different engineered 
features within the T cell, as well as among engineered and endogenous immune cells, tumor 
cells, and other tumor-associated factors, must be carefully balanced when advancing the clinical 
translation of CAR-T cells for the treatment of solid tumors. The decreasing cost and increasing 
capacity of next-generation and single-cell sequencing methods, as well as proteomic and 
metabolomic analyses, could significantly enhance our ability to understand and rationally 
manipulate these complex interactions while engineering the next generation of CAR-T cell 
therapy for solid malignancies. The growing toolbox of T-cell engineering strategies that can be 
synergistically implemented and modularly calibrated for maximum safety and efficacy will 
continue to enable innovations that aim to generate new treatment options for currently intractable 
diseases. 
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Figure Legends 
 
 
Figure 1. CAR-T Cell Engineering Approaches 
Strategies to engineer CAR-T cells for improved function in solid tumors include a focus on CAR 
engineering, T-cell engineering, and TME interaction optimization. 
 
Figure 2. Protein Engineering Strategies to Improve the Programmability, Safety, and 
Efficacy of CAR-T Cells 
(A) Combinatorial antigen recognition by AND- and AND-NOT logic using a synNotch receptor 
and iCAR, respectively, can increase antigen specificity and safety. Tandem bispecific OR-gate 
CARs can circumvent antigen escape and increase efficacy. 
(B) Engineered ON and OFF switches can easily and efficiently alter CAR-T cell activity. 
(C) Programming CARs to activate only in the presence of an adaptor or by leucine-zipper–
mediated reconstitution can increase controllability over CAR-T cell activity. 
 
Figure 3. Engineering strategies to improve CAR-T cell safety 
(A) Co-expression of suicide genes such as HSK-TV, iCasp9, CD20, and tEGFR enables 
induction of T-cell death to abort the therapy in the case of adverse events.  
(B) Tet-ON and -OFF systems allow the control of the CAR expression on the transcriptional 
level. 
 
Figure 4. Rewiring T-cell signaling with synthetic receptors 
Switch receptors rewire T-cell responses by triggering co-stimulatory signaling in the presence 
of normally inhibitory ligands. CARs responsive to environmental cues such as soluble TGF-β or 
surface antigens present on tumor-supportive tissues can enhance anti-tumor function by 
removing and converting immunosuppressive factors. 
 
Figure 5. Strategies in Optimizing CAR-T Cell and Tumor Interactions 
CAR-T cells have been engineered to utilize, reverse, or circumvent tumor-driven 
immunosuppressive factors and axes through a variety of mechanisms. 
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Tables 
 
Table 1. Targeted genome-editing strategies to enhance T-cell function 

Target locusa Motivationb Technologyc Reference 

TRAC Ablate TCRαβ expression 
to reduce alloreactivity  

ZFN (Torikai et al., 2012) 

TALEN (Qasim et al., 2017; Valton 
et al., 2015)  

CRISPR/Cas9 (Georgiadis et al., 2018) 

CRISPR/Cas9 
CAR knock-in 

(Eyquem et al., 2017; 
MacLeod et al., 2017) 

TRAC, TRBC Enhance transgenic TCR 
expression CRISPR/Cas9 (Stadtmauer et al., 2020) 

B2M Ablate HLA expression to 
reduce alloreactivity CRISPR/Cas9 (Ren et al., 2017b) 

HLA-A Ablate HLA expression to 
reduce alloreactivity ZFN (Torikai et al., 2013) 

CD52 Confer resistance to 
lymphodepletion TALEN (Qasim et al., 2017) 

dCK Confer resistance to 
lymphodepletion TALEN (Valton et al., 2015) 

PD-1 Inhibit immune-checkpoint 
signaling 

TALEN (Menger et al., 2016) 

CRISPR/Cas9 

(Liu et al., 2017; Ren et 
al., 2017a; Rupp et al., 
2017; Stadtmauer et al., 
2020) 

REGNASE-1 Disrupt a negative regulator 
of T-cell activity   CRISPR/Cas9 (Wei et al., 2019) 

DGKα, DGKζ Disrupt a negative regulator 
of T-cell activity   CRISPR/Cas9 (Jung et al., 2018) 

LAG3 Disrupt a negative regulator 
of T-cell activity   CRISPR/Cas9 (Zhang et al., 2017) 

FAS Abolish pro-apoptotic 
signaling CRISPR/Cas9 (Ren et al., 2017b) 

GM-CSF Inhibit CRS-related 
toxicities CRISPR/Cas9 (Sterner et al., 2019) 

aTRAC, T-cell receptor alpha constant; TRBC, T-cell receptor beta constant; B2M, Beta-2 
microglobulin; HLA, human leukocyte antigen; dCK, deoxycytidine kinase; PD-1, programmed 
cell death protein 1; DGK, diacylglycerol kinase; LAG3, lymphocyte-activation gene 3; GM-CSF, 
granulocyte-macrophage colony-stimulating factor. 
bTCR, T-cell receptor; CRS, cytokine release syndrome. 
cZFN, zinc-finger nuclease; TALEN, transcription activator-like effector nuclease; CRISPR, 
clustered regularly interspaced short palindromic repeats; Cas9, CRISPR-associated protein 9. 
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Summary 
 
T cells engineered to express chimeric antigen receptors (CARs) with tumor specificity have 
shown remarkable success in treating patients with hematologic malignancies and revitalized the 
field of adoptive cell therapy. However, realizing broader therapeutic applications of CAR-T cells 
necessitates engineering approaches on multiple levels to enhance efficacy and safety. 
Particularly, solid tumors present unique challenges due to the biological complexity of the solid-
tumor microenvironment (TME). In this Review, we highlight recent strategies to improve CAR-T 
cell therapy by engineering (1) the CAR protein, (2) T cells, and (3) the interaction between T cells 
and other components in the TME. 
 
 
Keywords: cancer immunotherapy, chimeric antigen receptor (CAR), CAR-T cells, T-cell 
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Introduction 
 
Chimeric antigen receptors (CARs) are synthetic receptors that enable T cells to recognize tumor-
associated antigens (TAAs) in a major histocompatibility complex (MHC)-independent manner. 
CAR-T cells targeting the pan–B-cell marker CD19 have shown unprecedented response rates in 
treating refractory B-cell malignancies (Maude et al., 2014; Neelapu et al., 2017) and became the 
first genetically modified cell-based therapy to receive FDA approval (Bouchkouj et al., 2019; 
O'Leary et al., 2019). However, the development of effective CAR-T cell therapy for non–B-cell 
malignancies has required more sophisticated engineering approaches to overcome tumor-
defense mechanisms such as immunosuppression, antigen escape, and physical barriers to entry 
into solid tumors. In this review, we examine current and prospective strategies to engineer CARs, 
T cells that express CARs or tumor-specific T-cell receptors (TCRs), and the interaction between 
engineered T cells and the tumor microenvironment (TME), with particular focus on improving the 
efficacy and safety of adoptive T-cell therapy for the treatment of solid tumors (Figure 1). 
 
Engineering the CAR protein 
 
Evolution of CAR Designs  
 
Kuwana et al. reported the first proof of principle of combining antibody-type antigen specificity 
with T-cell signaling by fusing the TCR constant region to the variable regions of a bacterial 
antigen-recognizing antibody (Kuwana et al., 1987). Single-chain variable fragments (scFvs), 
comprised of the variable heavy (VH) and light (VL) chains of a monoclonal antibody (mAb) 
separated by a flexible linker, are still commonly used as the extracellular antigen-sensing domain 
of CARs. The first reports of tumor-targeting CARs demonstrated that an scFv recognizing 
antigens like human epidermal growth factor receptor 2 (HER2) fused to the CD3ζ signaling 
domain can elicit tumor-specific cytotoxicity (Eshhar et al., 1993; Moritz et al., 1994; Stancovski 
et al., 1993), but T cells expressing these “first-generation” CARs that included only the CD3ζ 
chain for T-cell signaling generally failed to elicit potent antitumor effects.  
 
In the following years, second- and third-generation CARs emerged that included one or two 
costimulatory domains, respectively, drawing from the biological understanding that the 
endogenous TCR requires association with other costimulatory or accessory molecules for robust 
signaling (Chen and Flies, 2013). Most commonly derived from CD28 or 4-1BB, these 
costimulatory domains conferred more potent antitumor cytotoxicity, increased cytokine 
production, and improved proliferation and persistence of CAR-T cells (Haynes et al., 2002; Imai 
et al., 2004). The choice of costimulatory domain impacts a wide range of properties including 
metabolic pathways (Kawalekar et al., 2016), T-cell memory development (Kalos et al., 2011; 
Kawalekar et al., 2016), and antigen-independent tonic signaling (Long et al., 2015), prompting 
further research into other costimulatory domains. For example, a third-generation CAR with 
OX40 and CD28 costimulatory domains repressed CD28-induced secretion of interleukin (IL)-10, 
an anti-inflammatory cytokine that compromises T-cell activity (Hombach et al., 2012). 
Additionally, the inducible T-cell costimulator (ICOS) costimulatory domain in combination with 
either CD28 or 4-1BB costimulation increased in vivo persistence, and MyD88/CD40 
costimulation improved in vivo proliferation of CAR-T cells (Collinson-Pautz et al., 2019; Guedan 
et al., 2018). 
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More recently, fourth-generation CARs that incorporate additional stimulatory domains, 
commonly referred to as “armored" CARs, have been reported. In one example, Chmielewski et 
al. engineered armored CAR-T cells termed “T cells redirected for universal cytokine-mediated 
killing” (TRUCK) to secrete the proinflammatory cytokine IL-12 to stimulate innate immune cells 
against the tumor and resist inhibitory elements of the TME, including regulatory T (Treg) cells 
and myeloid-derived suppressor cells (MDSCs) (Chmielewski et al., 2014; Pegram et al., 2012). 
The secretion of other soluble factors have been studied, including IL-15 or IL-18 to enhance T-
cell proliferation, as well as the combination of CCL19 and IL-7 to recruit endogenous immune 
cells and establish a memory response against tumors (Adachi et al., 2018; Hoyos et al., 2010; 
Hu et al., 2017).  
 
In addition to the evolution of CAR designs outlined above, the modularity of the four major 
components of a CAR—extracellular antigen-sensing domain, extracellular hinge or spacer 
domain, transmembrane domain, and intracellular signaling domain—has enabled further 
optimization of each of these components to improve the efficacy of CAR-T cell therapy. These 
engineering efforts are well-summarized in other reviews (Labanieh et al., 2018; Rafiq et al., 
2020). Here, we focus our attention on strategies that enable T cells to expand beyond the hard-
wired, single-input, single-output signaling capability programmed by conventional CAR designs 
(Figure 2). 
 
Combinatorial Antigen Sensing for Logic-Gated T-Cell Activation 
 
Boolean logic gates have been utilized for the combinatorial detection of multiple antigens by 
CAR-T cells to improve their safety and antitumor efficacy (Figure 2A). AND-gate logic requires 
the co-presence of two different antigens to activate the CAR-T cell, and this increased 
specification reduces the risk of either off-target recognition or “on-target, off-tumor” toxicities, in 
which healthy tissues that express the same antigen as tumor cells suffer collateral damage. The 
synthetic Notch (synNotch) receptor—which triggers inducible target-gene expression upon 
recognition of a cell surface-bound ligand—was engineered to recognize a TAA and induce the 
expression of a CAR, which can subsequently trigger T-cell activation upon recognizing a second 
TAA (Roybal et al., 2016). This strategy has been shown to reduce systemic toxicity compared to 
constitutive CAR expression, provided that the off-tumor target is not spatially proximal to the 
tumor cells (Srivastava et al., 2019). Since there is a temporal delay between the recognition of 
TAA #1 by synNotch and the recognition of TAA #2 by CAR, a given T cell could have its synNotch 
receptor triggered by TAA #1 from a tumor cell but subsequently attack a healthy cell expressing 
TAA #2. An alternative AND-gate approach separates the CD3ζ chain and costimulatory domain 
into two constitutively expressed receptors each recognizing different antigens, such that the 
CAR-T cell is optimally activated only in the simultaneous presence of both antigens (Kloss et al., 
2013; Wilkie et al., 2012). However, this approach often suffers from “leakiness” due to the fact 
that first-generation CARs containing only the CD3ζ chain are already signaling-competent. Yet 
another strategy programs T cells to deliver a conditionally active cytotoxic protein upon CAR- or 
TCR-mediated detection of TAA #1 on the cell surface; the engineered protein becomes cytotoxic 
if and only if it detects TAA #2 inside the target cell, thus requiring both antigens to be expressed 
by the same target cell to trigger robust killing (Ho et al., 2017). 
 
CAR-T cells programmed to execute AND-NOT logic can also help prevent toxicities against 
healthy cells. This strategy utilizes an inhibitory CAR (iCAR) that targets an antigen found on 
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healthy tissue, and pairs it with an activating CAR that targets a TAA.  In a proof-of-principle study, 
a prostate-specific membrane antigen (PSMA)-targeting iCAR that incorporates the programmed 
cell death protein 1 (PD-1) inhibitory signaling domain was co-expressed with a second-
generation CD19 CAR, and the iCAR inhibited CAR-T cell activation in the presence of PSMA 
(Fedorov et al., 2013).  
 
While AND and AND-NOT logic can improve the safety of CAR-T cells by increasing specificity, 
OR-gate logic has been utilized to increase antitumor efficacy by circumventing antigen escape, 
or loss of the targeted epitope by tumor cells. An OR-gate CAR can recognize two different TAAs, 
and the binding of either antigen induces T-cell activation. One OR-gate strategy utilizes the 
pooled mixture of two populations of CAR-T cells (CARpool), each expressing a monospecific 
CAR. A variation on this theme is to sequentially administer two different CAR-T cell products 
(Shah et al., 2020; Shalabi et al., 2018). Another strategy is the co-expression of two separate 
CARs in each T cell (dual CAR) (Ruella et al., 2016). Yet another approach uses tandem bispecific 
CARs (TanCAR) that comprise two scFv domains separated by a linker on one receptor chain, 
and this strategy was shown to be functionally superior to both the CARpool and dual-CAR 
approaches (Hegde et al., 2016; Zah et al., 2020). In particular, CD19/CD20 and CD19/CD22 
bispecific CARs have been characterized for the treatment of B-cell malignancies (Fry et al., 2018; 
Qin et al., 2018; Zah et al., 2016), and are in clinical trials for lymphoma and ALL, respectively 
(NCT04007029, NCT04215016, NCT03919526, NCT04303520).  
 
ON/OFF Switches for Controllability and Safety 
 
CAR modifications to improve safety and controllability have also taken the form of externally 
inducible or self-regulating ON/OFF switches. Conventional CAR-T cells are “always on,” 
meaning their CARs are constitutively expressed and are always capable of signaling upon 
antigen stimulation. However, this is not always desirable when CAR-derived toxicity is an 
anticipated risk. In addition to the off-target and “on-target, off-tumor” toxicities discussed 
previously, various systemic toxicities have also been observed in patients treated with CAR-T 
cells. Common examples include cytokine release syndrome (CRS) (Fitzgerald et al., 2017; 
Grupp et al., 2013; Schuster et al., 2017), neurotoxicity or “CAR-related encephalopathy 
syndrome” (CRES) (Grupp et al., 2013; Lee et al., 2019a; Schuster et al., 2017), tumor lysis 
syndrome (TLS), and anaphylaxis (Maus et al., 2013). It has been hypothesized that modulation 
of CAR-T cell activity in space and time can prevent or significantly lessen the severity of toxicities 
associated with CAR-T cell therapy while maintaining its antitumor efficacy.  
 
One approach to modulate CAR-T cell activity is to regulate the presence of functional CARs on 
the surface of engineered T cells by adjusting either the stability or the conformation of the CAR 
protein itself (Figure 2B). As examples of the former strategy, CARs have been fused to 
degradation tags that can be inactivated either by small-molecule binding (Weber et al., 2020) or 
under hypoxic conditions (Juillerat et al., 2017). The default state in such systems is “off,” and the 
removal or inactivation of the degradation tag is required to stabilize the CAR protein, thus 
enabling CAR-mediated T-cell activation upon antigen stimulation. An alternative design in which 
the CAR protein is present by default but turned off through the administration of a small-molecule 
drug has also be demonstrated (Juillerat et al., 2019). 
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Instead of modulating protein half-life, controlling the conformation of the CAR protein can also 
regulate the availability of functional CARs, such that the receptor is signaling-competent only 
under specified conditions. For example, the antigen-binding domain of CARs can be “masked” 
by a built-in inhibitory peptide, such that the CAR’s functional conformation is acquired only after 
the inhibitory peptide has been cleaved by proteases commonly active in the TME (Han et al., 
2017).  
 
Adapter-Dependent CARs 
 
Alternatively, T cells can be engineered to express a receptor that must be complemented by an 
additional protein component before the resulting complex is capable of translating antigen 
recognition to T-cell activation (Figure 2C). Urbanska et al. reported a “universal” receptor 
comprising a biotin-binding domain fused to an intracellular T-cell signaling domain. T cells 
expressing this biotin-specific receptor can, in principle, be directed against any target cell that 
has been labeled with a biotinylated antibody (Urbanska et al., 2012). Two advantages of this 
strategy include the abilities to (1) control the ON/OFF state of the T cell through administering or 
withholding the biotinylated antibody and (2) use the same biotin-specific receptor to target a wide 
variety of TAAs by changing the specificity of the biotinylated antibody. The concept of using a 
universal CAR coupled with one or more antigen-targeting adaptor proteins to overcome tumor 
heterogeneity and mitigate toxicity soon opened the floodgates for other adapter-dependent CAR 
designs (Bachmann, 2019; Cartellieri et al., 2016; Herzig et al., 2019; Lee et al., 2019c; Qi et al., 
2020; Raj et al., 2019; Rodgers et al., 2016), including a small molecule adapter, which binds to 
both fluorescein isothiocyanate (FITC) and folate, that alleviated CRS-like toxicity in an NSG 
mouse model (Lee et al., 2019b).  
 
Expanding upon the concept of constitutively expressing a universal receptor on the T-cell surface 
combined with an externally administered adaptor protein to dictate antigen specificity, Cho et al. 
reported a SUPRA CAR system that can program a variety of Boolean logic gates in engineered 
T cells by expressing multiple base receptors, each with multiple potential adaptor protein 
partners reconstituted by leucine-zipper dimerization (Cho et al., 2018). Such a system supports 
the possibility of simultaneously increasing specificity through the use of AND or AND-NOT gates 
while addressing tumor heterogeneity by targeting multiple antigens with different adaptor 
proteins. However, the versatility of multi-component systems comes at the cost of an increased 
number of parameters that must be optimized, including the half-life, biodistribution, and 
interaction dynamics among the adaptor protein, base receptor, and the engineered T cell itself. 
Therefore, it remains to be seen whether the complex signal processing achievable through 
adaptor-dependent CAR designs will translate to robust therapeutic candidates. 
 
 
Engineering the CAR-Expressing Cell 
 
Safety Controls on CAR-T Cell Activity 
 
In addition to engineering the CAR protein itself, engineering approaches applied at a cellular 
level to modulate T-cell activity can also significantly impact therapeutic efficacy and safety. For 
example, transient CAR expression resulting from mRNA electroporation instead of viral 
integration can mitigate toxicities induced by CARs that cross-recognize healthy tissue (Beatty et 
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al., 2014; Tchou et al., 2017; Wiesinger et al., 2019). Another safeguard against severe toxicity is 
the implementation of suicide genes that enable the depletion of engineered T cells by the 
administration of small-molecule drugs (Figure 3A) (Marin et al., 2012). For example, CAR-T cells 
targeting the CD44v6 antigen for the treatment of leukemia and myeloma have been engineered 
to express herpes simplex virus thymidine kinase (HSV-TK), which enabled effective elimination 
of the CAR-T cells upon exposure to ganciclovir in vitro (Casucci et al., 2018). However, 
expression of viral HSV-TK raises concerns of immunogenicity and requires three days of 
ganciclovir exposure to achieve effective T-cell elimination (Marin et al., 2012). An alternative 
approach using the inducible caspase 9 (iCasp9) suicide gene has been shown to eliminate >90% 
of engineered cells within 30 minutes of drug administration in human patients (Di Stasi et al., 
2011). iCasp9 contains the intracellular domain of the pro-apoptotic protein caspase 9 fused to 
FK506-binding protein (FKBP). The small molecule AP1930 facilitates the dimerization of FKBP 
and activation of the fused caspase 9, inducing apoptosis in cells expressing the iCasp9 protein 
(Straathof et al., 2005). Additionally, the expression of transgenes for the surface proteins CD20 
or truncated epidermal growth factor receptor (tEGFR) can also facilitate suicide mechanisms. 
The FDA-approved mAbs rituximab and cetuximab bind to CD20 and tEGFR, respectively, and 
the resulting antibody-dependent cellular cytotoxicity (ADCC) can be used to eliminate T cells 
engineered to express these antigens (Griffioen et al., 2009; Serafini et al., 2004; Wang et al., 
2011).  
 
While suicide genes can efficiently deplete CAR-T cells to counter toxicities, the activation of a 
suicide gene also results in the irreversible termination of the therapy. An alternative reversible 
strategy utilizes dasatinib, a tyrosine kinase inhibitor that interferes with the lymphocyte-specific 
protein kinase (LCK), thus inhibiting CD3ζ phosphorylation and CAR activation. Dasatinib has 
been shown to function as a reversible ON/OFF switch of CAR-T cell activity, where the cessation 
of dasatinib administration rapidly reversed its inhibitory effects, highlighting its potential as an 
emergency drug for potentially lethal toxicities such as CRS and CRES (Mestermann et al., 2019; 
Weber et al., 2019).  
 
Regulated CAR Expression to Improve CAR-T Cell Safety 
 
As an alternative to post-translational regulation of CAR stability and function, transcriptional 
regulation can provide another tunable handle to improve CAR-T cell safety (Figure 3B). For 
example, in the Tet-ON system, the small molecule doxycycline (Dox) acts as an “ON switch,” 
where CAR expression is induced by the reverse tetracycline transactivator (rtTA) protein only in 
the presence of Dox (Sakemura et al., 2016). Conversely, in the Tet-OFF system, Dox acts as an 
“OFF switch” by abolishing the ability of tetracycline transactivator (tTA) to activate CAR 
transcription; this system was used to reversibly inhibit deleterious CAR signaling and T-cell 
fratricide in CD5 CAR-T cells (Mamonkin et al., 2018). Additionally, response to a tumor-
associated environmental cue could be achieved through inducible promoters responsive to 
hypoxia-inducible factor (HIF)-1α, activating CAR expression only in hypoxic environments (Ede 
et al., 2016). Finally, as previously described, the synNotch receptor enables inducible CAR 
transcription upon binding to a membrane-bound ligand (Roybal et al., 2016; Srivastava et al., 
2019). 
 
Site-Specific CAR Transgene Insertion and Allogeneic Compatibility Engineering 
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The examples of regulated gene expression provided above utilize synthetic inducible promoters, 
and the entire gene-expression cassette is typically integrated into the T-cell genome using 
retroviral or lentiviral vectors, leading to variable integration sites and copy numbers. An 
alternative method to achieve dynamic CAR expression profiles is to integrate the transgene into 
specific genetic loci regulated by endogenous transcriptional machinery. A variety of gene-editing 
technologies including clustered regularly interspaced short palindromic repeats (CRISPR) and 
CRISPR-associated protein 9 (Cas9), transcription activator-like effector nucleases (TALENs), 
and zinc-finger nucleases (ZFNs) have made this a feasible approach in T-cell engineering (Chen, 
2015). For example, Eyquem et al. demonstrated that CRISPR/Cas9-mediated insertion of the 
CD19 CAR transgene into the TCRα constant (TRAC) locus results in CAR-T cells with superior 
in vivo function compared to retrovirus-mediated random CAR-transgene insertion (Eyquem et 
al., 2017), although more recent evidence suggests whether site-specific CAR integration into the 
TRAC locus improves T-cell function may depend on the specific CAR construct used (Zah et al., 
2020). A compelling example of the transgene insertion site influencing CAR-T cell function 
comes from the case of a chronic lymphocytic leukemia (CLL) patient, whose disease regression 
was observed to coincide with the clonal expansion of T cells carrying the CD19 CAR transgene 
inserted into the methylcytosine dioxygenase ten-eleven translocation 2 (TET2) locus (Fraietta et 
al., 2018). Combined with a pre-existing hypomorphic mutation in the patient’s other TET2 allele, 
this CAR insertion resulted in the loss of wildtype TET2, a gene that encodes for a regulator of 
DNA methylation and blood cell formation. This fortuitous CAR insertion/TET2 ablation event led 
to an altered epigenetic landscape that conferred profound proliferative capability and a central-
memory phenotype to the engineered T cells (Carty et al., 2018; Fraietta et al., 2018).  
 
Gene-editing technologies have also enabled the elimination of endogenous genes in support of 
allogeneic T-cell therapy (Table 1). T-cell products derived from healthy donors can overcome 
manufacturing challenges associated with autologous cell therapy, such as the difficulty to obtain 
enough high-quality T cells from heavily pre-treated patients with advanced disease. However, 
allogeneic T-cell transfer requires the elimination of the endogenous TCR to prevent graft-versus-
host disease (GvHD), and the removal of class-I major histocompatibility complex (MHC-I) has 
been proposed to minimize allograft rejection (Liu et al., 2017). To this end, Torikai et al. 
demonstrated ZFN-mediated abrogation of TCRαβ or human leukocyte antigen (HLA)-A 
expression in CD19 CAR-T cells (Torikai et al., 2012; Torikai et al., 2013). In addition to preventing 
GvHD, gene editing has been utilized to protect CAR-T cells from lymphodepletion, which is a 
common preconditioning treatment administered prior to CAR-T cell infusion to improve the 
efficacy of the transferred cells. For example, TALEN-mediated simultaneous disruptions of 
TCRαβ/CD52 or TCRαβ/deoxycytidine kinase (dCK) have been shown to confer CD19 CAR-T 
cells with resistance to anti-CD52 or dCK phosphorylation-dependent lymphodepleting regimens, 
respectively (Qasim et al., 2017; Valton et al., 2015).  
 
In the studies referenced above, endogenous gene disruption and CAR transgene integration 
were independently executed, yielding heterogeneous CAR-T cell populations. Georgiadis et al. 
coupled gene-editing to CAR integration by incorporating a single-guide RNA (sgRNA) element 
into the U3 region of the 3’ long terminal repeat (LTR) sequence of the CAR-encoding lentiviral 
vector. After electroporation of Cas9 mRNA, magnetic bead-based selection for edited cells 
resulted in highly enriched CAR+ TCR- populations (Georgiadis et al., 2018). In another strategy, 
Ren et al. used a “one-shot” CRISPR system with multiple sgRNA expression cassettes in one 
CAR-encoding lentiviral vector to simultaneously knock out the endogenous TCR and Beta-2 
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microglobulin (β2M), an essential subunit of the HLA-I molecule, to generate CD19 CAR-T cells 
suitable for allogeneic therapy (Ren et al., 2017b).  
 
Knockout of Negative Regulators  
 
Gene-editing technologies can also be used to abrogate the expression of negative regulators of 
T-cell activity (Table 1). Tumor cells frequently upregulate ligands to immune checkpoint 
receptors, such as cytotoxic T-lymphocyte–associated antigen 4 (CTLA-4) and PD-1 expressed 
on T cells, leading to inhibition of T-cell activity in the TME (Buchbinder and Desai, 2016). 
Immune-checkpoint blockade using antibodies targeting CTLA-4, PD-1, or PD-1 ligand (PD-L1) 
has revolutionized the field of immuno-oncology in recent years (Wei et al., 2018). An alternative 
approach to checkpoint blockade is the ablation of checkpoint-receptor expression on engineered 
T cells. Menger et al. demonstrated that PD-1 knockout through TALEN-mediated editing in 
melanoma-reactive CD8+ T cells and fibrosarcoma-reactive polyclonal T cells enhanced the 
persistence of the modified T cells, augmenting their antitumor activity against syngeneic tumor 
models and establishing long-term antitumor memory (Menger et al., 2016). Additionally, 
CRISPR/Cas9-mediated disruption of PD-1 in CD19 CAR-T cells enhanced CAR-T cell 
cytotoxicity toward PD-L1+ tumor xenografts in vivo (Rupp et al., 2017). The first CRISPR/Cas9-
edited cell therapy trial conducted in the U.S. evaluated the adoptive transfer of autologous T cells 
genetically modified to express a New York esophageal squamous cell carcinoma 1 (NY-ESO-
1)–targeting TCR while eliminating endogenous TCRαβ and PD-1 expression; recent results from 
the trial confirmed the safety and feasibility of CRISPR-edited cell therapy for cancer (Stadtmauer 
et al., 2020). 
 
In addition to PD-1 knockout, elimination of the metabolic regulator REGNASE-1 and CD3-
signaling regulator diacylglycerol kinase (DGK) has also been shown to enhance T-cell function 
in vitro and in vivo (Jung et al., 2018; Riese et al., 2013; Wei et al., 2019). Similar to PD-1, 
lymphocyte-activation gene 3 (LAG3) is known as a T-cell exhaustion marker, and it has been 
found to inhibit the effector function of T cells and enhance the suppressive function of Tregs 
(Zhang et al., 2017). However, CRISPR/Cas9-mediated deletion of LAG3 in CD19 CAR-T cells 
did not result in a discernable phenotype, perhaps due to compensatory effects from PD-1 (Woo 
et al., 2012; Zhang et al., 2017).  
 
Several studies have reported the feasibility of multiple knockouts using CRISPR/Cas9 in CAR-T 
cells to achieve the dual goals of reducing alloreactivity and improving T-cell function. Triple-
targeting of the TRAC, B2M, and PD-1 loci has been demonstrated by electroporation of 
Cas9:sgRNA ribonucleoprotein (RNP) complex (Liu et al., 2017) or by electroporation of mRNA 
encoding Cas9 and sgRNAs into CAR-T cells (Ren et al., 2017a). Furthermore, triple targeting of 
the TRAC, B2M, and FAS loci using a lentiviral vector encoding both the sgRNAs and a CD19-
targeting CAR and electroporation of Cas9 mRNA resulted in reduced alloreactivity and prolonged 
T-cell survival by abrogating pro-apoptotic Fas/FasL signaling (Ren et al., 2017b). Finally, 
CRISPR/Cas9-mediated deletion has been used to improve the safety of CAR-T cells by 
disrupting the expression of CRS-associated cytokines, such as granulocyte-macrophage colony-
stimulating factor (GM-CSF) (Sterner et al., 2019). 
 
Receptors that Rewire an Inhibitory Input to a Stimulatory Output 
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While CAR-T cells have shown promising therapeutic efficacy against hematologic malignancies, 
their targeting of solid tumors has been stymied by a number of challenges. In addition to antigen 
heterogeneity, tumor cells produce tumorigenic and immunosuppressive factors in the TME, and 
this inhibitory environment is further compounded by immunosuppressive cell types such as 
MDSCs and Tregs (Labanieh et al., 2018). Among the immunosuppressive soluble factors 
commonly found in the TME, transforming growth factor beta (TGF-β) is a particularly potent 
cytokine that drives T-cell differentiation into Tregs, as well as macrophage polarization to the 
immunosuppressive M2 phenotype (Tormoen et al., 2018). The engineering of a TGF-β–
responsive CAR demonstrated that CARs can be used to (1) sense a soluble factor and (2) rewire 
T-cells to convert an inhibitory signal to a trigger of antitumor activity (Figure 4) (Chang et al., 
2018; Hou et al., 2018). TGF-β–responsive CAR-T cells were demonstrated to proliferate and 
produce T helper type 1 (Th1)-associated cytokines in the presence of soluble TGF-β, as well as 
protect nearby cells from the inhibitory effects of TGF-β, likely through the combined effects of 
TGF-β sequestration and paracrine Th1 cytokine signaling (Chang et al., 2018; Hou et al., 2018).  
 
Signal rewiring can also be achieved with “switch receptors,” which are chimeras comprising an 
ectodomain that binds a suppressive molecule fused to an endodomain that drives a stimulatory 
pathway (Figure 4). IL-4 is a cytokine with complex roles in the TME, such as inducing M2 
polarization, promoting tumor growth, and suppressing tumor-specific effector T cells (Tormoen 
et al., 2018; Wilkie et al., 2010). IL-4 switch receptors consisting of the IL-4 receptor α (IL-4Rα) 
ectodomain fused to either the IL-7Rα endodomain or the βc receptor subunit common to IL-2 and 
IL-15 signaling have been shown to paradoxically enhance T-cell proliferation in the presence of 
IL-4 (Leen et al., 2014; Wilkie et al., 2010). Consequently, the co-expression of the IL-4Rα:βC 
switch receptor in CAR-T cells augmented their antitumor capacity (Wilkie et al., 2010). More 
recently, Roth et al. used a pooled knock-in screen using CRISPR/Cas9 coupled with single-cell 
RNA sequencing (scRNA-seq) to evaluate a panel of transgenes integrated into the TRAC locus. 
Through this analysis, a novel TGFβR2:4-1BB switch receptor was identified as the lead 
candidate for improved T-cell fitness and solid tumor clearance (Roth et al., 2020).  
 
Switch receptors can also mitigate the suppressive effects of immune checkpoints. For example, 
CTLA-4:CD28 and PD-1:CD28 switch receptors were shown to enhance the activity of tumor-
specific T cells (Liu et al., 2016; Shin et al., 2012). As another checkpoint receptor, T-cell 
immunoreceptor with Ig and ITIM domains (TIGIT) binds to CD155 or CD112 on tumor cells, and 
these interactions hinder cytokine production and effector function of T cells. To blunt these 
effects, Hoogi et al. designed a TIGIT:CD28 switch receptor that enhanced cytokine production 
and activation of T cells, as well as delayed tumor growth in vivo when combined with a 
melanoma-specific TCR (Hoogi et al., 2019). 
 
Yet another set of engineering strategies focuses on addressing tumorigenic factors that are not 
directly expressed on T cells or tumor cells (Figure 4). For example, vascular endothelial growth 
factor-A (VEGF-A) is a tumor-derived soluble factor that promotes tumor growth and metastasis 
by facilitating angiogenesis. Chinnasamy et al. co-transduced T cells with a CAR targeting VEGF 
receptor 2 (VEGFR2) and an inducible transgene encoding IL-12. These CAR-T cells 
demonstrated trafficking to the tumor vasculature, elimination of VEGFR+ MDSC subtypes that 
participate in tumor angiogenesis, and IL-12–mediated solid tumor regression (Chinnasamy et 
al., 2012). Additionally, T cells expressing a CAR that targets fibroblast activation protein (FAP) 
eliminated FAP+ tumor stromal fibroblasts that support tumor growth, augmenting T-cell 
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immunotherapy (Wang et al., 2014). However, it bears noting that strategies targeting non-tumor 
tissues can cause significant toxicity. For example, Tran et al. reported that CAR-T cells cross-
reactive to human and mouse FAP cause off-target bone marrow toxicities and cachexia (Tran et 
al., 2013).  
 
Transgene Expression to Promote T-Cell Function 
 
In addition to abolishing or rewiring inhibitory signals, the overexpression of stimulatory signals 
can also improve the activity of tumor-specific T cells. The constitutive expression of costimulatory 
ligands CD80 and 4-1BBL in PSMA-targeting CAR-T cells showed superior activity against 
prostate tumor cells by engaging costimulatory receptors in cis (autocostimulation) and in trans 
(transcostimulation of bystander cells) (Stephan et al., 2007). Furthermore, Zhao et al. co-
expressed the 4-1BBL costimulatory ligand with a second-generation CD19-targeting CAR with 
CD28 costimulation, and this combined costimulation led to improved antitumor functions driven 
by the continuous activation of the interferon regulatory factor 7 (IRF7)/interferon beta (IFNβ) 
pathway (Zhao et al., 2015). Yet another strategy harnesses the endogenous IL-7 signaling 
mechanism that confers improved persistence in tumor-specific T cells. Shum et al. engineered 
a constitutively active IL-7 receptor and co-expressed it with a GD2-targeting CAR, which resulted 
in enhanced survival under repeated tumor challenges in neuroblastoma and glioblastoma 
xenograft models (Shum et al., 2017).  
 
The aberrant expression of the colony-stimulating factor 1 (CSF-1) in the TME drives 
macrophages to the M2 phenotype and promotes tumor growth. Several clinical trials of small 
molecules and mAbs targeting the CSF-1/CSF-1R axis in combination with other mAbs and/or 
chemotherapy are under way for the treatment of solid tumors (NCT01525602, NCT02777710, 
NCT02323191, NCT02760797, NCT02923739). In the context of CAR-T cells, the co-expression 
of CSF-1R, which T cells do not naturally express, was shown to confer CSF-1 responsiveness 
and activated the RAS/MEK/Erk kinase pathway to enhance T-cell proliferation, cytokine 
production, and CSF-1–driven chemotaxis (Lo et al., 2008). 
 
Metabolic Reprogramming of T Cells 
 
T-cell metabolism, or the manner in which T cells utilize nutrient sources, has consequential 
effects on their differentiation state and effector function. The architecture of the CAR protein can 
impact the metabolic profiles of CAR-T cells. For example, T cells expressing CARs with 4-1BB 
costimulation favor the oxidative breakdown of fatty acids characteristic of the central-memory 
phenotype, accompanied by enhanced proliferation and persistence, while T cells expressing 
CARs with CD28 costimulation favor aerobic glycolysis characteristic of the effector-memory 
phenotype (Kawalekar et al., 2016).  
 
Due to the intimate relationship between T-cell metabolism and function, reprogramming the 
metabolic profile of CAR-T cells can potentially increase their clinical efficacy. The TME of solid 
tumors has an overabundance of potassium (K+) released by necrotic tumor cells, which increases 
the intracellular K+ concentration in infiltrating T cells, downregulating Protein kinase B 
(Akt)/mammalian target of rapamycin (mTOR) signaling and impairing T-cell activation after TCR 
ligation. As a counterstrategy, the overexpression of K+ channels was shown to increase 
Akt/mTOR activity and rescue T-cell effector functions by facilitating K+ efflux and lowering 
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intracellular K+ levels (Eil et al., 2016). Additionally, elevated K+ in the TME and the resulting 
perturbation of the transmembrane electrochemical gradient limit nutrient uptake by T cells. 
Interestingly, ex vivo conditioning and activation of tumor-specific CD8+ T cells in elevated K+ to 
mimic such functional starvation in the TME led to epigenetic and metabolic reprogramming that 
maintained T-cell stemness—evidenced by improved persistence, engraftment, self-renewal, and 
multipotency—thereby enhancing their antitumor function in vivo (Vodnala et al., 2019). Further, 
Geiger et al. showed supplementing L-arginine to balance increased arginine metabolism in 
activated T cells promotes the central-memory phenotype and improves antitumor activity (Geiger 
et al., 2016).  
 
Altering the expression levels of metabolic genes can also promote an advantageous metabolic 
profile. Phosphoenolpyruvate carboxykinase 1 (PKC1) increases the production of 
phosphoenolpyruvate (PEP), which sustains TCR-mediated, Ca2+-induced nuclear factor of 
activated T-cells (NFAT) signaling and effector functions, and the overexpression of PKC1 in T 
cells has been shown to restrict tumor growth in melanoma-bearing mice (Ho et al., 2015). 
Leukemic cells drive T-cell dysfunction by causing suppressed Akt/mTORC1 signaling, 
decreased expression of the glucose transporter Glut1, and reduced glucose uptake. Accordingly, 
the overexpression of Akt or Glut1 was demonstrated to partially rescue T-cell activity (Siska et 
al., 2016). Additionally, Yang et al. knocked out Acetyl-CoA acetyltransferase (ACAT1), a 
cholesterol esterification enzyme, in CD8+ T cells, and the resulting increase in the plasma 
membrane cholesterol concentration enhanced TCR clustering and signaling (Yang et al., 2016). 
Lastly, PPAR-gamma coactivator 1α (PGC1α) is a metabolic regulator downregulated in tumor-
infiltrating T cells. It facilitates mitochondrial biogenesis by transcriptional coactivation, and its 
overexpression in CD8+ T cells rescued their mitochondrial function and protected their metabolic 
and effector activities in the TME (Scharping et al., 2016). 
 
Interplay of T-Cell Phenotypes, Function, and Versatility 
 
The differentiation state of T cells influences their longevity and efficacy, motivating the isolation 
or enrichment of specific T-cell subtypes in CAR-T cell manufacturing. Generally, the selection of 
less differentiated phenotypes—naïve (TN), memory stem (TSCM), and central memory (TCM)—
imparts greater engraftment and efficacy than the more differentiated counterparts—effector (TE) 
and effector memory (TEM) (Sadelain et al., 2017). Different costimulatory domains in the CAR 
protein can affect T-cell subtype distribution: CD28 costimulation tends to promote the short-lived, 
potent TEM phenotype, while 4-1BB results in enrichment of the longer-lived, self-renewing TCM 
phenotype (Kawalekar et al., 2016). It has also been shown that TN, TCM, and TEM CD4+ and CD8+ 
T cells can all be transduced and expanded as CD19 CAR-T cells, but the combination of CD8+ 
TCM and CD4+ TN subsets yields synergistic antitumor activity in vivo (Sommermeyer et al., 2016). 
TSCM cells comprise only 2–3% of peripheral blood mononuclear cells (PBMCs), but this memory 
subset possesses the highest self-renewal capacity and superior persistence, and they are 
suggested to be the primary precursors of T-cell memory establishment (Hurton et al., 2016). IL-
15 is a pro-survival cytokine fundamental to T-cell memory, and it can preserve a TSCM-like 
phenotype by inhibiting mTORC1 activity, reducing glycolysis, and improving mitochondrial 
fitness (Alizadeh et al., 2019). Hurton et al. incorporated IL-15 costimulation in CAR-T cells by co-
expressing a membrane-bound chimeric IL-15, which led to a TSCM-like molecular profile with 
improved T-cell persistence regardless of CAR stimulation (Hurton et al., 2016). In addition, the 
miR-17-92 microRNA cluster was found to be upregulated in IFNγ-producing Th1 cells compared 
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to T helper type 2 (Th2) cells, and it was found to be downregulated in T cells derived from 
glioblastoma patients (Sasaki et al., 2010). To induce Th1-like phenotype in glioblastoma-
targeting CAR-T cells, Ohno et al. co-transduced miR-17-92 with a third-generation EGFRvIII-
specific CAR; in combination with the chemotherapeutic agent temozolomide, this strategy led to 
improved cytolytic activity and protection against tumor re-challenge in vivo (Ohno et al., 2013). 
 
Stem cells are a versatile starting material for adoptively transferred cellular products due to their 
abilities to self-renew and differentiate into various cell types. Schmitt et al. showed that OP9-
DL1, a bone marrow stromal cell line that ectopically expresses the Notch ligand Delta-like-1, can 
induce the differentiation of hematopoietic progenitor cells (HPCs) into T lymphocytes (Schmitt 
and Zúñiga-Pflücker, 2002). In a subsequent study, functional CD8+ T cells were generated from 
human umbilical cord blood hematopoietic stem cells (HSCs), which possess greater self-renewal 
and potency than HPCs, in OP9-DL1 cocultures (Awong et al., 2011). More recently, an artificial 
thymic organoid (ATO) system has been shown to facilitate in vitro differentiation of human 
embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) into mature TN-like cells 
with potent antitumor efficacy and a similar transcriptional profile as primary CD8+ TN cells (Montel-
Hagen et al., 2019).  
 
Expansion of CAR Effectors beyond T cells 
 
Exosomes derived from CAR-T cells, rather than the T cells themselves, have been studied as 
an alternative effector for CAR-mediated antigen specificity and cytotoxicity. Exosomes released 
by CAR-T cells can carry the CAR and a high level of cytotoxic molecules; these tumor-specific 
cytotoxic packages can traffic into solid tumors due to their nanoscale size, while incurring a lower 
risk of CRS-related toxicities and conferring protection against the immune-checkpoint molecule 
PD-L1 due to their lack of PD-1 expression (Fu et al., 2019).  
 
Programming CARs into cell types other than T cells can further expand the versatility of the 
therapy by realizing new functions unachievable by CAR-T cells. Klinchinsky et al. recently 
demonstrated the feasibility of adenoviral transduction of a CAR into primary macrophages. The 
resulting CAR-M cells exhibited tumor-specific phagocytosis, inflammatory cytokine production, 
polarization of bystander macrophages to the immunostimulatory M1 phenotype, and cross-
presentation of the TAA to bystander T cells. Although a comparison between CAR-T and CAR-
M cells was not evaluated, the established role of macrophages as professional antigen 
presenting cells (APCs) warrants the potential of CAR-M cells to more effectively stimulate an 
adaptive antitumor immune response (Klinchinsky et al., 2020).  
 
CAR-natural killer (NK) cells can be generated from cord blood or iPSCs (Li et al., 2018; Liu et 
al., 2020), making them an attractive candidate for allogeneic, off-the-shelf products. Moreover, 
CD19-targeting CAR-NK cells have achieved robust clinical efficacy without inducing CRS, 
neurotoxicity, or GvHD in patients with B-cell lymphoid tumors, highlighting their relative safety 
compared to their T-cell counterparts (Liu et al., 2020). CAR-NK cells have been shown to exert 
potent and specific cytotoxicity toward a variety of tumor models, including leukemia, multiple 
myeloma, ovarian cancer, and glioblastoma (Chu et al., 2014; Genßler et al., 2016; Li et al., 2018; 
Quintarelli et al., 2020); as well as toward immunosuppressive cell types such as MDSCs and 
follicular helper T cells (TFH) (Parihar et al., 2019; Reighard et al., 2020). Lastly, natural killer T 
(NKT) cells possess antitumor and tumor-homing capabilities, and GD2-targeting CAR-NKT cells 
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that harness these inherent advantages exhibited effective localization to and lysis of 
neuroblastoma cells without significant toxicity (Xu et al., 2019). Taken together, these 
developments highlight both the potential for cell-based immunotherapy to expand beyond T cells 
and the applicability of the CAR technology across a variety of immune cell types. 
 
 
Engineering CAR-T Cell Interactions with the Tumor and TME  
 
The immune-evasive and immunosuppressive nature of the TME contributes to the poor 
therapeutic efficacy of CAR-T cells observed in solid tumors. Hallmarks of the TME, which have 
been extensively reviewed elsewhere (Gajewski et al., 2013; Whiteside, 2008), include (1) 
physical barriers to tumor penetration by immune cells, (2) upregulated checkpoint ligands, (3) a 
pro-tumor stromal niche, (4) abundant immunosuppressive and pro-metastatic soluble factors, 
and (5) modulated expression of chemokines to preferentially recruit leukocytes with an 
immunosuppressive phenotype. These factors have in turn driven the design of CAR-T cells that 
respond to TME elements to enhance CAR-T cell efficacy (Figure 5). 
 
Tumor Homing and Penetration 
 
The efficacy of CAR-T cell therapy in solid tumors is significantly hindered by poor immune-cell 
infiltration (Newick et al., 2017). T-cell migration is regulated through chemokine axes. Tumor 
cells can upregulate or downregulate chemokines, as well as modulate chemokine expression by 
tumor-associated cells, contributing to the poor recruitment of CAR-T cells (Oelkrug and Ramage, 
2014). Engineering CAR-T cells to overexpress receptors for chemokines that are overexpressed 
in the TME can turn a tumor’s defense mechanism against itself. For example, GD2- and 
mesothelin-targeting CAR-T cells have been engineered to co-express CCR2b, the dominant 
isoform of the chemokine receptor of CCL2, resulting in enhanced T-cell homing to CCL2-
expressing neuroblastoma and malignant pleural mesothelioma xenografts, respectively 
(Craddock et al., 2010; Moon et al., 2011). Similarly, CAR-T cells that co-express CCR4 showed 
improved migration towards tumors expressing CCL17 and CCL22 in vivo, while those expressing 
CXCR1 or CXCR2 exhibited enhanced homing towards tumor-derived IL-8 (Di Stasi et al., 2009; 
Jin et al., 2019). Once CAR-T cells reach the tumor site, their infiltration is hindered by the high-
density structural extracellular matrix (ECM) associated with solid tumor nodules. Accordingly, 
CAR-T cells engineered to express heparinase, an enzyme that degrades ECM, have been 
shown to improve tumor infiltration and overall survival in multiple xenograft models (Caruana et 
al., 2015).  
 
CAR-T cells that successfully reach solid tumors are next faced with a multitude of suppressive 
and evasive features that induce CAR-T cell dysfunction (Newick et al., 2017). To improve 
therapeutic efficacy in this immunosuppressive environment, CAR-T cells have been engineered 
to produce proteins that (1) improve CAR-T cell function in an autocrine fashion; (2) disrupt 
immunosuppressive elements; and/or (3) induce TME remodeling to enhance the endogenous 
antitumor immune response (Figure 5). Each of these strategies is discussed in detail below. 
 
Autocrine Stimulation of CAR-T Cells in the TME 
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Cytokines are signaling proteins with the ability to drastically augment or abrogate CAR-T cell 
function. Co-expressing the CAR with immunostimulatory cytokines could significantly enhance 
CAR-T cell proliferation, survival, and effector function in the immunosuppressive TME. For 
example, T cells that constitutively co-express a CD19-targeting CAR plus IL-2, IL-7, IL-15, or IL-
21 have been shown to achieve greater in vivo tumor control compared to T cells expressing the 
CAR alone (Markley and Sadelain, 2010). Interestingly, although the receptor complexes of these 
four cytokines contain the common gamma chain (γc), each cytokine differentially impacted the 
proliferation, subtype differentiation, and function of the engineered T cells, underscoring the 
complexity of T-cell biology and variety of potential outcomes achievable through different 
engineering strategies (Markley and Sadelain, 2010). T cells co-expressing IL-12, IL-15, IL-18, 
and/or IL-21 plus a CAR targeting a variety of antigens have also been described, resulting in 
improved efficacy, proliferation, and/or persistence in vivo (Batra et al., 2020; Hoyos et al., 2010; 
Hu et al., 2017; Koneru et al., 2015; Krenciute et al., 2017; Pegram et al., 2012). However, 
constitutive overexpression of immunostimulatory cytokines can also increase toxicity (Zhang et 
al., 2011). Regulatory strategies previously discussed in this review, such as inducible promoters, 
can be implemented to modulate cytokine production and associated toxicity (Liu et al., 2019).  
 
Disruption of Immunosuppressive Axes 
 
The expression of immune-checkpoint receptors and ligands such as PD-1 and PD-L1 are 
prevalent in the TME, and they can potently inhibit CAR-T cell cytotoxicity and induce anergy 
(Drake et al., 2006). Thus, immune-checkpoint blockade has strong synergistic potential with 
CAR-T cell therapy, and several ongoing clinical trials are evaluating combination therapy with 
CAR-T cells and exogenously administered checkpoint inhibitors (Grosser et al., 2019). 
Furthermore, CAR-T cells have been engineered to secrete immune-checkpoint inhibitors, 
including anti–PD-1 scFvs and anti–PD-L1 antibodies, or to express PD-1 dominant-negative 
receptors (DNRs) (Chen et al., 2017; Cherkassky et al., 2016; Li et al., 2017; Rafiq et al., 2018; 
Suarez et al., 2016). In addition to enhancing efficacy, this approach may also avoid toxicities 
associated with systemic immune-checkpoint blockade by restricting checkpoint inhibitor 
distribution to the immediate environment of the producer T cells. For example, it has been shown 
that anti–PD-1 scFvs secreted by intraperitoneally (IP) injected CAR-T cells remained localized 
at the injection site. However, when an equal number of conventional CAR-T cells were 
administered IP with exogenous anti–PD-1 antibody, the antibody was detected systemically 
within three hours (Rafiq et al., 2018). 
 
The solid-tumor milieu also houses a diverse collection of soluble factors that promote 
tumorigenesis and inhibit CAR-T cell function. For example, prostaglandin E2 (PGE2) is a 
bioactive lipid often upregulated in tumors, where it contributes to tumor survival through 
regulation of cell proliferation, migration, apoptosis, and angiogenesis (Ricciotti and FitzGerald, 
2011; Wang and Dubois, 2006). In the context of CAR-T cell therapy, PGE2, along with adenosine, 
inhibits T-cell signaling and activation though the activation of protein kinase A (PKA), thereby 
reducing T-cell proliferation and effector function (Newick et al., 2016). In two solid-tumor models 
that highly express PGE2, CAR-T cells engineered to express a peptide inhibitor of ezrin-mediated 
PKA translocation to the immune synapse exhibited improved tumor infiltration and killing (Newick 
et al., 2016). Similarly, elevated concentrations of bio-reactive chemicals such as reactive oxygen 
species (ROS) in the TME play an important role in tumorigenesis (Weinberg et al., 2019). 
Catalase is an enzyme that facilitates the decomposition of hydrogen peroxide (H2O2), an ROS 
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that impairs T-cell activity in the TME. Increasing intracellular levels of catalase by co-expressing 
the catalase gene in HER2- and carcinoembryonic antigen (CEA)-specific CAR-T cells has been 
shown to enable CAR-T cells to metabolize the suppressive H2O2, improving their tumor cytolytic 
capacity (Ligtenberg et al., 2016).  
 
The aberrant expression of cytokines in the TME plays a critical role in tumor progression and 
resistance to CAR-T cell therapy. In particular, TGF-β plays a multiplexed role in cancer 
progression through interactions with tumor cells, stroma, and both innate and adaptive immune 
cells to induce (1) the secretion of immunosuppressive chemokines, cytokines, and growth 
factors; (2) ECM remodeling and matrix deposition; (3) immunosuppressive reprogramming of 
macrophages, neutrophils, and T cells; and (4) inhibited maturation or proliferation of T cells and 
NK cells (Pickup et al., 2013). To ablate these powerful effects, CAR-T cells have been 
engineered to express a TGF-β DNR that potently inhibits endogenous TGF-β signaling, resulting 
in T cells with enhanced proliferation and antitumor efficacy in a prostate cancer xenograft model 
(Kloss et al., 2018). Based on these results, a phase-I clinical trial has been initiated to assess T 
cells co-expressing a PSMA CAR and the DNR for the treatment of relapsed and refractory 
metastatic prostate cancer (NCT03089203). The DNR is distinct from the TGF-β–targeting CAR 
and TGF-β switch receptor discussed in a previous section in that the DNR does not transduce 
any signals that can stimulate the engineered T cell. It remains to be seen whether the stimulatory 
effects of the CAR and switch receptors will confer additional clinical benefits compared to the 
DNR. 
 
In the tumor microenvironment, IL-6 is often overexpressed by tumor cells, tumor associated 
macrophages (TAMs), and other resident cells (Kumari et al., 2016). IL-6 supports tumorigenesis 
through a number of mechanisms, and plays a central role in the induction of CRS after CAR-T 
cell infusion (Lee et al., 2014). Systemic administration of tocilizumab, an mAb targeting IL-6 
receptor alpha (IL-6Rα), has become standard treatment for CRS after CAR-T cell therapy (Kotch 
et al., 2019). More recently, CD19-targeting CAR-T cells that co-express a non-signaling, 
membrane-bound IL-6 receptor (mbaIL6) were shown to sequester IL-6 while retaining in vivo 
antitumor efficacy (Tan et al., 2020). However, it remains to be seen if CAR-T cells engineered in 
this fashion can prevent CRS. 
 
TME Remodeling to Promote the Endogenous Immune Response 
 
Tumors are adept at selectively attracting or evading subsets of leukocytes, including CAR-T 
cells, to promote immune regulation or suppression (Rabinovich et al., 2007). In addition, tumors 
are often capable of inducing an immunosuppressive or pro-metastatic phenotype on the local 
stroma, as well as an anti-inflammatory or dysfunctional phenotype on resident leukocytes 
(Morgan and Schambach, 2018). Another approach to enhancing the efficacy of CAR-T cell 
therapy is to reverse this immunosuppressive-cell niche through remodeling the tumor-cellular 
composition and phenotype. To realize this, CAR-T cells have been be engineered to secrete 
cytokines or other soluble factors that induce TME remodeling in a paracrine or endocrine fashion.   
 
In germinal-center lymphomas, loss of herpesvirus entry mediator (HVEM) expression induces 
the secretion of non-redundant stroma-activating factors, resulting in acute lymphoid-stroma 
activation. The hyperactivated stroma recruits TFH cells, which support malignant B cells through 
CD40/CD40L interactions and cytokine stimulation. As a counterstrategy, CD19 CAR-T cells 
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engineered to secrete a soluble form of HVEM were shown to enhance tumor control in vivo 
(Boice et al., 2016).  
 
CAR-T cells engineered to secrete IL-12 have been shown to remodel the TME by reprogramming 
TAMs to an M1 phenotype and decreasing the presence of MDSCs and Tregs in syngeneic 
mouse models (Chinnasamy et al., 2012; Liu et al., 2019; Yeku et al., 2017). Similarly, CAR-T 
cells that constitutively secrete IL-18 can alter the TME makeup by increasing intratumoral M1 
macrophage, activated dendritic cell (DC), and activated NK cell numbers, while decreasing M2 
macrophage and Treg levels. A direct comparison of IL-12– to IL-18–expressing CAR-T cells 
indicated that IL-18 is more effective at remodeling the immunosuppressive TME in a syngeneic 
murine pancreatic-cancer model (Chmielewski and Abken, 2017). Furthermore, CD19 CAR-T 
cells expressing IL-18 induced the expansion of endogenous CD8+ T cells, NK cells, NKT cells, 
and DCs in the bone marrow, potentially contributing to the control of tumors with heterogenous 
CD19 expression in a syngeneic mouse model (Avanzi et al., 2018).  
 
Among DCs, conventional type 1 DCs (cDC1s) in particular excel at inducing immunity against 
tumors via their ability to cross-present cellular antigens and prime Th1 cells. Recently, it has 
been shown that T cells engineered to secrete Fms-like tyrosine kinase 3 ligand (Flt3L), a 
hematopoietic cell growth factor, promote intratumoral cDC1 and DC-precursor proliferation (Lai 
et al., 2020). Furthermore, when T cells were co-transduced to express Flt3L and an anti-HER2 
CAR, a combined treatment with these CAR-T cells and adjuvants induced an enhanced 
antitumor response and endogenous T-cell epitope spreading in vivo (Lai et al., 2020).  
 
CAR-T cells have also been engineered to co-express multiple immune-modulatory proteins. In 
one example, CAR-T cells were programmed to co-express CCL19 and IL-7 to induce 
endogenous immune-cell recruitment and stimulate the recruited cells, respectively. In a 
syngeneic hCD20-expressing mastocytoma mouse model, these CAR-T cells induced robust 
recruitment of endogenous T cells and DCs, resulting in enhanced and durable tumor clearance 
(Adachi et al., 2018). 
 
CAR-T cells have also been designed to modulate the TME through the expression of surface-
bound proinflammatory ligands. For example, CD40L is normally transiently expressed on T cells 
after TCR stimulation, and its interaction with the CD40 receptor on different immune cell types 
can lead to activation of APCs, licensing of DCs, as well as apoptosis of CD40+ tumor cells (Cella 
et al., 1996; Eliopoulos et al., 2000; Ridge et al., 1998). Constitutive CD40L expression on CD19 
CAR-T cells resulted in elevated surface expression of costimulatory molecules, adhesion 
molecules, HLA molecules, and the Fas death receptor on CD40+ tumor cells, thus increasing 
their immunogenicity (Curran et al., 2015). These T cells also induced the secretion of 
proinflammatory IL-12 by monocyte-derived DCs in vitro, and showed enhanced antitumor 
efficacy in vitro and in vivo (Curran et al., 2015). It was subsequently demonstrated that CD40L-
expressing CAR-T cells can license APCs in lymphatic tissues in a syngeneic immunocompetent 
mouse model, and this licensing was found to be dependent on the CD40L/CD40 interaction 
(Kuhn et al., 2019). Furthermore, increased recruitment of macrophages, DCs, and endogenous 
CD4+ and CD8+ T cells to lymphatic tissues was observed, along with the recruitment of DCs, 
CD4+ and CD8+ T cells to the tumor. Treg levels were also observed to slightly increase in the 
tumor, but the ratio of CD8+ T cells to Tregs was unchanged. Thus, CD40L-expressing CAR-T 
cells capable of remodeling the TME and lymphatic tissue activated endogenous T cells to 
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suppress antigen-negative tumor re-challenge, strongly suggesting induced epitope spreading 
(Kuhn et al., 2019). Similarly, the surface expression of 4-1BBL on CAR-T cells is proposed to 
remodel the TME through autocrine-induced secretion of type I IFNs, which may improve DC 
cross-priming, Treg inhibition, and angiogenesis suppression (Zhao et al., 2015).   
 
Finally, CAR-T cells can be engineered to facilitate the engagement of tumor cells by 
endogenous, non-engineered T cells through the secretion of bispecific T-cell engagers (BiTEs), 
which are composed of two fused scFvs. Choi et al. engineered BiTEs with one scFv targeting 
EGFR, which are overexpressed in glioblastoma cells, and the other targeting CD3 on T cells. 
EGFRvIII-targeting CAR-T cells engineered to secrete EGFR/CD3 BiTEs have been shown to 
eliminate orthotopic tumor xenografts with heterogenous EGFRvIII expression (Choi et al., 2019).  
 
 
Conclusion 
 
CAR-T cell therapy has shown great promise in treating hematologic malignancies. However, 
solid tumors pose unique challenges that require further engineering and tuning of the technology 
to successfully treat these intractable malignancies. Recent protein- and cell-engineering 
strategies have made great strides in boosting the intrinsic fitness and anti-tumor function of T 
cells, increasing tumor-targeting specificity, preventing tumor escape and relapse, as well as 
modifying the TME to enhance immunotherapeutic outcomes. Although most engineering 
strategies reported to date have focused on delivering individual desirable features, 
advancements in genome-editing methodologies and genetic circuitry design offer the possibility 
of multi-layered approaches that can simultaneously address multiple critical needs in T-cell 
therapeutics development.  
 
At the same time, the biological complexity of and potential crosstalk among different engineered 
features within the T cell, as well as among engineered and endogenous immune cells, tumor 
cells, and other tumor-associated factors, must be carefully balanced when advancing the clinical 
translation of CAR-T cells for the treatment of solid tumors. The decreasing cost and increasing 
capacity of next-generation and single-cell sequencing methods, as well as proteomic and 
metabolomic analyses, could significantly enhance our ability to understand and rationally 
manipulate these complex interactions while engineering the next generation of CAR-T cell 
therapy for solid malignancies. The growing toolbox of T-cell engineering strategies that can be 
synergistically implemented and modularly calibrated for maximum safety and efficacy will 
continue to enable innovations that aim to generate new treatment options for currently intractable 
diseases. 
 
 
Acknowledgment 
 
MH and JDC are supported by the Parker Institute for Cancer Immunotherapy Center at UCLA 
and the Cancer Research Institute (grants to YYC). 
  

Deleted:  

Deleted: Biological complexity of and crosstalk among 
engineered and endogenous immune cells, tumor cells, 
and other tumor-associated factors require engineering 
approaches on multiple levels to overcome hurdles in 
the actualization of CAR-T cells for treating solid 
tumors. 

Deleted: E

Deleted: on the CAR protein and T cells 

Deleted:  improving CAR-T cell function and safety

Deleted:  Furthermore, innovative approaches to 
directly challenge the immunosuppressive and 
immune-evasive nature of the TME offer an exciting 
new paradigm for the treatment of solid tumors using 
CAR-T cells.

Deleted:  

Deleted: While each these strategies areis exciting on 
their own

Deleted:  complicate the clinical actualization 

Deleted: To overcome these hurdles, engineering CAR-
T cells on multiple levels through the combination of 
innovative and sophisticated approaches such as those 
outlined in this Review is a highly promising, and likely 
necessary, strategy to achieve simultaneous and 
compounded improvement of CAR-T cell efficacy and 
safety for next-generation cancer therapy. the 
biological complexity of and crosstalk among 
engineered and endogenous immune cells, tumor cells, 
and other tumor-associated factors will require robust 
next-generation CAR-T cells empowered by 
engineering on multiple levels to simultaneously drive 
efficacy and safety. This combination of proven and 
innovate complementary approaches will enable CAR-
T cells to overcome a multitude of hurdles in the 
actualization of CAR-T cells for treating solid tumors.

Formatted: Space After:  0 pt

Formatted: Space After:  0 pt, Line spacing:  single

Formatted: Space After:  0 pt, Line spacing:  single

Formatted: Font: Not Bold



18 
 

Figure Legends 
 
 
Figure 1. CAR-T Cell Engineering Approaches 
Strategies to engineer CAR-T cells for improved function in solid tumors include a focus on CAR 
engineering, T-cell engineering, and TME interaction optimization. 
 
Figure 2. Protein Engineering Strategies to Improve the Programmability, Safety, and 
Efficacy of CAR-T Cells 
(A) Combinatorial antigen recognition by AND- and AND-NOT logic using a synNotch receptor 
and iCAR, respectively, can increase antigen specificity and safety. Tandem bispecific OR-gate 
CARs can circumvent antigen escape and increase efficacy. 
(B) Engineered ON and OFF switches can easily and efficiently alter CAR-T cell activity. 
(C) Programming CARs to activate only in the presence of an adaptor or by leucine-zipper–
mediated reconstitution can increase controllability over CAR-T cell activity. 
 
Figure 3. Engineering strategies to improve CAR-T cell safety 
(A) Co-expression of suicide genes such as HSK-TV, iCasp9, CD20, and tEGFR enables 
induction of T-cell death to abort the therapy in the case of adverse events.  
(B) Tet-ON and -OFF systems allow the control of the CAR expression on the transcriptional 
level. 
 
Figure 4. Rewiring T-cell signaling with synthetic receptors 
Switch receptors rewire T-cell responses by triggering co-stimulatory signaling in the presence 
of normally inhibitory ligands. CARs responsive to environmental cues such as soluble TGF-β or 
surface antigens present on tumor-supportive tissues can enhance anti-tumor function by 
removing and converting immunosuppressive factors. 
 
Figure 5. Strategies in Optimizing CAR-T Cell and Tumor Interactions 
CAR-T cells have been engineered to utilize, reverse, or circumvent tumor-driven 
immunosuppressive factors and axes through a variety of mechanisms. 
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Tables 
 
Table 1. Targeted genome-editing strategies to enhance T-cell function 

Target locusa Motivationb Technologyc Reference 

TRAC Ablate TCRαβ expression 
to reduce alloreactivity  

ZFN (Torikai et al., 2012) 

TALEN (Qasim et al., 2017; Valton 
et al., 2015)  

CRISPR/Cas9 (Georgiadis et al., 2018) 

CRISPR/Cas9 
CAR knock-in 

(Eyquem et al., 2017; 
MacLeod et al., 2017) 

TRAC, TRBC Enhance transgenic TCR 
expression CRISPR/Cas9 (Stadtmauer et al., 2020) 

B2M Ablate HLA expression to 
reduce alloreactivity CRISPR/Cas9 (Ren et al., 2017b) 

HLA-A Ablate HLA expression to 
reduce alloreactivity ZFN (Torikai et al., 2013) 

CD52 Confer resistance to 
lymphodepletion TALEN (Qasim et al., 2017) 

dCK Confer resistance to 
lymphodepletion TALEN (Valton et al., 2015) 

PD-1 Inhibit immune-checkpoint 
signaling 

TALEN (Menger et al., 2016) 

CRISPR/Cas9 

(Liu et al., 2017; Ren et 
al., 2017a; Rupp et al., 
2017; Stadtmauer et al., 
2020) 

REGNASE-1 Disrupt a negative regulator 
of T-cell activity   CRISPR/Cas9 (Wei et al., 2019) 

DGKα, DGKζ Disrupt a negative regulator 
of T-cell activity   CRISPR/Cas9 (Jung et al., 2018) 

LAG3 Disrupt a negative regulator 
of T-cell activity   CRISPR/Cas9 (Zhang et al., 2017) 

FAS Abolish pro-apoptotic 
signaling CRISPR/Cas9 (Ren et al., 2017b) 

GM-CSF Inhibit CRS-related 
toxicities CRISPR/Cas9 (Sterner et al., 2019) 

aTRAC, T-cell receptor alpha constant; TRBC, T-cell receptor beta constant; B2M, Beta-2 
microglobulin; HLA, human leukocyte antigen; dCK, deoxycytidine kinase; PD-1, programmed 
cell death protein 1; DGK, diacylglycerol kinase; LAG3, lymphocyte-activation gene 3; GM-CSF, 
granulocyte-macrophage colony-stimulating factor. 
bTCR, T-cell receptor; CRS, cytokine release syndrome. 
cZFN, zinc-finger nuclease; TALEN, transcription activator-like effector nuclease; CRISPR, 
clustered regularly interspaced short palindromic repeats; Cas9, CRISPR-associated protein 9. 
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