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The FASEB Journal • Review

Applications of the human p53 knock-in (Hupki) mouse
model for human carcinogen testing

Ahmad Besaratinia1 and Gerd P. Pfeifer
Department of Cancer Biology, Beckman Research Institute of the City of Hope National Medical
Center, Duarte, California, USA

ABSTRACT Tumor-driving mutations in the TP53
gene occur frequently in human cancers. These inacti-
vating mutations arise predominantly from a single-
point mutation in the DNA-binding domain of this
tumor suppressor gene (i.e., exons 4–9). The human
p53 knock-in (Hupki) mouse model was constructed
using gene-targeting technology to create a mouse
strain that harbors human wild-type TP53 DNA se-
quences in both copies of the mouse TP53 gene.
Replacement of exons 4–9 of the endogenous mouse
TP53 alleles in the Hupki mouse with the homologous
normal human TP53 gene sequences has offered a
humanized replica of the TP53 gene in a murine genetic
environment. The Hupki mouse model system has
proven to be an invaluable research tool for studying
the underlying mechanisms of human TP53 mutagene-
sis. The utility of the Hupki mouse model system for
exploring carcinogen-induced TP53 mutagenesis has
been demonstrated in both in vivo animal experiments
and in vitro cell culture experiments. Here, we highlight
applications of the Hupki mouse model system for
investigating mutagenesis induced by a variety of envi-
ronmental carcinogens, including sunlight ultraviolet
radiation, benzo[a]pyrene (a tobacco smoke-derived
carcinogen), 3-nitrobenzanthrone (an urban air pollut-
ant), aristolochic acid (a component of Chinese herbal
medicine), and aflatoxin B1 (a food contaminant). We
summarize the salient findings of the respective stud-
ies and discuss their relevance to human cancer
etiology.—Besaratinia, A., Pfeifer, G. P. Applications
of the human p53 knock-in (Hupki) mouse model for
human carcinogen testing. FASEB J. 24, 2612–2619
(2010). www.fasebj.org
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The pattern of somatic alterations in a human
cancer genome is shaped by a number of factors, of
which mutagen exposure holds great importance (1–
3). Numerous mutagenic agents are present in the air
we breathe, in the food we eat, and in the water we
drink (4, 5). The complexity of human exposure to
environmental mutagens can variably influence the
compendium of somatic mutations occurring in human
cancers (2, 3, 6, 7). For example, human nonmelanoma
skin- and lung cancer genomes bear unique mutational
signatures, which are attributable to exposure to sun-

light ultraviolet (UV) radiation and tobacco smoke,
respectively (8). Tumor genomes from nonmelanoma
skin- and lung cancer patients, respectively, show a
characteristic preponderance of C3T or CC3TT tran-
sitions at dipyrimidine sites (Fig. 1), and G3T trans-
versions at methylated CpG dinucleotides (Fig. 2),
which occur preferentially on the nontranscribed DNA
strand (9–11).

The recent advent of next-generation sequencing
platforms has massively reduced the cost and effort of
cataloguing human cancer mutations (12, 13). Cur-
rently, high throughput next-generation sequencing
projects are interrogating a variety of cancer genomes,
including various types of human tumors and cancer
cell lines (14–18). These projects are poised to identify
unique somatic changes in the genome of cancer
patients and/or cell lines with a history of exposure to
specific mutagens. To address the issue of cancer
etiology, however, the occurrence of these genetic
mutations does need to be recapitulated experimen-
tally. Demonstration of a link between exposure to
certain mutagens and induction of specific mutations
in genes that promote tumorigenesis when mutated
should be done in validated experimental model sys-
tems and under well-defined and controlled exposure
conditions (8). By helping draw causality inference, this
approach can greatly improve our understanding of the
etiology of human cancer.

Inactivating mutations in the TP53 tumor suppressor
gene are frequent events in human cancers (19–22),
and TP53 generally stands at the top of the list of the
most frequently mutated genes even when all coding
sequences of the human genome are analyzed (11).
The vast majority of TP53 mutations arise from a single
point mutation in the segment encoding the DNA-
binding domain of the TP53 protein (19, 20). These
inactivating mutations render the mutant TP53 protein
unable to carry out its normal functions, i.e., transcrip-
tional transactivation of downstream target genes that
regulate the cell cycle and apoptosis (21, 22). Scrutiny
of the available databases of TP53 gene mutations in
human cancers [e.g., IRAC TP53 database (http://www-
p53.iarc.fr/p53DataBase.htm), 27,132 entries; and UMD
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TP53 mutation database (http://p53.free.fr/Database/
p53_database.html), 28,513 entries] has revealed signif-
icant links between exposure to mutagenic compounds
and TP53 genetic alterations specific for certain types
of human cancers (20, 23, 24). Attempts have been
made to reproduce these putative links in experimental
settings using a wide range of model systems, including
bacterial Ames test (25, 26), functional analysis of
separated alleles in yeast (FASAY; refs. 27, 28), reporter
gene-based transgenic rodents, e.g., BigBlue® system
(29), or analysis of endogenous noncancer-related
genes, e.g., the house-keeping hypoxanthine phospho-
ribosyltransferase (HPRT) gene in mammalian or hu-
man tissues/cells (30). Although these model systems
have all provided invaluable information on many
aspects of mutagenesis-derived carcinogenesis, they all
lack, in one way or another, crucially important factors
that contribute to TP53 mutations and human cancers
(8). For instance, in these model systems, the known
determinants of mutagenesis, e.g., DNA-sequence con-
texts, DNA repair efficiency, and fidelity of replicative
DNA polymerases, which are species/cell-type depen-

dent, may not represent the respective parameters in
the human TP53 gene (8).

More recently, a novel model system has been devel-
oped to investigate experimentally induced mutations
in the human TP53 gene, in its natural mammalian
context. The human p53 knock-in (Hupki) mouse
model has addressed the issue of DNA-sequence con-
text by replacing exons 4–9 of the endogenous mouse
TP53 allele with the homologous normal human TP53
gene sequence (31). In the following sections, we will
discuss the Hupki mouse model system, which has the
utility to detect both spontaneously arisen- and carcin-
ogen-induced mutations in the human TP53 gene in
vitro (32–38) or in vivo (31, 39, 40).

Hupki MOUSE STRAIN

The Hupki mouse model system was constructed using
gene-targeting technology to create a mouse strain that
harbors human wild-type TP53 DNA sequences from

Figure 1. Mutation spectrum (A) and codon distribution (B) of the TP53 tumor suppressor gene in human nonmelanoma skin
tumors (basal cell and squamous cell carcinomas; n!541). Data were obtained from the TP53 mutation database of the
International Agency for Research on Cancer (http://www-p53.iarc.fr/p53DataBase.htm; R12 version) (79). Codons containing
methylated CpG sequences are indicated by asterisks. Ins, insertions; Del, deletions.

Figure 2. Mutation spectrum (A) and codon distribution (B) of the TP53 tumor suppressor gene in tobacco smoke-associated
lung cancer (n!2340). Data were obtained from the TP53 mutation database of the International Agency for Research on
Cancer (http://www-p53.iarc.fr/p53DataBase.htm; R12 version) (79). Entries with confounding exposure to asbestos, mustard
gas, or radon were excluded. Codons containing methylated CpG sequences are indicated by asterisks. Ins, insertions; Del,
deletions.
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exons 4 to 9 in place of the homologous murine DNA
sequences in both copies of the mouse TP53 gene (31).
The substituted segment encodes the polyproline do-
main and DNA-binding domain of wild-type human
TP53, and the chimeric TP53 gene remains under
normal transcription regulation at the mouse locus.
The Hupki mice develop normally, exhibit no apparent
physiological defects, remain fertile, and show no sus-
ceptibility to spontaneous lymphomas, sarcomas, or
other neoplasms, which are common in TP53-deficient
or null mice (31). The Hupki mice retain a variety of
normal TP53 functions and characteristics, including
nuclear accumulation of TP53 protein after exposure
to DNA-damaging agents, transcriptional activation of
known TP53 downstream targets, and induction of
apoptosis in thymocytes after "-irradiation, an outcome
modulated by a functional TP53 gene (31, 35, 41).

In addition to its application for in vivo animal
experiments (31, 39, 40), the Hupki model system is
also amenable to in vitro cell culture experiments
(32–38). Ideally, the origin of TP53 mutations in hu-
man cancers should be determined using a mutagene-
sis assay in which suspected endogenous metabolites or
exogenous carcinogens can target the DNA sequences
of this tumor suppressor gene, thereby leading to
mutant TP53 proteins that confer a selectable pheno-
type, preferably one that resembles the aberrant func-
tions that are typical for human tumor TP53 mutants.
Theoretically, normal human cells would be the ideal
cell type for such assay, were they not resistant to
undergo immortalization or transformation in vitro. In
practice, proliferative nonsenescent cultures are re-
quired for amplification and subsequently detection of
the few phenotypically expressed TP53 mutant cells,
which are usually outnumbered by an overwhelming
pool of wild-type nonmutant cells (even in cultures that
have undergone numerous rounds of passaging) (8).
Murine fibroblasts, in contrast to human cells, sponta-
neously undergo immortalization during in vitro cultur-
ing, and require only one key genetic defect, such as
loss of TP53 function, thus, allowing the selection of
TP53 mutant cells in vitro (42–44). Likewise, primary
embryonic fibroblasts from the Hupki mice readily
undergo immortalization during in vitro passaging,
which allows for the selection of dysfunctional TP53
point mutations that are characteristic of human tu-
mors (32–38).

Given the importance of DNA sequence context in
human TP53 mutagenesis and carcinogenesis (8, 31),
the murine TP53 gene, however, cannot optimally
represent its human counterpart gene due to the 15%
discrepancy in base sequence in the DNA-binding
domain and amino acid differences between these two
species (35, 44, 45). This incomparability might ex-
plain, for example, the observation that whereas codon
248 (CGG) of the human TP53 gene is the most
prominent mutation hotspot in nonmelanoma skin
cancers (Fig. 1B), the mouse equivalent codon (CGC)
(45) hardly harbors any mutations in UVB-induced
tumors (46). The Hupki model system has resolved the
above issue of incomparability by genetically modifying
the murine TP53, and creating a humanized replica of
the TP53 gene in the mouse genome (35). The system

offers a promising venue for assaying spontaneous or
experimentally induced human TP53 gene mutations
both in vitro (32–38) and in vivo (31, 39, 40). In the
following paragraphs, we will highlight applications of
the Hupki mouse model system for mutagenicity analy-
sis of various physical or chemical carcinogens and
discuss the advantages and disadvantages of this model
system in vitro and in vivo.

Hupki MUTAGENESIS ASSAY IN VITRO

The Hupki mouse embryonic fibroblasts treated with
benzo[a]pyrene (B[a]P), a prominent tobacco-derived
carcinogen, harbored TP53 mutations consisting of
predominantly single base substitutions in the DNA-
binding domain of this gene [29 of 36 (#81%) of all
mutations] (32, 34, 36). G3T transversion mutations
constituted half of all B[a]P-induced mutations, of
which all but one (17 of 18) occurred at sites where the
permutated guanines were positioned on the nontran-
scribed strand of the TP53 gene. Distribution of the 29
B[a]P-induced mutations in the DNA-binding domain
of the TP53 gene revealed codons 157, 158, and 273 as
the most frequently mutated sites. The overall pattern
and distribution of B[a]P-induced mutations in the
Hupki mouse model system (32, 34, 36) mirror the
characteristic features of TP53 mutations in lung tu-
mors of smokers (Figs. 2A and 3A) (47–49).

The established cultures of Hupki mouse embryonic
fibroblasts irradiated with UVC gave rise to point
mutations in the DNA-binding domain of the TP53
gene (33). Two of the seven induced mutations recov-
ered from the UVC-irradiated cultures were at codons
248 and 273 (33), two major TP53 mutational hotspots
in human nonmelanoma skin cancers (Fig. 1B) (50).
Of all UVC-induced mutations, three were C3T tran-
sitions on the nontranscribed strand of the TP53 gene
(33), a common feature of mutant TP53 gene in
sun-exposed human skin tumors (Fig. 1A) (10, 50).

The Hupki mouse embryonic fibroblasts were treated
with aristolochic acid (AA) (32, 33, 38), a plant extract
potentially involved in Chinese herbs nephropathy and
possibly leading to urothelial cancer development (51).
Twenty of the 37 AA-induced TP53 mutations (54%)
were A3T transversion mutations (52) (Fig. 3B), re-
flecting the hallmark mutation detected in the urothe-
lial tumor cells of patients with documented AA exposure
(53, 54). The induced A3T transversion mutations were
presumably due to the permutated adenines located
almost exclusively on the nontranscribed strand of the
TP53 gene (32, 33, 38). This finding is consistent with
the preferential formation of AA-adenine adducts
found in the DNA of AA-treated Hupki cells and ne-
phropathy patients (51, 54–56), as well as in the DNA
from target organs of AA-exposed rats (57, 58). Re-
cently, Grollman et al. (53) have also identified AA-
adenine and -guanine adducts in the renal cortex of
nephropathy patients and in the transitional cell tumors
of patients with upper urinary tract malignancies who
were residents of the endemic (Balkan) villages in which
chronic dietary exposure to AA is prevalent. Mutation
analysis of the TP53 gene in this population showed a
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predominance of mutations at A:T base pairs accounting
for 89% of all detected mutations, with the vast majority
(15 of 19) being A:T3T:A transversions (53).

The Hupki mouse embryonic fibroblasts were treated
with 3-nitrobenzanthrone (3-NBA) (37), a member of
the class of nitropolycyclic aromatic hydrocarbons,
present in particulate fraction of diesel exhaust (59),
and a ubiquitous urban air pollutant (60, 61). The
established cultures of 3-NBA-treated cells harbored
TP53 mutations in the DNA-binding domain of this
gene, which consisted mainly of base substitutions (22
of 29, #76%) (37). Of these, G:C3T:A transversions
were the major type of mutations (10 of 22, #46%)
followed by A:T3T:A transversions (3 of 22, #14%)
(Fig. 3C). This ratio of G:C3T:A to A:T3T:A transver-
sions (3:1) perfectly mirrored the ratio of dG/dA
adduct formation (75:25%) determined in similarly
treated cells with 3-NBA or its reactive metabolite,
N-hydroxy-3-aminobenzanthrone (N-OH-3-ABA) (37).
A similar correlation in ratios of 3-NBA-derived purine
adducts to transversion mutations was previously found
in liver tissues of the MutaMouse, where the proportion
of induced dG to dA adducts was 6 to 1 and that of
corresponding G:C3T:A and A:T3T:A mutations was
5 to 1 (61). G:C3T:A transversions were also the
predominant type of mutations found in N-OH-3-ABA-
treated shuttle vector plasmids propagated in human
cells (62), as well as in livers of 3-NBA-treated MutaMice
(61) and in the lungs of gpt-$ transgenic mice follow-
ing inhalation of diesel exhaust (63).

Whibley et al. (64) have recently shown that primary
murine embryonic fibroblasts from wild-type and Hupki
mice alike undergo in vitro spontaneous immorataliza-
tion consequent to successive passaging in culture. The
authors demonstrated that basic features of oxidative-
stress-induced senescence and subsequent immortaliza-
tion of wild-type mouse embryonic fibroblasts are pre-
served in the counterpart cells from the Hupki mice.
While wild-type mouse embryonic fibroblasts entered
and exited senescence slightly later than their counter-
part Hupki cells, reactive oxygen species (ROS) levels
and the extent of DNA damage, determined by staining
with a ROS-labile dye and the alkaline comet assay,
respectively, were similar in the two cell lines at corre-

sponding passages. TP53 mutations and p19 deletions
occurred in a significant proportion of spontaneously
immortalized cells in both wild-type and Hupki embry-
onic fibroblasts, and the frequency of these events did
not differ significantly between these two genotypes
(64). Notably, TP53 mutations arising during spontane-
ous immortalization of the Hupki fibroblast cultures
correspond to human cancer TP53 mutations (64) that
are known to be deficient in transcriptional activity
(65). Although a limited number of TP53 mutation
data was available from the immortalized wild-type
mouse embryonic fibroblasts as compared to that from
the counterpart Hupki cells (12 vs. 64 entries, respec-
tively), the spectra of TP53 mutations found in the
respective genotypes were similar in that G:C3C:G
transversions constituted the most common type of
base substitutions (Fig. 4) (64). This type of base
alteration occurs at high frequency (up to #30%) in
human breast cancer (1, 17, 66), although the driving
force behind this mutagenic event is currently un-
known (11). The prevalence of G:C3C:G transversions
in the spectra of TP53 mutations in both wild-type and
Hupki immortalized mouse embryonic fibroblasts re-
mains a matter of further investigation (M. Hollstein,
University of Leeds, Leeds, UK; personal communica-
tion, February 2, 2010).

Hupki MUTAGENESIS ASSAY IN VIVO

Luo et al. (35) have demonstrated that UVB-irradiated
Hupki mice exhibit characteristic molecular pathology
features of sunlight-associated human skin cancers (67,
68), including development of clones of epidermal cell
patches with TP53-immunoreactive nuclei; formation
of UV-induced cyclobutane pyrimidine dimers at skin
cancer mutational hotspots in the TP53 gene, which
colocalize with the respective lesions induced in UVB-
exposed human keratinocytes; and induction of signa-
ture C3T transition mutations in the respective TP53
mutational hotspots (35). Screening of the UVB-irradi-
ated Hupki mouse epidermal cells for mutations at
codons 247–248 and 278–279, two major skin cancer

Figure 3. Induced mutation spectra of the TP53 tumor suppressor gene in the Hupki mouse model system. A) B[a]P-treated
Hupki mouse embryonic fibroblasts (n!36) (data compiled from refs. 32, 34, 36). B) AA-treated Hupki mouse embryonic
fibroblasts (n!37) (data compiled from refs. 32, 33, 38, 52). C) 3-NBA-treated Hupki mouse embryonic fibroblasts (n!29) (data
obtained from ref. 37).
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TP53 mutational hotspots (Fig. 1B), showed that 58 of
the 59 mutant clones (98%) harbored a transition
mutation, including 9 (15%) with tandem CC3TT
mutations (35). All of the UVB-induced mutations in
codons 278–279 and #28% of mutations in codons
247–248 occurred at sites where the premutated py-
rimidine dinucleotides were on the nontranscribed
strand of the TP53 gene (Fig. 5) (35). The overall
pattern of TP53 mutations found in UVB-irradiated
Hupki mice (35) corresponds to the unique features
of TP53 mutations in sunlight-associated human skin
tumors (69 –71).

Tong et al. (40) have used the Hupki mice to investi-
gate the effect of local DNA sequence on TP53 codon
249 mutation, a prevalent occurrence in human hepa-
tocellular carcinoma associated with synergistic expo-
sure to aflatoxin B1 (AFB1) and hepatitis B virus (HBV)
infection (72). A single intraperitoneal injection of

AFB1 to the Hupki mice and counterpart wild-type
animals showed that the mice expressing the human-
ized TP53 were more prone to hepatocellular carci-
noma development and death, compared to mice ex-
pressing the murine TP53, without acquiring any
mutations in the TP53 gene (40). These findings sup-
port the notion that the specificity of TP53 codon 249
mutation in human hepatocellular carcinoma is not
solely dependent on DNA sequence context of this
gene, and other determining factors, e.g., concomitant
HBV infection, may synergistically be involved in this
process (73). Currently, work is underway to address
this question in a more relevant model system, i.e., the
Hupki % Chisari’s HBV cross-strain mice (M. Hollstein,
personal communication, November 18, 2008).

ADVANTAGES AND DISADVANTAGES OF THE
Hupki MOUSE MODEL SYSTEM

The Hupki mouse embryonic fibroblasts have proven to
be an invaluable in vitro model system for mutagenicity
testing of various physical or chemical carcinogens
(32–38). The system has appeared metabolically com-
petent by converting all the tested chemicals to their
reactive metabolites (32–38), and expressing a num-
ber of phase I and II metabolic enzymes, including
Cyp 1b1, Cyp 1a2, microsomal epoxide hydrolase,
NAD(P)H:quinone oxidoreductase, and nitroreduc-
tase (33). However, the Hupki system has yet to
resolve its inherent challenges, including time- and
labor-intensiveness, two common drawbacks of the
currently available in vitro mutagenesis assays (8).
The latter hinders generation of a sizable mutation
database. Another limitation of the Hupki model
system, both in vitro and in vivo, is the intrinsic
possibility that the Hupki TP53 protein may perform
suboptimally in the genetic environment of the mu-
rine cells, either due to the absence of other human-
specific proteins that interact with TP53, or because
of blocking of its function by mouse-specific proteins.
Also, uncertainties remain about the ability of the
Hupki TP53 protein to function exactly as expected
in a genetically engineered environment. For exam-

Figure 4. Spontaneous mutation spectra of the
TP53 tumor suppressor gene in immortalized
Hupki (A) and wild-type (B) mouse embryonic
fibroblasts. Total numbers of TP53 mutations in
wild-type and Hupki immortalized cells were 12
and 64, respectively. Data were obtained from
ref. 64.

Figure 5. Mutation spectrum of the TP53 tumor suppressor
gene in UVB-irradiated Hupki mice. Restriction enzyme diges-
tion-coupled to PCR amplification of codons 247–248 and
codons 278–279 followed by DNA sequencing were per-
formed to establish the spectrum of mutations in the respec-
tive codons, two major TP53 mutational hotspots in human
nonmelanoma skin cancers (see Fig. 1B) (50). Total numbers
of mutant clones at codons 247–248 and 278–279 were 39
and 20, respectively.
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ple, species-specific differences in phosphorylation
sites within the substituted polyproline domain of the
Hupki model system may lead to a differential post-
translational regulation of TP53 function in this
model system (39, 74, 75). Moreover, the ability of
the Hupki TP53 protein to participate in processes of
DNA repair and recombination (76, 77) remains a
matter of uncertainty. Despite the overall conserva-
tion in evolution of DNA repair mechanisms, differ-
ences exist between humans and mice, such as the
efficiency of the global genomic repair subpathway of
nucleotide excision repair (78). Such discrepancies
may prove problematic because promutagenic le-
sions in the Hupki TP53 gene are subject to the
murine DNA repair machinery (33). Altogether, al-
though the Hupki TP53 model system has recapitu-
lated many aspects of TP53 mutagenesis and human
cancer (31–40), future studies will determine the ex-
tent to which this model system can precisely delineate
human TP53 mutagenesis and carcinogenesis.

CONCLUSIONS

Inactivating mutations in the TP53 tumor suppressor
gene occur frequently in a variety of human cancers
(19–22). The pattern (spectrum) and frequency distri-
bution (hotspots) of mutations in the TP53 gene are
tumor-specific and reflective of past mutagen exposure
(11). Thus, investigating human TP53 mutagenesis in
relation to exposure to mutagenic agents can provide
information on the underlying etiology of human can-
cers. The Hupki mouse model system was constructed
using gene-targeting technology to create a humanized
replica of the TP53 gene in mouse, thus allowing for
experimental recapitulation of human TP53 mutagen-
esis (31). The utility of the Hupki mouse model system
for studying the etiologic involvement of suspect envi-
ronmental mutagens in human TP53 mutagenesis has
been demonstrated in a number of in vivo animal
experiments (35, 40) and/or in vitro cell culture exper-
iments (32–34, 36–38, 52). For the most part, these
investigations have reproduced the respective human
TP53 mutagenesis data obtained from populations with
documented exposure to mutagens of interest. A re-
cent study has also shown the validity of the Hupki
mouse model system for portraying upstream events
leading to, and downstream events caused by, human
TP53 mutagenesis (64). Further studies of such design
must determine the accuracy of the Hupki mouse
model system for representing the events preceding,
and those following, human TP53 mutagenesis in vivo.
Another important area of research, which awaits fur-
ther exploration, is establishing the status of CpG
methylation in the substituted segment of the Hupki
mouse genome. The methylated CpGs (mCpGs) in this
segment in the human genome constitute the single
most significant mutational target in the TP53 gene
(11). The importance of mCpGs in human TP53 mu-
tagenesis is borne out by the observation that TP53
mutational hotspots in certain types of human cancers
localize almost exclusively to mCpG-containing codons
(e.g., the majority of both lung and colon cancer muta-

tional hotspots have mCpGs in their sequence contexts,
or nonmelanoma skin cancer mutational hotspots cluster
at pyrimidine-mCpG sequence contexts) (11).

This work was supported by grants from the University of
California Tobacco Related Disease Research Program
(18KT-0040 to A. B.) and the National Cancer Institute
(R01CA084469 to G. P. P.).
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