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ABSTRACT OF THE DISSERTATION

Analysis of High-Dimensional Functional Electroencephalography Data with Applications

to Neurodevelopmental Disorders

by

Emilie Joyce O’Banion

Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2023

Professor Damla Şentürk, Chair

Due to the increasing availability of highly structured data, data analysis methods that

are computationally efficient are necessary to study the dependencies between functional

responses. The methods developed in this dissertation are motivated by a set of electroen-

cephalography (EEG) studies in children with autism spectrum disorder (ASD).

The first chapter of this body of work focuses on finding a set of components across dif-

ferent conditions within multiple experimental tasks using principle ERP reduction (pERP-

RED). These underlying components are referred to as principle ERPs (pERPs) and are

found using principal component analysis and independent component analysis. The second

chapter then provides a low-dimensional decomposition of the highly structured EEG data

through multilevel hybrid principal component analysis (M-HPCA) by decomposing the

total variation into between- and within-subjects variation using ideas from ANOVA and

separating the variation further using vector and functional principal component analyses.

Finally, the third chapter models associations between scalar outcomes, such as a diagno-

sis, with region-referenced longitudinal functional predictors, such as EEG data collected

across multiple visits, by introducing region-referenced longitudinal functional generalized

linear models (RRLF-GLM). Utilizing a tensor product of discrete and continuous bases, the

regression coefficient is able to capture the relationship that changes to the EEG response

ii



have on the outcome. Each of these three proposed methods can be used to understand the

differences in brain responses between typically developing children and children with ASD.
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CHAPTER 1

Introduction

The aim of this dissertation is to provide methods to study the heterogeneity in electroen-

cephalography (EEG) data collected from children with neurodevelopmental disorders such

as autism spectrum disorder (ASD) or attention deficit hyperactivity disorder (ADHD). For

context, a brief review of essential topics is provided: electroencephalography, functional

principal component analysis (FPCA), and functional regression. The review is followed by

a summary of the main contributions: proposed methods, contributing publications, and

available software.

1.1 Electroencephalography

An electroencephalogram (EEG) is a way to measure electrical activity in the brain using

electrodes attached to the scalp and was first demonstrated in 1929 by Hans Berger (Luck,

2014). Over the decades, it has been shown that EEG can be used in scientific and clinical

settings, but there are still a number of challenges in analyzing EEG data. The signal-to-

noise ratio is often poor which leads researchers to find ways of amplifying the signal, which

usually means collapsing an important dimension of the data. In addition to the signal-

to-noise ratio, the observed EEG data is often a combination of many different sources of

activity that make it difficult to isolate neuro-cognitive processes.

Statistical methods must also consider the high-dimensional structure of this data. EEG

signals are recorded continuously throughout the experiment time at multiple electrodes

across the scalp and the signal is split into segments. Therefore each observation of func-

tional data has a regional and longitudinal dimension. The set of EEG signals are typically
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collapsed by either averaging across regions, longitudinal timepoints, or both. Even fur-

ther, researchers may reduce the signal into scalar features such as peak amplitude within

a user-specified window in the functional domain. The methods developed as part of this

dissertation circumvent the need to use scalar features and aim to utilize each of the dimen-

sions to investigate the dominant modes of variation in the observed data and how they differ

between diagnostic groups. The following describes the two paradigms of EEG experiments

that will be used to demonstrate the methods developed in this dissertation.

1.1.1 Event-related paradigms

EEG recordings time-locked to an event of interest, such as a stimulus or participant response,

produce an event-related potential (ERP) waveform. Experimental designs in this case utilize

contrasting task conditions in order to investigate task-related changes to the ERP waveform.

Each presentation of the stimulus or participant response generates an ERP that represents

the functional observation. The contrasting task conditions create a multilevel dimension.

Finally, the data is recorded at each electrode, creating a regional dimension. The goal of

ERP experiments is to study the expected components, which are characterized by peaks or

positivities (P) and valleys or negativities (N). These components are named for the direction

(P or N) and the time at which they occur, e.g. the P300 is a positivity at 300 ms.

Experiments are designed to elicit a specific set of characteristic ERP components based

on the cognitive processes they are thought to reflect (Luck, 2014). For example, a simple

oddball paradigm is described in Luck (2014) in which participants were presented an ‘X’ on

the screen 80% of the trials and an ‘O’ the other 20% of the trials. They were asked to press

one button for ‘X’ and a different button for ‘O’. ERPs were averaged across trials within

conditions and there was a set of components that were consistently seen in these averages.

Namely, the P100 is connected to the initial visual response and the P300 is thought to

represent context updating. The P300 has been shown to have a larger amplitude when the

probability of the event is lower (unexpected). These types of experiments can be useful in

studying the differences in brain responses between children with ASD and their typically
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developing (TD) peers.

1.1.2 Resting state paradigms

Resting-state paradigms differ from event-related paradigms in that they are not time-locked

to an event of interest. These experiments do not require an outward response and do not

have a repeated stimulus. For example, EEG signals may be recorded over several minutes

while participants gaze at a screen with floating bubbles while relaxed. The EEG signals

are segmented into 1-3 second pieces and transformed into the frequency domain using Fast

Fourier Transform (FFT). The resulting power spectral density is considered the until of

observation and represents functional data. The goal of resting-state paradigms is to un-

derstand baseline spectral characteristics. In the studies considered within this dissertation,

participants are children observed during their first year of life and the development of the

spectral density over time is the focus since it can reveal early neurodevelopmental disrup-

tions.

1.2 Functional data analysis

Each ERP or PSD can be considered samples from an underlying functional process and

methodology from functional data analysis (FDA) has been widely developed, see Ramsay

& Silverman (2005) for a full review. It is assumed that the units of observation are smooth

curves X1(t), ..., Xn(t) across a continuous domain T . However, recently effort has been

made in extending methods for one-dimensional functional data to accommodate functional

data observed repeatedly for multiple regions or longitudinal timepoints, as described in the

previous section.

1.2.1 Functional principal components analysis

Functional principal components analysis (FPCA) is a dimension reduction tool for func-

tional data analogous to principal components analysis (PCA) for scalar multivariate data
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(Wang et al. , 2016). Similar to PCA, the goal of FPCA is to find the dominant modes of

variation in the functional observations. The added bonus of FPCA is the ability to convert

infinite-dimensional functional data into a finite set of principal component scores.

Let Xi(t), i = 1, ..., n, denote the sample of smooth functions defined on the continuous

interval t ∈ T , then denote the mean function µ(t) = E{Xi(t)} and covariance function

Σ(t, t′) = cov{Xi(t), Xi(t
′)}. Mercer’s theorem (Mercer, 1909) gives the spectral decomposi-

tion

Σ(t, t′) =
∞!

k=1

λkφk(t)φk(t
′),

where λk, k = 1, ...,∞ denote the descending real-valued non-negative eigenvalues and the

set of φk(t), k = 1, ...,∞ denote the orthogonal eigenfunctions. Karhunen (1946) and Loeve

(1946) independently introduced the Karhunen-Loève (KL) expansion

Xi(t) = µ(t) +
∞!

k=1

ξikφk(t),

where ξik =
"
T {Xi(t) − µ(t)}φk(t)dt denote the the functional principal component scores.

The scores are uncorrelated across k, E(ξik), and var(ξik) = λk. Practically, the number of

components K is truncated to a finite number and is chosen to balance bias (which shrinks

with increasing K) and variance (which grows with increasing K).

As previously mentioned, FDA and FPCA literature has grown to accommodate func-

tional data with complex dependency structures, e.g. multilevel functional data (Crainiceanu

et al. , 2009; Di et al. , 2009; Kundu et al. , 2016; Morris & Carroll, 2006; Morris et al. ,

2003), longitudinal functional data (Greven et al. , 2010; Park & Staicu, 2015), and region-

referenced longitudinal functional data (Scheffler et al. , 2020).

1.2.2 Scalar-on-function regression

While there are three main categories of functional regression, based on the type of response

and predictor: (1) scalar-on-function, (2) function-on-scalar, and (3) function-on-function.
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The model proposed within this dissertation falls into the first category so the remainder of

this section will focus solely on scalar-on-function regression, although Morris (2015) provides

a comprehensive review of all three categories.

Let yi denote the scalar response and Xi(t) denote the functional predictor, i = 1, ..., n.

Scalar-on-function regression for Gaussian responses was first introduced in Hastie & Mallows

(1993) with the model

yi = β0 +

#

T
Xi(t)β(t)dt+ εi,

where β0 is an intercept term, β(t) is the regression function, and εi is the mean-zero

normally-distributed residual error with variance σ2. Marx & Eilers (1999) introduced the

generalized functional linear model for non-Gaussian responses

g{E(yi)} = β0 +

#

T
Xi(t)β(t)dt+ εi,

where g(·) is an invertible link function. Methodological development has been made in the

choice of basis functions and regularization approach. There have also been efforts made in

addressing multivariate (Gertheiss et al. , 2013) and multidimensional (Reiss & Ogden, 2010;

Staicu et al. , 2020) functional predictors, but none of them include the three dimensions

in EEG data described above. However, this dissertation aims to develop a method that

accommodates region-referenced longitudinal functional data in its entirety.

1.3 Overview of proposed methods

Three statistical methods have been developed in order to model the high-dimensional data

produced by EEG experiments that avoid collapsing dimensions whenever possible. Along

with these methods, computationally efficient software packages have been created to make

analysis easily accessible. The methods that have been published are noted below.

Chapter 2 develops principle ERP reduction (pERP-RED) and analysis to amplify the ERP

components found across different conditions within multiple experimental tasks. Standard
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analysis of this ERP data would require finding the peak or mean amplitude within a user-

specified window in which an ERP component is expected to peak. The proposed pERP-

RED algorithm characterizes the entire set of contributing ERPs using a linear combination

of underlying waveforms that span the entire ERP, called principle ERPs (pERPs). Using

two PCA-based noise reduction steps and an ICA step for blind source separation, pERP-

RED is able to accommodate multiple experimental tasks with contrasting conditions. The

pERP-RED algorithm is accompanied by a set of analytical tools that allow researchers to

examine their ERP experiments in terms of the pERPs found using pERP-RED. Rather than

analyzing a pre-determined set of ERP components based on previous literature, pERP-RED

facilitates the discovery of unexpected differences.

E. Campos †, C. Hazlett †, P. Tan, H. Truong, S. Loo, C. DiStefano, S. Jeste,
D. Şentürk (2020). Principle ERP reduction and analysis: Estimating and using
principle ERP waveforms underlying ERPs across tasks, subjects and electrodes.
NeuroImage 212, 116630. († Authors contributed equally)
Drafted by Emilie Campos, Chad Hazlett, and Damla Şentürk

Chapter 3 develops multilevel hybrid principal component analysis (M-HPCA) to model

region-referenced multilevel functional data with a low-dimensional decomposition by de-

composing the total variation into between- and within-subjects variation and using weak

separability to further separate the variation into regional and functional directions sepa-

rately. The resulting model components are estimated in a mixed effects modeling framework

via a computationally efficient minorization-maximization algorithm coupled with bootstrap.

Inference is performed using a parametric bootstrap approach that facilitates group-level

inference as well as within-group inference. M-HPCA is showcased with two studies of indi-

viduals with autism. While ERP responses to match vs mismatch conditions are compared

in an audio odd-ball paradigm in the first study, short-term reliability of the PSD across

visits is compared in the second.

E. Campos, A.W. Scheffler, D. Telesca, C. Sugar, C. DiStefano, S. Jeste, A.R.
Levin, A. Naples, S.J. Webb, F. Shic, G. Dawson, S. Faja, J.C. McPartland,
D. Şentürk (2022). Multilevel hybrid principal components analysis for region-
referenced functional electroencephalography data. Statistics in Medicine 41(19),
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3737-3757.
Drafted by Emilie Campos and Damla Şentürk

Chapter 4 introduces region-referenced longitudinal functional generalized linear model

(RRLF-GLM) to relate a scalar outcome to a region-referenced longitudinal functional pre-

dictor, such as EEG data collected at multiple visits. Rather than collapsing the PSD by

including the peak alpha frequency or mean power from the alpha band in a linear mixed

effects model, the entire PSD morphology is used as a functional predictor of diagnostic

status. RRLF-GLM uses a tensor product of discrete and continuous basis functions for the

regression coefficient and is able to accommodate either a discrete or continuous longitudinal

dimension. Since the alpha band dynamics are known to change over time, it was imperative

to create a model that took into account the longitudinal changes that may differ between

children with ASD and TD children.

1.4 Software and implementation

Code for the proposed estimation and inference procedures in each chapter are publicly

available along with their tutorials for implementation at https://github.com/emjcampos.
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CHAPTER 2

Principle ERP Reduction and Analysis: Estimating

and using principle ERP waveforms underlying ERPs

across tasks, subjects, and electrodes

2.1 Introduction

Electroencephalography (EEG) captures changes in voltage measured at the scalp, reflecting

the firing of many similarly oriented neurons (Luck & Kappenman, 2011). When EEG

recordings are time-locked to an event of interest, such as the onset of a trial or a participant’s

response, event-related potential (ERP) waveforms are obtained. Through experimental

designs utilizing contrasting task conditions, task-related changes to the ERP waveform are

scrutinized to identify the “ERP components” that are thought to reflect particular brain

processes. Subsequent studies – both in research and clinical settings – then seek to evoke

and measure these ERP components in an effort to index the cognitive processes thought to

generate them.

The goal of most ERP analyses, as described in the foundational text of Luck (2014), is

“to provide an accurate measurement of the size and timing of the underlying ERP compo-

nent with minimal distortion from noise and from other spatially and temporally overlap-

ping components” (p285). Despite a number of approaches that seek to reveal underlying

components of ERP waveforms as we do here, the standard approach for measuring ERP

components is to take the average or peak amplitude over an investigator-selected time win-

dow, when the target ERP is expected to peak. This fails to remove the distortions from

overlapping components, and the equating of components with peaks is deeply problematic.
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Concretely, when an ERP component is defined and named, the functional process it

reflects may be implied by virtue of the task and the contrast used to isolate it. However, in

any subsequent study with different tasks and different participants, it can be problematic

to attribute a peak that is observed at a similar time — or the potentiation/attenuation

in it — to the same component, with the same functional meaning that was described in

the previous studies. This is because a range of ongoing components may be differentially

triggered by the different task conditions or participants. The overlapping activity of these

unknown components can make the amplitude in a targeted interval higher or lower, and

can push observed peaks/valleys in the waveform to occur either earlier or later in time.

Moreover, even components typically associated with large peaks (such as the visual N1)

may produce no observable peak as a result of such overlap.

These serious consequences of the overlapping nature of ERP components are widely

recognized, including in the standard texts of Luck (2014) and Luck & Kappenman (2011).

A less recognized problem with the common practice of taking an average or peak amplitude

over a time window relates to the entire analytical tradition of targeting and reporting

results for just one or several “components” from an ERP study. Such a selective approach

to analyzing ERP experiments is understandable under the standard approach, where a

reliance on selected intervals complicates efforts to characterize an entire waveform or to

measure the magnitude of each component in a contributing set of waveforms, as we propose

here. However focusing on so few features of the waveform limits what we can rigorously

learn from our experiments, and slows the discovery of differences in components that may

be of research or clinical value, all while amplifying selective-reporting concerns due to user-

selection of these intervals.

In order to provide an alternative to the standard practice of using windowed peak or

mean amplitude to define and measure ERP components, multiple approaches have at-

tempted to decompose trial-wise or grand-averaged ERP waveforms into underlying sources

which span the entire epoch. These approaches combine Principle Components Analysis

(PCA) and Independent Component Analysis (ICA) techniques. Earlier works, beginning
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with Makeig et al. (1995) used ICA to carry out subject-level decompositions of the signal.

Such subject-level decompositions require additional steps, generally relying on clustering

techniques, in order to connect components extracted from one subject with those of oth-

ers. This post-estimation clustering requirement is avoided by “multi-subject” decomposi-

tion approaches for ERP. The multi-subject decomposition of Spencer et al. (2001), called

spatiotemporal PCA, involves two PCA steps: a “spatial” one that reduces the electrode

dimension through PCA on data concatenated across subjects, and a “temporal PCA” to

reduce the dimension in the temporal domain. Other multi-subject approaches, recently

reviewed by Huster & Raud (2018), combine both PCA and ICA approaches for noise re-

duction and source separation, respectively. Multi-level Group ICA (mlGICA) of Eichele

et al. (2011) and temporal-concatenation group ICA (tcGICA) of Cong et al. (2013) both

consider trial-wise ERP and conduct one or two PCA steps for dimension reduction at the

electrode or subject levels, followed by a final ICA step for source separation.

To introduce our approach, we begin with the core assumption: the observed ERP for

any subject in any task/experiment and condition/trial-type, and at any electrode, is ap-

proximated by a linear combination of underlying waveforms spanning the entire epoch,

called principle ERPs (pERPs). We propose the pERP-reduction (pERP-RED) algorithm

to estimate these pERPs. The pERP-RED algorithm, similar in spirit to other multi-subject

approaches, begins with two PCA-based noise reduction steps. The first to construct “re-

gions” similar to the “virtual electrodes” of Spencer et al. (2001), but separately for each

subject; the second to reduce the subject-region-task specific ERP averages into a smaller set

that explains most of the sample variation. This is followed by an ICA step for blind source

separation. However, pERP-RED has important differences from prior proposals. First, we

emphasize that pERP-RED is designed for reducing data not only across multiple subjects

but also across multiple tasks. Though this is not explicitly prevented by other methods, it

is the intended use-case only for pERP-RED. A wider range of tasks/experiments stimulates

a wider range of neural processes, each with their own signatures that get mixed into the

observed signal, which we seek to separate out and measure. The multi-task approach of
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pERP-RED takes advantage of this rich form of data and estimates a set of pERPs with

greater generalizability. Another useful benefit of the multi-experiment setting, in this early

validation stage, is that it allows a test of whether different tasks, trial types or conditions

are built up from shared components in the expected ways. Second, the electrode dimen-

sion reduction PCA steps of spatial PCA, mlGICA and tcGICA, all performed on matrices

concatenated over subjects or trials, assume no missingness on electrodes, identical trial or-

derings, identical scalp topographies, or identical projections of components onto electrodes

across subjects. The electrode reduction PCA step of pERP-RED, by comparison, avoids

these assumptions by running dimension reduction separately for each subject in the first

step. Subject-region-task specific ERP averages are only combined at the second PCA noise

reduction step, which does not assume any homogeneity over the subject-specific components

concatenated from the first step.

However, more important than these algorithmic differences, our approach is unique in

arguing for a new way to analyze one’s data using these pERPs, and the set of tools we

develop and make available to do so. Despite existing algorithms for estimating underlying

components, the standard practice of using windowed peak or mean amplitudes continues

to dominate in most published ERP studies.We argue that much more can and should be

done to analyze one’s ERP waveforms using these underlying components than has been

the case in any prior work. Our primary objective is to provide researchers with a set of

analytical tools for examining their ERP experiments in terms of these components, which

we call “pERP-space analysis”. That is, rather than attempting to measure a single com-

ponent’s magnitude, coefficients describing the contribution of all pERPs in any given ERP

waveform can be estimated and reported. These estimated pERP coefficients are directly

interpretable as the magnitude of each pERP’s contribution to the observed waveform, and

are equipped with standard errors. This allows the practitioner to analyze and report both

the presence/absence and the strength of each pERP in each condition, group or scalp region,

and to make inferences on condition or group contrasts. Additionally, we provide tools to

track across-subject heterogeneity of the magnitude of each pERP’s contribution (e.g. het-
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erogeneity in the pERPs, for anxious vs. non-anxious youth). By characterizing entire ERP

waveforms in terms of these contributions (and their heterogeneity) rather than one or sev-

eral time windows, this approach greatly facilitates the discovery of unexpected differences

that may prove to be useful in research or clinical application, while better limiting user

discretion (e.g. the choice of interval) and selective reporting (of one component/interval

rather than others).

We outline the proposed pERP-RED algorithm and pERP-space analysis steps in the

next section. Properties of the proposed approach are demonstrated using simulations (Sec-

tion 2.3) and two separate real data examples (Section 4.3), each employing multiple tasks to

derive a common set of pERPs followed by pERP-space analyses. Finally, to increase accessi-

bility we provide an R package, pERPred. Investigators may keep their current pre-processing

procedures and workflows up to and including the step of generating ERP waveforms at the

subject level. These can then be imported into our software, allowing pERPs to be estimated

and all the pERP-space analyses to be visualized through a graphical interface employing

simple drop-down menus. We also make results available for the applied examples here

through a publicly available browser-based implementation of that interface to encourage

exploration and familiarization with the proposed pERP-space analyses.

2.2 Methods

In what follows we provide a detailed description of both the pERP-RED algorithm used

to derive pERPs from an original dataset possibly spanning many participants, groups, and

tasks, and then a set of tools that comprise the pERP-space analysis that we foresee being

of value to a wide audience of investigators for the practical use of pERPs in research.

2.2.1 The pERP-RED Algorithm

The pERP-RED algorithm is motivated by the goal of estimating an underlying set of com-

ponent waveforms, herein referred to as pERPs, such that the ERPs formed by time-locked
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averages at any given electrode, participant, or trial type is approximately a weighted com-

bination of these components. Our approach, depicted in Figure 2.1, involves (i) a series of

data concentrating steps that turn a larger number of noisy waveform records (i.e. average

ERPs for a given trial type, participant, electrode) into a smaller number of less noisy ones;

and (ii) steps that generate maximally independent, “unmixed” components from these con-

centrated signals. Unlike some related approaches (such as spatiotemporal PCA, Spencer

et al. (2001)) we do not conceptualize steps nor results as either “temporal” or “spatial”

in the data reduction; rather we estimate the pERPs thought to underlie all ERPs (across

all subjects, electrodes, and tasks) first, after which it is possible to both see how these load

onto a given waveform and to see how these loadings are spatially distributed.

To describe these in detail, we first set notation. Let i denote subjects, i = 1, . . . , N ; v

tasks, v = 1, . . . , V ; e electrodes, e = 1, . . . , Ei; t the number of time points, t = 1, . . . , T ;

and p the number of pERPs, p = 1, . . . , P . Note that each subject not only have electrodes

in slightly different locations on the scalp, but may also have different numbers of electrodes

owing to dropped channels after data cleaning steps. By beginning with the reduction of

electrodes to “regions” within subject, this is unproblematic. The steps of the pERP-RED

algorithm are then:1

1. Data initialization. Data are first split, by subject into a training set and test set.

Normalize each of the resulting ERPs to have unit variance. Proceed to next steps

using only the training set.

2. Electrode reduction. The first data concentration or reduction step transforms electrode-

level data within each subject to “region” level data within subjects, thereby reducing

the electrode dimension. This is done by applying PCA to each of theN subject-specific

matrices of size (T × V ) × Ei, with data across electrodes in the columns and each

tasks’ data concatenated in the rows. This produces N matrices of size (T × V )×Ri,

1An example demonstrating the algorithm with the applications used here is implemented in R and can
be viewed interactively at www.github.com/emjcampos/perpred. The pERPred package for the R language
allowing users to implement this on their own data will be made available upon publication.
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Schematic of pERP-RED algorithm

Figure 2.1: Illustration of the pERP-RED algorithm, described in text. First, at the within-
subject level, correlation across electrodes is used to estimate a smaller number of “principle
electrodes” for each subject, which we term “subject-region” scores. Next, these subject-
region scores are combined together across subjects, then reduced to “principal subject-
region” scores. These data are then reshaped to give separate columns for each principal
subject-region score on each task/condition. The resulting waveforms are decomposed by
ICA in order to arrive at the final pERPs.
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where Ri is the number of principal regions that explains a pre-specified amount of

variance. By default we set this threshold at 80%.

3. Subject-region reduction. The second data reduction step begins by reshaping the above

data into a matrix of size (T × V )× (
$N

i=1 Ri) with all of the principal regions as the

columns and the task and time dimensions concatenated in the rows. Each task-region

ERP record is normalized to unit variance. Then PCA is used to generate NR principal

subject-regions.

4. Source separation. The data are then reshaped into a matrix of size T × (V × NR)

with all task principal subject-regions as the columns and time as the rows. Fast ICA

is then used to produce P principle ERPs, where P may be chosen by regressing the

true signal (in the test set) onto the components and obtaining an R2 value.

We make several remarks on these choices. First, in this paper, we use subject-level

averages over trials of a given type as the “records” that first enter the algorithm above.

This need not be the case: if for example one is interested in practice effects, then earlier

trials and later trials may be averaged separately. Note that even having averaged trials

together within participants, once the pERPs are estimated, it is still possible to go back

and examine whether the amplitudes of pERPs vary from earlier trials to later trials (we

further discuss the analysis of these amplitudes below). Hence one need not posit that “all

the trials being averaged together are the same”, and variation in how pERPs contribute to

different trials in the original, un-averaged data can still be studied. Statistically, the only

requirement is that the data that enter the algorithm should include various weightings of

the underlying components we aim to recover. Records need not (and certainly will not)

be homogeneous in these components or mixtures of them. Put differently, any averaging

that occurs prior to beginning the algorithm above should not “annihilate” or cancel out

any components that would otherwise have been of interest.

Next, the purpose of splitting the data into a training and test set is to allow us to

choose the appropriate dimensionality of the data in the final step, and to allow an unbiased

evaluation of how well the principle ERPs explain the signal in a set of subjects not used to
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derive those principle ERPs. We use 2/3 for training and 1/3 for testing but this choice is

left to the user. Once the training-test set split has been used to decide upon the number of

components, the components are re-estimated using all of the data.

At each data reduction step, we normalize the records. Equivalently, the covariance ma-

trix underlying the PCA steps is actually a correlation matrix. In the “electrode reduction”

step, the aim is to go from a large number of electrodes that may have highly correlated

signals to a smaller set, each of which provides uncorrelated information relative to the oth-

ers. That is, if we imagine a set of electrodes that all have a correlation of nearly one or

negative one with each other, we would choose to collapse these into a single signal. We call

the resulting principle components “regions”, though they need not and likely will not reflect

coherent spatial regions. The subsequent “subject-region reduction” is analogous: if there

are groups of participants that have “region” (combined electrode) signals that are highly

correlated, this information can be combined with little loss.

In the final step, we use ICA rather than PCA because the aim is to take the “concen-

trated” data from the two reduction steps, and estimate components that are believed to be

maximally independent. It thus resembles a blind source separation problem for which ICA

is well suited, much as it is widely applied in source localization algorithms. This does not

imply that the resulting components are functionally independent or meaningful sources.

Several choices remain user-driven at present. The first regards the proportion of variance

each of the PCA steps must explain during the data concentration steps. Keeping a larger

number of components implies that more of the data will survive into the final estimates,

but at the cost of keeping more noise as well. It can also become computationally costly.

Our supposition in choosing to keep enough components to cover 80% of the variation is

that this should be sufficient to recover almost all of the true signal of value, whereas going

beyond this is apt to introduce mostly noise.

The ICA step, too, requires choosing the number of components to estimate, P . In

principle, V ×NR independent components can be kept. However there is no reason to expect

that there are exactly V ×NR meaningful signals to separate. The risk of estimating too many
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components is that over-decomposition may occur, splitting single meaningful components

into separate estimated sources. Similarly, the risk of estimating too few components is that

under-decomposition occurs, with separate sources remaining “mixed” together to alias as

one (see e.g. Kairov et al. (2017)). In our case, over-decomposition is less harmful, because

we will later characterize a given ERP waveform according to the linear combination of

pERPs that compose it. The estimated pERPs can thus still “work together” to explain

the average ERP for a particular condition, group or person. Thus, over-decomposition will

simply lead to a wider set of pERPs being implicated and discussed as contributing to a

given waveform or contrast.

Subject to this, however, the smallest set of components that will suffice is preferable

for purposes of analysis and interpretation. We choose the number of final components P

according to how well this set can explain actual ERP data, in a test set not used to estimate

the pERPs. Denote the estimated pERPs as Φ = [Φ1,Φ2, . . . ,ΦP ]. Let j = 1, . . . , J be a

counter running over each condition, subject, and electrode combination in the test set, with

Yj being the observed ERP record for the jth condition/group/electrode. Without loss of

generality, assume Yj has been demeaned. Each of the J observed ERPs in the test set are

then regressed individually on the matrix of the estimated pERPs, fitting the model

Yj = Φβj + εj.

The variance in the test ERPs explained by the pERPs is then

R2
test = 1− ||Yj − Φβj||2F

||Yj||2F

where || · ||2F denotes the Frobenius 2-norm, which corresponds effectively to a variance times

N . We then choose the number of pERPs, P , such that raising P would result in relatively

little additional gain in R2
test. Once P is chosen, all the data (in the training and test

sets) are used to re-estimate the pERPs that will be used in the pERP-space analysis. We

demonstrate this below.
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2.2.2 The pERP-Space Analysis

The above procedure describes our proposal for how pERPs can be obtained. We now turn

to how the estimated pERPs can be used in a complete analytical approach that avoids

the problems inherent in the practice of using windowed peak (or mean) amplitude. The

central concept is that any observed ERP waveform (for some condition over some group or

individual at some electrode) can be recast as a vector of coefficients describing the magnitude

of each pERP’s contribution to that ERP.

Step 1: Individual scoring. We start by using pERPs to extract data about a condition

within an individual. Here condition refers to trial types within a single experiment, such

as match and mismatch conditions within the audio paradigm of Section 4.1. For individual

i and condition c, at electrode e, let the observed ERP be denoted by the vector Yi,c,e.

Henceforth we suppress the electrode index, e, for simplicity. Let Φ be the matrix whose

columns contain the pERPs. We first regress Yi,c on the pERPs to obtain coefficients,

ωi,c = (ΦTΦ)−1ΦTYi,c. (2.1)

The vector ωi,c can thus be thought of as a vector of coefficients, amplitudes, loadings, or

weights that encode the ERP Yi,c in terms of the contributions of each pERP. As ωi,c is a

vector of size P by 1, with each element representing loadings onto each pERP, operations

performed on such vectors below (such as subtraction or averaging) are performed element-

wise. Note that this brings about a substantial dimension reduction: ERPs that contain 1000

data points are represented using only 10-15 dimensions in the empirical examples explored

below while explaining 80-90% of the total variation.

Second, when investigators are interested in a between-condition contrast, we also extract

that contrast at the individual level. That is, suppose we are interested in how condition

c compares to condition c′, obtaining ωi,c−c′ = ωi,c − ωi,c′ . If done literally, this implies

computing (ΦTΦ)−1ΦTYi,c − (ΦTΦ)−1ΦTYi,c′ . However, note that this is numerically the
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same as (ΦTΦ)−1ΦT(Yi,c − Yi,c′), which first differences the ERPs for condition c and c′

within subject i before regressing them on Φ. The benefit of doing this differencing within-

subject is that later statistical tests that assume independence across subjects but not across

conditions within subject will remain valid.

Finally, to reduce redundancy in what follows, we use the notation ωi,c−c′ generically even

where investigators may be interested only in comparing scores from condition c to a null

value of zero, and not to another condition.

Step 2: Summary across individuals. The values of ωi,c−c′ can then be regarded as

data representing individual i’s response on condition c compared to c′ (or on c alone if

c′ is omitted). These are measurements that can be summarized by conventional statistics

such as the mean and standard deviation, while the mean can then be characterized by its

standard error. We construct these quantities next.

Over all individuals, the mean vector, ωc−c′ , of size P by 1, would be given simply by

1
N

$
i ωi,c−c′ . We further consider group-wise means written as

ω(g)c−c′ =
1

Ng

!

i∈Gg

ωi,c−c′

for group g, where Gg denotes the set of indices, {i}, for subjects falling in group g and Ng

denotes the size of the group.

To describe variability in the loadings across individuals in group g on condition c or on

the contrast of c and c′, we construct the standard deviation within the group. For clarity

we label this the across-person standard deviation (APSD) for group g,

APSD(g)c−c′ =

%&&'
!

i∈Gg

(ωi,c−c′ − ω(g)c−c′)2

Ng − 1
.

Finally, to facilitate inferences about group-wise means or mean contrasts, we construct
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the standard errors that reflect the variation in those means,

SE(g)c−c′ =

%&&'
$

i∈Gg

(ωi,c−c′−ω(g)c−c′ )
2

Ng−1

Ng

.

Step 3: Description and inference. With these statistics, the investigator can perform

a range of analyses. A first question is how much each pERP contributed to a given condition

(c) or contrast (c− c′). This can be tested for any grouping g, by constructing

t(g)c−c′ =
ω(g)c−c′

SE(g)c−c′
.

Note that the tests would be carried out element-wise on the P elements of t(g)c−c′ , corre-

sponding to contributions from the P pERPs. If we are interested in knowing which pERP

contributed with a detectably non-zero weight to a given condition c, this would be done

for a single condition c (i.e., “setting c′ to zero”). If we would instead like to know if the

difference in contribution of any pERP to condition c versus c′ is distinguishable from 0, then

this would employ both c and c′. Note that the proposed approach can be used to quickly

“screen” ERPs to determine which pERPs are contributing detectably non-zero amounts to

a given condition or contrast. Our suggested reporting style, as illustrated below, would au-

tomatically provide such t-statistics (and associated p-values) for all pERPs in a table. This

avoids selective reporting and aids in discovering unexpected differences, while producing a

fixed number of tests.

Second, we may be interested not only in which pERP contributes to a given condition

or contrast for individuals in group g, but how this differs from what we see in group g′. We

can similarly construct

t(g, g′)c−c′ =
ω(g)c−c′ − ω(g′)c−c′(
SE(g)2c−c′ + SE(g′)2c−c′

to test against the null hypothesis that two groups/conditions have the same mean contri-
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butions from each pERP. Note that the intended usage here is for non-overlapping groups g

and g′, which we treat as independent samples. Such contrast statistics can also be reported

on all pERPs in table form for transparency. Again we illustrate this usage below, and such

tables are automatically generated in the software provided.

Third, investigators may be interested not only in how pERP loadings on a condition or

contrast vary between groups, but in whether certain groups have higher/lower variability

than others. They can thus compare APSD(g)c−c′ across groups. Fourth, recalling that ω

quantities are available at each electrode e, topographic head maps can be shown as well

for conditions/constrasts such as ω(g)c−c′ or for between-group differences in conditions or

contrasts, ω(g)c−c′ − ω(g′)c−c′ . These can be shown either for these magnitude estimates

themselves, or on the corresponding t-statistics to give a sense of statistical scale. We show

examples in our applications below and provide this functionality in the software.

Other uses of pERPs

We note several other potential use cases that are less analagous to traditional ERP analysis

of components but serve as additional uses for ωi,c−c′ values once extracted. First, investi-

gators may wish to compare ωi,c−c′ to behavior or clinical measures for person i. Second,

pERPs provide a means of ERP “cleaning”: one can reconstruct ERPs using only the de-

rived pERPs. This leaves out components of the signal that have been deemed to be noise.

Such a cleaning approach may be especially useful when visualizing individual or single-trial

ERPs.

Third, the pERP analysis approach could in principle be used for participant rejection

as well. Specifically, individuals for whom the pERPs collectively explain less of their signal

must be very noisy, suggesting problems in data collection, or at least pointing to their

divergence from the rest of the sample. Fourth and finally, the pERP-space analysis can

also be used for outlier detection: individuals with very unusual values of ωi,c−c′ could be

examined.
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2.3 Simulation

The proposed pERP-RED algorithm is studied extensively through simulations in which

the sample size, correlation among electrodes and tasks, percent of variation used to retain

PCA components and signal-to-noise-ratio are varied. In addition to assessing the efficacy of

pERP-RED, the simulations also target providing readers guidance on the choice of tuning

parameters and comparing pERP-RED to alternate algorithms. Depending on the amount

of noise in the simulated data, the run time of pERP-RED ranges between 3 and 12 minutes

(longer for more noise) at N = 50.

2.3.1 Simulation Design

The observed signal is assumed to be a linear combination of the pERPs. Let Yi,v,e(t) denote

the ERP signal observed for subject i at task v and electrode e. Note that we employ here the

term “tasks” to refer to trial types generally, possibly defined across experiments, whereas

the term “condition” refers to trial types within an experiment. The data generation model

used in the simulation is:

Yi,v,e(t) =
P!

p=1

kp,v,eφ
#
p(t) +

P!

p=1

ξp,i,v,eφ
#
p(t) +

L!

ℓ=1

αℓ,i,v,eψℓ(t) + ζi,v,e(t), (2.2)

where φ#
p(t), ψℓ(t) and ζi,v,e(t) denote the “true” pERPs, Fourier basis functions and mea-

surement error, respectively and kp,v,e denotes the task- and electrode-specific weights, and

ξp,i,v,e and αℓ,i,v,e denote the subject-, task- and electrode-specific weights of the respective

bases decompositions. The total number of tasks, denoted V , the total number of true

pERPs, denoted P , the total number of time points, denoted by T , the total number of

Fourier bases, denoted by L, and the total number of electrodes per subject, denoted by E,

are set to equal 9, 5, 500, 7, and 40, respectively.

The first term in (2.2) reflects that ERPs observed at each task and electrode are com-

posed of a weighted average of the true pERPs, denoted by φ#
p(t). To simulate a single
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φ#
p(t), we draw a function from a reproducing kernel Hilbert space of smooth, relatively low

frequency functions. The functions in this space are simply the superposition of rescaled

Gaussian kernels “centered” around different time-points. Specifically, φ#
p(t) is the summa-

tion of 20 rescaled kernel functions, φ#
p(t) =

$20
m=1 amexp(−(t − tm)

2/hp), where the center

tm of each kernel is chosen uniformly from [0, 1], and the kernel bandwidth hp is set to

0.3(−0.125 + 0.375p). The coefficients am rescaling each kernel is drawn from a uniform

(0, 1) distribution. These simulated signals are then rotated by ICA to form a maximally

independent set of bases. The coefficients, kp,v,e, are drawn independently from a normal

distribution with mean zero and variance σ2
k = 0.25.

The second term in (2.2) represents subject-specific deviations from task- and electrode-

specific signal. The subject-specific weights ξp,i,v,e are drawn from a matrix normal distribu-

tion (to create a dependence structure within tasks and across electrodes) with mean zero

and covariance matrices Σp,v and Σp,e of dimension V ∗ V and E ∗ E (identically and inde-

pendently drawn over subjects). The covariance matrices for the P = 5 total pERPs are

created in the same way for the electrode and task dimensions, starting out with a matrix

of 1 on the diagonal and the correlation ρ elsewhere. The value of ρ will be varied to assess

the effects of tuning parameter choices outlined in Section 2.3.2. These covariance matrices

are then multiplied by a factor of 0.1(P − p), for p = 1, . . . , 5, respectively, so that each true

ERP component is represented differently.

The third term in (2.2) represents a noise component that is structured in time. The

Fourier bases contain ψ0(t) = 1, and pairs of sine and cosine functions ψ2r−1(t) =
√
2 sin(2πrt)

and ψ2r(t) =
√
2 cos(2πrt) for r = 1, . . . , (L − 1)/2, with L = 7. The coefficients αℓ,i,v,e are

generated in the same way as ξc,i,v,e. Specifically, αℓ,i,v,e are drawn from a matrix normal

distribution with mean zero and covariance matrices Σℓ,v and Σℓ,e which equal 1 on the di-

agonal and ρ on the off diagonal terms. The covariance matrices are multiplied by a factor

of 0.05(ℓ+ 1) for ℓ = 1, . . . , 7.

The last term in (2.2) is the independent and identically distributed measurement er-

ror. The measurement error ζi,v,e(t) is generated (independently over i, v, and e) from a
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normal distribution with mean zero and variance σ2
error. The variance ratio of the signal

$P
p=1 kp,v,eφ

#
p(t) +

$P
p=1 ξp,i,v,eφ

#
p(t) to noise

$L
ℓ=1 αℓ,i,v,eψℓ(t) + ζi,v,e(t) is varied in different

simulation set-ups to equal 0.6 and 1, referred to as the high and low noise cases, respectively.

2.3.2 Simulation Results

The estimation accuracy of pERP-RED is assessed using two measures: R2
test and R2

pERP.

The first measure R2
test is calculated in the last step of the pERP-RED algorithm as given in

(2.2.1) to assess the estimation accuracy of the predicted records in the test set. The second

measure, denoted by R2
pERP, assesses the performance of pERP-RED in targeting the true

pERPs, which can only be estimated in simulations. To obtain R2
pERP, the matrix of true

pERPs Φ# = [φ#
1, . . . ,φ

#
5] is regressed on the estimated pERPs Φ = [φ1, . . . ,φP ] to determine

the degree to which linear combinations of the estimated pERPs can account for (any linear

combination of) the true pERPs used in the simulation. That is: how accurately did we

recover the true pERPs, up to rotations? R2
pERP is then given by the proportion of variance

in the true pERPs explained by the estimated ones

R2
pERP = 1− ||Φ# − )Φ#||2F

||Φ#||2F
,

where )Φ# is the prediction of the true ERPs given by the estimated ones.2

Before summarizing results from multiple simulation settings corresponding to varying

sample sizes, correlations among electrodes and tasks and percent of variation used to retain

PCA components, we present results from a single simulation set-up with N = 50, ρ = 0.5

(medium correlation induced among of tasks and electrodes) and 80% of variation used

to retain PCA components in pERP-RED, in more detail. Figures 2.2a and 2.2b show

a steep increase in R2
pERP and R2

test up to 5 pERPs estimated for both the high and low

noise cases. This is evidence that the procedure is estimating the bases of the pERPs

2R2
pERP can be computed more efficiently as follows. Let the singular value decomposition of Φ be given

as Φ = UAV T, where !Φ! = Φ(ΦTΦ)−1ΦTΦ! = UUTΦ! and R2
pERP = 1− ||Φ! − UUTΦ!||2F/||Φ!||2F .
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Regression measures used to assess estimation

(a) pERP Regression (b) Individual Record Regression

Figure 2.2: (a) Boxplots of R2
pERP from regressing the true pERPs on the estimated pERPs

in 100 simulation runs show that the pERP-RED algorithm is correctly identifying 5 as the
true number of pERPs. (b) Boxplots of the R2

test obtained by regressing ERP records from
the test set on the estimated pERPs, for both the high and low noise simulation cases. In
both cases, the boxplots of R2

test identify 5 as the true number of pERPs as the value of R2
test

levels off sharply at that value.

correctly and identifying 5 as the true number of components. Figure 2.3 shows the regression

coefficients and highlights the estimated and true component pairs. We see that under either

the high noise or low noise case, each true pERP simulated was fitted by a combination of the

estimated pERPs. At times there is a nearly one-to-one correspondence, but in general we see

that each true pERP is a linear combination of estimated pERPs. Figure 2.4 displays each

true pERP overlaying an estimated one which most heavily contributed to the estimation

of the true pERP shown (using coefficients from Figure 2.3). This visually shows the nearly

one-to-one relationship between some true and estimated pERPs, while in other cases linear

combinations are required.
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Regression coefficient heatmaps from regressing the true components on the pERPs

(a) High Noise (b) Low Noise

Figure 2.3: (a) The true pERPs are regressed on the estimated pERPs from the high noise
simulation. The larger the coefficient, the darker the color in the figure and the stronger the
match between true and estimated pERPs. The first true pERP is loaded heavily onto the
second estimated pERP. (b) The true pERPs are regressed on the estimated pERPs from
the low noise simulation in this case.

Effects of sample size, correlation level and percent of variation retained in PCA

steps

For assessing variation in performance, we varied the sample size N = 25, 50, and 100,

correlation among electrodes and tasks ρ = 0.1, 0.5, and 0.9 (used in generation of ξ and

α), and the percent of variation used for retaining components in the PCA steps, for both

the low and high noise cases. Trends from low and high noise cases are similar; hence we

present results from the low noise case and defer results from the high noise case to the

supplementary materials. While the effects are assessed both on R2
pERP and R2

test, variation

in sample size, correlation ρ, amount of noise, and percent of variation chosen are found not

to affect the algorithm’s ability to recover the true pERPs where R2
pERP displays the same

pattern as in Figure 2.2a in all simulation cases. Hence we only report results on R2
test below.

While all three sample sizes considered provide sufficient information for recovery of the

records (with steady R2
test levels across sample size), the variability in prediction accuracy de-

creases with increasing sample size, as expected, depicted in the narrower boxplots for larger
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pERP Comparison

Figure 2.4: The true (solid line) and estimated (dashed line) pERPs are matched based
on the regression coefficients from regressing the true pERPs on the estimated pERPs in
the low noise (top row) and high noise (bottom row) simulations. Recall that pERPs can
be estimated only up to rotations (linear combinations) of those that generated the data.
Accordingly, in some cases the true and estimated pair look almost identical, but in others
the estimated pERPs appear as combinations of true pERPs.

27



N in Figure 2.5. Since higher correlations across electrodes and tasks correspond to smaller

effective total number of records, the prediction accuracy gets worse (with greater variabil-

ity) as depicted in Figure 2.6. The percent of variation retained for PCA does not appear to

affect the R2
test except for the high correlation case. When the correlation among electrodes

and tasks is high, retaining more variation in PCA corresponds to retaining more noise, since

repetitions over tasks and electrodes look more similar, leading to worse prediction accuracy

(Figure 2.7).

Method Comparisons

The pERP-RED algorithm is compared to three different sets of basis expansions: Fourier,

functional principal component analysis (FPCA), and a set derived using a single PCA

and ICA similar to pERP-RED. Using Fourier bases, many more components are required

to achieve the same predictive accuracy (see Supplementary Figures 4 through 7). This

is expected, because these bases are fixed ex ante rather than being data-derived. The

other three methods, all deriving their bases from the data, produce very similar prediction

accuracy in terms of both R2
test and R2

pERP values; plots deferred to the supplementary

materials). Additionally, a central feature of the pERP-RED approach is that the estimated

bases are chosen not arbitrarily or ex ante but rather to describe the variation that was

important to the original data structure. Consequently, as demonstrated in our applications,

the non-arbitrary nature of these basis leads to substantive interpretations of the processes

they may be detecting.

The difference between pERP-RED and FPCA is the ICA step employed by pERP-

RED, which arises due to a conceptual difference in what information they seek to extract.

FPCA chooses the bases that will explain the greatest variation in the data with the fewest

components. By comparison, pERP-RED follows a similar logic in the initial reduction steps

then employs an ICA in the final step because, as in other blind source-separation problems,

maximizing the independence (not just orthogonality) of the components is a means to

extract maximally “unmixed” underlying signals. These two approaches are expected to
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Effects of Sample Size

Figure 2.5: The boxplots of R2
test as a function of the number of pERPs estimated across 100

simulations with 60 (first row) and 80 percent variation retained (second row) and low (first
column), medium (second column) and high (third column) correlation between electrodes
and tasks for N = 25 (red), 50 (green), and 100 (blue). The variability in prediction accuracy
decreases with increasing sample size, as expected.
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Effects of Correlation among Electrodes and Tasks

Figure 2.6: The boxplots of R2
test as a function of the number of pERPs estimated across 100

simulations with 60 (first row) and 80 percent variation retained (second row) and N = 25
(first column), 50 (second column), and 100 (third column) for low (red), medium (green)
and high (blue) correlation between electrodes and tasks. With increasing correlation, we
see increasing variability in prediction accuracy .
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Effects of Percent Variation Retained in PCA Steps

Figure 2.7: The boxplots of R2
test as a function of the number of pERPs estimated across

100 simulations with N = 25 (first row), 50 (second row), and 100 (third row) and low (first
column), medium (second column) and high (third column) correlation between electrodes
and tasks for 60 (red) and 80 (blue) percent variation retained. When the correlation is
high, retaining more variation in PCA corresponds to retaining more noise, leading to worse
prediction accuracy.
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explain similar amounts of variation in the data, but the latter adds greater value to the

intended interpretation of their pERPs. As expected, our simulation shows very similar

values for R2
pERP and R2

test in the two methods, with FPCA having a slightly lower R2
pERP

(Supplementary Figures 4 and 5) and pERP-RED having slightly lower R2
test Supplementary

Figures 6 and 7).

As a final comparison, we consider a variation of pERP-RED we will call “single-PCA”,

where there is only one data concentration (PCA) step and one ICA step. The single PCA

would be conducted on the matrix formed by using all of the subjects and electrodes in the

columns. We see in simulations (Supplementary Figures 4 through 7) that the pERP-RED

and the “single-PCA” method perform similarly in terms of signal recovery in this setting

on values of R2
pERP and R2

test. However the two have important differences in practice. First,

the single-PCA method is limited in that the number of subjects times electrodes cannot

exceed the number of time points times tasks because the PCA step would fail without

additional constraints. The pERP-RED approach does not have this limitation, since the

first PCA will reduce the number of electrodes before multiplying by the subjects. Second, by

separately doing the electrode reduction within subject, pERP-RED allows subjects to vary

arbitrarily in their electrode topography (and missingness), the projections of sources onto

those electrodes, and the subject-specific components for their weightings. By contrast, the

“single-PCA” reduction effectively assumes homogeneity in all these features across subjects.

Lastly, pERP-RED allows the user to control the amount of variation used in each PCA step

separately if they deem appropriate.

2.4 Applications

2.4.1 ASD Study

The first application of pERP-RED examines EEG data from a study of the neural mech-

anisms underlying language impairment in children with Autism Spectrum Disorder (ASD)

(DiStefano et al. , 2019). This group has been difficult to study using traditional paradigms
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that require following instructions or providing behavioral responses. Thirty-one children,

aged 5-11 years old, who participated in the below described paradigms and provided suffi-

cient high quality EEG data were considered: 14 typically developing (TD), 10 verbal ASD

(vASD), and 7 minimally verbal ASD (mvASD). The three groups were age-matched. In the

ASD participants, diagnoses had been made prior to enrollment, through clinical diagnosis

by independent clinical psychologists, child psychiatrists, and/or developmental pediatri-

cians. These diagnoses were confirmed by the research team using the Autism Diagnostic

Observation Schedule (ADOS) and Social Communication Questionnaire (SCQ).

Two picture-word matching paradigms were used, one audio and one visual. The word

stimuli included 60 basic nouns taken from the MacArthur-Bates Communicative Develop-

ment Inventories-2nd edition. Examples of words included animals such as a bird or a dog

and inanimate objects such as a doll or a bike. In the audio paradigm, a picture of the word

would appear on a white background and the child would hear a spoken word that was ei-

ther the same (match condition) or a word neither semantically nor phonologically matched

the word image (mismatch condition). In both conditions, the picture image appeared for

2000ms, where the auditory stimulus was played after 1000ms after the picture image was

shown (see Figure 2.8). Each word image pair appeared twice—once in the matched and once

in the mismatched condition. No behavioral response was required. Trials were presented in

four blocks of 30 trials each, totaling 6 minutes.

The visual paradigm used the same nouns and same number of trials, but in each an

image of the word appeared on screen after 1000ms rather than an audio recording (see

Figure 2.8). As in the auditory paradigm, the two conditions are “match” or “mismatch”.

In both paradigms, the trials were video recorded in order to remove trials in which the

participants were not looking at the screen. Data collection, cleaning, and pre-processing

steps are described in the Appendix.
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ASD Experiments

(a) ASD Audio Paradigm (b) ASD Visual Paradigm

Figure 2.8: In both paradigms, the image appears for the full 2000ms. (a) In the audio
paradigm, a spoken word is heard 1000ms after the onset of the image. (b) In the visual
paradigm, the word image is seen 1000ms after the onset of the image.

ASD and ADHD Tasks and Trial Types

ASD ADHD

Image Visual Match SDRT Cue CPT X Correct
Audio Match Visual Mismatch SDRT Probe CPT X Incorrect
Audio Mismatch SDRT Response Correct CPT Not X Correct

SDRT Maintenance CPT Not X Incorrect

Table 2.1: We consider 5 separate trial types/ tasks drawn from the two ASD experiments
(Audio and Visual). From the two ADHD experiments (SDRT and CPT), we consider 8
separate trial types/ tasks.
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Results for ASD study

We chose to retain enough components to explain 90 percent of the total variation in the

PCA steps of the pERP-RED algorithm. Ten pERPs achieve an R2 value of 0.89 and are

given in Figure A.4.1 ordered by their peak locations. We regress each demeaned record

(subject and electrode ERP from each task), denoted by Yj, on the set of estimated pERPs,

Φ, to obtain the corresponding coefficients, ωj. These coefficients can be used to reconstruct

a less noisy version of each record as is shown in Appendix Figure A.4.2. To enhance trans-

parency and encourage exploration of this approach, we provide a user-friendly data browser

(ASD Data Exploration, https://perpred.shinyapps.io/asd_exploration/), where all

analysis described here and others can be reproduced through a graphical interface. The

user can thus become acquainted with the method before applying pERP-RED in their own

lab. Screenshots from the application, providing graphics that mirror those used here, are

provided in Appendix A.4.

To investigate the spatial distribution of pERP loadings, headmaps can be used to plot

the estimated coefficients (averaged over all subjects) across the scalp as Figure A.4.3 shows

for the image task. The coefficients of the first two pERPs are loaded heavily onto in the O1

and O2 electrodes. Notably, the overall ERP waveform from the image task (Figure 2.9, top)

does not look as might be expected, showing no evidence of an N1 due to visual activation.

However, our approach explains why the waveform does not include a negative deflection

consistent with the N1 component, and recovers the ability to analyze the amplitude of a

“hidden” component resembling the expected N1. Specifically, the time course of pERP 1

shows ongoing activity from the prior trial in the -100 to 0 ms interval. Such temporal overlap

is to be expected given the fast rate of trials and that the ITI was fixed rather than jittered.

However, the time course of pERP 2 is akin to the expected N1, peaking negatively around

90ms. The observed overall waveform, receiving contributions from both pERP 1 and 2,

shows a relatively flat signal from -100 to 100ms. Figure 2.9 shows the contribution of pERP

2 to the overall waveform, in the TD and vASD groups. Loadings on pERP 2 are significant

in all diagnostic groups, as would be expected for a visual task, and do not show significant
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group differences. However, the variation in loadings across participants, indexed by the

APSD, is 60% higher for the vASD group than for the TD group. Such higher variation in

the vASD than TD group is generally to be expected. This is an important example of where

the pERP-RED and pERP-space analysis is useful: Supposing the N1 indexed important

activity we wish to measure for research or clinical purposes, it would have been ineffective

to have measured it in this particular experiment using a peak or mean negativity around

100ms. Yet, a component resembling the N1 was elicited and can be indexed using the

coefficient on pERP 2. This component shows similar average magnitude in the TD and

vASD groups, but far greater variability in the latter.

As noted, this approach also makes it easy to examine all pERPs for their loadings or

significant differences in contrasts. While increasing the number of comparisons, this is done

without user discretion of the sort allowed by user-driven selection of time intervals. For

the image task, in addition to the expected N1 component that is recovered by this method,

significant coefficients for pERPs 6 and 7 are found at O1 and O2, peaking positively around

450ms. This late positivity, present in all diagnostic groups, may be related to anticipation

of the next stimulus. No other pERPs showed loadings that were statistically distinguishable

from zero at these locations.

In the visual paradigm, the largest loadings are observed for pERP 7 across diagnostic

groups found in the frontal and central regions (electrodes F3, F4, FZ, C3, CZ), corre-

sponding to a negativity observed around 500ms. For loadings onto pERP 7, the mismatch

condition was associated (though not significantly) with a stronger negativity than the match

condition, as expected, in the TD group (possibly related to greater semantic processing).

For the auditory paradigm, a significant group difference emerges frontally at electrode

F4, in pERP 9 when comparing activity between the TD and mvASD groups in the contrast

of match vs. mismatch conditions (Figure 2.10). In the TD group, the mismatch condition

leads to a deeper negativity than the match condition, seen around 700-800ms. This late

negativity, expected to be larger in the mismatch condition, has been linked to semantic

integration in the previous work of DiStefano et al. (2019).
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ASD Image Contrast

(a) Observed ERP for image condition at O1, TD and vASD

(b) Contribution of pERP 2 for image condition, O1

Figure 2.9: (a) The observed average ERP waveform for the image condition, by group.
No N1 is evident. (b) ERP reconstructed using only pERP2 , i.e. pERP 2 scaled by its
contribution to the waveform (O1 plotted here). This component is detected despite the
apparent lack of an N1 in the overall ERP because we also identify and model pERP 1,
which captures spillover from the prior trial. The numbers shown are the mean weight with
SE, and APSD in parentheses. The APSD reflects the subject variability and is much larger
in the vASD group. Thus the vASD group has an average response very similar to that of
the TD group, but there is a great deal more variability in the vASD group.
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The prior work of DiStefano et al. (2019) study only the audio paradigm, and not

the visual paradigm. Their main findings include a deeper negativity for mismatch than

match trials, which they label as both an N4 and a later negativity, similar to the pERP 9

component picked up by the pERP-RED analysis. In relation to the N4, we see “N4-like”

pERPs (5 and 6), peaking around 300 ms and 400 ms respectively. At Pz for example, we

see the expected deeper negativity on these two pERPs for mismatch than for match trials,

in each group. In the TD group, this difference in the amplitudes is large and statistically

significant for pERP 5 (t = 2.1) though less so for pERP 6 (t = 1.4). In the vASD and

mvASD, the differences appear similar but miss significance, ranging from t = 1.4 to t = 1.8.

Relatedly, we also notice pERP 4, which peaks slightly earlier around 240 ms. This

component also generates a significantly deeper negativity for mismatch than match in the

TD group (t = 2.1) and in the mvASD group (t = 3.0), but interestingly shows no difference

in the vASD group (t = 0.1). This is consistent with a finding in DiStefano et al. (2019)

that perhaps surprisingly, mvASD participants appear more similar in many ways to TD

than does the vASD group. Further, the vASD group may have far greater heterogeneity

than the others: the APSD values for pERP 4, are on the order of 0.5-0.7 for the match

and mismatch conditions in both the TD and mvASD groups, but are 1.2 (match) and 1.6

(mismatch) in the vASD group. That is, the standard error of coefficients across participants

in the vASD group is 2-3 times larger than in TD or mvASD groups, again echoing the

heightened heteregoeneity of the vASD groups noted in DiStefano et al. (2019).

2.4.2 ADHD Study

We also test the methods on a dataset that is larger in terms of participants, diversity of tasks,

and electrodes: a study of cognitive control in youth, aged 7-17 years old, with and without

Attention Deficit and Hyperactivity Disorder (ADHD) with N = 331, of whom NADHD = 242

are in the ADHD group (clinicaltrials.gov ID: NCT00429273). Additional methodological

details can be found in Lenartowicz et al. (2019). We examined data pooled from two sets

of tasks: a spatial delayed response task (SDRT), and a continuous performance task (CPT)
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ASD Sound match - mismatch contrast

(a) Sound predicted ERP mvASD vs TD

(b) pERP contribution to Sound contrast

Figure 2.10: (a) ERP waveforms at F4. (b) A significant difference was found on pERP 9
between the mvASD and TD groups when contrasting match vs. mismatch. The numbers
reported in the figure are the mean, with the SE and APSD in parentheses. This echoes
a previously reported finding that the mismatch condition led to a deeper negativity at
700-800ms, thought to reflect semantic integration.
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(see Figure 2.11). In the SDRT, participants are instructed to pay attention to the location

of yellow dots on the screen against a black background. Each trial consists of a 500 ms

fixation cross, followed by the yellow stimulus dots for 2000 ms (cue). Subjects are presented

varying memory load of 1, 3, 5, or 7 dots at a time, in random order. Then a blank screen

with a fixation cross appears for 3000ms (maintenance phase). Finally, a single probe green

dot is presented for 3000ms (retrieval phase), during which the participant indicates whether

the position of the probe matched the position of any of the yellow dots (pressing the left

arrow to indicate a match, the right arrow to indicate a non-match). On half of the trials the

green dot matched the location of a yellow dot and on half it did not. The trial ends when

the participant responds, after which a fixed 3000 ms ITI (a blank screen) is displayed. If no

response is made during the 3000 ms response interval, a message appears indicating that

the subject did not respond and the next trial begins. Subjects are required to score above

50% accuracy on a series of practice rounds in order to move on to experimental blocks.

There are 48 trials in each experimental block, and 2 blocks, with equal numbers of load

sizes and equal numbers of match and no-match trials. Total experimental time is about

7 minutes per block, 14 minutes total. Including the training and practice trials the entire

task requires roughly 17 minutes. ERPs are time-locked to cue, to probes, and to participant

responses.

The CPT requires sustained attention (or vigilance) and response inhibition. Subjects

are presented single letters (A, B, C, D, F, I, L, O, T, or X), one at a time in the center of

the computer screen. The subject is instructed to press and release the spacebar as quickly

as they can after viewing each letter – except when the letter is “X”, which indicates they

should make no response. There are 360 continuous trials randomly presented with three

different ISI lengths: 1000, 2000, or 4000 ms. Each letter is always presented for 250 ms,

leaving either 750, 1750, or 3750 ms of remainder response time per trial, see Figure 2.11.

Epochs are time-locked to stimulus onset. For present purposes, we categorize trials into

just four types based on combinations of the cue (“X ”or “not X”) and response (“correct”

or “incorrect”), Table 2.1. Data collection, cleaning, and pre-processing steps are described
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ADHD Experiment Timelines

(a) ADHD SDRT (b) ADHD CPT

Figure 2.11: (a) In the SDRT task, a sequence of screens are presented. A fixation cross for
500ms, the cue dots for 2000ms, another fixation cross for 3000ms, and the probe dot for
3000ms. Within the 3000ms probe phase, the subject responds. (b) In the CPT task, the
subject is presented with either an ‘X’ or ‘not X’ for 250ms, after which there is a blank
screen for either 1000, 2000 or 4000ms before the next trial.

in the Appendix.

No other results from the CPT task of this dataset have been published as yet. For the

SDRT, Lenartowicz et al. (2019) describes a number of results, focusing principally on spec-

tral EEG analyses, and particularly alpha modulation during the encoding and maintenance

stages as a predictor of impairment. This study did however index vigilance using the P2

event-related potential in response to the onset of the fixation, finding a nearly-significant

smaller P2 in the ADHD group compared to the TD group at FCz.

Results for ADHD study

While the SDRT and CPT data are too rich to fully examine here, we consider a number

of analyses that illustrate the pERP approach. The CPT data cannot be made public

as yet, but all analyses of the SDRT described here can be replicated using our online

data browser (https://perpred.shinyapps.io/adhd_exploration/). In comparison to

Lenartowicz et al. (2019), at FCz we do not see significant evidence for a difference between

the ADHD and TD groups on a P2-like component following the fixation’s onset. However, if

the ADHD and TD groups differ in vigilance to task relevant stimuli, we might expect to see
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this not only in the P2 to fixation, but in components such as the N1 and P2 following the

encoding cue itself. Continuing to look at FCz, we do see pERPs reflecting an apparent P2

(pERP 5, a positive peak near 200 ms post encoding cue), and the N1 (pERP 4, a negative

peak near 130 ms). Both show significantly non-zero loadings in the expected directions, for

both ADHD and TD groups. While the differences in these average loadings (for ADHD vs.

TD groups) do not reach statistical significance, the TD group shows a marginally larger

loading on the N1-like component (pERP 4) with a t-statistic of 1.2 for the comparison. We

consider the N1/P2 more extensively below.

There is a great deal more to report from this dataset, and we focus here on analyses that

aid in evaluating the validity or usefulness of a pERP-based approach. First, as a validation

exercise, we test the degree to which the algorithm identifies a N1/P2 complex in both the

CPT and SDRT tasks. The N1/P2 complex has been widely identified in tasks involving

visual stimuli and attention, such as the CPT and SDRT. If our approach is effective in

constructing pERPs that reflect important or common sources of variation, having pooled

both the CPT and SDRT to construct those pERPs, we might expect to see such components.

Figure 2.12 shows the two pERPs noted above that appear to correspond to a N1 (pERP

4) and P2 (pERP 5), though the latter also contains a small negative deflection prior to

200ms. In the CPT experiment, taking Cz as an example, all four (visual) stimulus-locked

trial types (X(No Go)-correct, X(No Go)-incorrect, notX(Go)-correct, notX(Go)-incorrect)

show weights on pERPs 4 and 5 that are distinguishable from zero significantly, suggesting

that the four trials types elicited pERPs 4 and 5 as would be expected. Furthermore, as

shown in Figure 2.12, in each of the CPT trial types, the reconstructed signal using just

these two components reproduce the expected form of a N1/P2 complex following the visual

stimulus. The same holds for the all of the cue-locked trials of the SDRT experiment, and

not for the response-locked or probe-locked trial types.

Next we turn to task specific expectations to further probe the validity of the approach.

In the CPT task, trials with an “X (No Go)” are relatively rare, and are thus expected

to produce an update or novelty signal typically associated with the P3. We thus expect
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N1/P2 Complex in Five ADHD Trial Types

Figure 2.12: The N1/P2 as observed (solid black line) and as reconstructed from pERPs 4
(red line) and 5 (blue line) at CZ, at each of the five trials types. The loadings and standard
errors for those loadings is shown in each figure. The corresponding t-statistics (mean divided
by SE) range from 2.9 to 22 across these 10 cases, leading to firmly to rejecting the null
hypothesis (of zero loading) in each.
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to see activity at 300-500ms in a contrast of “Not X (Go)-incorrect” versus “X (No Go)-

, correct” in central and frontal areas. We contrast these two trial types because neither

contain motor activity due to the response. Indeed, the observed ERP waveforms show a

large positivity in the “X (No Go)-correct” trials, and not in the“Not X (Go)-incorrect” trials

at sites such as Cz, see Figure 2.13 (top). This large difference between these two waveforms

is quite broad, perhaps containing more than just a conventional P3, or averaging together

positive deflections that peak at varying latencies. The estimated pERPs support such a

hypothesis: We see that this contrast is explained not by a single broadly shaped pERP,

but by pERPs 7, 8, and 9. These three pERPs each show a relatively sharp positivity, but

at different latencies: 375ms for pERP 7, 475ms for pERP 8, and 625ms for pERP 9, see

Figure 2.13 (bottom). In fact, all trial types with an “X” (i.e. No Go trials) regardless of

response show heavy loadings on these three pERPs, whereas trial types without an “X”

(and thus the majority stimulus type), regardless of response, show little weight on these

pERPs, consistent with the expectation that pERPs 7, 8, and 9 relate to an updating or

novelty or updating signal. As these three components have different latencies, they combine

to form the slower peaking positivity seen in the overall waveform.

This highlights a potential use for such decompositions as compared to examining mean/

peak amplitudes in the superposed ERP alone. Investigators could use the loadings on each

of these three components, at the individual or group level to see if individual differences

in clincial diagnosis or task performance correspond to different coefficients on these three

novelty-related pERPs. In this case, the coefficients and their contrasts on these three

pERPs are remarkably similar at least across the ADHD and non-ADHD groups. They also

do not systematically vary as a function of participant age. Whether these individual, low-

dimensional scores are more informative or predictive (of other behaviors, symptomology,

or other traits) than a simple mean amplitude over some interval or a measure of latency

remains an interesting question for the next phase of research with pERPs.

Turning to the SDRT task, we take the opportunity to illustrate another use of the pERP

approach: characterizing heterogeneity. In addition to the standard errors that are used for
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CPT X Correct vs Not X Incorrect

(a) CPT predicted ERP X vs Not X

(b) pERP contribution to the long positivity in the ‘CPT X Correct’ task

Figure 2.13: (a) The observed ERP at Cz. The ‘X Correct’ and ‘Not X Incorrect’ tasks are
used for this contrast because neither include a motor response. The large positivity in the
‘X Correct’ task is expected as it indicates the update/novelty of seeing a rare event. (b)
The large positivity in the ‘X Correct’ task from 400-800ms can be decomposed into pERPs
7 (red), 8 (green), and 9 (blue). The numbers shown are the mean and SE of the coefficients.
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inference, we provide the “across participant standard deviations” (APSD), which charac-

terize how the loadings on a given pERP vary from one participant to the next. Consider,

for example, the waveform for the maintenance period in the SDRT. Because ADHD has

implications for the ability to maintain attention and working memory resources on task,

we may expect differences here. Table 2.2 shows loadings for all pERPs in the maintenance

condition at electrode Cz, separately for typically developing (TD) participants and those

categorized as either ADHD-inattentive or ADHD-combined (containing participants diag-

nosed with both inattention and hyperactivity). On the loadings, we see larger differences

between the TD group and the ADHD-combined group, though these do not reach statistical

significance3, while the TD and ADHD-inattentive group tend to be more similar. Returning

to the question of heterogeneity, the TD and ADHD-inattentive group have very similar lev-

els of heterogeneity in loadings, as indicated by the APSD value on each pERP. By contrast,

the ADHD-combined group has higher APSD values on every pERP, indicating greater het-

erogeneity across the individuals that make up this group. Heterogeneity is especially large

in the first two pERPs, and again for pERPs 10-13 onward. The early pERPs 1 and 2 ap-

pear to reflect activity before the cue has disappeared from the screen, while pERPs 10-13

contribute to a late ongoing positivity in the waveform — perhaps related to maintenance

of task-relevant attention or working memory.

Using the pERP-space approach has several benefits over picking an interval, computing

a mean or peak amplitude by subject, and compare the standard deviations across those

measures by group. First, it seeks to mitigate the overlap problem that is inherent in using

peak/mean amplitude, which sometimes makes peaks of important components difficult or

impossible to locate, as in the N1 example in the ASD data above. Second, it avoids the

requirement of picking the interval over which to do this, and thus reduces the risk of over

mining the data to find an interval that works. Third, the pERP-space approach pinpoints

variability in terms of the pERPs involved rather than a broad interval. By doing so, it

suggests which pERPs show most variability and would thus be interesting to examine at

3On each of the first five pERPs, taken separately, the t-statistic for a difference in loadings between the
TD and ADHD-combined group are approximately 1.6.
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ADHD and TD Groups: Maintenance Condition (Cz)

Combined Inattention TD

pERP Mean (SE) t APSD Mean (SE) t APSD Mean(SE) t APSD

pERP 01 -0.11 (0.27) -0.41 2.94 0.32 (0.14) 2.30 1.50 0.41 (0.15) 2.67 1.44
pERP 02 0.18 (0.28) 0.65 3.01 -0.29 (0.15) -1.91 1.68 -0.41 (0.18) -2.28 1.69
pERP 03 0.1 (0.18) 0.58 1.91 -0.11 (0.13) -0.86 1.41 -0.32 (0.15) -2.10 1.44
pERP 04 0.02 (0.1) 0.23 1.07 0.09 (0.09) 1.06 0.94 0.22 (0.1) 2.25 0.90
pERP 05 0.21 (0.11) 1.96 1.15 0.1 (0.08) 1.17 0.90 -0.02 (0.09) -0.20 0.87
pERP 06 0.13 (0.11) 1.22 1.17 0.07 (0.09) 0.81 0.94 0.08 (0.1) 0.86 0.90
pERP 07 0.28 (0.12) 2.30 1.29 0.35 (0.09) 3.80 1.02 0.45 (0.09) 4.89 0.86
pERP 08 -0.13 (0.12) -1.03 1.34 -0.14 (0.09) -1.66 0.94 -0.31 (0.1) -3.11 0.93
pERP 09 0.07 (0.15) 0.51 1.56 -0.01 (0.07) -0.12 0.79 -0.07 (0.09) -0.80 0.80
pERP 10 -0.17 (0.17) -1.02 1.83 0.04 (0.08) 0.54 0.88 -0.03 (0.08) -0.43 0.74
pERP 11 -0.01 (0.11) -0.11 1.18 -0.04 (0.06) -0.69 0.70 -0.06 (0.07) -0.82 0.68
pERP 12 0.09 (0.14) 0.64 1.55 -0.08 (0.06) -1.29 0.65 -0.04 (0.06) -0.73 0.56
pERP 13 -0.08 (0.18) -0.45 1.97 0.09 (0.08) 1.07 0.91 0.13 (0.11) 1.18 1.07
pERP 14 -0.07 (0.15) -0.48 1.56 0.1 (0.11) 0.90 1.25 0.11 (0.11) 1.02 1.01
pERP 15 -0.26 (0.19) -1.37 2.01 0.16 (0.13) 1.23 1.42 0.14 (0.15) 0.96 1.38

Table 2.2: The APSD captures variability across participants in the weight given to each
pERP. We see that the ADHD group has a much higher APSD for many of the pERPs than
the TD group.
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the individual (or even trial-by-trial) level to compare against behavior or diagnostic status.

2.5 Discussion

We describe a method for estimating an underlying set of components and then analyzing

ERP waveforms in terms of these components. The fundamental idea is that any ERP wave-

form, from any electrode, subject, condition, and task, can be represented as a weighted

combination of an underlying set of waveforms. The pERP-RED algorithm provides one

reasoned approach to empirically estimate an underlying set of components (pERPs) from

a corpus of ERP data, taken across participants and tasks. We then describe how inves-

tigators can use these pERPs to extract information from the ERP waveform. To ensure

the accessibility of this approach, we provide software that enables users to import ERP

waveforms, estimate pERPs, and conduct the pERP-space analyses described in this paper

(the pERPred package in R).

This approach has many advantages relative to the standard practice of extracting the

mean or peak amplitude in a user-specified window and presuming the result indexes the

magnitude of a known ERP component of ex ante interest. First and foremost, it sidesteps

the long-standing concern that differences observed at a particular interval may be due to a

component other than that of interest. It similarly addresses concerns of spillover from the

prior trial. As a result, this approach not only dissociates the measurement of components

from the measurement of peaks, but can measure components that don’t even visibly appear

as a peak in the waveform due to overlap (as in the N1 in the ASD example above). It can also

show that one broad slow-peaking structure may be explained as a combination of multiple

underlying components, each of which can be measured on the group or individual level (as

for the P3 in the ADHD example above). The ability to measure the contribution of every

pERP contributing to the observed waveform, for each group or individual, makes the pERP

approach particularly relevant to investigators seeking to discover biomarkers from group

or individual level data. Relatedly, the pERP-space approach is useful for characterizing

heterogeneity across individuals in a given group, assessing the variation of the relative
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contributions of every pERP for every participant via the APSD score we provide.

An additional advantage relates to broader research practice in terms of selective re-

porting and discovery. Our approach employs multiple comparisons, but the number of

hypotheses that will be tested (at least at a given electrode and for a given contrast) is

simply the number of pERPs, and can be accounted for through any multiple comparison

correction the user would like. Investigators can transparently report all significant and

non-significant results for a given condition or contrast, characterizing (non) differences in

any pERP, and thus over the entire time course. By contrast, in standard practice, the user

chooses the time interval(s) and reports only differences there. Moreover, there is no clear

way to exhaust the set of components that may or may not differ in a conventional analysis

as can be done in a pERP-space analysis. Our approach facilitates discovery of differences

in underlying components not previously of interest, yet avoids a user-driven search for such

differences.

A number of areas for future exploration exist, in particular to further probe the validity

or test the usefulness of this approach. First, it is natural to extract the weight on a given

pERP of interest at the trial-wise level, in order to see how they might predict or relate to

trial-wise behavior. This has parallels in recent work on high-dimensional modeling of EEG

data. For example, Hasenstab et al. (2015) model longitudinal trends over trials within ERPs

from a single learning task. Hasenstab et al. (2017); Scheffler et al. (2020); Fiecas & Ombao

(2016); Ombao et al. (2018) consider high-dimensional modeling of EEG including the trial

dimension using functional data and time series analysis approaches. While functional data

analysis has seen rapid growth over the past two decades, with important recent work mod-

eling multivariate hierarchical functional data Di et al. (2009); Shou et al. (2015); Happ

& Greven (2018); Zhang et al. (2019), existing works have not considered data structures

observed across multiple experiments, groups, subjects, electrodes, tasks and conditions, as

we have done in this paper. We consider development of high-dimensional functional princi-

pal components decompositions suitable for the complex hierarchical structure considered in

this paper as an important direction of future work. Second, a source localization approach
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conducted on pERPs (as activated in a given task) would be a useful next step. Since its

early days (e.g. Makeig et al. (1995)) ICA has been proposed as a means of isolating sources

that are more likely to represent separate cortical generators and thus be well suited for a

source localization step through later dipole modeling. Whereas ICA waveforms for source

localization are computed separately on each subject, the fact the pERPs are computed

globally on a multi-subject dataset provides new opportunities for seeing how a single pERP

localizes, in different subjects, without having to use clustering or other approaches to link

components in one subject to those in another. Specifically, the headmap constructed for

a given pERP in a given condition can be used as input to a dipole modeling algorithm.

It is then an empirical question as to whether a given pERPs activity in a given condition

will localize to similar regions in separate subjects. This provides ample opportunity for

falsification, since nothing in the algorithm constrains the spatial distribution of a pERP to

be similar across participants.

Finally, we want to point to several limitations of pERP-RED. First, pERP-RED can

only accommodate data in which the product of the total number of time points and the

total number of tasks exceeds the number of all principal regions across all subjects (derived

in the first PCA step of electrode reduction). This limitation is a by product of the second

PCA step of subject, region reduction in pERP-RED. This condition was satisfied in both

data applications. A second limitation is that the derived pERPs are not penalized in time

to attain a desired degree of smoothness. Related to the functional data analysis approaches

mentioned above that would consider the structure along the time dimension, an interesting

direction of future work would be to also consider penalization in time such as localized PCA

Chen & Lei (2015) which can set estimated basis functions to zero in time windows of little

variation, further enhancing interpretation of the derived pERPs.
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CHAPTER 3

Multilevel hybrid principal components analysis for

region-referenced multilevel functional EEG data

3.1 Introduction

Electroencephalography (EEG) is a non-invasive and low-cost modality to analyze brain

activity (Kumar & Bhuvaneswari, 2012). EEG experiments can be categorized into two

groups: (1) resting state experiments and (2) task-based ones or event-related potential

designs. In the latter category, EEG is recorded during presentation of a sequence of stimuli,

in which the brain response, called an event-related potential, is time-locked to the onset of

each stimulus. While EEG data from stimulus-based experiments are often analyzed in the

time domain via ERPs, EEG data from resting state are typically analyzed in the frequency

domain via power spectral density (PSD). The generated data in the time (ERPs) or the

frequency (PSDs) domain can be viewed as region-referenced functional objects, recorded

across the scalp, representing the regional dimension. In addition, the data typically also have

a multilevel structure in which high-dimensional observations are collected across varying

experimental conditions within a single visit or repeatedly across multiple visits.

Our first motivating study was on lexical-semantic processing of youth with autism spec-

trum disorder (ASD) conducted by our collaborators at the UCLA Center for Autism Re-

search and Treatment (DiStefano et al. , 2019). The goal of the study was to uncover neural

mechanisms underlying language impairment in ASD. One quarter of children with ASD

are minimally verbal and little is known about the underlying neural mechanisms. EEG,

a modality that does not require a behavioral or verbal response, was a valuable tool in
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Figure 3.1: (a) In the audio odd-ball paradigm, the image appears for the full 2000ms and a
spoken word is heard 1000ms after the onset of the image. The functional observation to be
considered is time-locked to the onset of the audio, creating an ERP that is from -100ms to
1000ms. (b) The ERP waveform displaying the characteristic components P200 and N400.
(c) In the ABC-CT feasibility study, PSD are recorded on two visits, approximately a week
apart. (d) The estimated mean relative PSD µ(t) as a function of frequency in Hz.

reaching study goals. The children were presented with a sequence of images followed by an

audio recording of the word that either matched or did not match the image, constituting the

two conditions (match vs. mismatch) of the experiment (Figure 3.1a). ERP time-locked to

each audio recording, measured across the scalp for both experimental conditions represents

the multilevel region-referenced functional data in the time domain. Our second motivating

study, which produced multilevel region-referenced functional data in the frequency domain

was conducted by the Autism Biomarkers Consortium for Clinical Trials (ABC-CT) (Mc-

Partland et al. , 2020). EEG data were recorded during resting state, across two visits,

which were approximately a week apart (Webb et al. , 2020). The resulting PSD collected

across visits and scalp regions represents the multilevel region-referenced functional data in

the frequency domain (Fig 3.1b).

Typical analysis of high-dimensional multilevel EEG data relies on collapsing the func-

tional and regional dimensions. Instead of capturing the entire morphology of the ERP or
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the PSD, the functional dimension is collapsed when characteristic phasic components of

ERPs are targeted in the time domain or specific band power are targeted in the frequency

domain. The collapse of the regional dimension corresponds to restricting analyses to a

pre-determined scalp region. While such simplifications allow the use of common modeling

techniques, simplifying analysis, they can fail to portray the more comprehensive differences

in the entire ERP signal or the PSD across the scalp.

Functional data analysis (FDA) techniques (Ramsay & Silverman, 2005) can adequately

handle trends in the entire ERP or PSD waveform. The literature on functional data analy-

sis has grown rapidly over the past two decades, with a growing interest in analyzing high-

dimensional functional data with dependencies among curves created by spatial or temporal

proximity. Functional principal components analysis (FPCA) have been a major modeling

theme in the FDA literature, with a focus on efficient and interpretable representations of

functional variability in highly structured settings. For spatially-correlated functional obser-

vations Giraldo et al. (2010); Zhou et al. (2010) and Liu et al. (2017) utilized distance-based

parametric correlation structures in functional modeling, while Baladandayuthapani et al.

(2008) considered Bayesian regression splines and Staicu et al. (2010) built a nonparametric

spatial process coupled with FPCA. For region-referenced EEG data, Scheffler et al. (2020)

proposed Hybrid PCA (HPCA), combining vector and functional principal components anal-

ysis to decompose the high-dimensional signal along the regional and functional dimensions.

HPCA relies on weak separability of the higher-dimensional covariance process (Chen et al.

, 2017; Lynch & Chen, 2018) and utilizes a product of one dimensional eigenvectors and

eigenfunctions, obtained from the regional and functional marginal covariances, to represent

the observed data in lower dimensions. Weak separability, which is less stringent than strong

separability of the covariance processes in higher dimensions, assumes that the covariance

can be represented by a weighted sum of separable covariance components and hence implies

that the direction of variation (i.e. eigenvectors/eigenfunctions) along one dimension of the

EEG data stays the same across fixed slices of the other dimension. For multilevel functional

data, with an assumed exchangeable correlation structure among repetitions (experimental
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conditions or visits), Di et al. (2009) proposed Multilevel Functional Principal Compo-

nent Analysis (MFPCA) to decompose the total variation in univariate functional data into

between- and within-subject variation. MFPCA has been extended for big data applications

(Crainiceanu et al. , 2009; Zipunnikov et al. , 2011) and for sparse multilevel functional data

(Di et al. , 2014), however all extensions considered were limited to univariate functional

observations. Note that recent works have also been proposed in the parallel literature of

spectral analysis of time series that can model trends in the entire PSD without collapsing

of dimensions. For spectral analysis of multiple dependent time series Krafty et al. (2011)

proposed a mixed effects spectral representation of the data, whileMacaro & Prado (2014)

and Cadonna et al. (2019) took a bayesian nonparametric approach and Fiecas & Ombao

(2016) modeled continuously evolving spectral densities across trials of an EEG learning

experiment. For multi-subject applications, Hart et al. (2020) proposed modeling of PSD

from resting state EEG of a sample of twin pairs enrolled in the Minnesota Twin Family

Study.

We borrow ideas from HPCA (proposed for multidimensional functional data) and MF-

PCA (proposed for multilevel functional data) to decompose the variation in multilevel

region-referenced EEG data in either the time or the frequency domain through the pro-

posed Multilevel Hybrid Principal Components Analysis (M-HPCA). The multidimensional-

ity refers to the EEG data collected across the scalp, constituting region-referenced functional

data. The multilevel nature of the data is portrayed by our two motivating studies, outlined

above, with repeatedly observed region-referenced EEG collected across experimental con-

ditions in the audio odd-ball paradigm and across multiple visits in the ABC-CT feasibility

study. Similar to MFPCA, M-HPCA begins by decomposing the total variation in the high-

dimensional signal into between- and within-subject variation. In addition, relying on weak

separability of the between- and within-subject variance (across the regional and functional

dimensions), the higher-dimensional signal is represented using a basis set that are formed

by products of one dimensional eigenvectors and eigenfunctions, obtained from the marginal

regional and functional between- and within-covariances. Eigenscores, representing the mag-
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nitude of variation in the subject-specific signal along the leading directions of variation, are

estimated using mixed effects modeling.

A major challenge in estimation of the modeling components (including eigenscores and

eigenvalues) via mixed effects machinery is the size of the data considered. Standard pack-

ages fail to scale up to the size of the high-dimensional multilevel region-referenced EEG

data considered. To overcome this major challenge, we couple representation of the high-

dimensional covariance matrices as weighted sums of lower dimensional building blocks,

under the weak separability assumption, with an efficient minorization-maximization (MM)

algorithm. The proposed solution achieves effective dimension reduction, leading to major

computational savings, where estimation relies on inversion of much smaller building blocks,

enabling applications to the high-dimensional EEG data. Relying on the achieved computa-

tional savings, inference is performed via bootstrap. The proposed M-HPCA decomposition

is introduced in Section 3.2.1, followed by the proposed estimation algorithm, the mixed

effects modeling and the MM algorithm outlined in Sections 3.2.2 and 3.2.3, respectively.

Varied uses of M-HPCA are showcased with two data applications in Section 4.3. In the

audio odd-ball paradigm, M-HPCA is used to study group differences in brain response to

the two experimental conditions of the paradigm (match vs. mismatch). In the second ap-

plication to the ABC-CT feasibility data, M-HPCA is used to assess short-term reliability of

PSD (across study visits), through the proposed M-HPCA intraclass correlation (M-HPCA

ICC) for multilevel region-referenced EEG data. Short-term reliability is an important step

towards assessment of potential biomarkers for ASD. Extensive simulations, reported in Sec-

tion 4.4, are used to assess the finite sample properties of the proposed approach, followed by

a discussion section. To increase accessibility, an R package, mhpca, accompanies this article.
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3.2 Multilevel Hybrid Principal Components Analysis (M-HPCA)

3.2.1 M-HPCA decomposition

We briefly review MFPCA and HPCA before we introduce the proposed multilevel hybrid

principal components analysis (M-HPCA). For modeling multilevel functional data, MFPCA

considered repeatedly observed functional data Yij(t) on subjects i = 1, . . . , n, and repetitions

j = 1, . . . , J . A two-way functional ANOVA model was proposed

Yij(t) = µ(t) + ηj(t) + Zi(t) +Wij(t) + εij(t),

where µ(t) denotes the overall mean function, ηj(t) is the repetition-specific shift from the

overall mean function, Zi(t) is the subject-specific deviation from the repetition-specific mean

function and finally Wij(t) is the residual subject- and repetition-specific deviation. The

correlation in the data is modeled through the two uncorrelated stochastic processes Zi(t) and

Wij(t), leading to the decomposition of the total variation into between- (cov{Zi(t), Zi(t
′)})

and within-subject (cov({Wij(t),Wij(t
′)}) variation. This ANOVA decomposition implies

an exchangeable correlation structure among the repetitions and allows for projection of the

data onto a lower dimensional set of bases functions derived from FPCA of the between- and

within-subject variation. It also allows for comparisons of the percent variation explained at

each level of the data (subject vs. repetition).

In contrast, HPCA considered region-referenced functional data, where functional data is

collected across the discrete dimension of region. Denoting the region-referenced functional

data by Yi(r, t) for subject i =, 1, . . . , n and region r = 1, . . . , R, HPCA considered the

representation

Yi(r, t) = µ(t) + η(r, t) + Zi(r, t) + εi(r, t),

where µ(t) denotes the overall mean function, η(r, t) is the region-specific shift from the

overall mean function and Zi(r, t) is the subject and region-specific random deviation. In

the HPCA decomposition, the variation is modeled through the mean-zero stochastic process
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Zi(r, t). Under the weak separability of the high-dimensional covariance of Zi(r, t), directions

of variation (eigenvectors and eigenfunctions) are targeted along the regional and functional

dimensions using PCA and FPCA, respectively. The data is then represented in lower dimen-

sions through the product of the one-dimensional eigenvectors and eigenfunctions estimated.

Hence in contrast to MFPCA, HPCA does not assume an exchangeable correlation structure

among regions. Instead, it models region as a second discrete dimension added onto the con-

tinuous functional dimension and models variability along this additional dimension by PCA

within the weak separability framework of the higher-dimensional covariance process. first

decomposing the total variation into between and within covariance processes and assuming

results in eigencomponents that are highly interpretable – giving rise to participant- and

repetition-specific regional and variation separately.

M-HPCA combines different features from the two decompositions outlined above in

modeling the multilevel region-referenced EEG data across multiple diagnostic groups. Let

Ydij(r, t) denote the multilevel region-referenced functional observations for subject i, i =

1, . . . , nd, from group d, d = 1, . . . , D, for repetition j, j = 1, . . . , J , in region r, r = 1, . . . , R

at time t, t ∈ T . Ydij(r, t) is assumed to be square-integrable over the functional domain

T , which could represent time or frequency in the analysis of the ERP or PSD waveforms,

respectively. While EEG data is typically available on a common set of regions across the

scalp, data may be missing over repetitions, where each subject is observed at a different

set of experimental conditions or visits. For ease of notation, we provide modeling details

using the common set of repetitions j = 1, . . . , J across subjects, however developments can

easily be extended to accommodate missingness over j and are provided in more generality

with subject-specific repetition sets in Section 3.2.2. The proposed M-HPCA decomposition

is given as

Ydij(r, t) = µ(t) + ηdj(r, t) + Zdi(r, t) +Wdij(r, t) + εdij(r, t),

where µ(t) denotes the overall mean function, ηdj(r, t) is the group and repetition-specific shift

from the overall mean function, Zdi(r, t) and Wdij(r, t) are the subject-specific and subject-

and repetition-specific deviations, respectively, and εdij(r, t) is the independent measurement
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error with mean zero and variance σ2
d.

Similar to the functional ANOVA model of MFPCA, the two stochastic processes Zdi(r, t)

and Wdij(r, t) are assumed to be uncorrelated and will be referred to as the level 1 or

between-subject, and level 2 or within-subject deviations. The proposed M-HPCA decom-

poses the total variation in the data, Kd,Total{(r, t), (r′, t′)} ≡ cov{Ydij(r, t), Ydij(r
′, t′)} =

cov{Zdi(r, t), Zdi(r
′, t′)} + cov{Wdij(r, t),Wdij(r

′, t′)} + σ2
dδ{(r, t), (r′, t′)} into between-,

Kd,B{(r, t), (r′, t′)} ≡ cov{Ydij1(r, t), Ydij2(r
′, t′)} = cov{Zdi(r, t), Zdi(r

′, t′)} and within-

subject covariance, Kd,W{(r, t), (r′, t′)} ≡ Kd,Total{(r, t), (r′, t′)} − Kd,B{(r, t), (r′, t′)} =

cov{Wdij(r, t),Wdij(r
′, t′)}, where δ{(r, t), (r′, t′)} denotes the indicator function for {(r, t) =

(r′, t′)}. The subscripts B and W are used to denote the between- and within-subject co-

variances, respectively.

Similar to HPCA, the proposed M-HPCA utilizes weak separability of the between-

and within-subject covariances to decompose the signal in lower dimensions. Weak sep-

arability, which is less stringent than strong separability of the covariance processes in

higher dimensions, assumes that the between- and within-subject covariances can be repre-

sented as a weighted sum of separable covariance components along the regional and func-

tional dimensions. This assumption implies that the direction of variation (i.e. eigenvec-

tors/eigenfunctions), not the covariance itself, along one dimension of the data (regional/

functional), stays the same across fixed slices of the other dimension (functional/regional).

Violations of the weak separability assumption on the between- and within-subject covari-

ances is checked in data applications by visually assessing the similarity of the estimated

eigenvectors and eigenfunctions across fixed values in the regional and functional domains

(Section 4.3). In addition to visual assessments, we also check the weak separability assump-

tion via a likelihood ratio test for the random effects correlation structure of the subject-

and subject-region-specific eigenscores of the product eigencomponents proposed below in

the mixed effects modeling framework of Section 3.2.3.

Utilizing weak separability, the common eigenfunctions and eigenvectors along each of the

two dimensions (functional and regional) can be targeted using the marginal between- and
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within-subject covariances. The marginal functional between- and within-subject covariances

are defined as the sum of the between- and within-subject covariances across all regions,

Σd,T ,B(t, t
′) ≡

R!

r=1

Kd,B{(r, t), (r, t′)} =
∞!

ℓ=1

τ
(1)
dℓ,T φ

(1)
dℓ (t)φ

(1)
dℓ (t

′), and

Σd,T ,W (t, t′) ≡
R!

r=1

Kd,W{(r, t), (r, t′)} =
∞!

m=1

τ
(2)
dm,T φ

(2)
dm(t)φ

(2)
dm(t

′).

In the above formulation φ
(1)
dℓ (t) and φ

(2)
dm(t) denote the level 1 and level 2 eigenfunctions

and τ
(1)
dℓ,T , τ

(2)
dm,T denote the respective eigenvalues. Superscripts (1) and (2) are used to

differentiate quantities at the two levels of the data (subject vs. repetition, or between-

vs within-subject). The marginal regional between- and within-subject covariance matrices

are similarly defined as integrals of the between- and within-subject covariances across the

functional domain,

(Σd,R,B)r,r′ ≡
#

T
Kd,B{(r, t), (r′, t)}dt =

R!

k=1

τ
(1)
dk,Rv

(1)
dk (r)v

(1)
dk (r

′), and

(Σd,R,W )r,r′ ≡
#

T
Kd,W{(r, t), (r′, t)}dt =

R!

p=1

τ
(2)
dp,Rv

(2)
dp (r)v

(2)
dp (r

′),

where (A)r,r′ denotes the (r, r
′)-th element of matrix A, v

(1)
dk (r) and v

(2)
dp (r) denote level 1 and

level 2 eigenvectors, and τ
(1)
dk,R, τ

(2)
dp,R are the respective eigenvalues.

Next, the data is projected onto a basis set formed by the product of the one dimen-

sional eigenvectors and eigenfunctions, obtained from the marginal regional and functional

covariances,

Ydij(r, t) = µ(t) + ηdj(r, t) + Zdi(r, t) +Wdij(r, t) + εdij(r, t)

= µ(t) + ηdj(r, t) +
R!

k=1

∞!

ℓ=1

ζdi,kℓv
(1)
dk (r)φ

(1)
dℓ (t)

+
R!

p=1

∞!

m=1

ξdij,pmv
(2)
dp (r)φ

(2)
dm(t) + εdij(r, t). (3.1)
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In the above decomposition, ζdi,kℓ = 〈Zdi(r, t), v
(1)
dk (r)φ

(1)
dℓ (t)〉 =

$R
r=1

"
T Zdi(r, t)v

(1)
dk (r)φ

(1)
dℓ (t)dt denotes the subject-specific scores defined through the

projection of Zdi(r, t) onto the level 1 product eigen components v
(1)
dk (r)φ

(1)
dℓ (t), and

ξdij,pm = 〈Wdij(r, t), v
(2)
dp (r)φ

(2)
dm(t)〉 =

$R
r=1

"
T Wdij(r, t)v

(2)
dp (r)φ

(2)
dm(t)dt denotes the subject-

repetition-specific scores defined through the projection of Wdij(r, t) onto the level 2 product

eigen components v
(2)
dp (r)φ

(2)
dm(t). The subject- and subject-repetition-specific scores are

uncorrelated within and across the two levels of the data. The M-HPCA decomposition

leads to the following breakdown of the total covariance

Kd,Total{(r, t), (r′, t′)} =
R!

k=1

∞!

ℓ=1

λ
(1)
d,kℓv

(1)
dk (r)φ

(1)
dℓ (t)v

(1)
dk (r

′)φ
(1)
dℓ (t

′)

+
R!

p=1

∞!

m=1

λ
(2)
d,pmv

(2)
dp (r)φ

(2)
dm(t)v

(2)
dp (r

′)φ
(2)
dm(t

′) + σ2
dδ{(r, t), (r′, t′)}

= Kd,B{(r, t), (r′, t′)}+Kd,W{(r, t), (r′, t′)}+ σ2
dδ{(r, t), (r′, t′)}

where λ
(1)
d,kℓ = var(ζdi,kℓ), and λ

(2)
d,pm = var(ξdij,pm), Kd,B{(r, t), (r′, t′)} =

$R
k=1

$∞
ℓ=1 λ

(1)
d,kℓv

(1)
dk (r)φ

(1)
dℓ (t)v

(1)
dk (r

′)φ
(1)
dℓ (t

′), and Kd,W{(r, t), (r′, t′)} =
$R

p=1

$∞
m=1 λ

(2)
d,pmv

(2)
dp (r)φ

(2)
dm(t)v

(2)
dp (r

′)φ
(2)
dm(t

′).

The number of product eigen components included in (3.1) is truncated in practice at

K, P , L, and M for the between- and within-subject regional and functional eigen compo-

nents, respectively, using the fraction of variance explained (FVE). We set FVE to 99% in

the marginal functional and regional covariance expansions, however reduce the number of

resulting product components for inference on condition differentiation through the para-

metric bootstrap to avoid overfitting after estimation of the eigenscores and the variance

components in a mixed effects framework, outlined in more detail in Section 3.2.3.

3.2.2 M-HPCA estimation algorithm

The proposed M-HPCA estimation algorithm is outlined in Algorithm 1. We provide addi-

tional details on the first three stpng of the algorithm targeting means, covariances and the
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product eigen components and defer discussions on details of Step 4, including the mixed

effects modeling to target the eigenscores and the variance components and the associated

computationally efficient MM algorithm to the next section.

In Step 1, the overall mean, µ(t), and group-region-repetition-specific means ηdj(r, t)

are targeted using a spline smoother. Due to possible imbalances in sample sizes across

diagnostic groups, the smoothed mean functions within each group are averaged in Step

1(a) to target the overall mean function µ(t). The group-region-repetition-specific means

are then targeted in Step 1(b) by smoothing the demeaned data within each group.

Next, in Step 2, the raw total, )Kd,Total{(r, t), (r′, t′)}, and between-subject covariances,

)Kd,B{(r, t), (r′, t′)}, are targeted using the empirical covariance estimates within the same

subject and repetition, cov{Ydij(r, t), Ydij(r
′, t′)}, and within the same subject across differ-

ent repetitions, cov{Ydij1(r, t), Ydij2(r
′, t′)}, respectively. The raw within-subject covariance

)Kd,W{(r, t), (r′, t′)} is estimated as the difference between the total and within-subject co-

variances. The raw marginal functional and regional covariances are targeted by averaging

the summed or integrated raw covariances over the regional and functional domains, respec-

tively, followed by smoothing of the raw marginal functional covariances before performing

FPCA. Bivariate penalized spline smoothers are utilized in smoothing of the raw marginal

functional covariances, where the degree of smoothness is determined via REML. Before

smoothing the marginal functional within-subject covariance, the diagonal elements of the

raw covariance, which are prone to measurement error effects (similar to the diagonal of the

raw total covariance), are removed (Yao et al. , 2005; Park & Staicu, 2015). Measurement

error variance σ2
d is then targeted as the mean difference between the diagonal elements of

the smoothed and unsmoothed marginal functional within-subject covariances. Since the di-

agonal elements of the marginal regional within-subject covariance are similarly effected by

measurement error (due to measurement error effects on the diagonal of raw total covariance

and within-subject covariance), the estimated σ2
d is subtracted from the diagonal entries of

the raw marginal regional within-subject covariance. Further details on estimation of the

means and covariances are provided in the Supplementary Material Appendix A.

61



Algorithm 1 M-HPCA Estimation Algorithm

Step 1: Estimation of Mean Functions

a) Calculate )µd(t) by applying a spline smoother to all observed data within group
d, {t, Ydij(r, t) : i = 1, . . . , nd; r = 1, . . . , R; t ∈ T , j = 1, . . . , J}. Obtain the

overall mean by )µ(t) = {
$D

d=1 )µd(t)}/D.
b) Calculate )ηdj(r, t) by applying a spline smoother to all mean-centered data

within group d and repetition j and region r, {t, Ydij(r, t) − )µ(t) : i =
1, . . . , nd; t ∈ T }.

Step 2: Estimation of Covariances and Measurement Error Variance

a) Raw Covariances: Calculate )Kd,Total{(r, t), (r′, t′)}, )Kd,B{(r, t), (r′, t′)} and
)Kd,W{(r, t), (r′, t′)} = )Kd,Total{(r, t), (r′, t′)}− )Kd,B{(r, t), (r′, t′)}.

b) Marginal Covariances: Calculate the raw marginal functional covariances
)Σd,T ,B(t, t

′) and )Σd,T ,W (t, t′) and raw marginal regional covariances )Σd,R,B and
)Σd,R,W .

c) Smoothed Covariances:

i. Calculate *Σd,T ,B(t, t
′) and *Σd,T ,W (t, t′) by applying a bivariate penalized

spline smoother to )Σd,T ,B(t, t
′) and )Σd,T ,W (t, t′), respectively.

ii. Calculate )σ2
d as the mean difference between the diagonals of *Σd,T ,W (t, t′)

and )Σd,T ,W (t, t′).

iii. Calculate *Σd,R,W by removing the estimated measurement error variance )σ2
d

from the diagonal entries of the raw marginal regional covariance )Σd,R,W .

Step 3: Estimation of Marginal Eigen Components

a) Employ FPCA on *Σd,T ,B(t, t
′) and *Σd,T ,W (t, t′) to estimate the eigenvalue,

eigenfunction pairs, {τ (1)dℓ,T ,φ
(1)
dℓ (t) : ℓ = 1, . . . , L} and {τ (2)dm,T ,φ

(2)
dm(t) : m =

1, . . . ,M}, respectively.
b) Employ PCA on )Σd,R,B and *Σd,R,W to estimate the eigenvalue, eigenvector pairs

{τ (1)dk,R, v
(1)
dk (r) : k = 1, . . . , K} and {τ (2)dp,R, v

(2)
dp (r) : p = 1, . . . , P}, respectively.

Step 4: Estimation of Variance Components and Eigenscores via Mixed Effects Modeling
and the proposed MM Algorithm

a) Calculate )ζdig, )ξdijh, )λ(1)
dg ,

)λ(2)
dh and )σ2

d by fitting a linear mixed effects model
using the proposed MM algorithm.

b) Select G′ and H ′ such that FV Ed,B(G
′), FV Ed,W (H ′) > 0.8, d = 1, . . . , D, for

inference on condition differentiation, via parametric bootstrap.
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In Step 3, FPCA and PCA of the marginal functional and regional covariances are

employed to target the level 1, {)τ (1)dℓ,T ,
)φ(1)
dℓ (t)}, {)τ (1)dk,R,)v

(1)
dk (r)}, and level 2 eigen compo-

nents, {)τ (2)dm,T ,
)φ(2)
dm(t)}, {)τ

(2)
dp,R,)v

(2)
dp (r)}. In order to target the product eigen components,

)v(1)dk (r)
)φ(1)
dℓ (t) and )v(2)dp (r)

)φ(2)
dm(t) in (3.1), the number of marginal eigen components K, L, P ,

M are selected to explain at least 99% of the variation in the FPCA and PCA decompositions

of the marginal functional and regional covariances. The estimated product eigen compo-

nents are considered fixed in the below described mixed effects formulation (Step 4) targeting

the subject- and subject-repetition-specific eigenscores, ζdi,kℓ and ξdij,pm, their variances λ
(1)
d,kℓ

and λ
(2)
d,pm and measurement error variance σ2

d.

3.2.3 Mixed effects modeling and the computationally efficient MM algorithm

The mixed effects model which considers the projection of the observed data onto the es-

timated level 1 and level 2 product eigen components denoted by ϕ
(1)
dg (r, t) = v

(1)
dk (r)φ

(1)
dℓ (t),

and ϕ
(2)
dh (r, t) = v

(2)
dp (r)φ

(2)
dm(t), is given by

+
,-

,.

Ydij(r, t) = µ(t) + ηdj(r, t) +
$G

g=1 ζdigϕ
(1)
dg (r, t) +

$H
h=1 ξdijhϕ

(2)
dh (r, t) + εdij(r, t)

ζdig ∼ N
/
0,λ

(1)
dg

0
, ξdijh ∼ N

/
0,λ

(2)
dh

0
, εdij(r, t) ∼ N(0, σ2

d),

(3.2)

where g = (k−1)+K(ℓ−1)+1 and h = (p−1)+P (m−1)+1 denote the single indices for

the G = KL and H = PM total product eigen components at level 1 and 2, respectively,

and var(ζdig) = λ
(1)
dg , var(ξdijh) = λ

(2)
dh . In the following developments, we will assume that

subjects are observed at a subject-specific set of repetitions (with a total of Ji repetitions

for subject i), to accommodate missing data over experimental conditions or visits.

We next introduce the relevant notation to represent the mixed effects model in (3.2)

and the details on the proposed computationally efficient MM algorithm in vector form.

Let Y di denote the TRJi × 1 vector obtained by stacking Ydij(r, t) − )µ(t) − )ηdj(r, t) over

the functional grid (t = 1, . . . , T ), regions, and repetitions for subject i, i = 1, . . . , nd.

Further let ϕ
(1)
dg = {ϕ(1)

dg (r1, t1), . . . ,ϕ
(1)
dg (r1, tT ), . . . ,ϕ

(1)
dg (rR, t1), . . . ,ϕ

(1)
dg (rR, tT )}T and ϕ

(2)
dh =
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{ϕ(2)
dh (r1, t1), . . . ,ϕ

(2)
dh (r1, tT ), . . . ,ϕ

(2)
dh (rR, t1), . . . ,ϕ

(2)
dh (rR, tT )}T denote the gth and hth TR×1

vectorized level 1 and level 2 product eigen components, respectively. The vector product

eigen components are then merged in the TR×G and TR×H, level 1 and level 2 matrices,

Φ
(1)
d = (ϕ

(1)
d1 ,ϕ

(1)
d2 , . . . ,ϕ

(1)
dG) and Φ

(2)
d = (ϕ

(2)
d1 ,ϕ

(2)
d2 , . . . ,ϕ

(2)
dH). Let Λ

(1)
d and Λ

(2)
d denote the

G×G and H ×H diagonal matrices containing the level 1 and level 2 variance components

{λ(1)
d1 , . . . ,λ

(1)
dG} and {λ(2)

d1 , . . . ,λ
(2)
dH}, on the diagonal. Finally let 1Ji and 1Ji×Ji denote the

Ji × 1 column and Ji × Ji matrix of ones, respectively, and IJi denote the Ji × Ji identity

matrix, with ⊗ denoting the Kronecker product.

The mixed effects model in (3.2) is given in vector form as

+
,-

,.

Y di = Zdiζdi +W diξdi + εdi

ζdi ∼ MVN
/
0,Λ

(1)
d

0
, ξdi ∼ MVN

/
0, IJi ⊗Λ

(2)
d

0
, εdi ∼ MVN(0, σ2

dITRJi) ,

(3.3)

for i = 1, . . . , nd, where Zdi = 1Ji ⊗ Φ
(1)
d and W di = IJi ⊗ Φ

(2)
d are the

TRJi × G and TRJi × HJi design matrices, ζdi = (ζdi1, . . . , ζdiG)
T and ξdi =

(ξdij11, . . . , ξdij1H , . . . , ξdijJi1, . . . , ξdijJiH)
T denote the G× 1 and HJi × 1 random effects vec-

tors, and εdi denotes the TRJi × 1 error vector. Estimates of the variance components,

Λ
(1)
d ,Λ

(2)
d , and σ2

d and subject-specific and subject-repetition-specific scores, ζdi and ξdi, are

targeted via the proposed computationally efficient MM algorithm.

A major challenge in fitting of the mixed effects model in (3.3) is the size of the data.

Even in data sets with small number of subjects, such as the ABC-CT feasibility study, with

nd = 25 subjects within diagnostic group (and J = 2 visits, T = 108 frequencies, R = 18

regions), the total number of random effects G +HJi can get large (G ≈ 60 and H ≈ 70).

Standard packages maximizing the log-likelihood directly using Newton’s method (e.g. lme4

via REML) prove to be not feasible and computationally intensive (for a comparison of run

times for R packages lme4 (?) and mhpca in simulation studies, see Section 4.4). To address

this major challenge, we propose a novel MM algorithm, specifically tailored to M-HPCA.

MM algorithms share the same advantages as expectation-maximization (EM) algorithms
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such as simplicity and stability while avoiding large matrix manipulations, but MM generally

converges faster than EM in the presence of more than two variance components (see Zhou

et al. (2019) for more on stability and efficiency of MM algorithms). Instead of targeting

to maximize the log-likelihood directly, the proposed MM algorithm maximizes a surrogate

function, fd(Λ
(1)
d ,Λ

(2)
d , σ2

d|Λ
(1)(c)
d ,Λ

(2)(c)
d , σ

2(c)
d ) that minorizes the log-likelihood, where super-

script (c) denotes the iteration index of the MM. The proposed algorithm iterates between

estimation of the eigenscores, ζdi, ξdi, and the variance components, Λ
(1)
d ,Λ

(2)
d , and σ2

d, where

the convergence is determined by the computed log-likelihood at the values of the parame-

ters selected to maximize the surrogate function. The proposed surrogate function is much

easier to maximize with respect to the variance components, due to the additive structure

of the surrogate where terms involve one variance component at a time. In addition, taking

advantage of the weak separability assumption and the independence of random effects at

different levels of the data, we achieve additional computational gains by representing the

high-dimensional covariance matrices as weighted sums of lower dimensional building blocks.

The proposed MM algorithm is outlined on page 69, where we outline details that are specifi-

cally tied to computational savings below, and defer other details to Supplementary Material

Appendix B.

In order to derive the surrogate function that minorizes the log-likelihood

ℓd(Λ
(1)
d ,Λ

(2)
d , σ2

d) =
$nd

i=1 ℓdi(Λ
(1)
d ,Λ

(2)
d , σ2

d), where ℓdi(Λ
(1)
d ,Λ

(2)
d , σ2

d) = −(log detΣdi)/2 −

(Y T
diΣ

−1
di Y di)/2, i = 1, . . . , nd, and Σdi = ZdiΛ

(1)
d ZT

di + W di(IJi ⊗ Λ
(2)
d )W T

di + σ2
dITRJi ,

consider the following minorizations and majorizations (denoted by ! and ≽). Using the

convexity of the mapping (X,Y ) /→ X−1Y X−1 and the lemmas given in Zhou et al. (2019),
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there is a majorization of Σ
(c)
di Σ

−1
di Σ

(c)
di

Σ
(c)
di Σ

−1
di Σ

(c)
di =

1
ZdiΛ

(1)(c)
d ZT

di +W di

/
IJi ⊗Λ

(2)(c)
d

0
W T

di + σ
2(c)
d ITRJi

2

×
1
ZdiΛ

(1)
d ZT

di +W di

/
IJi ⊗Λ

(2)
d

0
W T

di + σ2
dITRJi

2−1

×
1
ZdiΛ

(1)(c)
d ZT

di +W di

/
IJi ⊗Λ

(2)(c)
d

0
W T

di + σ
2(c)
d ITRJ

2

!
/
ZdiΛ

(1)(c)
d ZT

di

0/
ZdiΛ

(1)
d ZT

di

0+ /
ZdiΛ

(1)(c)
d ZT

di

0

+
1
W di

/
IJi ⊗Λ

(2)(c)
d

0
W T

di

21
W di

/
IJi ⊗Λ

(2)(c)
d

0
W T

di

2+

×
1
W di

/
IJi ⊗Λ

(2)(c)
d

0
W T

di

2

+
σ
4(c)
d

σ2
d

ITRJi

which is denoted by U . This majorization implies −Σ−1
di ≽ −Σ

−1(c)
di UΣ

−1(c)
di . Additionally,

using the convexity of the mapping A /→ − log detA, the minorization of − log detΣdi is

given as

− log detΣdi ≥ − log detΣ
(c)
di − tr

3
Σ

−1(c)
di

/
Σdi −Σ

(c)
di

04

= − log detΣ
(c)
di − tr

/
Σ

−1(c)
di Σdi

0
− tr (ITRJi) .

Hence using the minorizations of Σ−1
di and − log detΣdi, the ith subject contribution to the

log-likelihood is minorized by the surrogate function

fdi

/
Λ

(1)
d ,Λ

(2)
d , σ2

d

55Λ(1)(c)
d ,Λ

(2)(c)
d , σ

2(c)
d

0

= −1

2
tr
/
Σ

−1(c)
di Σdi

0
− 1

2
Y T

diΣ
−1(c)
di UΣ

−1(c)
di Y di + q(c)

= −1

2

6
tr
/
ZT

diΣ
−1(c)
di ZdiΛ

(1)(c)
d

0
+ tr

1
W T

diΣ
−1(c)
di W di

/
IJi ⊗ Λ

(2)(c)
d

02
+ tr

/
σ2
dΣ

−1(c)
di

0

+ ζ
(c)T
di Λ

−(1)(c)
d ζ

(c)
di + ξ

(c)T
di

/
IJi ⊗Λ

−1(2)(c)
d

0
ξ
(c)
di +

σ
4(c)
d

σ2
d

Y T
diΣ

−2(c)
di Y di

7
+ q(c),

where q(c) is a constant free of the variance components or scores. The over-

all minorization function across all individuals fd(Λ
(1)
d ,Λ

(2)
d , σ2

d|Λ
(1)(c)
d ,Λ

(2)(c)
d , σ

2(c)
d ) =
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$nd

i=1 fdi(Λ
(1)
d ,Λ

(2)
d , σ2

d|Λ
(1)(c)
d ,Λ

(2)(c)
d , σ

2(c)
d ) can be maximized quickly and easily since terms

in the minorization function involve variance components one at a time. More specifically

the partial derivatives with respect to Λ
(1)
d,gg, Λ

(2)
d,hh and σ2

d involve only the (first and fourth),

(second and fifth) and (third and sixth) terms above, respectively. Derivatives used in de-

riving the variance components are provided in Supplementary Material Appendix B, where

derived estimators are provided in Algorithm 2.

Algorithm 2 outlines the proposed MM algorithm which iterates between estimation of the

eigenscores, ζdi, ξdi, and the variance components, Λ
(1)
d ,Λ

(2)
d , and σ2

d. The algorithm begins

with initialization of the variance components, denoted by Λ
(1)(0)
d , Λ

(2)(0)
d , and σ

2(0)
d . The

initial value σ
2(0)
d is set to )σ2

d estimated in Step 2 (c)(ii) of the M-HPCA estimation procedure,

as the mean difference between the diagonals of the smoothed and unsmoothed marginal

functional within-subject covariance. The initializations Λ
(1)(0)
d and Λ

(2)(0)
d , are set to identity

matrices for simplicity which has worked well in practice. The estimates of the subject-

and subject-repetition-specific scores are updated using the best linear unbiased predictors

(BLUPs) in lines 7 and 8: ζ
(c)
di = Λ

(1)(c)
d ZT

diΣ
−1(c)
di Y di and ξ

(c)
di = (IJi ⊗Λ

(2)(c)
d )W T

diΣ
−1(c)
di Y di.

Next we review representation of the high-dimensional covariance matrices as weighted sums

of lower dimensional building blocks and fast computation of log-likelihood at the estimated

parameters evaluated for convergence, which all lead to further computational savings.

A major challenge in the algorithm is inverting the TRJi×TRJi covariance matrix, Σdi.

We begin by borrowing tools from Crainiceanu et al. (2009) in simplifying Σdi in terms

of the TR × TR between and within covariances, denoted by Kd,B ≡ Φ
(1)
d Λ

(1)
d Φ

(1)T
d and

Kd,W ≡ Φ
(2)
d Λ

(2)
d Φ

(2)T
d ,

Σdi = ZdiΛ
(1)
d ZT

di +W di

/
IJi ⊗Λ

(2)
d

0
W T

di + σ2
dITRJi

= 1Ji×Ji ⊗Φ
(1)
d Λ

(1)
d Φ

(1)T
d + IJi×Ji ⊗

/
σ2
dITR +Φ

(2)
d Λ

(2)
d Φ

(2)T
d

0

= 1Ji×Ji ⊗Kd,B + IJi×Ji ⊗
8
σ2
dITR +Kd,W

9
.

Using the fact that the covariance is a sum of two Kronecker products, its inverse is targeted
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by

Σ−1
di = IJi ⊗

8
σ2
dITR +Kd,W

9−1

− 1Ji×Ji ⊗
18

σ2
dITR +Kd,W

9−1
Kd,B

8
σ2
dITR +Kd,W + JiKd,B

9−1
2
.

Note that the above expression requires the inversion of only two TR×TRmatrices: (σ2
dITR+

Kd,W )−1 and (σ2
dITR + Kd,W + JiKd,B)

−1. Nevertheless, since the inversions are subject-

specific and could still be computationally cumbersome, we achieve further simplifications

in the two TR × TR matrices to be inverted using the Woodbury matrix identity: (A +

UCV )−1 = A−1 −A−1U (C−1 + V A−1U )−1V A−1:

8
σ2
dITR +Kd,W

9−1
=

/
σ2
dITR +Φ

(2)
d Λ

(2)
d Φ

(2)T
d

0−1

=
1

σ2
d

ITR − 1

σ4
d

Φ
(2)
d

:
Λ

−1(2)
d +

1

σ2
d

Φ
(2)T
d Φ

(2)
d

;−1

Φ
(2)T
d , (3.4)

8
σ2
dITR +Kd,W + JiKd,B

9−1
=

/
Q−1 + JiΦ

(1)
d Λ

(1)
d Φ

(1)T
d

0−1

= Q− JiQΦ
(1)
d

1
Λ

−1(1)
d + JiΦ

(1)T
d QΦ

(1)
d

2−1

Φ
(1)T
d Q, (3.5)

where Q ≡ (σ2
dITR +Kd,W )−1. Note that expressions in (3.4) and (3.5), which only rely on

the inversion of the H × H matrix Λ
−1(2)
d + Φ

(2)T
d Φ

(2)
d /σ2 and the G × G matrix Λ

−1(1)
d +

JiΦ
(1)T
d QΦ

(1)
d , are used in inverting Σdi in line 6 of the MM algorithm. In addition, due to

weak separability, Λ
(2)
d and Λ

(1)
d are both diagonal matrices which are much easier to invert.

Further simplifications are achieved for complete data (with no missing repetitions), where

the covariance Σdi is no longer subject-specific and hence can be inverted outside the subject-

specific for loop (starting on line 5), leading additional computational savings. Algorithm

run time comparisons between lme4 and mhpca in Section 4.4 include both incomplete and

complete data set-ups.

In the final step of the proposed MM algorithm, the log-likelihood is evaluated at the
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estimated model parameters for assessing convergence. Additional computational savings

are targeted in evaluation of the log-likelihood, more specifically in evaluation of the de-

terminant of Σdi. Details are deferred to Supplementary Material Appendix B.2. Percent

change in the log-likelihood is considered as the criterion of convergence in the proposed

MM algorithm (line 17). In applications, δ is set to 0.001, corresponding to a 0.1% change

in the log-likelihood, which has worked well in practice. Finally, weak separability is tested

via a likelihood ratio test for the random effects correlation structure of the subject- and

subject-region-specific eigenscores, ζdi,kℓ and ξdij,pm, in the proposed mixed effects modeling

framework. Weak separability corresponds to an independent/diagonal correlation struc-

ture on the eigenscores (Lynch & Chen, 2018). Hence we propose to test the independent

correlation structure against the alternative of a compound symmetric correlation structure

for the eigenscores. The compound-symmetric covariance has also been used to test for

weak separability in Scheffler et al. (2020) and is preferred over a completely unstructured

covariance in order to maximize the stability of the estimates targeted since the number

of parameters in the unstructured covariance would increase rapidly with the number of

product components. Details of the estimation procedure under the compound symmetric

correlation structure of the scores are deferred to Supplementary Materials Appendix B.3.

Results from the likelihood ratio test for weak separability are reported in data applications

of Section 4.3, along with visual assessments of the similarity of the estimated eigenvectors

and eigenfunctions across fixed values in the regional and functional domains.

One advantage of the proposed multilevel decomposition M-HPCA is the ability to com-

pare the variability explained at each level of the data (subject vs. repetition) across the

functional and regional dimensions. This comparison leads to a new concept of intraclass

correlation for multilevel region-referenced functional data (M-HPCA ICC). M-HPCA ICC

is defined as the proportion of the total variation in the multidimensional signal that is ex-

plained at the subject level, ρdW =
$∞

g=1 λ
(1)
dg /(

$∞
g=1 λ

(1)
dg +

$∞
h=1 λ

(2)
dh ). A higher M-HPCA

ICC signals that more of the total variation is explained by heterogeneity at the subject

level, implying that repeatedly observed region-referenced functional data are similar within
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Algorithm 2 MM algorithm

Input: Ydi, Zdi, Wdi, i = 1, . . . , nd

Output: MLE )ζdi, )ξdi, )Λ
(1)

d , )Λ
(2)

d , )σ2
d, i = 1, . . . , nd

1: Initialize Λ
(1)(0)
d and Λ

(2)(0)
d as identity matrices, and σ

2(0)
d as )σ2

d

2: repeat
3: K

(c)
d,B ← Φ

(1)
d Λ

(1)
d Φ

(1)T
d

4: K
(c)
d,W ← Φ

(2)
d Λ

(2)
d Φ

(2)T
d

5: for i = 1, . . . , nd do
6: Σ

−1(c)
di ← IJi⊗(σ

2(c)
d ITR+K

(c)
d,W )−1−1Ji×Ji⊗{(σ2(c)

d ITR+K
(c)
d,W )−1K

(c)
d,B(JiK

(c)
d,B+

σ
2(c)
d ITR +K

(c)
d,W )−1}∗

7: ζ
(c)
di ← Λ

(1)(c)
d ZT

diΣ
−1(c)
di Ydi

8: ξ
(c)
di ←

/
IJ ⊗Λ

(2)(c)
d

0
WT

diΣ
−1(c)
di Ydi

9: end for
10: for g = 1, . . . , G do

11: Λ
(1)(c+1)
d,gg ←

<:
nd$
i=1

ζ
2(c)
i,g

;
/

:
nd$
i=1

/
ZT

diΣ
−1(c)
di Zdi

0

gg

;

12: end for
13: for h = 1, . . . , H do

14: Λ
(2)(c+1)
d,hh ←

%&&'
=

nd$
i=1

Ji$
j=1

ξ
2(c)
i,h+(j−1)H

>
/

=
nd$
i=1

Ji$
j=1

/
W T

diΣ
−1(c)
di W di

0

(h+(j−1)H)(h+(j−1)H)

>

15: end for

16: σ
2(c+1)
d ← σ2(c)

?1$nd

i=1 YdiΣ
−2(c)
di Ydi

2
/
1$nd

i=1 tr
/
Σ

−1(c)
di

02

17: until
555ℓ(c+1)

d (Λ
(1)
d ,Λ

(2)
d , σ2

d)− ℓ
(c)
d (Λ

(1)
d ,Λ

(2)
d , σ2

d)
555 < δ

555ℓ(c)d (Λ
(1)
d ,Λ

(2)
d , σ2

d)
555

∗ Using the simplifications made in Equations (3.4) and (3.5).
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subjects. Utilizing the G and H variance components estimated from the mixed effects

modeling at the subject and subject-repetition levels, respectively, we target ρdW by

)ρdW =

$G
g=1

)λ(1)
dg$G

g=1
)λ(1)
dg +

$H
h=1

)λ(2)
dh

.

In our second application to the ABC-CT feasibility data (presented in the next section),

M-HPCA ICC is utilized to quantify the short-term reliability of the PSD across visits that

are approximately a week apart. M-HPCA ICC, which is a single number summarizing the

reliability in the high-dimensional EEG signal across frequencies and scalp regions, is a use-

ful measure for researchers that want to assess reliability of PSD in general as a biomarker

for ASD. Note that the proposed M-HPCA ICC is different from the functional ICC (fICC)

proposed by Di et al. (2009) based on MFPCA, since fICC captures similarity across repe-

titions of functional data but does not consider a regional dimension. Hence M-HPCA ICC

summarizes, in a single measure, the agreement not only across the functional dimension but

also the regional one. We provide a percentile bootstrap confidence interval for M-HPCA

ICC for inference, formed by resampling from subjects (see Section 3.3.2.2 for more details).

We also propose a parametric bootstrap based inference for condition differentiation

within a group or across groups. In our applications to the audio odd-ball paradigm, the main

interest is on group comparisons of the brain response to the two experimental conditions

(match vs. mismatch). While a larger number of product components (G and H at the

subject and repetition levels, respectively) are used in the initial mixed effects fitting, leading

to a more accurate assessment of total variation and hence M-HPCA ICC, for the parametric

bootstrap proposed on condition differentiation, a more parsimonious model is preferred for

resampling. The leading product componentsG′ andH ′ that explain at least 80% of variation

at the subject- and subject-repetition levels are retained for drawing parametric bootstrap

samples under the null, i.e. FV EdB(G
′) > 0.8 and FV EdW (H ′) > 0.8 for d = 1, . . . , D,

where FV EdB(G
′) = (

$G′

g=1
)λ(1)
dg )/(

$G
g=1

)λ(1)
dg ) and FV EdW (H ′) = (

$H′

h=1
)λ(2)
dh )/(

$H
h=1

)λ(2)
dh ).

Note that a different number of product components may be selected for each level and

group. Once the number of product components needed is determined, the mixed effects

71



model is fit for a second time and the variance components estimated from the second fit

are utilized for the parametric bootstrap (see Section 3.3.1.2 and Supplementary Material

Appendix C for more details).

3.3 Applications

3.3.1 Audio odd-ball paradigm

3.3.1.1 Data structure and methods

The data for our first application was collected by our collaborators, at UCLA, on 31 children

aged between 5 and 11 years old, to study neural mechanisms underlying language impair-

ment in children with ASD (DiStefano et al. , 2019). Some EEG paradigms don’t require

a behavioral response, which was instrumental in studying neural mechanisms among the

sample of 14 typically developing (TD), 10 verbal ASD (vASD), and 7 minimally verbal

ASD (mvASD) children. ASD diagnoses was made prior to enrollment and confirmed by the

research team using the Autism Diagnostic Observation Schedule (ADOS) and Social Com-

munication Questionnaire (SCQ). The paradigm was a picture-word matching paradigm (Fig

3.1a), where participants were presented a picture on a white background and then heard a

spoken word that either matched (match condition) or did not match the picture (mismatch

condition). The picture appeared for 2000ms and the auditory stimulus was played 1000ms

after the picture was presented. The word stimuli were chosen from 60 basic nouns taken

from the MacArthur-Bates Communicative Development Inventories-2nd edition. Each word

appeared twice – once in the match condition and once in the mismatch condition. There

were four blocks of 30 trials each, totaling 6 minutes (trials where participants were not

looking at the screen were removed). Data collection, cleaning, and pre-processing steps are

described further in DiStefano et al. (2019).

Previous analysis of the data by DiStefano et al. (2019) highlighted group differences in

the ERP characteristic components N400 and a wide negativity from 600-900ms referred to
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Figure 3.2: (a) The estimated overall mean function µ(t) in the audio odd-ball paradigm. (b)
Positions of the 6 electrodes used in the analysis of the audio odd-ball paradigm highlighted.
(c) Positions of the 18 electrodes used in the analysis of the ABC-CT feasibility study data
highlighted.

as the late negative component (LNC). The N400 component is observed in the estimated

overall mean function (Figure 3.2a). The N400 is related to lexical-semantic processing

and LNC is related to cognitive integration following semantic processing (DiStefano et al.

, 2019). DiStefano et al. (2019) reported a greater negativity in N400 in the mismatch

condition compared to the match condition across all diagnostic groups and found a greater

negativity in LNC in the mismatch condition compared to the match condition in region-

specific comparisons.

3.3.1.2 Data analysis results

We consider a subset of 6 electrodes (C3, Cz, C4, P3, Pz, P4) in the regional dimension

(Figure 2b) where weak separability was not rejected. Representative electrodes are chosen
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by generating clusters of the original 128 electrodes in the (left, middle, and right) central

(C3, Cz, C4) and parietal (P3, Pz, P4) regions. The functional dimension includes 137

equally spaced time points between -96ms and 992ms. In addition, the two experimental

conditions (match vs. mismatch) constitute the multilevel structure. For visual assessment

of weak separability, we compared the first two leading eigenfunctions along the functional

dimension at the participant/subject and condition/repetition levels across fixed slices of

the regional dimension (Figures B.5.4 and B.5.5) and the first leading eigenvector along the

regional dimension at the participant and condition levels across fixed slices of the functional

dimension (Figure B.5.6). Directions of variation along one dimension for fixed slices along

the second dimension show sufficient similarity at both the participant and condition levels.

In addition, the likelihood ratio test for assessing the weak separability assumption on the

(between- and within-subject) covariances was not rejected with (p = .20, p = .08) in TD,

(p = .24, p = .4) in vASD and (p = .75, p = .38) in mvASD groups. Recall that the number

of eigencomponents is selected to explain 99% of total variation in eigendecompositions of

the marginal functional and regional covariances. The MM algorithm has a total number of

product components equal to the product of the number of marginal regional and functional

eigencomponents retained, separately at the participant and condition levels. Once the

variance components are estimated by the MM, enough product components are retained to

explain 80% of the total variation at each level, in order to draw group-level inference on

condition differentiation via parametric bootstrap. The total computing time of M-HPCA

including the proposed MM algorithm is approximately 2 minutes on a 3.7 GHz 6-Core Intel

Core i5 operating R 4.0.3 (R Core Team, 2021).

Even though a larger number of components are retained in the eigendecompositions of

the marginal regional covariance (5 participant-level eigenvectors are retained for the TD and

vASD groups, with 4 participant-level eigenvectors retained for the mvASD group, and 3

condition-level eigenvectors are retained for all groups), we interpret the leading eigenvector

estimated at the participant and condition levels, explaining most of the variation. The

leading participant- and condition-level eigenvectors (ν
(1)
d1 (r), ν

(2)
d1 (r)), plotted in Figures 3.3a
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and Figure 3.3b, respectively, account for (64.8%, 51.4%) of the total marginal variation in

TD, (67.1%, 53.4%) in vASD and (47.4%, 53.1%) in mvASD. The estimated eigenvectors at

both levels represent a contrast between electrodes from the anterior, central and posterior

regions of the scalp for all the groups and hence connects to how dipoles produce ERP signal

oriented in opposite directions.

For the functional dimension, we discuss interpretations of the leading two eigenfunc-

tions at both the participant and condition levels, explaining the majority of the associated

marginal functional variation. (The total number of eigencomponents retained for the mixed

effects modeling via the proposed MM algorithm are (3, 5), (3, 5) and (4, 5) for TD, vASD and

mvASD groups at the (participant, condition) levels, respectively.) The leading two eigen-

functions explain (64.8%, 21.8%), (67.1%, 18.1%) and (47.5%, 37%) of the total marginal

variation for the TD, vASD and mvASD groups at the participant-level and (51.4%, 30.2%),

(53.4%, 30.8%) and (53.1%, 31.2%) of the total marginal variation for the TD, vASD and

mvASD groups at the condition-level. While the leading participant- and condition-level

eigenfunctions in the TD and vASD groups both signal variability in N400 and LNC compo-

nents (Figure 3.3c, e), the second leading eigenfunction at the participant-level highlights a

contrast between the P200 and LNC components (Figure 3.3d) for the TD group and N400

and LNC for the vASD group and the second leading eigenfunction at the condition-level

highlights a contrast between the N400 and LNC components (Figure 3.3f) for the TD group

and P200 and LNC components for vASD group. The mvASD group portrays different di-

rections of variation than the other two groups at both the participant and condition levels.

At the participant-level, most of the variation is observed in the late LNC component in

mvASD (Figure 3.3c), followed by additional variation in N400 (Figure 3.3d), while at the

condition-level most of the variation is observed in the contrast between P200 and LNC

components (Figure 3.3e) followed by additional variation around N400 and LNC (Figure

3.3f). Hence while most of the variation across subjects is attributable to the late LNC

component followed by the N400 in the mvASD group, most of the variation across subjects

is equally attributable to both the N400 and LNC components in the TD and vASD groups.
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Figure 3.3: The estimated leading participant-level eigenvectors ν
(1)
d1 (r) (given in (a)) and

condition-level eigenvector ν
(2)
d1 (given in (b)) represent a contrast between electrodes from

the anterior and posterior regions of the scalp for all groups. The estimated leading two
eigenfunctions for the participant-level variation φ

(1)
dℓ (middle row) and condition-level vari-

ation φ
(2)
dm (bottom row) for each diagnostic group.
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For variation across conditions, most of the variation is in the contrast between P200 and

LNC in mvASD, while TD and vASD groups show again roughly equal variability in both

the N400 and LNC components. The increased variation observed in the LNC component

at both levels for the mvASD group highlights the heterogeneity in this group in cognitive

integration, following semantic processing.

In order to draw group-level inference via parametric bootstrap, 4, 6, and 5 participant-

level product components are retained in the TD, vASD, and mvASD groups, respectively,

while 9, 7, and 7 condition-level product components are retained in the TD, vASD, and

mvASD groups, respectively, explaining at least 80% of the variation at each level. The first

test is for the within group condition differentiation, i.e. H0 : ηdj(r, t) = ηd(r, t) for j = 1, 2,

where the two conditions share a common mean in region r. The proposed test statistic,

denoted by Tr =
3$2

j=1

"
{)ηdj(r, t)− )ηd(r, t)}2 dt

41/2
, with )ηd(r, t) representing the pointwise

average of )ηdj(r, t) for j = 1, 2, targets the distance between the group-repetition-region-

specific means and their pointwise average. Parametric bootstrap samples are drawn under

the null hypothesis using the estimated product components and generated scores and errors

sampled from normal distributions with the variance components estimated by the fitted MM

algorithm. Test statistics computed in the bootstrap samples estimate the null distribution

of the test statistic Tr, leading to a p-value. A similar hypothesis test is also proposed

for testing the condition differentiation across groups, i.e. H0 : ηd1j1(r, t) − ηd1j2(r, t) =

ηd2j1(r, t) − ηd2j2(r, t) in region r, also via parametric bootstrap. Details on both tests are

provided in Supplementary Materials Appendix C.

While significant group differences are not detected in condition differentiation, there are

significant region-specific within group condition differentiations detected. While condition

differentiation does not approach significance in the TD group, the estimated condition-

specific mean functions from almost all the regions show a condition difference in the TD

group, mostly due to the LNC component (see Figures 3.4a-b, where LNC is reflected as a

positivity in the posterior region due to the dipole effect). LNC in the mismatch condition

has a greater amplitude compared to the match condition (similar to findings of DiStefano et
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Figure 3.4: The estimated group, region and condition-specific mean functions ηdj(r, t) in
the audio odd-ball paradigm.

al. DiStefano et al. (2019)). The condition differentiation is strongest in the mvASD group

at P4 (p = .04) and Pz (p = .02) mostly due to the N400 (see Figure 3.4e-f), with a greater

amplitude in the match than the mismatch. Hence while the TD and vASD groups shows

trending condition differentiation in the N400 and LNC components consistently across the

regions, signaling semantic processing and cognitive integration, differentiation detected in

mvASD is in the opposite direction (with greater amplitude in the match condition). Note

that while previous findings of DiStefano et al. (2019) characterize condition differences in

only the amplitude of the expected characteristic components N400 and LNC, the proposed

M-HPCA compares the entire ERP waveform across conditions, allowing for more granular

findings in the morphology of the group mean differences and directions of variation in the

entire ERP waveform as plotted in Figures 3.3 and 3.4.
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3.3.2 Day-to-day test-retest reliability of PSD

3.3.2.1 Data structure and methods

Our second application is a resting-state paradigm where the functional observations are the

PSD in the frequency domain. The frequency domain ranges from 0 to 55 Hz, containing

the frequency bands delta (0-4 Hz), theta (4-6 Hz), low alpha (6-9 Hz), high alpha (9-13

Hz), beta (13-30 Hz), and gamma (30-55 Hz). The main objective is to study the short-

term reliability of the entire PSD waveform using EEG data from 25 TD and 22 youth

diagnosed by ASD (aged 6 to 11 years old) in the feasibility study of ABC-CT, collected on

two days, a median of 6 days apart (Levin et al. , 2020). The participants were shown silent,

chromatic digital videos as part of a resting EEG eyes open paradigm. On each day, six 30

second videos were shown in three blocks of 1 minute, for a total of 3 minutes. The PSD

was calculated by segmenting the data into two-second intervals, and averaging the PSDs of

artifact-free segments for each participant and electrode. The relative PSD was calculated

by dividing the absolute power by total power, estimated by the integral of the PSD over the

entire frequency domain. PSD from R = 18 electrodes, chosen from the 10-20 system, was

analyzed to generate a robust signal decomposition (Figure 3.2c). For more details on the

study, including data collection, cleaning, and pre-processing steps, please see Levin et al.

(2020).

3.3.2.2 Data analysis results

The weak separability assumption on the between- and within-subject covariances is checked

by comparing the first two leading eigenfunctions along the functional dimension at the par-

ticipant/subject and day/repetition levels across fixed slices of the regional dimension (Figure

B.5.7) and the first leading eigenvector along the regional dimension at the participant and

day levels across fixed slices of the functional dimension (Figure B.5.8). Directions of varia-

tion along one dimension for fixed slices along the second dimension show sufficient similarity

at both the participant and day levels, signaling no violation of the weak separability assump-
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tion. In addition, the likelihood ratio test for assessing the weak separability assumption

on the (between- and within-subject) covariances fails to reject the null hypothesis of the

diagonal correlation structure with (p = .50, p = .76) in TD and (p = .88, p = .14) in ASD

groups. As in our first data example, the number of eigencomponents is selected to explain

99% of total variation in eigendecompositions of the marginal functional and regional covari-

ances. The variance components corresponding to product eigenscores are estimated by the

proposed MM algorithm and bootstrap CIs (by resampling from subjects with replacement)

are formed for M-HPCA ICC ρdW , quantifying the group-specific day-to-day reliability of

the entire PSD. We highlight interpretations of the leading eigenvector of the marginal co-

variance in the regional dimension and leading two eigenfunctions of the marginal covariance

in the functional dimension, explaining most of the variation at both the participant and

day levels. The total computing time of M-HPCA including the proposed MM algorithm is

approximately 5 minutes on a 3.7 GHz 6-Core Intel Core i5 operating R 4.0.3 (R Core Team,

2021).

The leading eigenvectors of the marginal regional covariance at both the participant and

day levels are plotted in Figure 3.5. Eigenvectors from both levels signal constant variation

in PSD across the entire scalp (explaining 82.4% and 80.8% of the marginal variation in

TD and ASD at the participant-level, and 38.6% and 48.3% in TD and ASD at the day-

level). Functional ICCs ((.742, .730) in ASD and (0.635, 0.685) in TD for Day 1 and Day

2), estimated by MFPCA at each visit to compare variability across subjects and regions,

also signal good agreement of PSD across the scalp (i.e. more of the total variation is

explained at the subject level than the regional level), consistent with the constant variation

observed in the relatively flat marginal regional eigenvectors. In the functional dimension,

the leading participant-level eigenfunctions show that most of the variation across subjects

is observed in the alpha peak amplitude in both groups (explaining 58.2% and 47.2% of

the participant-level marginal functional variance in TD and ASD) (Figure 3.5c). Note

that the leading participant-level product eigencomponent (obtained as the product of the

mostly constant leading marginal eigenvector from the regional dimension and the leading
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marginal eigenfunction from the functional dimensions) can be interpreted as the alpha peak

amplitude variation across subjects in PSDs averaged across the entire scalp and explain 28%

and 20% of the total combined variation across both levels of the data as estimated by the

proposed MM. The second leading participant-level eigenfunction signals variation in location

of the dominant peak across subjects (explaining 24.6% and 24.7% of the participant-level

marginal functional variance in TD and ASD) (Figure 3.5d). While the dominant peak

lie in frequencies in low and high alpha bands in the TD group, the dominant peak is

observed in the high alpha and beta bands in the ASD group. The leading second product

eigencomponent which can be interpreted as the variation in the dominant peak location

across subjects in PSDs averaged across the entire scalp, explain 16% and 15% of the total

combined variation across both levels of the data. The components that explain the most

amount of variation are reversed at the day-level, where most of the variation is explained

by location of the dominant peak, followed by a second component related to variation in

the amplitude of the dominant peak. More specifically, the leading day-level eigenfunctions

signal the variation in the dominant peak location within alpha to beta bands in ASD, within

theta to alpha in TD (explaining 53.3% and 48.3% of the marginal variation in TD and ASD)

(Figure 3.5e), while the second leading day-level eigenfunctions signal peak alpha amplitude

variation in both groups (explaining 31.2% and 30.2% of the marginal functional variation

in TD and ASD) (Figure 3.5f). The associated day-level product eigencomponent which

can be interpreted as the variation in the dominant peak location across subjects in PSDs

averaged across the entire scalp, explain 5% and 3% of the total combined variation across

both levels of the data.

Note that percentages of total variation explained by the product components reported

in Figure 3.5 are much higher for participant-level product components compared to day-

level product components, showing that the estimated M-HPCA ICC, calculated as the ratio

of the variation explained at the participant-level to total variation will also be high. This

signals good agreement in within subject day-to-day PSD, where most of the variation is due

to differences across subjects, not differences across days. Consistent with this intuition the
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Figure 3.5: The estimated leading (a) participant-level eigenvector ν
(1)
d1 (r) and (b) day-

level eigenvector ν
(2)
d1 (r). The estimated leading two eigenfunctions for the participant-level

variation φ
(1)
dℓ (middle row) and day-level variation φ

(2)
dm (bottom row) for each diagnostic

group.
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M-HPCA ICC is estimated to be 0.673 [95% CI (0.626, 0.793)] for ASD and 0.656 for TD

[95% CI (0.639, 0.776)]. Bootstrap percentile confidence intervals are formed based on 200

bootstrap data sets sampled with replacement. The reported M-HPCA ICC values are based

on estimated variance components (via MM) for the 54 and 77 total product components at

the participant-level for TD and ASD groups, respectively, and 98 total product components

at the day-level for both groups.

Obtained results are consistent with findings of Levin et al. (2020) who reported ICCs

for scalp averaged PSDs across days within subjects using MFPCA of Di et al. (2009).

Authors also reported on alpha peak amplitude variations that explain most of the variation

at the participant level, followed by variation in location in the dominant peak, resulting

in high functional ICC estimates for both groups. The dominant direction of variation is

reported as peak frequency (peak location), followed by peak amplitude, at the day-level,

similar to our findings. While the analysis of Levin et al. (2020) accounts for the multilevel

structure of the data (with participant and day levels), it ignores the regional dimension and

variation across electrodes. By modeling data also along the regional dimension, M-HPCA

provides independent support for the previous study of Levin et al. (2020) on the scalp-wide

average of PSD. The leading eigenvectors of the marginal regional covariance are found to

be quite flat, signaling relatively constant variation in PSDs across the scalp, which justifies

the simplification in the data through collapsing of the regional dimension via the scalp

average. The work of Levin et al. (2020) also reports that data at the peripheral electrodes

(FP1, FP2, T3, T4, O1, O2) would be expected to have the most variation, which we also

observed in the marginal eigenvectors plotted in Figure 3.5. A sensitivity analysis which

estimated M-HPCA ICC without the peripheral electrodes yields even higher ICC values for

both groups.

3.4 Simulation Study

The finite sample performance of the proposed M-HPCA, including the bootstrap inference

proposed for M-HPCA ICC and condition differentiation, is assessed at a total of eight
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simulation set-ups: two sample sizes (nd = 15 and nd = 50), two noise levels (σ2
d = 0.25 and

σ2
d = 1), and two sparsity levels (dense and sparse; sparsity induced at the repetition-level).

The data generation model with two repetitions, nine regions and two marginal between- and

within-subject eigenfunctions and eigenvectors, totaling four product components at each

level of the data is given in detail in Supplementary Materials Appendix B.4. In order to

mimic missing repetitions in EEG data, sparsity is induced with 30% of subjects randomly

missing one of the two repetitions. Marginal eigencomponents are chosen to explain at

least 99% of the variation in the marginal covariance decompositions. Bandwidths used in

smoothing of the means and functional covariances are selected by REML. In assessing the

performance of the M-HPCA algorithm in targeting model components, we utilize relative

squared error (RSE) which is given by || )f(t) − f(t)||2/||f(t)||2, || )f(r) − f(r)||2/||f(r)||2

and || )f(r, t) − f(r, t)||2/||f(r, t)||2, for the one-dimensional functional, vector components

and the two-dimensional components, respectively, where ||f(r)||2 =
$R

r=1 f
2(r), ||f(t)||2 =

"
f 2(t)dt, and ||f(r, t)||2 =

$R
r=1

"
f 2(r, t)dt. Estimation of the scalar components is assessed

using normalized mean squared error (MSE), MSE(θ) = ()θ − θ)2/θ2. Results are reported

based on 200 Monte Carlo runs.

The estimated mean functions and marginal eigenvectors and eigenfunctions from the

sparse simulation set-up with nd = 15 and σ2
d = 1 (high noise) are displayed in Supplementary

Material Figure B.5.1 and B.5.2, respectively. The estimates from Monte Carlo runs with

the 10th, 50th, and 90th percentile RSE are shown overlaying the true functions. The

figures show that the model components are targeted well even for the set-up with lower

sample size, high noise, and sparsity in repetitions. The median, 10th, and 90th percentile

RSE and normalized MSE values for model parameter estimates, including estimated means,

eigenfunctions, eigenvectors, eigenvalues, error variance, response predictions and M-HPCA

ICC are provided in Table 3.1 and Supplementary Materials Table B.1 for sparse and dense

designs, respectively. Percentiles of estimates are reported combined over groups, repetitions,

components and subjects. More specifically, while summary measures in estimation of µ(t)

are reported over 200 Monte Carlo runs, those for σ2
d, ηdj(r, t), (v

(1)
dk (r), v

(2)
dp (r), φ

(1)
dℓ (t),
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Table 3.1: The 50% (10%, 90%) percentiles of the relative squared errors, normalized mean
squared errors based on 200 Monte Carlo runs from the simulation design at nd = 15, 50
with low and high noise for the sparse set-up.

Low Noise High Noise

nd = 15 nd = 50 nd = 15 nd = 50
µ(t) .009 (.003, .029) .003 (<.001, .008) .009 (.003, .030) .003 (<.001, .009)
ηdj(r, t) .036 (.017, .075) .011 (.005, .022) .045 (.024, .085) .014 (.007, .026)
Ydij(r, t) .181 (.104, .531) .182 (.104, .533) .445 (.299, .798) .445 (.299, .799)

φ
(1)
d1 (t) .021 (.003, .123) .005 (<.001, .025) .024 (.004, .125) .005 (<.001, .028)

φ
(1)
d2 (t) .098 (.034, .324) .031 (.015, .079) .119 (.044, .384) .037 (.017, .094)

φ
(2)
d1 (t) .024 (.004, .140) .007 (.001, .027) .034 (.007, .163) .010 (.002, .034)

φ
(2)
d2 (t) .088 (.020, .523) .030 (.008, .159) .139 (.042, .653) .051 (.015, .200)

ν
(1)
d1 (r) .070 (.007, .569) .022 (.002, .114) .088 (.016, .626) .027 (.005, .124)

ν
(1)
d2 (r) .141 (.034, .647) .034 (.009, .133) .219 (.065, .759) .048 (.016, .162)

ν
(2)
d1 (r) .096 (.014, .672) .027 (.005, .144) .166 (.037, .875) .048 (.015, .188)

ν
(2)
d2 (r) .206 (.041, .931) .042 (.010, .173) .517 (.159, 1.399) .103 (.038, .335)

λdg .074 (.003, .389) .018 (<.001, .106) .082 (.003, .468) .019 (<.001, .120)
λdh .057 (.002, .328) .014 (<.001, .086) .100 (.005, .533) .018 (<.001, .116)
σ2
d .014 (.004, .033) .016 (.004, .035) <.001 (<.001, .002) <.001 (<.001, .002)

ρdW .006 (<.001, .039) .001 (<.001, .009) .007 (<.001, .048) .002 (<.001, .013)

φ
(2)
dm(t)), (λd,kℓ, λd,pm) and Ydij(r, t) are reported over D × 200, D × J × 200, D × 2 × 200,

D × 4 × 200 and D × nd × J × 200 runs, respectively, where D = 2, J = 2 and K = P =

L = M = 2. The RSE and normalized MSE values decrease with increasing sample size,

decreasing noise and denser designs, showing that model components are targeted effectively,

except for the RSE for σ2
d, which gets smaller with increasing noise level. The RSE most

sensitive to the noise level is the one for response predictions, since the model does not

try to fit the noise. In addition, RSEs for the level 2 eigenvectors are slightly higher than

level 1 eigenvectors, which could be due to the additional adjustment of the diagonals of

the marginal regional within-subject covariance matrix (by subtraction of the estimated

measurement error).

To assess the performance of the proposed bootstrap test for condition differentiation,

we consider the null hypothesis H0 : η11(1, t) = η12(1, t), for equality of the group-region-
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repetition-specific means for the two conditions (j = 1, 2) in group d = 1 and region r = 1.

To generate data under growing degrees of departure from the null, the data generation

model described in Supplementary Material Appendix B.4 is modified where η1j(r, t) = 0 for

r ∕= 1 and η1j(1, t) = (−1)j∆ for j = 1, 2, with larger ∆ representing larger deviations from

the null. The estimated level and power of the test are assessed based on 200 Monte Carlo

runs where p-values are based on 200 bootstrap samples. Supplementary Material Figure

B.5.3 (a) and (b) display power with increasing ∆, where the power increases faster with

increasing sample size. The level of the test is estimated at (0.055, 0.039), (0.075, 0.065),

(0.115, 0.080) and (0.090, 0.070) for nd = (15, 50), in the (dense, low noise), (dense, high

noise), (sparse, low noise) and (sparse, high noise) set-ups, respectively, all hovering around

the target level 0.050. In addition, we assess coverage and length of the proposed bootstrap

CI for M-HPCA ICC. Coverage values hover around the target value 0.95 across sample size,

while the length of the CI decrease with increasing sample size, decreasing noise and denser

designs, as expected (Supplementary Material Figure B.5.3 (c) and (d)).

Finally, Supplementary Material Figure B.5.3 (e) compares run times of the proposed

MM algorithm with lme4 in fitting the mixed effects model of Section 3.2.3, as a function

of the total number of product components at each level of the data. The comparison

highlights the computational savings achieved by the proposed MM algorithm and shows

that it stays computationally feasible in large data applications with increasing number of

product components. Computational time increases exponentially with increasing number

of product components for lme4.

3.5 Discussion

The proposed M-HPCA models EEG data in its full complexity, including the functional and

regional features as well as the repeated observations over experimental conditions or visits.

EEG, both from the time and the frequency domains are targeted under the umbrella of

multilevel region-referenced functional data. M-HPCA relies on dimension reduction tech-

niques via modeling of the exchangeable correlation structure across repetitions using an
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ANOVA-type decomposition of the total variation into between- and within-subject compo-

nents. In addition, weak separability, FPCA and PCA are used to represent the functional

and regional variability in lower dimensions. The proposed dimension reduction is coupled

with a computationally efficient MM algorithm that is specifically designed to take advantage

of the lower dimensional representation provided by M-HPCA. The computational savings

proposed via representation of the high-dimensional covariances in terms of much-smaller

building blocks within the proposed MM estimation framework enable the modeling of EEG

in its full complexity, which cannot be achieved by standard packages.

Modeling the entire data without collapsing its dimensions enables characterization of

the comprehensive features in the entire ERP/PSD morphology across the entire scalp. In

addition, modeling of the multilevel structure leads to a new concept of intraclass correla-

tion that summarizes agreement between repetitions of this high-dimensional signal. The

study of condition differentiation within or across diagnostic groups is also achieved with

the proposed multilevel modeling framework, in which the efficient implementation of M-

HPCA via the proposed MM makes inference via parametric bootstrap feasible. The diverse

applications of M-HPCA are showcased with two data examples, including data from a task-

based paradigm analyzed in the time-domain via ERPs and data from resting state analyzed

in the frequency domain via PSDs. While condition differentiation between the match vs.

mismatch conditions is the object of inference in the audio odd-ball paradigm, short-term

reliability of PSDs is quantified via M-HPCA ICC in the ABC-CT feasibility study. The

lower dimensional representation of the EEG data can also be useful in incorporation of the

EEG into regression models, where relationships between the estimated subject- or subject-

repetition specific scores and behavioral outcomes can be studied.

The proposed estimation algorithm has been presented for data with missingness at the

repetition level (subjects with missing visits/conditions), since this is a common missing pat-

tern for EEG data where data are typically sampled on a dense functional grid. M-HPCA can

be extended to cases where there is also missingness in the functional dimension. However

such an extension would require the design matrices, Zdi and W dij, and covariance ma-
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trices, Φ
(1)
d Λ

(1)
d Φ

(1)T
d and Φ

(1)
d Λ

(1)
d Φ

(1)T
d , associated with subject- and subject-region-specific

eigenscores in the proposed mixed effects framework, to be computed at the subject and

repetition level, due to varying matrix dimensions of complete data. This would lead to ad-

ditional computational costs. However if the missingness is at random, then a presmoothing

in the dense functional dimension may help impute possible missing values and avoid the

additional computational costs.
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CHAPTER 4

Region-referenced longitudinal functional generalized

linear model for EEG data

4.1 Introduction

Electroencephalography (EEG) is a low cost and non-invasive modality to study the brain

and its activity. EEG is recorded using electrodes arranged on the scalp and is analyzed in

the frequency domain via power spectral density (PSD) for resting-state paradigms. Gener-

ated data can be viewed as region-referenced functional objects and when these signals are

observed across multiple visits or trials, the data gains a longitudinal dimension that can

either be considered discrete, in the case of a small number of visits, or continuous, in the

case of a large number of trials. Children with autism spectrum disorder (ASD) are a group

that can benefit from being studied using EEG resting-state paradigms since the focus is on

internal brain responses, which can explain differences in observable behavioral responses.

Heterogeneity in cognitive ability of children with ASD is not well understood.

Our motivating study was on oscillatory development across the first year of life conducted

by our collaborators at the UCLA Center for Autism Research and Treatment (Dickinson

et al. , 2022). The goal of the originating study was to characterize how the changes in os-

cillatory development differ between children with ASD and their typically developing (TD)

peers. Of particular interest was the differences in maturation of the dominant peak in the

alpha range (6-9 Hz), which can be seen in the group-averaged log PSD in the parietal right

region in Figure 4.1(a). Data was collected at four visits during infancy (3, 6, 9, and 12

months) and ASD diagnosis was made at 36 months. At each visit, task-free spontaneous
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Figure 4.1: (a) Group-specific mean alpha band log spectral density from the right parietal
region. Darker lines correspond to an increase in age. (b) Positions of the 7 electrodes used
in the analysis of the first year of life data, highlighted based on the region in which they
are averaged.

EEG was collected during a resting-state paradigm while the child was held in their care-

giver’s lap and kept calm. EEG was recorded across electrodes, representing the regional

dimension, and transformed into a PSD across the frequency domain, representing the func-

tional dimension. The resulting PSDs form the region-referenced longitudinal functional

data. This data structure is complicated as there is a continuous functional dimension, and

discrete regional and longitudinal dimensions. We will use the first year of life data as a

region-referenced longitudinal functional predictor of diagnostic status.

Functional data analysis methodology has grown rapidly over the past three decades

in order to handle trends in the entire functional observation, especially high-dimensional

functional data with dependencies among curves. Functional data that is correlated due to

a longitudinal-based design, such as the repeated visits in our motivating example, has been

studied under the umbrella of longitudinal functional data analysis. Longitudinal functional

data analysis has become increasingly popular as seen in the works of Morris et al. (2003);

Morris & Carroll (2006); Di et al. (2009); Greven et al. (2010); Hasenstab et al. (2017);

Scheffler et al. (2020); Campos et al. (2022); Boland et al. (2022); Cui et al. (2022).

Functional regression methods, first introduced by Ramsay & Dalzell (1991) and formal-

ized by Hastie & Mallows (1993); Marx & Eilers (1999) for Gaussian and non-Gaussian
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responses, respectively, for relating functional predictors to scalar responses are termed

scalar-on-function regression models (SoFR). Methods that deal with multivariate and mul-

tidimensional functional predictors will be of particular relevance as we try to relate a region-

referenced longitudinal functional predictor to a scalar response. Reiss et al. (2017); Morris

(2015) each provide an excellent review of these methods as well as others. One of the

major areas of development in functional regression modeling is in the method of regular-

ization used. Some models opt for basis functions chosen a priori such as the spline and

wavelet approaches taken in Hastie & Mallows (1993); Marx & Eilers (1999); Crainiceanu

& Goldsmith (2010); Goldsmith et al. (2011) which rely on either a quadratic penalty or

Bayesian frameworks. Other models rely on data-driven basis functions such as those found

using functional principal component analysis (FPCA) in Yao et al. (2005) or functional

partial least squares in Reiss & Ogden (2007). Xiao et al. (2021) developed a linear model

for generalized responses (i.e. scalar, binary, Poisson) with functional and non-functional

covariates and recently, Sun & Wang (2022) proposed an adaptive group LASSO for scalar

outcomes and functional predictors.

SoFR methods for longitudinal functional data have also been considered. Most com-

monly, methods stemming from functional principal component regression (FPCR) (Reiss

& Ogden, 2007) have been developed which rely on decomposing the variability in the data

using some form of functional principal components analysis (FPCA) then regressing the

outcome on the eigenscores from that decomposition. Methods with a longitudinal scalar

outcome as well as longitudinal functional predictor have been increasingly popular, as seen

in the following literature. These methods can be categorized into three groups based

on the form of the regression function: scalar, functional, or longitudinal and functional.

Crainiceanu et al. (2009) utilized multilevel functional principal components analysis (MF-

PCA) to first decompose the variation in longitudinal functional data then used the scores

from the eigencomponents in a scalar generalized multilevel mixed model (GLMM) for a

single scalar outcome, similar to our motivating data application. Speed improvements for

MFPCA were made for extremely large data in Zipunnikov et al. (2011) which does not
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need to load all of the data at once and creatively targets the BLUP estimates using the

singular value decomposition of the covariance. Additional improvements were made in Cui

et al. (2022) by extending methods used in fast covariance estimation (FACE) (Xiao et al.

, 2016). Longitudinal FPCR (LFPCR) (Gertheiss et al. , 2013) uses the eigenscores esti-

mated using the longitudinal FPCA (LFPCA) (Greven et al. , 2010) decomposition of the

functional predictor in a non-functional generalized mixed-model framework. Longitudinal

penalized functional regression (LPFR) (Goldsmith et al. , 2012) performed FPCA across all

functional observations along with a spline basis for the coefficient function in a mixed-model

framework with random effects to account for the correlation between observations within

subjects. This method does not account for the longitudinal structure of the functional

predictors. Kundu et al. (2016) incorporates a more flexible regression function that can

differ over longitudinal time. In this case, the regression function is assumed to vary as a

user-specified function of longitudinal time, which in their application is a polynomial. A

generalized ridge penalty is used to constrain the regression estimates. Staicu et al. (2020)

created a modeling framework in which both the longitudinal and functional dimensions of

the time-varying regression function are assumed to be smooth. FPCR methods require

interpretation of the shape of the estimated eigenfunctions then the results of the model are

interpreted based upon those interpretations. These methods still do not fully encompass

all dimensions of our motivating data since they do not include a regional dimension.

Our proposed region-referenced longitudinal functional generalized linear model (RRLF-

GLM) aims to provide regression coefficients directly by constructing the regression coeffi-

cient using a tensor product of discrete and continuous bases, as previously seen in Scheffler

et al. (2019). Therefore the functional effects are across the regional and longitudinal do-

mains and removes the need to collapse any of the dimensions using averaging. RRLF-GLM

is able to accommodate either a discrete or continuous longitudinal dimension, which makes

it suitable to a broad range of applications.

Existing SoFR methods cannot accommodate region-referenced longitudinal functional

predictors, but we are able to compare prediction accuracy from averaging the functional
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predictors from each region across visits and considering that functional signal as multivariate

functional data. This will allow us to use multivariate GFLMs (m-GFLM) in simulations as

well as the data application and will show the predictive benefit of including the longitudinal

dimension in analysis.

The proposed RRLF-GFLM is introduced in Section 4.2. Use of the RRLF-GLM for

longitudinal data is showcased in Section 4.3 with an application to the first year-of-life

data. Extensive simulations, reported in Section 4.4, assess the finite sample properties

of the proposed approach and a brief discussion is given in Section 4.5. An R package to

implement RRLF-GLM for longitudinal data accompanies this article and is available at

www.github.com/emjcampos/rrlf-glm.

4.2 Proposed region-referenced longitudinal functional GLM

4.2.1 Statistical framework and modeling

The proposed region-referenced longitudinal functional GLM borrows ideas from the recently

proposed covariate-adjusted region-referenced generalized functional linear model (CARR-

GFLM) (Scheffler et al. , 2019) in relating region-referenced longitudinal functional pre-

dictors for each subject to a scalar outcome, by decomposing the regression function as a

tensor product of discrete and continuous bases. For i = 1, . . . , n subjects, observe the data

{yi, Xi(r, s, t)}, where yi is the scalar response, Xi(r, s, t) is a region-referenced longitudinal

functional predictor observed at region r = 1, . . . , R, and time t, t ∈ T . The functional pre-

dictor Xi(r, s, t) is assumed to be square integrable and smooth over the functional domain

T . When the longitudinal domain is discrete, denote visit s = 1, . . . , S, and when the longi-

tudinal domain is continuous denote s ∈ S. For simplicity, each of the domains is assumed

to be observed on a regular grid. However, in data applications where any of these domains

is sparse, multilevel hybrid principal components analysis (M-HPCA) by Campos et al.

(2022) can be used to reconstruct the functional predictor when the longitudinal dimension

is discrete or hybrid principal component analysis (HPCA) by Scheffler et al. (2020) when
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the longitudinal dimension is continuous. The subsequent models for the discrete and con-

tinuous cases are similar in that the sum across discrete longitudinal time points is analogous

to the integral across continuous longitudinal time points. Therefore, the proposed model

for region-referenced longitudinal functional predictors is given by

yi ∼ F(µi,ϑ)

g(µi) =

+
,,,,,-

,,,,,.

R!

r=1

S!

s=1

#

T
{Xi(r, s, t)− η(r, s, t)}β(r, s, t)dt discrete case,

R!

r=1

#

S

#

T
{Xi(r, s, t)− η(r, s, t)}β(r, s, t)dtds continuous case,

=

+
,,,,,-

,,,,,.

R!

r=1

S!

s=1

#

T
Xc

i (r, s, t)β(r, s, t)dt discrete case,

R!

r=1

#

S

#

T
Xc

i (r, s, t)β(r, s, t)dtds continuous case,

(4.1)

where F is an exponential family distribution with condition expectation µi =

E{yi|Xi(r, s, t),ϑ}, ϑ vector of nuisance parameters and g(·) invertible link function. The

region-referenced mean curves are given by η(r, s, t) = E{Xi(r, s, t)} and Xc
i (r, s, t) =

Xi(r, s, t) − η(r, s, t) denotes the mean-centered subject-specific functional predictor. The

regression function β(r, s, t) is assumed to be smooth in the continuous domains over the

discrete domains, i.e. when the longitudinal domain is discrete, then the β(r, s, t) is smooth

in the functional domain within a specified region r and visit s. For a fixed discrete s, re-

gression function captures weights on functional predictor across functional domain and how

this changes over the R regions and for a fixed r, regression function captures weights on

functional predictor across functional domain and how this changes over the S visits. The

proposed model reduces to the m-GFLM model when either R = 1 and S is discrete or when

S = 1 and the standard GFLM for a functional predictor and scalar response given in Marx

& Eilers (1999) when R = S = 1.

The regression function is approximated by a linear combination of basis functions using

94



a tensor product of the discrete and continuous bases,

β(r, s, t) ≈
Kr!

kr=1

Ks!

ks=1

Kt!

kt=1

φkr(r)φks(s)φkt(t)θkr,ks,kt ,

where the basis functions in t, denoted by φkt(t), can be any set of continuous basis functions

such as functional principal components or B-splines, and the basis functions in r denoted by

φkr(r) can be chosen as any set of discrete basis functions such that span[{φkr(r)}Kr
kr=1] ⊆ RR.

The basis functions in s can be any set of discrete basis functions span[{φks(s)}Ks
ks=1] ⊆ RS

or continuous basis functions, in the discrete and continuous longitudinal cases, respectively.

One choice for the discrete basis functions are the columns of an identity matrix. The

unknown coefficients are collected into θkr,ks,kt to be estimated. The shape of this regression

function is controlled by the marginal basis functions as well as the quadratic penalization of

θ, which we follow from Scheffler et al. (2019) to be a Kronecker sum of marginal penalties

along each dimension r, s, and t, i.e.

pen(θ|λ) = θTP (λ)θ

P (λ) = λr(IKa ⊗ P r ⊗ IKt) + λj(P j ⊗ IKr ⊗ IKt) + λt(IKr ⊗ IKt ⊗ P t), (4.2)

where λ = (λr,λj,λt) positive penalty parameters and P r, P j, and P t positive semi-definite

penalty matrices. The regression function is assumed to be smooth along the continuous

dimensions so a differencing penalty can be used for a B-spline basis. For the discrete

dimensions, the regression function is not assumed to be smooth so the choice of penalty

structure needs more care. When there is no prior knowledge, a ridge penalty can be used

to promote smaller coefficients.

4.2.2 Estimation and inference

The region-referenced mean function η(r, s, t) is first estimated within each region and visit

(discrete case) or region alone (continuous case) based on data pooled across all subjects. In
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the discrete case, smoothing is accomplished using penalized B-splines, and in the continuous

case, it is done by projecting onto a tensor basis of penalized marginal B-splines in s and t.

In both cases, estimation and smoothing parameter selection are performed using restricted

maximum likelihood methods via the gam() function in the mgcv package in R. Due to

possible imbalances in group sizes, the region-referenced mean function within each group

can be averaged instead of pooling across all subjects. First, we introduce the model when

the longitudinal dimension is discrete, then make the appropriate changes for a continuous

longitudinal dimension. Let (t1, ..., tH) denote the observed regular functional grid for the

functional predictor, then the proposed RRLF-GLM in (4.1) can be written as

R!

r=1

S!

s=1

#

T
Xc

i (r, s, t)β(r, st)dt

≈
R!

r=1

S!

s=1

#

T
Xc

i (r, s, t)
Kr!

kr=1

Ks!

ks=1

Kt!

kt=1

φkr(r)φks(s)φkt(t)θkr,ks,ktdt

≈
R!

r=1

S!

s=1

H!

h=1

Kr!

kr=1

Ks!

ks=1

Kt!

kt=1

whX
c
i (r, s, th)φkr(r)φks(s)φkt(th)θkr,ks,kt

= XW (Φs ⊗Φr ⊗Φt)θ, (4.3)

where ⊗ denotes the standard Kronecker product. Additionally, in (4.3) Φr =

{φkr(r)
r=1,...,R
kr=1,...,Kr

}, Φs = {φks(s)
s=1,...,S
ks=1,...,Ks

}, and Φt = {φkt(th)
h=1,...,H
kt=1,...,Kt

} denote R × Kr,

S × Ks, and H × Kt matrices, whose columns are evaluations of the marginal basis func-

tion in r, s, and t, respectively. The predictor matrix X is an n × RSH matrix with

row i equal to the vectorized subject-specific functional predictor Xc
i (r, s, t) and the matrix

W = diag{(wrsh)
h=1,...,H
r=1,...,R;s=1,...,S} denotes the RSH × RSH diagonal matrix of weights that

correspond to summing across the R regions and S visits in order to approximate the integral

over the functional domain.

When the longitudinal dimension is continuous, let (s1, ..., sL) denote the observed regular
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grid of longitudinal points, then the proposed RRLF-GLM in (4.1) can be written as

R!

r=1

#

S

#

T
Xc

i (r, s, t)β(r, s, t)dtds

≈
R!

r=1

#

S

#

T
Xc

i (r, s, t)
Kr!

kr=1

Ks!

ks=1

Kt!

kt=1

φkr(r)φks(s)φkt(t)θkr,ks,ktdtds

≈
R!

r=1

L!

l=1

H!

h=1

Kr!

kr=1

Ks!

ks=1

Kt!

kt=1

wlwhX
c
i (r, s, t)φkr(r)φks(s)φkt(t)θkr,ks,kt

= XW (Φs ⊗Φr ⊗Φt)θ, (4.4)

where Φr = {φkr(r)
r=1,...,R
kr=1,...,Kr

}, Φs = {φks(sl)
l=1,...,L
ks=1,...,Ks

}, and Φt = {φkt(th)
h=1,...,H
kt=1,...,Kt

} denote

R×Kr, L×Kl, and H ×Kt matrices, whose columns are evaluations of the marginal basis

function in r, s, and t, respectively. The predictor matrix X is an n × RLH matrix with

row i equal to the vectorized subject-specific functional predictor Xc
i (r, s, t) and the matrix

W = diag{(wrlh)
h=1,...,H
r=1,...,R;l=1,...,L} denotes the RLH × RLH diagonal matrix of weights that

correspond to summing across the R regions in order to approximate the integral over the

functional and longitudinal domains.

The following estimation procedure is similar for the discrete and continuous cases, where

the appropriately sized matrices/vectors are used in each step. Following Scheffler et al.

(2019), the coefficient vector θ is estimated using penalized least squares, where the penalized

log-likelihood is given by

ℓp(θ,λ,ϑ|y) = ℓ(u,ϑ|y)− 1

2
pen(θ|λ),

where u = g−1{XW (Φj ⊗ Φr ⊗ Φt)θ} and ℓ(u,ϑ|y) =
$n

i=1 ℓ(µi,ϑ|yi) denotes the log-

likelihood function for the response. The penalized likelihood is optimized using a Laplace

approximation of REML criterion then optimizes the approximated likelihood using Newton-

Raphson updates, which is accomplished using the gam() function from the mgcv package in

R (Wood, 2017, 2011).

The projection of the regression function β(r, s, t) onto a tensor basis reduced the di-
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mension somewhat, but the number of basis functions (KrKsKt) can still be quite large and

exceed the number of subjects, which makes estimation unstable so an additional reduction

must be made. The second dimension reduction is made by retaining the right singular

vectors of the design matrix D = XW (Φs ⊗ Φr ⊗ Φt)θ, for the discrete and continuous

longitudinal cases (Scheffler et al. , 2019; Reiss & Ogden, 2010, 2007). Now, the penalized

log-likelihood is minimized using the response mean function u = g−1(DV qθ̃), where V q is

the matrix containing the q leading columns from the SVD of the design matrix = UEV T

and θ̃ denotes the coefficient vector for the reduced design matrix DV q. In practice, the

number of components q is chosen such that
$q

s=1 κ
2
s/

$KrKsKt

s=1 κ2
s > .95 where κs are the

ordered singular values from the SVD of D. This corresponds to the minimum number

of components needed to explain 95% of the total variation in the design matrix D. The

penalty structure is updated with the transformation pen(θ̃|λ) = θ̃
T
V T

q P (λ)V qθ̃.

Bayesian point-wise confidence intervals are estimated rather than the naive point-wise

confidence intervals since the naive methods are based on biased estimates of the coefficient

vector θ̃ (Scheffler et al. , 2019; Wood, 2006).

θ̃|y ∼ N
3
γ,

@
V T

q D
TZDV q + V T

q P (λ)V q

A−1
4
,

where γ denotes an estimate of θ̃, Z denotes the n × n matrix with entries Zii =

{g′(µi)
2V (µi)}−1 with µi the ith entry of u, Ṽ is the variance function and V (µi)σ

2 is

the variance of yi, and σ2 denotes the scale parameter defined by F . The covariance of

θ̃|y can be adjusted by V q in order to get the desired posterior distribution of θ|y. These

Bayesian point-wise confidence intervals provide better coverage despite the biased parame-

ter estimates. The finite sample properties are studied using simulations in Section 4.4 and

interpretation is demonstrated in Section 4.3.
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4.3 Data analysis

4.3.1 Data structure and methods

The data from our first application was collected by our collaborators at UCLA, on 47

children to study how deviations in early oscillatory development may differentiate those

with neurodevelopmental disorders such as autism spectrum disorder (ASD). Spontaneous

EEG data were collected at 4 visits across the first year of life (3, 6, 9, and 12 months) and

clinical outcomes were assessed at 36 months of age. Thirty-seven children were categorized

as typically developing (TD) and 10 with ASD, all of which attended all four visits. Data

collection, cleaning, and pre-processing steps are described further in Dickinson et al. (2022).

The functional grid includes H = 19 points, equally spaced from 1-10 Hz. The spectral density

is normalized to unit area by dividing by the total integral in order to allow comparisons

between electrodes and subjects. The relative PSD is log transformed. The three regions of

interest are created by averaging nearby electrodes at the back of the scalp (parietal left: P7

and P9; parietal: P3, PZ, and P4; parietal right: P9 and P10) and are displayed in Figure

4.1(b).

Previous analysis of this data by Dickinson et al. (2022) conducted FPCA across all

observations and used generalized linear mixed models to model the longitudinal trends of

the eigenscores from each of the three leading eigenfunctions. Main effects of diagnostic

group (TD, ASD), scalp region (frontal, central, occipital), and age, as well as the two-

and three-way interactions along with a subject-level random intercept were included in the

model. The estimated eigenfunctions corresponded to known distinct developmental trends.

The leading eigenfunction accounted for 71% of the functional variation in the data and

corresponded to a power increase in the alpha range (6-9 Hz), meaning higher scores on

this eigenfunction indicate stronger increases in alpha power. It was found that there was

a significant positive main effect of age for the first eigenscore, indicating that there was an

increase in alpha power over time for all groups. The interaction for ASD and age was also

found to be significant and positive, implying a quicker increase in alpha power over the first
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year of life in the ASD group compared to the TD group.

The visit-region-referenced mean functions η(r, s, t) are obtained using a basis of penalized

B-splines with 10 degrees of freedom and second degree difference penalties. The regression

function β(r, s, t) is estimated by projecting onto a tensor product of basis functions along

the region, visit, and frequency domains, where the marginal bases Φr = [1R, IR] and

Φs = [1S, IS] with Kr = 4 and Ks = 5 and Φt is formed using evaluations of cubic B-

splines with Kt = 6 degrees of freedom. A second-order difference penalty is used for P t to

guarantee smoothness in the functional domain and a ridge style penalty is used for both the

visit and regional domains P s = [0S, IS] and P r = [0R, IR] since we do not have any prior

knowledge on the dependency of visits or regions. The first entry in each of the ridge-style

penalty matrices corresponds to the first basis vector and is left unpenalized to absorb the

effect across all visits or regions, respectively. The number of columns in the design matrix

D using all of these basis functions is KrKsKt = 120. The rank of the reduced design matrix

is 23, accounting for 99% of the total variation. The total computing time is approximately

.2 seconds on a 3.7 GHz 6-Core Intel Core i5 operating R 4.1.1 and using the gam() function

from the mgcv package (version 1.8-36). The penalty parameters chosen using REML are

estimated to be λr = 0.00027,λs = 0.00001, and λt = 4.51015.

4.3.2 Data analysis results

The visit-region-referenced mean functions η(r, s, t) are given in Figure 4.2 and show the

known decrease in power with an increase in frequency as well as the dominant peak in the

6-9 Hz range that emerges as the children age. The visit-region-referenced mean functions are

estimated across subjects rather than within groups since it is assumed that the functional

predictors will retain group differences. The mean-centered Xc
i (r, s, t) is targeted using these

mean functions and used in modeling.

Figure 4.3 shows the estimated regression function for the parietal right (PR) re-

gion, which is highlighted due to its high contribution to the log-odds of ASD diagnosis

1/n
$n

i=1

$S
s=1

"
Ω
|Xc

i (r, s, t)β̂(r, s, t)|dω. The results from this region are representative of
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Figure 4.2: Estimated mean function η(r, s, t) for the (a) parietal left, (b) parietal, and (c)
parietal right regions, where darker lines correspond to an increase in age.

the other two regions. From Figure 4.3(a), which displays the average mean-centered func-

tional predictor for the TD and ASD children in the parietal right region, it is obvious there

are differences between the groups as the children age. On average, at 3 months the largest

differences are in the dominant alpha peak between 6-9 Hz, with TD children having an

alpha peak with a higher amplitude than the ASD children. At 6 months, this relationship

reverses and by 12 months, the largest difference is towards the end of the alpha range.

The estimated regression functions for the parietal right region β̂(PR, s, t) are given in

Figure 4.3(b) and put mostly positive weight on the spectral density for the entire frequency

domain at 6 months and beyond. The Bayesian point-wise confidence intervals do not

include zero at 6 months for 2-3 Hz and at 12 months at 1.5-2.5 Hz, but they are wide due

to the small sample size. Figure 4.3(c) displays the point-wise product of the mean-centered

functional predictor and the corresponding regression function, where the area under the

curve corresponds to the linear effect on the log odds of an ASD diagnosis. At 6 months,

the average TD child has a lower peak alpha amplitude and the positive weighting of the

regression coefficient results in a predicted probability of ASD that is less than 0.5. The

average child with ASD has a higher peak alpha amplitude by 12 months and the positive

weighting from the regression coefficient results in a predicted probability of ASD that is

more than 0.5.
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Figure 4.3: (a) The average mean-centered functional predictor for TD (grey) and ASD
(black) children. (b) The estimated regression function β(r, s, t). (c) The point-wise product
of the mean-centered functional predictor and the estimated regression function, representing
the average area under the curve for TD (grey) and ASD (black) children.
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Figure 4.4: The predicted probabilities of ASD and their 95% confidence intervals for the
study participants, where true group membership is denoted by grey for TD and black for
ASD.

The 95% confidence intervals for the predicted probabilities of ASD diagnosis are targeted

on the logit scale based on the posterior distribution of DV qθ̃|y and transformed to the

probability scale (see Figure 4.4). The small sample size of the ASD group results in wide

confidence intervals for the ASD group. Using a threshold of 0.5, the sensitivity (sens =

P{!ASD|ASD}), specificity (spec = P{BTD|TD}), and area under the receiver operating

characteristic curve (AUC), using leave-one-out cross validation (LOOCV) are sens = .44;

spec = .90; and AUC = .78. In comparison, when the data is averaged across visits and

mGFLM is used, sens = .44; spec = .90; and AUC = .75. Results from averaging are similar

to the results from the uncollapsed data. The estimated regression function is moderately

similar for 6 months and beyond, so averaging across the longitudinal dimension does not

result in a loss of too much information in this application. We will show in simulations that

RRLF-GLM outperforms mGFLM when the regression function is known to change over

longitudinal time.
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4.4 Simulation

The finite sample performance of the proposed RRLF-GLM for longitudinal data is assessed

in several simulation set-ups, in which sample size, the type of longitudinal domain (discrete

vs. continuous), and correlation among regions and visits are varied.

4.4.1 Data generation

The functional grid is chosen as 50 equidistant points in [0, 1] and the total number of

regions R = 3. The longitudinal grid is chosen as 4 or 20 equidistant points in [0, 1],

when the longitudinal dimension is discrete or continuous, respectively. The mean function

η(r, s, t) is set to zero for simplicity. The regression function β(r, s, t) varies across regions

and along the functional and longitudinal domains

β(r, s, t) =

+
,,,,,-

,,,,,.

−2 cos(tπ/6 + πs), r = 1,

2 sin(tπ/6 + πs), r = 2,

2 sin(2tπ/6 + πs) r = 3.

The subject-specific functional predictors are defined as Xi(r, s, t) =
$5

k=1 ξikrsψk(t), where

ψk(t), k = 1, . . . , 5 are a common set of basis functions across the regions and longitudinal

visits, and in this case are chosen to be cubic B-splines. The matrix of subject-specific scores

are generated from

ξik =

C

DDDDDDE

ξik11 . . . ξik1S

ξik21 . . . ξik2S
...

. . .
...

ξikR1 . . . ξikRS

F

GGGGGGH
∼ Matrix Normal(0,Σr,Σs),

where Σr and Σs are the r × r and S × S (or H × H when the longitudinal dimension is

continuous) matrices that control the regional and longitudinal dependency of the functional
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predictors, respectively. The regional dependency is chosen to have a compound symmetric

structure where the diagonal entries are set to one and the off-diagonal entries are set to

ρr. When the longitudinal dimension is discrete, the dependency among visits is also chosen

to have a compound symmetric structure with off-diagonal entries set to ρs. When the

longitudinal dimension is continuous, dependency is chosen to be a first-order autoregressive

structure with homogenous variances, i.e.

Σj =

C

DDDDDDDDDE

1 ρs ρ2s . . . ρHs

ρs 1 ρs . . . ρH−1
s

ρ2s ρs 1 . . . ρH−2
s

...
...

...
. . .

...

ρHs 1

F

GGGGGGGGGH

The ρr and ρs values are used as tuning parameters for the level of dependency across

regions and longitudinal visits. The binary scalar outcomes are then simulated from

yi ∼ Bernoulli(µi), i = 1, ..., n, where the subject-specific probabilities are targeted using

logit(µi) =
$R

r=1

$S
s=1

"
T Xc

i (r, s, t)dt when the longitudinal dimension is discrete and using

logit(µi) =
$R

r=1

"
S
"
T Xc

i (r, s, t)dtds when it is continuous.

The finite sample performance of the proposed RRLF-GLM is assessed across 200 Monte

Carlo runs in a total of 72 simulation settings: four sample sizes (n = 70, 200, 500, 1000),

discrete and continuous longitudinal dimension, and three levels of regional and longitudinal

dependency (ρr = 0.0, 0.2, 0.4 and ρs = 0.0, 0.2, 0.4). The relative squared error is used

to assess the regression function estimates and is targeted as RSE(r, s, t) = ||β̂(r, s, t) −

β(r, s, t)||2/||β(r, s, t)||2, where

||β(r, s, t)||2 =

+
,,,,,-

,,,,,.

R!

r=1

S!

s=1

#

T
β2(r, s, t)dt discrete case, and

R!

r=1

#

S

#

T
β2(r, s, t)dtds continuous case.
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The coverage probability of the Bayesian point-wise confidence intervals is assessed using the

proportion of times the true regression function lies within the estimated confidence interval

over the 200 Monte Carlo runs. In each Monte Carlo run, an additional 200 subjects are

simulated to be used as a validation set for assessing prediction accuracy. Prediction accuracy

is assessed using the AUC in the validation set and a common number of observations

supports comparisons across simulation settings.

The region-referenced mean functions η(r, s, t) are targeted by pooling data across all

subjects and smoothing using penalized splines over the functional domain when the longi-

tudinal domain is discrete and bivariate penalized splines over the functional and longitudinal

domains when the the longitudinal domain is continuous, with 5 degrees of freedom along the

functional and longitudinal domains. Second-order difference penalties are used for contin-

uous domains and a ridge penalty is used for discrete domains. The marginal basis matrices

for continuous domains are formed as evaluations of the cubic B-splines with 5 degrees of

freedom and discrete domains are formed as a column of ones appended to the front of an

identity matrix, i.e. for the regional dimension Φr = [13, I3]. Therefore the model in all

simulation settings has Kr × Ks × Kt = 4 × 5 × 5 = 100 coefficients. SVD is used to re-

duce the dimension of the design matrix so that 95% of the total variation is retained and

across simulation settings, the rank of the design matrix increases with sample size, decreases

with increases in ρr and ρs. When ρr = ρs = 0.0, the median rank is 25, 29, 31, 31 (dis-

crete); 25, 31, 33, 33 (continuous) for n = 70, 200, 500, 1000, respectively (see Figure C.1.1).

Median smoothing parameters for the discrete case (λr,λs,λt): N = 70 (0.000002, 0.025,

0.101), N = 200 (0.0000035, 0.032, 0.141), N = 500 (0.000008, 0.032, 0.018), N = 1000

(0.00002, 0.032, 0.212) and the continuous case: N = 70 (0.0000006, 0.037, 0.087), N = 200

(0.0000005, 0.040, 0.105), N = 500 (0.0000005, 0.030, 0.187), N = 1000 (0.000008, 0.028,

0.248). There is no trend found with dependency among regions or longitudinal repetitions.

The amount of time required based on 100 iterations for the Monte Carlo runs increases with

sample size and is lower when the longitudinal dimension is discrete. Finally, the predictive

performance of RRLF-GLM is compared to m-GFLM using functional predictors averaged
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across the longitudinal domain.

4.4.2 Results

The mean function η(r, s, t) is set to zero for simplicity which means the relative squared error

cannot be calculated, but the squared error is calculated as SE(r, s, t) = ||η̂(r, s, t)||2, where

||η(r, s, t)||2 =
$R

r=1

$S
s=1 η

2(r, s, t)dt or ||η(r, s, t)||2 =
$R

r=1

"
S
"
T η2(r, s, t)dtds, when the

longitudinal dimension is discrete or continuous, respectively, and is displayed in Figure C.1.2

for each simulation setting. As sample size increases, the error decreases as expected. Also

of note, the mean function η̂(r, s, t) is targeted more easily when the longitudinal dimension

is continuous. However, as correlation increases, the error also increases slightly.

Figures C.1.3 and C.1.4 display the estimated regression function with median RSE,

which get closer to the true function as the sample size increases. Figure 4.5 displays the

RSE values for the regression function β(r, s, t) and clearly decrease as the sample size in-

creases in both the (a) discrete and (b) continuous cases, as expected. When the dependency

between visits ρs is low and the longitudinal dimension is continuous, the RSE is lower. In-

creasing dependency between functional predictors, either regional or longitudinal, means

that they share more information and can increase the RSE in the same way that multi-

collinearity can affect multivariate regression. Figure 4.6 displays the coverage probabilities

for each simulation run and approaches the nominal level of 95% as the sample size increases.

Coverage decreases as the correlation between regions and visits increases. The number of

points considered is large (discrete: 3 × 4 × 50 = 600, continuous: 3 × 30 × 50 = 4500), so

the outlying points have been jittered for presentation.

The out-of-sample accuracy displayed in Figure C.1.5 is higher for the continuous longi-

tudinal case and increases as the sample size increases. The out-of-sample AUC displayed

in Figure 4.7 is also higher for the continuous longitudinal case and increases as the sample

size increases. When holding the regional dependency constant, the AUC increases as the

longitudinal dependency increases. When compared to mGFLM, the out-of-sample AUC us-

ing RRLF-GLM for longitudinal EEG data is higher in every simulation setting. The largest
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gains are made when the longitudinal dimension is continuous and when regional and/or

longitudinal correlation is low.

4.5 Discussion

The proposed RRLF-GLM is a flexible model that can estimate functional effects or bivariate

longitudinal functional effects across a non-smooth regional domain, where the regression

function is projected onto a Kronecker product of discrete and continuous basis functions.

RRLF-GLM relies on a penalty structure and dimension reduction techniques that benefit

from the projection’s Kronecker structure. The number of shrinkage parameters is kept

small, but allows each dimension of the data to be smoothed appropriately. Unlike previously

proposed regression methods for longitudinal functional data, RRLF-GLM does not rely on

interpretation of FPCA components.

RRLF-GLM is used to model associations between diagnostic status and power spectral

density over the first year of life in children with ASD and TD children. The PSD is known

to change rapidly over the first year of life and deviations from typical development can help

improve knowledge of neurodevelopmental conditions such as ASD. We find that differences

across the scalp in region-referenced longitudinal PSD between children with ASD and TD

children are reasonable predictors of diagnostic status and further investigation of these

differences may lead to earlier diagnosis and intervention.

This model has been demonstrated using a developmental EEG study, but the method-

ology can be useful in many other scientific applications in which a multivariate functional

predictor is observed longitudinally and the scalar response of interest is observed once. The

longitudinal dimension could potentially be trial-level data, as in the case of experiments

where learning is known to occur. If it is assumed that the functional predictors change

over time and that change differs between diagnostic groups, then modeling the longitudi-

nal trend is advantageous. However, trial-level data typically has a very low signal-to-noise

ratio. This could be mitigated using a sliding window average, which has been proposed by

108



Figure 4.5: The RSE of the regression function across 200 Monte Carlo runs for the discrete
(black) and continuous (grey) longitudinal dimension cases.

109



Figure 4.6: The coverage probabilities of the regression function across 200 Monte Carlo
runs for the discrete (black) and continuous (grey) longitudinal dimension cases.
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Figure 4.7: The out-of-sample AUC across 200 Monte Carlo runs for the (a) RRLF-GLM and
(b) m-GFLM models for the discrete (black) and continuous (grey) longitudinal dimension
cases.
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Hasenstab et al. (2015). RRLF-GLM can also be applied to other EEG applications such

as those that use experiment time and are analyzed in the time domain.
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CHAPTER 5

Conclusion

The EEG applications provided within this dissertation highlight how methods for highly

structured data are needed for description and inference, without collapsing any of the di-

mensions. However, with such large data, computational challenges need to be addressed.

Therefore the methods proposed here have cleverly used dimension reduction tools and com-

putational tricks to model EEG data without collapse.

In Chapter 2, principle ERP reduction (pERP-RED) analysis provides interpretable ERP

components found across different conditions within multiple experimental tasks rather than

relying on peak or mean amplitude within a user-specified window. The entire set of con-

tributing ERPs can be translated into a linear combination of underlying waveforms that

span the entire ERP. In the two applications, components found during traditional analysis

were confirmed using pERPs and additional insights were made that were not found pre-

viously. In the ASD study, it was found that the largest loadings for the visual paradigm

were on a pERP that was interpreted as relating to semantic processing in all groups. In

the ADHD study, the pERP-RED algorithm was able to pick up the known N1/P2 complex

related to visual stimuli and attention. Both of these analyses showed that the pERP-space

analysis approach mitigated the overlap issue that is inherent in peak or mean amplitude

analysis.

In Chapter 3, multilevel hybrid principal components analysis (M-HPCA) introduced

a decomposition for multilevel region-referenced functional data. The total variation was

decomposed the total variation into between- and within-subjects variance in a familiar

ANOVA way, then utilized both vector and functional principal components analysis to break

those covariance blocks down further. The model components were estimated using a mixed
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effects modeling framework in conjunction with a computationally efficient minorization-

maximization algorithm developed specifically for this covariance structure. Applications

of the M-HPCA decomposition were highlighted in two different data examples, each with

their own set of analysis goals. The audio-oddball paradigm found significant condition

differentiation in the N400 and LNC components consistently across regions for both the

TD and vASD groups, signaling semantic processing and cognitive integration, which agreed

with previous findings. The day-to-day test-retest reliability of PSD study showcased the

proposed measure of variability explained at each level of the data, called the M-HPCA ICC.

It was found that there was a reasonable amount of agreement between between days within

the same subject for both diagnostic groups.

In Chapter 4, a region-referenced longitudinal functional generalized linear model (RRLF-

GLM) was introduced in order to relate clinical outcomes to the EEG data collected across

multiple visits. The functional effects were estimated jointly across the discrete and con-

tinuous domains projecting the regression function onto a tensor product of discrete and

continuous bases and using a penalty structure that relied on a sum of kronecker products

along each dimension. RRLF-GLM was applied to the first year-of-life data where the dy-

namics of the observed region-referenced longitudinal functional data are known to change

over time, but it was unknown how those changes differ between diagnostic groups. It was

found that the model was able to distinguish between the two diagnostic groups using all

dimensions of the region-referenced longitudinal functional data.
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Appendix A

pERPred

A.1 Supplementary data

Supplementary data including additional figures referred to in Section 2.3 can be found online

with this article.

A.2 ASD data collection and pre-processing

EEG was recorded at 500 Hz using a 128-channel HydroCel Geodesic Sensor Net. Prior

to EEG data cleaning, the electrodes were interpolated and reduced to 25 in EEGlab by

spherical interpolation (Perrin et al. , 1989) using the function eeg interp. EEG was digitally

filtered using a 0.3 to 30 Hz bandpass filter, segmented into 1000 ms epochs starting at 100 ms

before the stimulus (picture, audio or word) onset, and baseline corrected using mean voltage

during the 100 ms pre-stimulus baseline period. An automatic artifact detection tool was

used to reject electrodes with amplitude difference (max-min) greater than 150mV, usually

due to excessive electrode movement, or movement of the cap. Following this automatic

artifact detection, each trial was visually inspected to remove any remaining channels that

contained EMG, eye-blink, or eye-movement artifacts from further analysis. Trials with more

than 15% bad channels were rejected. Only subjects with more than 10 artifact-free trials

per condition were accepted for further analysis. For pERP-RED analysis, ERPs averaged

over trials, time-locked to the picture onset, the auditory stimulus, and the word image for

both match and mismatch conditions are considered producing 5 trial types: image, sound

match, sound mismatch, text match, and text mismatch. Epochs considered for pERP-RED
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were restricted to -100 to 1000ms.

A.3 ADHD data collection and pre-processing

Recording and pre-processing details are similar to those reported in Lenartowicz et al.

(2019). All recordings were collected with a 40 channel Electrocap with electrodes positioned

as in the 10/20 system. Impedences were reduced to 10 KΩ before recording on MANSCAN

hardware and software. Continuous EEG was collected at 256 Hz, referenced by linked

mastoids. Pre-processing of data was done using EEGLAB software (v.11.03.b, Delorme

& Makeig (2004)). Data were high-pass filtered at 0.1 Hz. Noisy electrodes (determined

by visual inspection) were removed from further analysis. In each subject, epochs with

movement or muscle artifacts were identified and removed if signal power in that epoch

exceeded the 85th percentile for > 60% of the channels. The resulting continuous data were

then epoched and averaged per subject to arrive at the ERPs used in the main text. Epochs

considered for pERP-RED were restricted to -500 to 2000ms.

A.4 Online Application for Exploring Results
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Appendix B

M-HPCA

B.1 Details of the M-HPCA estimation algorithm: Estimation of

covariances and measurement error variance

(a) Using the estimated mean functions, center the data )Y #
dij(r, t) = Ydij(r, t) −

)µ(t) − )ηdj(r, t) and estimate the total covariance )Kd,Tot{(r, t), (r′, t′)} =

1
Jnd

$J
j=1

$nd

i=1
)Y #
dij(r, t)

)Y #
dij(r

′, t′), the between-subject covariance )Kd,B{(r, t), (r′, t′)} =

1
nd

$nd

i=1
)Y #
dij1

(r, t))Y #
dij2

(r′, t′), and the within-subject covariance )Kd,W{(r, t), (r′, t′)} =

)Kd,Tot{(r, t), (r′, t′)}− )Kd,B{(r, t), (r′, t′)}.

(b) Estimate the raw marginal functional between- and within-subject covariances as

the between- and within-subject covariances averaged over regions )Σd,T ,B(t, t
′) =

1
R

$R
r=1

)Kd,B{(r, t), (r, t′)}, )Σd,T ,W (t, t′) = 1
R

$R
r=1

)Kd,W{(r, t), (r, t′)}. Estimate the raw

marginal regional between- and within-subject covariance matrices as the between- and

within-subject covariance averaged over time ()Σd,R,B)r,r′ =
1
|T |

$
t∈T

)Kd,B{(r, t), (r′, t)},

()Σd,R,W )r,r′ =
1
|T |

$
t∈T

)Kd,W{(r, t), (r′, t)}, where |T | is the Lebesgue measure of T .

(c) Smooth the raw marginal functional between- and within-subject covariances estimated

in step (b) using bivariate penalized splines with smoothing parameters selected through

restricted maximum likelihood (REML) as proposed by Goldsmith et al.?. The diagonal

elements are excluded in the smoothing of )Σd,T ,W (t, t′) to avoid effects of measurement

error.

Next, the measurement error variance σ2
d is estimated as the mean difference between

the smoothed and unsmoothed diagonal elements of )Σd,T ,W (t, t′). We use the estimated
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measurement error variance to adjust the diagonal elements of the marginal regional

within-subject covariance matrix. More specifically (*Σd,R,W )r,r = ()Σd,R,W )r,r − )σ2
d.

B.2 MM algorithm details

B.2.1 Derivatives

We provide here the partial derivatives of the proposed surrogate function with respect to

the three variance components

∂

∂σ2
d

nd!

i=1

fdi

/
Λ

(1)
d ,Λ

(2)
d , σ2

d

55Λ(1)(c)
d ,Λ

(2)(c)
d , σ

2(c)
d

0
=

nd!

i=1

σ2
dtr

/
Σ

−1(c)
di

0
− σ

4(c)
d

(σ2
d)

2Y
T
diΣ

−2(c)
di Y di,

∂

∂Λ
(1)
d,gg

nd!

i=1

fdi

/
Λ

(1)
d ,Λ

(2)
d , σ2

d

55Λ(1)(c)
d ,Λ

(2)(c)
d , σ

2(c)
d

0

=

nd!

i=1

vec
/
ZT

diΣ
−1(c)
di Zdi −Λ

−1(1)
d ζ

(c)
di ζ

(c)T
di Λ

−1(1)
d

0T ∂

∂Λ
(1)
d,gg

vecΛ
(1)
d ,

and

∂

∂Λ
(2)
d,hh

nd!

i=1

fdi

/
Λ

(1)
d ,Λ

(2)
d , σ2

d

55Λ(1)(c)
d ,Λ

(2)(c)
d , σ

2(c)
d

0

=

nd!

i=1

vec
/
W T

diΣ
−1(c)
di W di −

/
IJi ⊗Λ

−1(2)
d

0
ξ
(c)
di ξ

(c)T
di

/
IJi ⊗Λ

−1(2)
d

00T

∂

∂Λ
(2)
d,hh

vec
/
IJi ⊗Λ

(2)
d

0
,

leading to the variance components estimators provided in Algorithm 1 of the main paper.
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B.2.2 Determinant

Further computational savings are targeted in the last step of the algorithm in estimation

of the log-likelihood. The log-likelihood contains the term log detΣdi where

detΣdi

= det

:
σ2
dITRJi +W di

/
IJi ⊗Λ

(2)
d

01/2 /
IJi ⊗Λ

(2)
d

01/2

W T
di

+Zdi

/
Λ

(1)
d

01/2 /
Λ

(1)
d

01/2

ZT
di

;

= det

:
σ2
dITRJi +W di

/
IJi ⊗Λ

(2)
d

01/2 /
IJi ⊗Λ

(2)
d

01/2

W T
di

;

× det

:
IG +

/
Λ

(1)
d

01/2

ZT
di

/
σ2
dITRJi +W di

/
IJi ⊗Λ

(2)
d

0
W T

di

0−1

×Zdi

/
Λ

(1)
d

01/2
;

(B.1)

using the identity det(A+UV T) = det(A) det(I + V TA−1U ), and letting A = σ2
dITRJi +

W di(IJi ⊗ Λ
(2)
d )1/2(IJi ⊗ Λ

(2)
d )1/2W T

di, U = Zdi(Λ
(1)
d )1/2, and V T = (Λ

(1)
d )1/2ZT

di. Further

simplifications are achieved via

detΣdi = (σ2)TRJi det

:
IHJi +

1

σ2
d

/
IJi ⊗Λ

(2)
d

01/2

W T
diW di

/
IJi ⊗Λ

(2)
d

01/2
;
×

det

I
IG +

I
Λ

(1)
d

J1/2

ZT
di

6
1

σ2
d

ITRJi −
1

σ2
d

W di

:
σ2
d

I
IJi ⊗Λ

−1(2)
d

J
+W T

diW di

;−1

W T
di

7
×

Zdi

I
Λ

(1)
d

J1/2J
, (B.2)

where the first determinant in (B.1) is further simplified by the determinant identity given

above, letting A = σ2
dITRJi , U = W di(IJi ⊗ Λ

(2)
d )1/2, and V T = (IJi ⊗ Λ

(2)
d )1/2W T

di. The

Woodbury matrix identity (A+UCV )−1 = A−1 −A−1U (C−1 +V A−1U )−1V A−1 is used

to simplify the inverse
/
σ2
dITRJi +W di

/
IJi ⊗Λ

(2)
d

0
W T

di

0−1

in the second determinant of

(B.1). Note that the simplified form in (B.2) yields computational savings where determi-

nants are computed from lower dimensional matrices of size HJi ×HJi and G×G.
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B.2.3 Likelihood Ratio Test for Weak Separability

Weak separability is tested via a likelihood ratio test for the random effects correlation

structure of the subject- and subject-region-specific eigenscores, ζdi,kℓ and ξdij,pm, in the

proposed mixed effects modeling framework. Hence we propose to test the independent

correlation structure against the alternative of a compound symmetric correlation structure

for the eigenscores. Under the compound symmetric correlation structure of the random

effects, the mixed effects model has the same form as in (3) where the matrices Λ
(1)
d and Λ

(2)
d

now have λ
(1)
g or λ

(2)
h on the diagonal and ρ(1) or ρ(2) on the off-diagonal, respectively. The

minorizing function and its derivatives with respect to the diagonal terms of the covariances

remain the same as fitting the model under the weak separability assumption, where the

partial derivatives with respect to σ2
d, Λ

(1)
d,gg, Λ

(2)
d,hh are as given in Appendix B.2.1. The

partial derivatives with respect to ρ
(1)
d and ρ

(2)
d are

∂

∂ρ(1)

nd!
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d , σ2

d

55Λ(1)(c)
d ,Λ

(2)(c)
d , σ

2(c)
d

0

=

nd!

i=1

vec
/
ZT

diΣ
−1(c)
di Zdi −Λ

−1(1)
d ζ

(c)
di ζ

(c)T
di Λ

−1(1)
d

0T ∂

∂ρ(1)
vecΛ

(1)
d ,

and

∂

∂ρ(2)

nd!

i=1

fdi

/
Λ

(1)
d ,Λ

(2)
d , σ2

d

55Λ(1)(c)
d ,Λ

(2)(c)
d , σ

2(c)
d

0

=

nd!

i=1

vec
/
W T

diΣ
−1(c)
di W di −

/
IJi ⊗Λ

−1(2)
d

0
ξ
(c)
di ξ

(c)T
di

/
IJi ⊗Λ

−1(2)
d

00T

×

∂

∂ρ(2)
vec

/
IJi ⊗Λ

(2)
d

0
.

Derivatives are set to zero and solved simultaneously using a Broyden update with the

nleqslv package in R. The likelihood ratio test compares the log-likelihood under the null

hypothesis of weak separability (ℓ0) and the log-likelihood under the alternative hypothesis
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of a compound symmetric correlation structure (ℓ1) via the statistic is −2(ℓ0 − ℓ1) which is

distributed as χ(1) under the null.

B.3 Bootstrap tests for condition differentiation

B.3.1 Within-group condition differentiation

We first consider the null hypothesis that all conditions/repetitions have equal means within

group d in the scalp region r, i.e. H0 : ηdj1(r, t) = ηdj2(r, t) = . . . = ηdjJ (r, t) or equivalently

H0 : ηdj(r, t) = ηd(r, t) for j = 1, . . . , J . The proposed parametric bootstrap algorithm is

outlined in Algorithm (3). Define )ηd(r, t) as the point-wise average of )ηdj(r, t) for j = 1, . . . , J .

For each bootstrap sample b, the response is simulated under the null hypothesis based

on the estimated model components as Y b
dij(r, t) = )µ(t) + )ηd(r, t) + Zb

di(r, t) + W b
dij(r, t) +

εbdij(r, t) = )µ(t) + )ηd(r, t) +
$G′

g=1 ζ
b
dig )ϕ

(1)
dig(r, t) +

$H′

h=1 ξ
b
dijh)ϕ

(2)
dijh(r, t) + εbdij(r, t) in region r

and as Y b
dij(r

′, t) = )µ(t) + )ηdj(r′, t) + Zb
di(r

′, t) + W b
dij(r

′, t) + εbdij(r
′, t) = )µ(t) + )ηdj(r′, t) +

$G′

g=1 ζ
b
dig )ϕ

(1)
dig(r

′, t) +
$H′

h=1 ξ
b
dijh)ϕ

(2)
dijh(r

′, t) + εbdij(r
′, t), in the other regions r′ ∕= r, where

subject-specific scores, subject/repetition-specific scores, and measurement error are sampled

from ζbdig ∼ N
/
0, )λ(1)

dg

0
, ξbdijh ∼ N

/
0, )λ(2)

dh

0
and εbdij(r, t) ∼ N(0, )σ2

d), respectively. The

proposed test statistic is given by Tr =
3$J

j=1

"
{)ηdj(r, t)− )ηd(r, t)}2 dt

41/2
. Computation of

the test statistic in the bootstrap samples provides the null distribution against which the

test statistics Tr is compared, leading to a p-value.

Algorithm 3 Within-group condition differentiation

Input: For a fixed region, r ∈ {1, . . . , R}
Output: p-value

1: Generate B parametric bootstrap samples with sample sizes in each group identical to
the observed data

2: for b = 1, . . . , B do

3: T b
r =

($J
j=1

" @
)ηbdj(r, t)− )ηbd(r, t)

A2
dt

4: end for
5: Use (1/B)

$B
b=1 I(T

b
r > Tr) to estimate the p-value where I(·) denotes the indicator

function and Tr is the test statistic from the original sample.
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B.3.2 Between-group condition differentiation

The second test considered assesses whether the condition differentiation is the same across

groups, i.e. H0 : ηd1j1(r, t) − ηd1j2(r, t) = ηd2j1(r, t) − ηd2j2(r, t). The proposed parametric

bootstrap algorithm is provided in Algorithm (4). Let η̄j−(r, t) =
1
2
()ηd1j−(r, t) + )ηd2j−(r, t))

denote the averaged group-specific condition differences )ηdj−(r, t) = )ηdj1(r, t)− )ηdj2(r, t). For

each bootstrap sample b, the response is simulated under the null hypothesis based on the

estimated model components as Y b
dij1

(r, t) = )µ(t)+)ηd(r, t)+ 1
2
η̄j−(r, t)+Zb

di(r, t)+W b
dij1

(r, t)+

εbdij1(r, t) for repetition 1 and Y b
dij2

(r, t) = )µ(t) + )ηd(r, t)− 1
2
η̄j−(r, t) +Zb

di(r, t) +W b
dij2

(r, t) +

εbdij2(r, t) for repetition 2 in region r and as Y b
dij(r

′, t) = )µ(t)+)ηdj(r′, t)+
$G′

g=1 ζ
b
dig )ϕ

(1)
dig(r

′, t)+
$H′

h=1 ξ
b
dijh)ϕ

(2)
dijh(r

′, t) + εbdij(r
′, t) in the other regions r′ ∕= r. The proposed test statistic is

given by Tr =
K$2

d=1

"
{)ηdj−(r, t)− η̄j−(r, t)}2 dt

L1/2
. The p-value is computed by comparing

Tr to its distribution under the null, targeted by using the test statistics computed in the

bootstrap samples.

Algorithm 4 Between-group condition differentiation

Input: For a fixed region, r ∈ {1, . . . , R}
Output: p-value

1: Generate B parametric bootstrap samples with sample sizes in each group identical to
the observed data

2: for b = 1, . . . , B do

3: T b
r =

?
$2

d=1

" 1
)ηbdj−(r, t)− η̄bj−(r, t)

22

dt

4: end for
5: Use (1/B)

$B
b=1 I(T

b
r > Tr) to estimate the p-value where I(·) denotes the indicator

function and Tr is the test statistic from the original sample.
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B.4 Simulation design

The response is generated from the model

Ydij(r, t) = µ(t) + ηdj(r, t) +
2!

k=1

2!

ℓ=1

ζdi,kℓv
(1)
dk (r)φ

(1)
dℓ (t) +

2!

p=1

2!

m=1

ξdij,pmv
(2)
dp (r)φ

(2)
dm(t)

+ εdij(r, t), (B.3)

with K = L = P = M = 2 for J = 2 repetitions, R = 9 regions, D = 2 groups and

i = 1, . . . , nd subjects within each group. The functional grid is set to 50 equidistant points

in [0, 1]. A total of eight simulation set-ups are considered: two sample sizes (nd = 15 and

50), two noise levels (σ2
d = 0.25 and 1), and two sparsity levels (dense and sparse). The

measurement error εdij(r, t) is simulated independently for subjects, repetitions, regions and

time points, from a mean zero Gaussian distribution with variance σ2
d. The overall and group-

region-repetition-specific mean functions are set to µ(t) = 5(t − 0.5)(t − 0.75), ηdj(r, t) =

2(−1)j{t− (d− 1)}3 for d = 1, 2 and j = 1, 2. The r-th element of the level 1 and 2 regional

marginal eigenvectors equal (v
(1)
dk )r = 1/2 sin{kπ(r− 1)/8}, (v(2)dp )r = 1/

√
5 cos{pπ(r− 1)/8},

respectively, for r = 1, . . . , 9, k = 1, 2 and p = 1, 2. The level 1 and 2 functional marginal

eigenfunctions equal φ
(1)
dℓ (t) =

√
2 sin(ℓπt), φ

(2)
dm(t) =

√
2 cos(mπt), respectively, for ℓ = 1, 2

and m = 1, 2. The subject-specific (ζdi,kℓ) and subject-repetition-specific scores (ξdij,pm)

are simulated independently from a mean zero Gaussian distribution with variances τd,kℓ =

0.5(k−1)+K∗(ℓ−1) and τd,pm = 0.5×0.5(p−1)+P∗(m−1), respectively, for k = 1, 2, ℓ = 1, 2, p = 1, 2

and m = 1, 2.

B.5 Visual Assessment of Weak Separability in Data Applications

The assumption of weak separability on the between- and within-subject covariance processes

is assessed visually by comparing the first two leading eigenfunctions along the functional

dimension at the participant/subject and condition/day/repetition levels across fixed slices

of the regional dimension and the first leading eigenvector along the regional dimension at
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Table B.1: Percentiles 50% (10%, 90%) of the relative squared errors, normalized mean
squared errors, and both total and marginal FVE across groups for model components based
on 200 Monte Carlo runs from the simulation design at nd = 15, 50 for the dense simulation.

Low Noise High Noise

nd = 15 nd = 50 nd = 15 nd = 50
µ(t) .004 (<.001, .018) .001 (<.001, .006) .005 (<.001, .017) .002 (<.001, .006)
ηdj(r, t) .027 (.012, .061) .008 (.004, .016) .034 (.019, .065) .010 (.006, .019)
Ydij(r, t) .180 (.104, .533) .182 (.104, .535) .446 (.299, .801) .446 (.299, .800)

φ
(1)
d1 (t) .014 (.002, .075) .003 (<.001, .018) .017 (.003, .076) .004 (<.001, .020)

φ
(1)
d2 (t) .074 (.025, .192) .024 (.013, .054) .088 (.030, .220) .028 (.015, .063)

φ
(2)
d1 (t) .011 (.001, .057) .003 (<.001, .016) .018 (.004, .073) .005 (.001, .023)

φ
(2)
d2 (t) .020 (.006, .066) .006 (.002, .018) .063 (.020, .167) .020 (.005, .044)

ν
(1)
d1 (r) .058 (.006, .416) .014 (.001, .090) .070 (.011, .443) .017 (.003, .096)

ν
(1)
d2 (r) .091 (.022, .440) .025 (.005, .095) .140 (.050, .502) .033 (.010, .112)

ν
(2)
d1 (r) .054 (.008, .383) .015 (.002, .100) .106 (.029, .583) .031 (.010, .133)

ν
(2)
d2 (r) .074 (.019, .394) .019 (.004, .102) .328 (.109, .884) .070 (.025, .174)

λdg .059 (.003, .318) .018 (<.001, .103) .062 (.003, .366) .018 (<.001, .113)
λdh .035 (.001, .193) .011 (<.001, .069) .059 (.002, .325) .014 (<.001, .092)
σ2
d .015 (.004, .031) .016 (.004, .038) <.001 (<.001, .002) <.001 (<.001, .002)

ρdW .004 (<.001, .023) .001 (<.001, .007) .005 (<.001, .031) .001 (<.001, .007)
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the participant and condition/day levels across fixed slices of the functional dimension in

the audio odd-ball paradigm (Figures B.5.4, B.5.5, B.5.6) and the ABC-CT feasibility study

(Figures B.5.7, B.5.8).
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Figure B.5.1: (a) The true and estimated overall mean functions µ(t) corresponding to the
10th, 50th and 90th percentile RSE values across groups based on 200 Monte Carlo runs from
the sparse simulation design at nd = 15 and high noise. (b, c) The true and estimated ηdj(r, t)
corresponding to the 10th, 50th and 90th percentile RSE values across groups d = 1, 2 and
regions based on 200 Monte Carlo runs from the sparse simulation design at nd = 15 and
high noise.
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Figure B.5.2: The true and estimated first (first column) and second (second column) leading

marginal eigenvectors for level 1 v
(1)
dk (r) (first row) and level 2 v

(2)
dp (r) (second row) and

eigenfunctions φ
(1)
dℓ (t) (third row) and φ

(2)
dm(t) (fourth row) corresponding to the 10th, 50th

and 90th percentile RSE values across groups based on 200 Monte Carlo runs from the sparse
simulation design at nd = 15 and high noise.
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Figure B.5.3: (a, b) The estimated power of the proposed bootstrap test for condition
differentiation based on 200 Monte Carlo runs. (c) Coverage and (d) length of the bootstrap
CIs proposed for M-HPCA ICC based on 200 Monte Carlo runs. (e) The median run time
for the proposed MM algorithm (green line) versus the popular R package lme4 (red line)
from the dense (solid line) and sparse (dashed line) simulation design at nd = 15 and low
noise, as a function of the total number of product components.
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Figure B.5.4: (a, c, e) The estimated leading participant-level marginal eigenfunction φ
(1)
d1 (t)

(solid) compared to the leading participant-level eigenfunctions from the C4, CZ, and P3
regions. (b, d, f) The estimated second leading participant-level marginal eigenfunction

φ
(1)
d2 (t) (solid) compared to the second leading participant-level eigenfunctions from the C4,

CZ, and P3 regions.
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Figure B.5.5: (a, c, e) The estimated leading condition-level marginal eigenfunction φ
(2)
d1 (t)

(solid) compared to the leading condition-level eigenfunctions from the C4, CZ, and P3

regions. (b, d, f) The estimated second leading condition-level marginal eigenfunction φ
(2)
d2 (t)

(solid) compared to the second leading condition-level eigenfunctions from the C4, CZ, and
P3 regions.
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Figure B.5.6: (a, c, e) The estimated leading participant-level marginal eigenvectors v
(1)
d1 (r)

(bottom row) compared to the leading participant-level eigenvectors obtained at fixed slices of
t = 0, 200, 400, 600, 800. (b, d, f) The estimated leading condition-level marginal eigenvectors

v
(2)
d1 (r) (bottom row) compared to the leading conditional-level eigenvectors obtained at fixed

slices of t = 0, 200, 400, 600, 800.
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Figure B.5.7: The estimated leading participant-level (a, c) and second leading participant-

level (b, d) marginal eigenfunctions φ
(1)
d1 (t), φ

(1)
d2 (t) (solid) compared to the participant-level

eigenfunctions from the Fz, C3, and Pz regions. The estimated leading day-level (e, g) and

second leading day-level (f, h) marginal eigenfunctions φ
(2)
d1 (t), φ

(2)
d2 (t) (solid) compared to

the leading day-level eigenfunctions from the Fz, C3, and Pz regions.
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Figure B.5.8: (a, c) The estimated leading participant-level marginal eigenvector v
(1)
d1 (r)

(bottom row) compared to the leading participant-level eigenvectors obtained at fixed slices

of t = 4, 6, 9, 13, 30. (b, d) The estimated leading day-level marginal eigenvector v
(2)
d1 (r)

(bottom row) compared to the leading day-level eigenvectors obtained at fixed slices of
t = 4, 6, 9, 13, 30.
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Appendix C

RR-GFLM

C.1 Simulation: Additional figures
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Figure C.1.1: The rank across 200 Monte Carlo runs for the discrete (black) and continuous
(grey) longitudinal dimension cases.
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Figure C.1.2: The squared error across 200 Monte Carlo runs for the discrete (black) and
continuous (grey) longitudinal dimension cases.
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Figure C.1.3: The estimated regression function with median RSE (dashed) and true regres-
sion function (solid) for (a) N = 70, (b) N = 200, (c) N = 500, and (d) N = 1000.
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Figure C.1.4: The estimated regression function with median RSE (first through fourth
columns) and true regression function (last column) for all simulation settings.
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Figure C.1.5: The out-of-sample accuracy across 200 Monte Carlo runs for the (a) RRLF-
GLM and (b) m-GFLM models for the discrete (black) and continuous (grey) longitudinal
dimension cases.
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